iCE-Em Mathematics Year 10

April 5, 2017 | Author: Arah | Category: N/A
Share Embed Donate


Short Description

Download iCE-Em Mathematics Year 10...

Description

Answers to exercises Chapter 1 answers Exercise 1A 1

a 0.56

b 0.082

c 0.96

d 0.18

e 0.12

f 0.0375



g 2.15

h 0.008

i 0.8825

j 0.002

k 1.508

l 0.0075



3

m 3.25 9 a 20 6 i 5 a 80%



f 44 49 %

g 166 23 %

h 1.75%

i 46%

j 20.5%



k 6%

l 2.5%

m 140%

n 205%

o 112.5%

p 0.075% 16 , 0.64 25 f 62.5%, 0.625

q 206%

r 217% c 16%,

s 775% 41 d , 0. 205 200 i 160%, 1.6

t 225%

b 60%, 0.6

d 523.2

e 96.77

2



16 b 25 3 j 2

n 0.006 17 c 20 11 k 8 b 87.5%

o 1.245 27 2 d e 40 3 7 29 l m 5 400 c 43.75%

p 0.00875 1 f 6 51 n 400 d 150%

33 h 400 1 o p 200 e 45%

7 125 39 500

g

5

a 9

b 116

4 25 11 h , 1.1 10 c 188.64



f 1011.6

g 2.77

h 7

i 1.1

6

a $26

b $254.10

c $48

d $1749



f $30

g $165

h $7.95

i $4176

7

a 6%

b 1.3%

c 4.7%

d 160%

e 16.7%

f 600%

8

a 4.80%

b 1.70%

c 0.23%

d 4.17%

e 4.11%

f 3.13%



g 3200%

h 0.14%

9 45

10 a  1.508 g

b 0.00728 g

12 a  16 500

b 31 500

4

a

g 104%,

26 25

11 61 minutes and 6 seconds

e 40%,

2 5

e $2.70

13 a $480

b 1600 g

c 240 mins

d 240 cm

e 208 ha

f $218

14 a $1900

b $3600

15 a  416.7 kg

b 800 mm

c 301 ha

d 373.3 mm

16 a $575

b $12 929

17 a  100% profit b 17.6% loss

18 a costs $518 519, total sales $546 519 19 a i $0 b i 0% c i $22 533.33

b costs $11 538 462, total sales $10 788 462 iii $4700 iii 12.37% iii $78 571.43

ii $450 ii 3% ii $34 640.00

iv $127 700 iv 31.93% iv $78 000.00

20 a $1600

b $8000

21 a  $270

b $810

22 a $720

b $2025

c $5040

d $17 280

23 a 7.5% p.a.

b 6.8% p.a.

c 5.8% p.a.

24 a  50 years

25 a $5000

b $15 000

c $24 790.12

b 38 years

Exercise 1B 1

a $627

b $9786

c $483.36

d $3369.60

2

a $8100

b $4332

c $801.22

d $9139.20

3

a 35 840

b 171 360

c 278

4

a 434 mm

b 88 mm

c 786 mm

5

a 6% increase

b 88% increase

c 22% decrease

6

a 20% decrease

b 4.4% increase

c 44% decrease

7

a $630

b $5160

c $11 000

8

a 200

b 7299

c 68 142

9

a 4750 megalitres

b 11 340 megalitres c 1840 megalitres d 63 330 megalitres

10 a $52

b $31.20

c $442

11 a $3111.11

b $726.77

c $54.44

d $1300

d $1.04

Answers to exercises ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

397

Cambridge University Press

12 a $28 000 e $31 890.04

b $5992.56 f $421 741.12

c $13 806.10 g 4%

13 a i $280 000 b i $428 571 c i $803 333

ii $61 855 500 ii $6 625 714 286 ii $4 156 666 667

iii $2203 iii $1033 iii $1423

14 a i $3014 b i $3570 c i $4862

ii $147 400 ii $388 070 ii $3 818 254

iii $9.02 iii $2.90 iii $5.17

d $69 565.22 h 60.22%

i 17.16%

ii $13.83

15 a i $3102

ii $24.97

iii  $373.27

b  i  $4061.90

16 a 50%

b 20%

c 81.8%

d 72.4%

17 a i 9.09% b i 11.11%

ii 15.25% ii 21.95%

iii 78.26% iii 400%

iv 3.94% iv 4.28%

iii $73.50

Exercise 1C 1

a $12 474

b $8042.64

c $22 425

d $61 412.50

e $233 436.82

2

$3.83

3 a  $7706.79

b $96 119.13

c $128.24

d $3947.50

4

a 50.4%

b i  $1503.63

ii $25 965.05

iii $324.84

6

a Decreased by 4% b Decreased by 64%

7

a $2.52

b $2.19

8

a i $370.74

ii $8897.76

9

5 25.75%

c Decreased by 1%

d Decreased by 9%

c $1.99 iii $4 199 930.76

b 62.9%

a 5158

b 51 589

10 a i 49.8°C

ii 24.8°C

iii 3.1°C

b i 20.2°C

11 a 18.6%

b 11.6%

12 a  90.9%

b 100.0%

c 61 895 ii 34.2°C

iii 68.6°C

c 100.0%

13 a Decrease of 25% b Decrease of 25% c As multiplication is commutative, if the percentage increases and decreases are the same, but in different orders, the overall effect is the same.

Exercise 1D 1

a $107 000

b $114 490

c $140 255.17

d 40.26%



e $40 255.17

f $35 000

2 a  59 750

b 76%

3

a i $1 630 910.87

ii 329%

b i  $1 696 688.53

ii 346%

4

a $327 000

b $548 411.74

c 82.80%

d $248 411.74

5

a $83 521 265.73

b $153 336 556.81

c $12 000

6

a $1 024 290.31

b $1 131 996.29

c $252 000

7

a $33 542.00

b $13 542.00

8 a  $58 349.04

b 71%

9

a $154 880.98

b 61%

10 a  $43 297.57

b $12 335.56

11 a 74 488

b 69 356

c 55 985

d 39 178

12 a $226 057.28

b $212 924.56

c $177 929.33

d $131 911.86

13 a $41 734.65

b $36 508.33

c $26 530.27

d $19 290.79

14 a 12.68%

b 6.17%

c 10.95%

d 5.33%

15 a $16 282.30, $13 282.30

c $5 512 011.72, $2 512 011.72



e $2226.51, $7773.49

b $44 913.33, $34 913.33 d $552.75, $2447.25 f $1 632 797.69, $1 367 202.31



16 a $5400, $5724, $6067.44

b $5551.00, $5893.38, $6256.87

17 a $36 000, $39 240, $42 771.60

b $37 522.76, $41 042.65, $44 892.74

18 $1 202 680.28

20 a  3.72%

21 a 32.3%

19 $114 041 037.47 b 33.1%

e $189 000

c 33.8%

g  The total percentage growth is approximately the same.

b 7.57% d 34.0%

e 34.4%

f 34.6%

22 87%

23 4 1%, 41%, they are the same as the percentages are the same just in a different order. As multiplication is commutative the total percentage increase will be the same. 24 $52 469.91

398

IC E - E M M at h emat i c s   y ea r 1 0 B o o k 1

ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

Cambridge University Press

Exercise 1E 1

a $420 000

b $294 000 b $22 400

c $70 589.40

d 88.2%

e $88 235.10

c $7340.03

d 79%

e $3951.42

2

a $28 000

3

a $83 886.08, 73.8% b $507 799.78

5

Depreciated value is $15 126, Price obtained is better by $4874, to the nearest dollar

6

Price is worse than the depreciated price by $137 514.91

4 4902

7

$2 724 000, $1 634 400, $980 640, $588 384; $1 816 000, $1 089 600, $653 760, $392 256

8

$4650.00, $3487.50, $2615.63; $1550.00, $1162.50, $871.88

9

Sandra $116 731.38, Kevin $20 971.52 b Taxis $156 250, Other cars $2 166 757.03, difference = $2 010 507.03

10 a Taxis 98.4%, Other cars 78.3% 11 a $8387

b $10 822

c $83157

d 92.2%

e $7666

12 a $95 455

b $108 471

c $180 877

d 53.6%

e $16 146

c $83.2%

d $3964.07

e i $2480.80

15 a  2.6%

b 769.23 mL

13 a $15 523.20

b $33 348.49

14 a 59.31%

b $18 3094.15, $26 690

16 0.4096%

17 A gain of 58.86%



18 a i  27.75% ii 27.10% iv 26.49% v 26.26% iii 26.61% b The total depreciation is approximately the same, but decreases as the number of years increases.

ii $5941.76

vi 26.14%

19 92.09%

Review exercise 1

a $5400

b $2380

c $2700

2

a $5000

b $3333.33

c $2083.33

d $1500 d $4000

3

a 8%

b 12 12 %

c 10 23 %

d 11 19 %

4 16%

5 $85.50

6

a 66 g 115.5

b 125 h 225

c 177 i 390

d 36 j 294.84

e 64 7 $93.50

f 460 8 $67.82

9

a i 99

b No, they all end up close to 100.

ii 96

iii 99.84

iv 99.36

10 a 2250

b $2025

c $1822.50

d 27.1%

11 a $390

b 56%

12  7.58%

13  24.78%

14 a $4317.85

b $10 235.50

c $29 588.77

d $5320.45

15 a $19 467.20

b $16 477.04

c $10 859.71

d 25 000(0.92)n

16 a $7520

b $6245.99

c $5518.96

d $4308.92

17 a $13 721.03

b $7241.03

c 7 years

b 0.32% decrease

2 a Bank B

b $9653.19 d $53.03

Challenge exercise 1

a $37 036 $ 50 n

3

a

b $50.51

c $47.98

4

12.36%

5 0.8% increase

6 $69.32

7

80.4%

8 $369 814.11

9 r ≈ 4.88



Chapter 2 answers Exercise 2A 1

5

√60 √6 3

√30

√3 0

1

2

3

4

2

a 2 2

b 2 3

c 4 2

d 5 2

e 3 6

f 6 3

g 7 2

h 10 2



i 12 2

j 7 3

k 4 7

l 5 7

m 7 5

n 7 6

o 15 

p 30



q 15 2

r 20 2

s 10 10 t 24 3

Answers to exercises ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

399

Cambridge University Press

3

4

a 10 3

b 20 5

c 18 11

d 15 6

e 24 5

f 35 5 k 35 3

g 24 2 l 12 11

h 35 2 m 8 13

i 66 3 n 25 11

j 560 o 40 3

a

8

b

45

c

147

d

216

e

300

f

160

g

605

h

2450

i

245

j

108

k

700

l

180

5

a

6

b

77

c

40 = 2 10

d

39

e

48 = 4 3

f

99 = 3 11

6

a

5

b

2

c

6

d

5

e

3

f

8=2 2

7

a

14

b

15

c 4

d 3 2

e

23

f 13 2

g 6 2

h

6

i 7

j 0

k 25

8

a



e

9

a

5 × 45 3

6 =

b

30

= 15

21 cm 2

10 a 3 2 2

11 a 112 cm

f

7 × 100 5

8 = =

c

56

g

20

1 30 cm 2 2 b 6 b

b 4 14 cm

12 × 91 7

3 =

36

= 13

c 17 cm2

d

c 3 5

d

15 ×

h

33 11

11 cm

d 2 2 2

=

3 =

l 3 45

3

i 

5

e 2 6 cm

f 3 7 cm

e 5 2

f 3 5

52 = 2 13 cm

12 a  7 3 cm

b

d −17 5

e 3 2

i 36 7

j 11 10

Exercise 2B 1

a 13 2

b 25 3

c



f −27 5

g −2 3

h 22 5

2

a 12 2 + 2 3

b 10 7 − 10 5

c 13 11 − 3 10 d 10 2 − 4 3

e 6 15 − 4 7

3

a 6 2

b 5 3

c 5 5

d 15 2

e - 5 3

7



f −2 5

g 3 3 + 4 5

h

i 3 3 − 8 10

j −4 5 − 8 2

4

a 5 3

b 5 2

c 2 2

d −3 5

e 27 2 − 12 3 f 45 3



g 18 5

h

i 28 11

j −15 3

k 6 7 − 15 6

5

a

b 6 3

c 6 2

d

e 9 2



g 5 6

h 4 3

i 2 5

j 11 2

6

a 10 2 − 4 3

b 24 2 −

7

a x = 7 a 2 2 + 2 3, 6 , 5

b x = 5

8

2

7

11 + 8 5

f 11 5 − 2 2

3

k

c 6 3 + 15 10

5

5 5 2

l 181 3 9 f −7 5 l 15 2 − 10 5 d 24 3 − 19 2

c x = 6

b 2 3 + 2 5, 15, 2 2

Exercise 2C

400

1

a

15

b

55

c

112 = 4 7

d

65

e

12 = 2 3

f

54 = 3 6

2

a

5

b

2

c

6

d

5

e

3

f

8=2 2

3

a 12 10

b 77 15

c 54 35

d 32 6

e −30 6

f −28 22



g 12 77

h 18 14

4

a 2 3

b 2 10

j −10 21 1 d 3 2

k 12 14 5 5 e 3

l −42 33 2 6 f 3



h −2 3

5

−5 2 g 2 a 2

i −22 42 5 5 c 2

b 11

c 9

d 40

e 30

f 90



g -56

h -20

i 24

j 42

k -165

l -126

6

a

c 2 2

d 3 3

e 3 7

f 6 5



g 6 2

h 12 3

i 10 5

j 8 2

k 32 2

l 50 5

7

a 5 7

b 4 3

c −3 3

d −3 5

e 3 3

f 7 2



g 25 35

h 24 42

i 3 3

j 6 2

k 3 3

l 16 15

3

b

2

IC E - E M M at h emat i c s   y ea r 1 0 B o o k 1

ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

Cambridge University Press

8

a 16 6

b 43 15

c 7 10

d 3 30

e 6 6

f 6 10



g −17 30

h − 40 = −2 10 i 8 2

j − 4 5

k 2 2

l

9

a 8

b 12

c 80

d 45

e 98

f 150



g 63

h 44

i 108

j 250

k a2b

l m2n

b 2

c 2 2

d 4

e 4 2

f 8

k 192 3

l 40 5

e 2 15 + 2 6

f 3 14 + 3 10 l 60 2 − 32 5

10 a

2



g 3 3

h 5 5

i 16 2

j 54 2



m 625 5

n 56 7

o 512

p 2187 3

6 + 10

11 a

b

35 +

35 − 10

c

42

33 −

d

22

2



g 6 10 − 9 6

h 20 6 + 24 15 i 4 6 − 4 3

j 6 15 + 15

k 18 2 + 8 3



m 24 − 6 2

n 30 + 24 5

p 80 − 24 10

q 105 5 − 42 3 r 66 2 − 132 3

12 a 15 +

21 + 10 + 14



d 15 – 21 +



30 −

o 36 2 − 18 55 +

b

30 +

77 +

15 −

42 c

35 +

6 − 14

e 2 15 + 4 6 + 10 + 4

f 8 − 5 2

g 5 6

h 45 − 17 15

i 37 − 10 5



j 10 6 − 6 2 + 30 3 − 18

k −11 − 11 14

l 2 21 − 4 35 + 15 − 10



m 34 − 9 14

n 3 21 − 9 35 − 8 3 + 24 5

−3 2 13 a −18 2 b 2 b 6 −

14 a 4

42

c 66

3 c

d

11 108

e 24 3

3 + 10 d 2 3

f 1296 3 g

3 3 4

f 1

3

e 3 3 − 2

15 a 8 6 , 4 3 + 8 2

b 24, 12 3

c 29, 28

16 a

b 10 + 5 3 + 15

c 6 5 + 15

15

g

h -42 h 1

d 7 + 3 5, 6 + 4 5

b 79 + 20 3

17 a 8 + 20 3

Exercise 2D 1

a 7 + 2 10

b 10 + 2 21

c 5 − 2 6

d 13 − 2 42

e 13 + 4 3



f 22 − 12 2

g 43 + 30 2

h 25 − 4 6

i 14 + 4 6

j 59 − 24 6



k 83 + 12 35

l 98 − 24 10

m 34 − 24 2

n 79 − 20 3

o 37 − 20 3



p 13 − 4 a 13

q 45 − 9 6 r 103 − 5 3 8 4 4 c 2 d 5 e 1

2

3 b 3 l 34

m 1

n -3

f 3

o -1

p -1

g 11 1 q − 2



k 5

3

a 7 + 4 3

b 7 − 4 3

c 37 + 20 3

d 37 − 20 3

4

a 1

b 2 5

c 18

d 8 5

6

a 7 3 + 7

b 3 − 3 3

d 40 3 + 116

7

a

b 14 + 122

c 29 3 + 40 37 c 2

122

h 2 r 33 4

i 6 155 s − 9

75 2 e -42

j -1 7 t − 18

b 5 6

5 a 

Exercise 2E 1

a

5 3 3

b 3 2

c

7

d

3 5 5

e

2 7 7

f

3



g

5 6 6

h

7 2 2

i

10 2

j

2

k

2 3

l

2 6 9



m

2 15 15

n

15 4



s

1 7 6 +6 2 12 5 + 10 t 30 30

(

(

)

o 1 8 3 + 3 6

(

)

p 1 3 2 − 4 10

(

)

q 1 3 + 2 6 3

r 1 8

(

10 − 2 6

)

)

Answers to exercises ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

401

Cambridge University Press

)

(

1 9 2+ 8 3 6

d

1 12 14 − 21 2 28

f 11 3 − 3 11 33

h

22 3 − 12 11 33



e 20 7 − 14 5 35

3

a



e



i 7



m 7 +



q 3 3 10 + 5 2 8



u −4 − 15

4

a



d −

5

a

13 3 3

b −

7

a

3− 3 2

b

8

a

4 19 + 6 2 289



d

1 63 2 − 13 34

9

i a 

1 15 − 5 5 8

)

b



d 

1 45 − 20

)

e



ii a  588 + 240 6



e 

(

7 4+

b 3

13 5 −

(

) )

1 j 3

3

(

3

)

6

)

(

(

)

15 −

n 4 4 + 5

3

c

)

(

2

g 14 3 − 15 7 21

7− 6 43

f 6 2 +

6

(

)

(

)

)

(

)

(

a

5 + 2

2+ 2 2

(

)

h

k

21 − 14

l

o

2 2 6 −3 5

)

p

3 +

(

1 37 5 + 19 2 − 9 57

2 3 3 +2 5 17

e

1 6 3 −5 2 10

)

(

(

(

(

)

(

3 3

16 − 9 3 2

)

1 3 2 −1 2

)

e

1 915 2 − 137 578

)

)

c

)

(

1 115 − 17 5 40 1 b 5 3 −6 2 6

5

)

(

)

(

5 +

3

(

5 2 10 + 9

22

)

)

(

e

(

f

1 5795 − 1638 2 1156

(

6 10

(

)

2 +1

)

1 19 − 6 2 4

1 6+2 5 5

(

)

) )

(

1 123 − 9 5 40 1 c 147 − 60 6 36 5 f 1421 + 572 6 12 f

559 3 9

c

)

(

(

1 3528 + 1440 6 + 5 3 − 6 2 6

3

)

d 15 3 + 26

5

)

1 17 10 + 4 2 − 10 17

c 6 3 + 10

b

(

2

)

f -10

)

1 5+ 5

(

4

)

d 6 7

(

)

2 5+

(

c 14

(

6 −2

(

c

)

(

(

t

)

(

3

1 27 + 7 6 15 1 x 23 − 6 10 13

)

s 4 2 6 − 3 2 3 1 w 29 + 7 10 27

b

(

2

(

r 2 3 6 + 3 17 1 v 21 + 4 5 19

1 5+5 3 −4 2 4

d

g 2

)

(

(

1 b 1 15 7 − 14 5 c 5 6 +2 5 20 35

2

d

(

1 65 3 + 66 2 6

)

)

Review exercise

402

1

a 4 2

b

6

c 4 − 2 3

d 3 3 −

2

a 5 2

b

2

c −4 7

d 11 3

2

e −2 7

f 4 2 − 3 5

f 2 11

3

a 30 2

b 30 2

c 12 10

d 28 42

4

b 3 5 h 8 3

c 2 6 i 45 2

d 3 3

e 4 5



a 6 2 g 6 2

j 18 3

k 40 2

5

a

75

b

112

c

d

e



g

208

h

176

6

a 9 2

b 2 5 + 5 3

c 3 3

7

a 19 2

b 4 2

c 15 2 +

242

125

d 19 7 6

384

e 11 5

f

891

f 55 6

d 16 7 − 27 3

IC E - E M M at h emat i c s   y ea r 1 0 B o o k 1

ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

Cambridge University Press

8

a 6 3 + 6

b 30 − 10 2

c 24 − 16 21

d 30 5 − 50

e 12 7 − 21

9

a 10 −

b 32 − 9 3

c 2

d 17

e 50 j 14 − 4 6

2



f 8 + 2 15

g 8 − 2 15

h 2

i 14 + 4 6



k 10

l a - b

m 11 − 4 7

n 28 + 10 3

5 3 7 3 b 3 6 1 11 a − 5 + 7 2 12 a 2 + 1

)

(

3 +2

16 a 6

e 2 −

3

)

(

14

ii

21 20 2 23 14 5

6 4

f

42 7 42 h 7 12 1 3+ 5 d 2 d 3 + 2

g

)

(

)

(

1 3− 5 2 c 3 − 2 7 b 3 c

b 0

c 4 3 + 7

d 1

b 2 3 − 2

c 26 − 4 3

d 12 3 − 12

30 − 12 3 f 13

22 − 14 3 g 13

h 2 3 + 5

18 40 − 20 3

b 6

20 a i  3 + 5 2

5 3 9

e

b 4 3 + 7

17 a 4 3 + 8 19 a

3 2 7

14 a  5 5 + 2

)

(

d

1 10 + 3 5 11 b 2 − 3

b

13 p = 5, q = 2 15 a 2

2 2 3

c

10 a

f 45 − 12 6

c 5 −1 2

d

118

e

42

iii 1 + 5 2

iv 2 +

22 a  −4 3

b -8

24 a  6

b -11

c -4 6 c − 11

30 − 10 3 3

f 20 2 − 10 6

v 2

5

d −7 − 4 3

Challenge exercise

( x)

2

+2 x y +

1

a

2

a a + b - a a +



d

3

9 a x = 4

b 4(1 +

a+b−

9

a

x2 )

b i 

-1=3+ 2

e 2a + 2 a − b b x = 9

8

2 x

+

1 + 3 x

5

2 53

5

6

11 +

5

ii

11 −

5

iii 6 +

5

c 2x

2

c x = 2

4x2

15 −

d x = 9 5 − 3 +1 8

e x = 9 7

2 3 +3 2 − 12

f x = 8 30

ab

9

9 = 80

729 9 =9 80 80

4

4 = 15

64 4 =4 15 15

10 (2 6 + 5) cm 13 a 625

= x + y + 2 xy

b

x−2 x −

ii

5

b

b b =a c c b 2 b a+ =a c c b 2 a = (a − 1) c a b = 2 a −1 c a+

a Mixed numbers of the form a 2 . a −1 2 11 1 12 5

b 1799 2



2

2

4

14 a i 

( y)

5 −1

iii

5 −1 2

iv

5 −1 2

 5 − 1  5 − 1 b    =1  + 2  2   

Answers to exercises ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

403

Cambridge University Press

Chapter 3 answers Exercise 3A 1

a 8x

b 2x

c - 6x

d 4a + 7b



f -3x + 2y

g 4a + b

h -4a - 4b

i 3x - 4y

2

a 3ab

b 6x2y

c 12cd 3

d 9st2 + s2t



e 2mn + 4m2n

f 12x2y

g -6x2y2 - xy

3

a 3a + 6

b 7b + 21

c 8m + 16

d 11p - 77

e 4a - 10

f 24p + 108



g -12b - 27

h -20m - 25

i 2 - 6a

j 42 - 24b

k 35 - 10b

l 14 - 21b



m x + 3

o 4a + 2 1 x u − 5 10 c c2 - 5c

q 3x - 12

r 3 - 5l

4

n 3x + 6 5y 1 − t 2 5 b b2 + 7b

p 4t - 3

1 s 4 x + 2 a a2 + 4a



e

20h2 -

10i 2 +

12j 2 +



i l -

5





f

28h

g

14i

d 6g2 - 10g h 4k - 5k2

21j

j 6ac + 3bc

k 8c2 -

m 10m2 - 20mn

n 10x2y + 15x

o 6p - 15p2q

a 4a + 4b

b 5a + 5

c 8p - 56

g 30 - 6x

h 12a2

f

3l 2

6m2

+ 10m

l 10d 2 - 20de

4cd

d 15 - 3p

- 21a

i

12a2

e a2 + ab

+ 20a

j 6x2 - 21xy

6

a 8a + 23

b 3d + 3

c 2e + 5

d 3f - 18

e 13g + 10



f 3i - 30

g j - 6

h 8a2 + 13a

i 10b2 - 9b

j 15a2 + 6a



k 2b2 - 15b

l 10

7

34 x 15 + 21 7 a 5y + 14



f x2 + x - 6



d a + 1

g 2p2 + 7p + 5

h 10z

i 4y2 - 16y

q

p

x2

9 5 b 7a - 12

5x + 2 6 3x 9 r − 4 4 c 16b - 9

+ 10x + 21

n

m

b a2

+ 13a + 40

a2

7x 1 + 12 2

+ 12a + 27

o

19 x 3 − 15 5

e -5 j 15z2 - 10z d x2

- 6x + 5

8

a



e x2 - 5x + 6

f a2 - 11a + 28

g x2 - x - 42

h x2 + 8x - 33



i x2 - 5x - 24

j x2 - 3x - 54

k 6x2 + 17x + 12

l 15x2 + 22x + 8



m 5x2



q

2a2



u 12x2 + 13x - 14 2a2

+ 11x + 2

n 6x2

- 11a + 15 + 7ab +

r

c

+ 7x - 5 + 13a - 5

6a2

v 8x2 + 26x - 7

3b2

- 7mn -

b 6m2

o

20x2

- 11x - 3

p 6x2 - 13x + 5

s

8m2

+ 2m - 3

t 6p2 + 11p - 10

w 15x2 - 46x + 16

3n2

6p2

+ pq -

9

a

d 3x2 + 13ax - 10a2

e 6x2 + 13xy - 5y2

f 6c2 + 35cd - 6d2



g 8p2 + 2pq - 3q2

h 3b2 + 5ab - 2a2

i 15q2 - 4pq - 4p2

b 9x2 + 12x + 4

c 4a2 + 4ab + b2

10 a x2 + 2x + 1 + 24ab +

e

9a2

i

x2

- 2x + 1

11 a

x2

- 9





b a2

g 49 - 9y2

12 a

16b2

x2

f

4x2

j

4a2

+ 12xy +

9y2

g

- 12ab +

9b2

k 9a2

- 49

- 64

f 9 - 12x + 4x2

2

a a = 2 22 f y = 5 a x = -3

c

- 1

h a2 - 9b2

b b = 3

c x =

c x = -3

- 24ab +

- 4

4a2

9 2 h y = 6

d x = -2

d 4a2 + 12ab + 9b2

- 14x + 49

i 9x2 - 4y2

+ 4a + 1

g x = 4 b x = 2

y2

x2

g a2 + 6ab + 9b2

Exercise 3B 1

c

h 4m2 - p2 b 4a2

c

23 e x = 5

x 6x2 - 17x + 5

5q2





404

e 2t - s

h x2 - 2xy + y2

16b2

l 4x2 - 12xy + 9y2

- 1

e 4a2 - 9

d b2

f 25 - x2

j a2 - 9b2

k 64m2 - 25n2

d 9 -

e 9 + 12a +

4x2

l 49r2 - 4t2

4a2

i a2 - 6ab + 9b2

d y = -5

e x = 6

i a = 3 26 f a = 17

j b = -1 g y = -2

h x =

55 28

IC E - E M M at h emat i c s   y ea r 1 0 B o o k 1

ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

Cambridge University Press

3

a x > 3

c x ≤ -4

d x > -8

g x ≥ 1

h x < 8

i x >

b x ≤ 7

c x ≥ 13

d x < 11

e x ≤ -12

g x < 4

h x ≥ −

i x ≤ -20

j x < 5

5

4 5 11 a x > − 2 9 f x < 2 28

6 width 5m, length 13m

8

$90

9 4 km/h

4

f x ≤ −

e x > 7 2 2 j x ≤ 3

b x ≤ 2

29 4

1 2

7 17 and 25

10  $840 000

Exercise 3C 1

Giorgio 7 km/h, Fred 5 km/h

2 2 L

3

17 20-cent pieces, 10 $2 coins

4 $3600

6

1.5 L

5 12 12 hours, 7 hours

7 A to B 305 km, B to C 335 km

a $129 150 − x 11 a y ≥ 2 8

b $112, $142

9 26 hours

b i  y ≥ 57.5

ii y ≥ 50.5

10  When sales exceed $1700

Exercise 3D 1

127

2 43.2

3 44.7

4

7

a 339 cm2

b 109 cm2

c 3695 cm2

8

a 465

b 1275

c 7260

9

88.36

10  99 cm

11  20 mm

6 5

5  2.45

d 5985

12 a y = z - x

b r =

A πs

c y =

ax t

d v =

2w m

m2 4

f m =

k2 4t

g p =

b2 a+b

h t =

x−1 x+1



e x =



i a = c 2 − b 2



j r = 2

m k = h − g  t   2π 

n a =

n−q v2

t l L = g    2π 

k q = n - v3r



6 2.92

B2 + C 2 mbc o A = 2B bc − mc − mb

p s =

2

rc c − rv

Exercise 3E 1

a (b + 2)(b - 2)

b (y + 6)(y - 6)

c (3 + a)(3 - a)



e (3x + 4)(3x - 4)

f (5a + 1)(5a - 1)

g 16(y + 2)(y - 2)

h (a + 2b)(a - 2b)



i (3x + y)(3x - y)

j 2(2x + 1)(2x - 1)

k 3(2 + y)(2 - y)

l 5(m + 2n)(m - 2n)



m 3(3r + t)(3r - t)

n 7(a + 2b)(a - 2b)

o 5(x + 2y)(x - 2y)

p (1 + 3ab)(1 - 3ab)

2

a x + 3 x − 3

b x + 7 x − 7

3

( )( ) e ( x + 21 ) ( x − 21 ) a ( x + 2 5 ) ( x − 2 5 ) d ( x + 2 6 )( x − 2 6 ) (

)(

)

f

d (7 + x)(7 - x)

( )( ) c ( x + 13 )( x − 13 ) d ( x + 6 )( x − 6 ) ( x + 17 )( x − 17 ) g ( x + 19 )( x − 19 ) h ( x + 23 )( x − 23 ) c ( x + 3 3 ) ( x − 3 3 ) b ( x + 3 2 ) ( x − 3 2 ) f ( x + 2 7 ) ( x − 2 7 ) e ( x + 2 10 ) ( x − 2 10 ) (

)(

)

 7  7 i  x +  x − 5 5     11   11  l  x +  x − 4  4  



g x + 5 5 x − 5 5

h x + 10 2 x − 10 2



 3  3 j  x +  x − 2 2   

 5  5 k  x +  x − 3 3   

4

a (x + 2 + 2)(x + 2 - 2)

b (x - 1 + 3)(x - 1 - 3)



c (x - 5 + 5)(x - 5 - 5)

d (x + 3 + 7)(x + 3 - 7)

Answers to exercises ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

405

Cambridge University Press



 2  2 e  x − 4 +  x − 4 − 2 2   



g



 5  5 i  x + 3 +  x + 3 − 3 3   



k 2 x + 1 + 3 3



 6  6 m  2 x − 3 +    2x − 3 − 3  3  



o 12z(3z + 2)

5 6

 3  3 f  x − 1 +  x − 1 − 3 3   

(

( )( ) d 4 ( x + 7 ) ( x − 7 ) g 2 ( x + 1 + 5 ) ( x + 1 − 5 ) j 2 ( x + 1 + 2 3 ) ( x + 1 − 2 3 ) a ( a − b ) ( a + b )

)

h x + 3 + 2 2 x + 3 − 2 2  7  7 j  x − 2 +  x − 2 − 3  3  

) (2x + 1 − 3 3 )

a 2 x + 7 x − 7

)(

(

( x − 1 + 2 3 )( x − 1 − 2 3 )

l

(3x + 1 + 2 3 ) (3x + 1 − 2 3 )

( )( ) e 3 ( x + 2 3 ) ( x − 2 3 ) h 3 ( x + 2 + 2 ) ( x + 2 − 2 ) k −2 ( x + 3 + 2 ) ( x + 3 − 2 ) b 3 x + 2 x − 2

b

15     4x − 1 − 5 

 n  4 x − 1 + 

a +

15   5 

( )( ) 2 ( x + 3 2 )( x − 3 2 ) 3( x − 2 + 2 2 )( x − 2 − 2 2 ) − 4 ( x − 2 + 5 )( x − 2 − 5 )

c 5 x + 3 x − 3 f i l

b

Exercise 3F 1

a (x + 1)(x + 8)

b (x + 1)(x + 6)

c (x + 2)(x + 6)

d (x + 2)(x + 4)



e (x + 3)(x + 9)

f (x + 6)2

g (x + 3)2

h (x + 3)(x + 8)



i (x + 3)(x - 2)

j (x + 6)(x - 5)

k (x + 8)(x - 5)

l (x + 10)(x - 6)

5)2

p (x - 2)(x - 16)



m (x - 1)(x - 6)

n (x - 3)(x - 4)

o (x -



q (x + 5)(x - 7)

r (x + 5)(x - 6)

s (x + 2)(x - 5)

t (x + 3)(x - 7)



u 3(x - 1)(x - 5)

v 2(x + 8)(x - 3)

w 4(x + 4)(x - 6)

x 5(x + 12)(x - 2)



y 3(x + 1)(x - 3)

z 2(x + 7)(x - 4)

2

a (m + 3)(x + 2)

b (x - 4)(x - 3)

c (a - 9)(b - 7)

d (2x + 5)(x - 1)



e (3a + 5)(b + 2)

f (2x + y)(3x - 2y)

g (2a - 5)(b - 6)

h (x + 2)2(x - 2)



i (4x - 5)(3 - 2y)

j (5x - 2y)(2x + 3y)

3

a (x – 11)(x + 7)

b (z – 5)(z + 5)

c 2x(x – 3)

g (x + 10)(x + 4)

h (x -



f (x + y)(x – y)



j



n –(x + 5)(x – 3)

o 2(x - 3)(x - 4)



s (x + y)(x + z)

t (3a – b)(2a – 3)

(

)(

)

x−6−3 2 x−6+3 2

7)2

d 5a2(4 – a) e (x + 3)(y + 2) i x − 11 x + 11

(

)(

)

k (11 – a)(7 + a)

l (x – 13)(x – 2)

m (z + 3)2

p 3(x – 8)(x – 1)

q 25(2 – x)(2 + x) r (8p – 9q)(8p + 9q)

Exercise 3G

406

1

a (2x + 1)(x + 1)

b (3x – 2)(x – 1)

c (5x – 2)(x – 1)

d (5x – 1)(3x + 1)



f (4x + 3)(2x – 1)

g (5x – 4)(4x – 3)

h (x + 11)(x – 2)

i 12(x – 3)(x + 2)

2

a (2x + 3)(x + 2)

b (2x + 1)(x + 5)

c (2x + 3)(x + 3)

d (3x + 2)(x + 3)



e (3x + 1)(x + 3)

f (3x + 2)(x + 4)

g (2x + 5)(x - 2)

h (2x + 1)(x - 7)



i (3x + 5)(x - 2)

j (5x + 4)(x - 1)

k (5x - 3)(x + 2)

l (7x + 1)(x - 3)



m (3x - 1)(x + 9)

n (7x + 10)(x - 1)

o (5x + 6)(x - 2)

p (3x - 2)(x + 2)



q (3x + 2)(x - 7)

r (4x - 1)(x + 3)

3

a (3x - 2)(2x + 1)

b (4x - 3)(2x + 1)

c (3x - 2)(2x + 3)

d (5x - 2)(3x - 2)



e (3x - 2)2

f (2x + 3)2

g (5x + 3)(2x - 3)

h (4x + 9)(3x - 2)



i (5x - 2)(2x - 3)

j (4x - 3)(3x - 2)

k (4x - 3)(3x - 1)

l (5x - 2)(3x - 5)



m 2(5x - 2)(2x - 5)

n 3(4x + 3)(2x - 1)

o 2(3x - 2)(2x - 3)

p 2(3x + 4)(2x + 3)



q 5(4x - 3)(2x + 1)

r 2(4x - 3)(2x - 7)

e (3x – 2)(2x – 1)

IC E - E M M at h emat i c s   y ea r 1 0 B o o k 1

ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

Cambridge University Press

4

a (2x + 1)(3x + 2)

b (2x – 3)(3x – 1)

c (2x + 3)(3x + 5)

d (3x – 4)(3x – 2)



e (a – 8)(a + 7)

f –(2x – 1)(3x + 4)

g –(x – 9)(x + 1)

h 4(2x + 1)(3x – 2)



i (x – 8)(3x – 7)

j 5 2 5 − x 2 5 + x k 2 x − 1 − 15 2 x − 1 + 15



l 3 10 −

5

a (x + y - 3)(x - y)



e (a + 2b)(a - 2b - 1)

f (3x + 2y)(3x - 2y - 1)



h (x + 3)(x - 9)

i (2x + 1)(2x + 4)

(

)(

(

)(

2 (a − 3) 3 10 +

2 (a − 3)

)(

) (

)

b (x - y - 5)(x + y)

c (x - 4)(x - 1)

)

d (x + 6)(x + 1) g (a + 2d)(a - 2d - 1)

j (x - 11)(x - 4)

Exercise 3H 4x 5

1

a



g –1

2

a 4 x+4 h − x−4 b

9x 20 9b f 20 4 b + 13 k 12 a

b

c 3 x−3 x+4 11x c 20 5− x h 12 10 − 5 x m 6 42 d x = 12 e 13 k x = 3 l x = 4

9x + 3 20 5k − 3 l 42

g

a x = 6

b x = 8

c x = 3



h x = 108

i x = 9

j x = 3

e x – 6

2x − 5 x−4 16 x d 35 1 − 2z i 35 50 x − 3 n 30

k

f x = 2

g x = 20

m x = 3

n x = –2

Exercise 3I 1

a+b b x+4 g x−2

a

x+ y x− y a−2 h 2

a a x i x

b

c

2

a

2y + x 3(2 x + y )



e

( x − 2)(3 x − 1) 6( x + 2)



i

3

a



2 e ( x − 2)( x + 2)( x + 4)



h

2 2x + 3

i

4

a

−2( x + 4) x+3

b



a 2 + 3x 2 d 2ax



g

5

c

3x − 2 9

j 2x

k

x2 − x + 6 ( x − 2)( x + 2)

b

b

x 6( x − 3)

3 5 3a 2

c

d

(a − 3) (a + 2) a2 ( x + 4)( x − 3) ( x − 2)2

4x 2

x −9 x2 + 2 f ( x − 1)( x − 3)( x + 2)

2

x+7 x + 13 x−1 f 4x + 7

b

h

y y −1 − 3)

f 3(x - y) l

3x − y 4x − y

x ( x + 3)

d



h 2x l x − y x d



a (a − 4)(a + 1)(a − 2) 5 x + 49

e



x2 6y



49 − x 2 e ( x − 4)( x − 6)

−4(4 a − 1) (5a + 3)(2a − 1)(a + 4) + + + +

g

x+ x− 2x k 4( x

b+1 b x+2 j x+1

b b 3 7

(a + 1)2 a(a − 1) f a+1

2x 3x 4x e x a

3a 2

− + − +

f 2x + 9

x+2 x+4 23a e 20 13c + 1 j 15

j

i

x 15

3

d x – 3

2x + 5 ( x + 2)( x + 3)

g

x+5 ( x − 1)( x + 3)

j

4x (2 x − 3)(2 x + 3)

c

12 a2 − 1

f

1 (2 x + 1)( x − 1)(3 x − 2)

13a + 2 a2 − 9 x x+1 x+1 g x+5

c

d

a − 11 a−2

Answers to exercises ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

407

Cambridge University Press

1 5

6

a x = 2

b x =



e x = 7

f x = 4

7

a

28 5x

28 5 21 b x = 5 b x =

10 a x = 8

13 2 1 g x = − 7

d x = -17

8 x = -18

9 x = 2

c x =

c x =

h x = 7

54 13

d x = 6

e x = 2

f x =

2 5

Review exercise 1

a 13x

b 7p3q

c -5ab - ab2

d 20x3y - 10x2y

2

a -2a - 8

b -3b - 18

c -4m - 20

d -12b + 20



f 5a + 8

g 8p + 4

h 15q + 30

i -4p + 5

3

a

d2

- 9d

b 3e2

c

+ 6f

d -10m2 + 8m



f 6pq - 10pr

g

4

a 2c + 5

b 7h + 4

c 4 + 3q

d 4ab



f b - 22

g 12y2 - 11y - 15

h 6p2 - 6p - 4

i x2 + 7x + 12



k m2

5

a x = 3

b x = 5



f x = 4

g x =

- m - 20

6

a x > 4



1



c x ≥ -9







2



+ 8zy

3

4

–9

–8

–7

- 36x + 5

24 13

5

–1

7

12 a 7

9

a h =

19 x 10 − 12 3 j a2 - 14a + 45

e

d x = 15

e x = 10

i x = 2

7 b x < 2 0

6

1

2

3

4

–2

–1

0

5 d x ≥ − 2

–6

0

e -15n2 - 21n

8a2b

n 2m2 + 7mn + 3n2

h x = 20

–4

–1

i 6a +

c x = 2

–3

4 f x ≥ − 3

1

–2

7 g x ≤ 5

1 i x ≥ 8

–1

0

1

h x ≥ -15 0

1

–1

0

A − πr 2 πr

e (3x + 1)(3x - 1)

( )( ) d ( x − 4 2 ) ( x + 4 2 )

–16

2

–15

–14

–13

–12

1

b 3

10 a (7 + z)(7 - z)

+ 7x - 10

m 7x2

2 e x ≤ − 7 –2



- 15xy

–11 –10



l

6x2

h -6z2

0

408

+ e

-6x2

5f 2

e -20b + 35

b a =

8 a  52 2

 A 2   − r c u = πr

b h =

v2 −

p −b 4

2E m

c -1

d x =

cb + by b(c + y) = c−a c−a

b (3 + 2a)(3 - 2a)

c (5 + 8x)(5 - 8x)

d (ab + 2cd)(ab - 2cd)

f (6p + 7q)(6p - 7q)

g (1 + 10b)(1 - 10b)

h (11a + 9b)(11a - 9b)

( )( ) ( x − 5 2 )( x + 5 2 )

(

)(

11 a x − 11 x + 11

b x − 15 x + 15

c x − 2 7 x + 2 7



e

f x − 3 5 x + 3 5

(

)(

)

)

IC E - E M M at h emat i c s   y ea r 1 0 B o o k 1

ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

Cambridge University Press

( x + 4 − 2 )( x + 4 + 2 ) ( x − 6 − 11 )( x − 6 + 11 ) (2x + 1 − 2 5 )(2x + 1 + 2 5 )

12 a

c



e

13 a (a + b + c)(a + b - c)

5 )( x − 3 + 5 ) ( d ( x − 7 − 7 ) ( x − 7 + 7 ) f ( 3 − 2 x − 10 ) ( 3 − 2 x + 10 )

b x − 3 −

b (a - b + c)(a - b - c)

14 a (a + 3)(2x -1)

b (a + 5)(b - 2)

c (x + y + 2z)(x + y - 2z)

c (2x + 3)(y + 5)

d (m - 7)(3x + 2)

15 a (x - 1)(x - 2)

b (c + 1)(c + 11)

c (x + 1)(x - 5)

f (z - 8)(z + 2)

g (c + 10)(c - 2)

h (p - 13) (p + 2) i (k - 14)(k + 3)



16 a 2(x - 6)(x + 11)

b 3(x -7)(x + 11)

d 3(x - 5)(x + 2)

17 a (2x + 3)(x + 4)

d (y - 1)(y + 10)

e (y - 7)(y + 2) j (x + 10)(x - 6)

c 3(x - 7)(x + 1)

e 3(x - 5)(x - 6)

f 6(x - 1)(x + 2)

b (3s + 2t)(2s - 5t)

c (3x + 1)(x + 1)



d (4x + 3)(3x - 4)

e (3x + 2)(x + 2)

f (x - 1)(2x + 3)



g (2x - 1)(2x + 3)

h (3x - 1)(x + 3)

i (3x - 2)(2x + 5)



j (3x - 2)(x + 1)

18 a x = 4

b x = 19

f x = 10

19 a

68 11

g x =

3x − 7 ( x − 2)( x − 1)( x − 3)

20 a 5

c x = 11 h x = − b

6 7 i x = 33 d x =

86 37

7 ( x − 1)( x − 2)

c

3 2

e x =

13 ( x − 1)( x – 2)( x − 3)

b 70 bottles of each

Challenge exercise 1

a (x + 10y)(5x + 4y)

b (8x + y)(2x + 3y)

2

a (a - x + 2b)(a - x - 2b)

b (3a - x + c)(3a + x - c)

c (b + d + a - c)(b + d - a + c)

d (y + b + a + 3x)( y + b - a - 3x)

a2

+

b2

+

c2

+ 2ab + 2bc + 2ac

3

a

4

a 4x2y(7x - 5)(x + 3)

5

x=6

6

a length 18 m, width 12 m cp am km km 8 p−q bp

7

b 343a6 - 27x3

(

)(

)

b ( p + 2q)( p − 2q) x + 2 2 y x − 2 2 y b length 15 m, width 12 m

Chapter 4 answers Exercise 4A 1

a

2

a

10 ≈ 3.16 5 ≈ 2.24



f

117 ≈ 10.82

b 4

c 7

b 5

c

h 5 2 ≈ 7.07

4

a (6, 5)

g 13 1 b  , 2 b i 5

5

a u = 4

b v = -1 or 9

3



a (1, 4)



y −1 0 −1 −2

 5 

2

4

5

6

7

P(4, −2)

8

9

e

89 ≈ 9.43

i 10

ii 6 c w = -5 or 11

6  a 5

3

d 4 5 ≈ 8.94

1 e  , 6 f (-5, 12) 2  c AC and BC are equal, so ABC is isosceles.

c (4, 6)

1

29 ≈ 5.39

d (-3, -7)

c i 

2 12

(

b  M 1 1 , 2 2

ii

2 12



)

iii  2 12

x

−3 −4 −5

(−1, −5)

(9, −5)

Answers to exercises ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

409

Cambridge University Press

7

b (22, -10)

a (-4, 1)

9 XY = XZ

8 PQ is perpendicular to PR.

10 AB = CD = DA = CA 11 (-2, -3)

12 AB = CD =

20 and BC = DA =

50

Exercise 4B 3 4

1 16 4 a = 8

5 1 d − e 4 3 11 d 8 5 b = -12

c 8

d 7

b 2

c -2

b -13

c

1

a

2

a 4

3

Both gradients = 1 b -4

6

a 4

7

Gradient of AB = 8, gradient of PQ = −

8

1 a − 6

b 2

9

a 2

b 2

10 a



y



3

D

2 1

0

12 a

2 c − 3 1 c − 2

A

C

B 1

2

2

3

4

5

b 1

d

f -1

e 1

f -2

1 e − 2

f 1

g 1

h 0

i −

13 9

1 8

5 4

g

5 7

b gradient of AB = gradient of DC = 0; gradient of AD = gradient of BC = 1 5  c  , 1 ; Because the diagonals of a parellelogram bisect each other 2 

x

c 1

13 gradient of AB = 2, gradient of BC = 2, points are collinear 1 7 14 a gradient of AB = , gradient of BC = , points not collinear 2 5 b both gradients = 3, points are collinear c both gradients = 3, points are collinear 11 13 d gradient of AB = , gradient of BC = , points not collinear 5 4 15 a 1 b 1 c (6, -3) d 5 12 , 3 12

(

)

Exercise 4C 2 b gradient = − , y-intercept is 5 3 2 4 d gradient = − , y-intercept is 3 11

1

a gradient = 4, y-intercept is 2



c gradient = -7, y-intercept is 10

2

a y = 8x + 3

b y = 11x + 5

c y = -6x - 7

3 d y = − x + 15 5



e y = -4x + 3

f y = -5x + 2

1 g y = − x + 5 2

3 2 h y = − x + 4 5

3

a



y

b



410

c

y

(0, 2)

(0, 1) 0



y

x

0

x



x

0 (0, −2)

IC E - E M M at h emat i c s   y ea r 1 0 B o o k 1

ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

Cambridge University Press



d

y



0

x

e

f



y

y

(4, 0)

(2, 0) x

0

x

0

(0, −3)



g

y



0

x

h

y



0

x

i

y



0

x

(−3, 0)

(−1, 0)

(0, −3)



j



y

k





0

x

l

y

(1, 0)

(−3, 0)

(0, 1) 0

y

x

a, b, c, d, i and j have gradient = 0.

x

0

e, f, g, h, k and l do not have a gradient.

4

a 2x + y - 6 = 0

b 2x + 3y - 33 = 0

c 9x + 15y + 10 = 0



d -24x + 42y - 7 = 0

e 2x + y + 8 = 0

f 3x + 4y - 40 = 0



g -x + 5y + 20 = 0

h 3x + 4y - 44 = 0

i 2x + 5y + 4 = 0



j -4x + 10y + 3 = 0

k 3x - y - 12 = 0

l 9x - 16y + 36 = 0

5

a y =



f

6

a



c



e



g

5 3 x − 3 b y = − x − 5 2 2 2 5 5 g y = − x − y = x + 4 3 4 2 3 gradient = , y-intercept is 6 2 3 gradient = − , y-intercept is -6 8 11 gradient = − , y-intercept is 11 4 3 gradient = , y-intercept is 6 7 gradient = -5, y-intercept is 20



i

7

a x-intercept is 5, y-intercept is -10



c x-intercept is -3, y-intercept is 15



5 5 e x-intercept is − , y-intercept is 12 4 g x-intercept is -16, y-intercept is 20

2 x − 4 3 3 h y = x − 6 2

c y =

1 x − 3 6 3 i y = x + 3 5 d y =

e y =

2 6 x− 15 5

b gradient = -4, y-intercept is -24 d gradient =

4 , y-intercept is 8 7

f gradient = 2, y-intercept is 4 h gradient =

2 , y-intercept is -2 7

11 , y-intercept is -11 3 d x-intercept is 16, y-intercept is 6 b x-intercept is

f x-intercept is -18, y-intercept is 12 h x-intercept is 14, y-intercept is -6

11 11 i x-intercept is − , y-intercept is 2 5

Answers to exercises ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

411

Cambridge University Press

8

a



y

b

(0, 12)

d

y



e

f



y 0

(0, 18)

(0, −6)

x

0

11 , 2

0



y

x 0

(–18, 0) 0



g



y

h

0

x

0



y

(7, 0)

(0, –4)

0, −

20 3

0, −

(0, –11)

x

11 , 7

x

(3, 0)

0

(12, 0) x

0



y

(0, 8)

(6, 0)



c



y

i

20 7

y (0, 5)

x

0

x

,0

5

− 2, 0

11 2

x

0

9

a x = 1

10 a

b y = 5

c x = - 4

y

b

(1, 2)

(3, 0)



y

e

0

5 2

f



y

x

b b = 10 b b = -8

13 34

19 14  − 5

412



y

9 4 9 c c = − 2 c c = −

x

0

x

0

3 2

d d = -14

e e = −

d d = 4

e e = -6

f f = 50 f f = -28

16  -6

15  12

Exercise 4D 1

a y = 6x - 24

b y = 2x + 10

c y = -4x + 14



e y = -2x + 10 1 a y = x + 8 23 3  5 5 a  ,   2 2 a y = -4x - 6

f y = -3x + 11

g y = 6

b y = 2x

3 a  y = -2x

b 7

c y = 7x - 15

b y = -4x + 20

c y = 5x + 28

5

x

(4, 1)

12 a a = - 4

4

0

(–1, 2)

(–1, 4)

(0, 4)

2



x

0

d

11 a a = −

y

x

0



c



y

1 d y = x + 8 12 2 h x = -7 1 b y = − x 2 1 d y = − x + 2 67 7 d y = -2x - 12

IC E - E M M at h emat i c s   y ea r 1 0 B o o k 1

ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

Cambridge University Press

6

a y = x - 4



e x = 1

7

y = 5x - 4

9

a y =



d -1

b y = -3x - 9

c y = -x + 6

d y = 3

g x = 2

h y = 4

9 f y = x − 3 4 1 8 y = x − 4 12 2 b y = -x + 8

c y =

e 2 2

f 2 2

10 a i  (3 1 , 3 1 ) 2 2

ii (3 12 , 3 12 )

b mAC = 1, mBD = -1

11 a mAB = 4

b (8, 11)

c (8, 11)

1 x+5 2

1 x+2 2

e y = 4x + 2

d 2 17

Exercise 4E 1

a

b



y

y 5

5 4

4

(1, 4)

3

3 1

1 −4 −3 −2 −1 0 −1

1

2

3

4

−4 −3 −2 −1 0 −1

x

1

−2

−2

y = 2x + 2

y = 3 − 2x

2

2

−3

y=x−3

−4

2

3

4

5

x

(2, −1)

−3 −4

y = 3x + 1



c

y 5

y = 5x + 3

4

y = 2x + 1

3

2

1

−3, −3

2 1

−4 −3 −2 −1 0 −1

1

2

3

4

5

x

−2 −3 −4

2

9 27 a x = − , y = − 7 7



e x = 4, y = 13

7 9 c x = − , y = − 5 5 4 20 g x = , y = 7 21 c x = 3, y = -2

13 8 ,y=− 5 15 5 3 h x = , y = 2 2 d x = -1, y = 2

3

a x = 4, y = 1

3 3 ,y= 2 4 1 9 f x = − , y = 7 7 b x = 1, y = 2



e x = 5, y = 2

f x = -3, y = 7

g x = 1, y = 2

h x = 1, y = -1



i x = 2, y = -1

j x = -4, y = 3

k x = 2, y = -1

l x =



m x =

4

60 10 ,y= 17 17

6 24 q x = − , y = 7 7 28 173 a x = − , y = − 33 33 63 30 d x = − , y = 19 19 385 19 ,y=− g x = 24 12 j x = 0, y = -6

b x =

n x = −

5 46 o x = 3, y = 5 ,y=− 13 13

30 121 ,y=− 19 19 864 35 ,y=− b x = 101 101 9 51 e x = , y = − 13 13 10 8 ,y= h x = 11 11 31 k x = 26, y = 3

d x =

14 9 ,y= 11 11

p x = 7, y = -4

r x = −

97 38 ,y= 6 3 552 60 ,y= f x = 59 59 168 24 i x = ,y=− 25 25 220 64 ,y= l x = − 17 17 c x = −

Answers to exercises ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

413

Cambridge University Press

5

y = 3x - 6

 11 7 A(-1, - 1), B(3, 3), C  , 5 1 7 9 a i  y = x + 2 2 10 a i  y = x 12 a y =

6 a y = 0 27  5 

b x = 2  7 20  8 y = 2x + 2, x + y = 9,  ,  3 3 

ii y = -2x + 16 b (5, 6) ii y = -x

 26 43  b y = -2x + 19 c  ,   5 5

1 x − 1 2

14 5 ≈ 6.26 5 13 a = 4, b = -15

14  The point is (11, 5).

15 a y = 3x

b y = x



11 m = −

b (0, 0)

27 4

e 5 5 ≈ 11.18 f 70

d

18 a BD : 6y - x = 6; AC : y + 6x = 21

16 a  a = 9

b b = -6

 120 57  , b   37 37 

c

9 37 37

 21 26  17  ,  5 5 d 9

Exercise 4F 1

45 and 67

3

The daughter is 8 and the father is 36.

4 58 $2 items, 43 $5-items

2 46 and 37

5

13 12 and 22 12

6 wallets $60.75, belts $65.25

7

Andrew is 36 and Brian is 14

8 10 metres and 14 metres

9

Standard: 5 kg, Jumbo: 7.5 kg

10 8000 $60 tickets sold and 2000 $80 tickets sold



11 1.875 L



12 14 10-cent coins, 13 20-cent coins

13 5 hours



14 3:20 p.m.

15 50 tonnes of the 52% iron alloy, 150 tonnes of the 36% iron alloy 16 480 km/h and 640 km/h 2 18 15

17  model horse $30.00; model cow $10.00



19  30 km



Review exercise 1

a 2 17

2

3  a  , 1 2 

3

c 12

d

b − 1, 4 12

 1  c  − , 0  2 

9 d  , 2

a 4

b 3

c 3

d 1

5 h − 2

2 i − 5

j -3

4

5 g − 2 - 4

5

a gradient = 2, y-intercept is 4

b gradient = 3, y-intercept is 5





c gradient = 1, y-intercept is -4 1 e gradient = , y-intercept is 1 2 g gradient = -2, y-intercept is 5

d gradient = 2, y-intercept is -1 2 f gradient = , y-intercept is 2 3 h gradient = -1, y-intercept is 6



i gradient = -1, y-intercept is 2

j gradient = -3, y-intercept is 4



k gradient = -3, y-intercept is 4 2 m gradient = , y-intercept is -2 3 o gradient = 2, y-intercept is 0

l gradient = -2, y-intercept is 1 3 n gradient = − , y-intercept is 3 4 p gradient = 3, y-intercept is 0

q gradient = -3, y-intercept is 0 3 s gradient = , y-intercept is 0 2

r gradient = -4, y-intercept is 0 3 t gradient = − , y-intercept is 3 2







414

b 6

(

)

26  5 

e

34

 3 13  e  − ,   2 2 1 2 k 0 e

f 4 5 9  f  , −3 2  2 3 l 0

f

IC E - E M M at h emat i c s   y ea r 1 0 B o o k 1

ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

Cambridge University Press

6

a

b



y (0, 4)

(0, 2)

(3, 0) x

0

d



y

(0, 3) (4, 0)



c



y

x

0



y

e

(1, 0) x

0



y (0, 4)

(0, 2) (6, 0)

(6, 0) x

0



f



y

x

0

g

y

(0, 3) 0

(4, 0) x

0



h

(0, −4)

i



y

x

(2, 0)

j



y

y 0

(3, 0) 0

x

(0, −1)

0

(2, 0)

(2, 0)

x

x

(0, −3) (0, −8)



k



y

l

y

(6, 0)

(8, 0) x

0

(0, −12)

7

a

x

0

(0, −12)



y

b



y 2 3

0 (0, −3)

3 2

,0

x

0

c



y (0, 2)

,0 x

(0, −2)

(4, 0) 0

x

Answers to exercises ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

415

Cambridge University Press



d



y

e

f



y

y

(5, 0) (0, −1)

0

1 2

x

,0

(0, 6) x

0 (0, −2)

(−2, 0) x

0



g

h



y



y 0,

(1, 0) 0, −

2 3

(0, 4) x

0

1 2



y

(−2, 0)

x

0

i

(4, 0) x

0



j



y

k



y

(0, 1)

(2, 0) 1 3

,0

m

y

(−1, 0) x

0

x

0

x

0



l



y

n



y

o



y

(0, 3) (0, 2) (−1, 0) x

0

x

0

0

x

(0, −2)



p



y

q



y

r

y (4, 0)

0

1 3

,0

(0, 3)

x

(0, −1)

0

s



y 3 2

x

t

y (0, 6)

,0 x

0 0, −

416

x

(2, 0) 0



(0, −1)

2 3

x

0 0, −

3 2

IC E - E M M at h emat i c s   y ea r 1 0 B o o k 1

ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

Cambridge University Press

8

a 6x + y = 11

b 2x - 3y + 14 = 0

9

a 4x + 9y = 74

b 4x + 5y = 32

c 4x - 3y + 26 = 0

10 a x = 4 18 , y = −1 87

b x = 1 87 , y = 1 87

11 a x = -3, y = -7

b x = -2, y = 8



d x = 1, y = 1

e x =

5 139 12 a i  y = − x + 6 12  57 14  13  , −   13 13 

c x = 5, y = 0

156 42 ,y= 11 11

ii y = −

f x =

138 3 ,y=− 65 13

 701 273  b  ,  74 74 

3 69 x+ 11 11

14 y = x + 3; y = x - 2; 3x + 2y = 21; 3x + 2y = 6

15 The gradient of AC = -1 and the gradient of AB = 1. 16 b 12 2 , 4 2 5 19 a p = 2

17  113 and 25

18  Stool $30; Chair $100

b p = - 23

20  4x + 3y + 5

21  The point is (4, 3)

Challenge exercise 1

a

b i After 1 hour 52 12 minutes, 150 km from Mildura



d

300

Steve



ii After 2 12 hours, 200 km from Mildura

Tom

200

iii 20 km

100 0

1

2

3

t

4

2

1 1 a  ( x1 + 3 x2 ) , ( y1 + 3 y2 ) 4  4

3

 mx2 + nx1 my2 + ny1   m + n , m + n 

4

c b a  ,   2 2

5

a i  y =



 a + c b b i   ,  2  2

6

a i 

10 a

b x a+c

b a+c

p p ;− m 

b i  ii y =

1 1  b  (2 x1 + 3 x2 ) , (2 y1 + 3 y2 ) 5  5

c2 + b2 2

ii

b2 + c2 2

iii

c2 + b2 2

b ( x − c) a−c

 a + c b ii  ,   2 2 b a−c m m b y = − x + p p

c a 2 + b 2

ii

c y =

1 m x+ p p

Chapter 5 answers Exercise 5A 1

a 0, -3

b 0, 7

c 0, -5

d 3, -6

e -7, -9

2

a 0, 5

b 0, -7

c 0, -8

d 0, 25

e 0, -18

3

a -1, -8

b -1, -6

c -2, -6

d -2, -4

e -3, -9

f 10, 7 1 f 0, 2 f -6



g 2, 4

h -3, -8

i 2, -3

j 5, -6

k 5, -8

l 6, -10



m 1, 6

n 3, 4

o 5

p 2, 16

q -5, 7

r -5, 6



s -2, 5

t -3, 7

u 10

Answers to exercises ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

417

Cambridge University Press

4

a 0, 8

b 1, 16

c 1, 2

d no solution

e 3, 5

f no solution



g 0, -3

h 7, 3

i -5, 4

j no solution

k 8, 2

l 8, 3



m -10, 1

n 7, 1

o -1, 1

Exercise 5B 1

3 a 0, − 2

b 0, 7

c 0,



7 f − , − 4 2

g 3 , − 4 2 3

h

a -1, -2 3 a − , − 4 2

b 3, 2 1 b − , − 4 3



3 4 g − , − 2 5

h

3 4 , 2 3



1 m − , −1 2

2 n − , −1 3

o



s −

1 , −15 15

u

4

a

1 4 , 2 3

1 5 b − , 6 4

c 1,

3 4

d −2,



g

5 2 , 2 5

1 3 h − , − 4 5

i 2,

1 2

j 3, −

2 3

5 ,3 12

t

Exercise 5C 1

a 9, -2

b 8, -4



g -3, 4

h -3, -1

2

4 3 m − , 3 2 a -7, 2

3 7 n , − 2 5 b 5, -3



g -6, 5

h -5, 4



5 7 m − , − 4 6

7 n − , 3 3

3

a



50 x

b

5 2

5 , −4 2

d 0, −

4 5

3 2 e − , 4 3

2 3 i − , − 5 7

j 2 , 4 3 3

c -7, 5 3 c − , −2 2

1 d − , 2 2

e

3 ,3 2

f

4 ,2 3

1 5 i − , 2 4

2 3 j − , 3 4

1 2 k − , 4 3

l

2 5 ,− 3 2

1 , −8 2

2 p − , −7 3

2 q − , 7 3

2 r − , −3 5

9 8 , 8 9

2 3 v − , 3 2

w

10 7 , 3 4

x

3 2

e

2 5 , 3 2

1 4 f − , 2 3

5 4

2 1 k − , 7 3

l

d 4, -2

e -5, 5

f no solution

j 5, 1

k -5, 1

l 8, -8

3 c − , 4 2 i 0, -5 o 4, 8 c -3, 2 1 i − , −4 2

7 5 , 2 4

5 , −7 4

19 p − , 1 2 d 2, -1

e 6, 1

f 16, 2

j 4

k -13, 11

1 l − , 3 2

q 2, -4

50 = x + 5, x = 5 x

Exercise 5D 1

2   12 cm

11 sides

3   16

4 5

5

9 and -7 or 7 and -9

6   8 cm

7   4 cm, 32 cm, 42 cm

8

5 and 7

9   6 km/h

10  a  20 - x cm

11 4 m

b 14 cm, 6 cm

12  8 cm, 12 cm, 4 13 cm 14  20 cm and 25 cm

13 25 km/h

Exercise 5E

418

1

a -1

b -2



7 g − 2

h

5 2

c -3 i −

1 2

d 1 j

3 2

e -4

f 5

2 5

l −

k

3 4

IC E - E M M at h emat i c s   y ea r 1 0 B o o k 1

ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

Cambridge University Press

2 d − 7

5 g 5 f − 5 7 2 3 b parts ii, iv, vii, x, xii

2 5

a 1 b − 1 3 5 a parts i, v, ix

c 2 5

5

a 4 1 g 4 a (x + 3)2 + 1

b 16 9 h 4 b (x + 4)2 - 21

c 25 25 i 4 c (x + 6)2 - 46

d 36 49 j 4 d (x + 5)2 - 30

e 49 25 k 4 e (x + 1)2 - 16

f 100 121 l 4 f (x + 4)2 + 7



g (x - 4)2 - 10

h (x - 3)2 - 21

i (x - 6)2 - 50

j (x - 5)2 - 19

k (x - 3)2 - 17

l (x - 10)2 - 95

6

3 17  a  x +  −  2 4



3 19  e  x +  +  2 4



13  189  i  x −  −  2 4

2 3 4

e

2

2

1 3  b  x +  +  2 4

2

11 117  f  x −  −  2 4

2

2

1 41  d  x −  −  2 4

5 1  c  x −  −  2 4

2

2

2

9 141  h  x +  −  2 4

11 125  g  x −  −  2 4

2

2

h −

2

3 25  j  x −  −  2 4

2

1 49  k  x +  −  2 4

1 55  l  x +  +  2 4

Exercise 5F 1

a ± 5

b ± 11

c ± 13

d ±2 3



f ± 2

g ± 10

h ± 5

i ± 7

2

a −1 ±

c 6 ± 13

d −3 ±



f −4 ± 14

g −4 ± 2 5

h −4 ± 15

i −5 ± 2 6

j −2 ±



k −6 ±

41

l 5 ± 5 3

m −10 ±

n 10 ± 105

o 50 ± 2 645



p 25 ±

615

q 7 ±

r 14 ± 197

3

a

−1 ± 5 2

b

g

−5 ± 41 2

h

m

9 ± 101 2

n



2

b −2 ±

51

3± 5 2 3±

29



21

b 4 ±



g

5

a −3 ± 17

b 5, -2



1 g −2, − 2

h 1, −

6

5 2 3 4 s − , 2 3 m ±

a −1 ±

h

5

−5 ± 13 2

n ±

6



2

a 3 ±

−1 ± 5 2

c

2

4

7

3

i o

1 3

−3 ± 17 2

e

3 ± 17 2

j

−7 ± 53 2

k



401



2 7±

2 29

2



i −1 ±

p



37

6

5 1 t − , − 3 4

u -3

b 1 ±

c −2 ± 11



2

q

2

−5 ± 21 2 7±

449 2



3± 5 2

f l r

−9 ± 89 2 3±

33 2

5 ± 13 2

e 2 ± 2 2

f 5 ±

5

k −25 ± 2 157

l 5 ±

34

e 2, -3

f

j −3 ± 14

k no solution

l no solution

p -3, 4

q ±

d −3 ± 11 j

−3 ± 37 2

d 2 ±

o -7, 5

2

e 4 ± 17

d

29 2

c 1, -7

1 3

2





c −5 ± i

95

e ± 3

7

d −3 ±

5

e

5 2

1± 5 2

1 ± 13 2

r no solution

f 2 ± 2 3

Exercise 5G 1

a 4 ± 15



f

−5 ± 17 2

b -2, 4 g

−9 ± 69 2

3 ± 13 2

d

h 4 ± 14

i

c

13 ± 3 21 2 1±

21 2



e -2, 6 j

1± 5 2

Answers to exercises ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

419

Cambridge University Press



k 1 ± 2 2

2

a

3

−1 ± 22 3 3 2

g −1,

l

−1 ± 29 2

m

−5 ± 5 2

n −1 ±

b

−3 ± 29 10

c

3± 5 4

d 1,

5 2

i

−11 ± 161 10

j

h −2,

a 1.53, -0.13

b 7.87, 0.13

2 7

1 ± 29 14

l

2 ± 19 3

f -0.41, 3.41

j 0.15, 3.35

k 0.13, -1.53

l -1.46, 1.71

h -0.24, 0.84

i -1.37, 1.70

ii one solution

iii two solutions



b i  2

ii 2

iii 1

iv 1



v  0

vi 0

vii 2

viii 2

5

a

c

3+

33 2



6 30 km/h

8 50

5+5 7 −5 + 5 7 5−5 7 −5 − 5 7 and or and 2 2 2 2

10  4.47

11 5( 201 + 1) km/h ≈ 75.89 km/h 2095 and 50 +

10 ± 106 3

f

e 2, 3

g -0.35, 2.85

13 50 −

2 5

d -0.20, -14.80

a i no solutions

9

k

33

c -2, 5



7

o −6 ± e −1,

−6 ± 38 2

4

1+ 5 b 3.52 cm 2 AP =12 + 4 5 cm , BP = 4 + 4 5 cm

5

−1 − 401 −1 + 401 or 2 2

12 x =

2095

14 a  x = 4 or x = 7

b x = 6 − 2 10 or x = 6 + 2 10



c x=

−1 − 19 −1 + 19 or x = 3 3

Review exercise a 6, -3

b −2,



g -2, 4

h -1, -3



1 m − , 3 2

n

2

a 3, 5

b 5, 6



f 10 ± 107

g

k 5, -4

l -6, 4

3

a 6, -4

b −2,

4

a 1 ±

5

a





e

b

2

1 , 3 3

4

21 3 − ,

3 1 d − , 2 3

i

5 , −1 2

j 1, −

o

1 3

p 3

h −3 ± 19 m



37 2



5 7

7 3

d −1 ±

2

i 6 ±

30

n 3, -1

1 , 5 2

q

7 7 ,− 3 2

e

−1 ± 13 2

j 5 ± 2 7

c

−1 ± 5 2

d

−5 ± 17 4

e

−5 ± 57 4

c

1 ± 17 8

d

1 ± 17 2

e 1, −



−7 − 73 −7 + 73 , 4 4

c

f

9 + 113 9 − 113 , 4 4

g

a -7 and 9 or 7 and -9

b length 16 cm, width 9 cm



c 3, 5 or -3, -5

7 x = 2 5

Train 28 km/h, car 49 km/h 28 10 6 cm2 or cm2 27

4

33 5 − ,

f

1 ± 13 6

7 6

f

1 , −1 3

33 4

33

−1 ± 7 2

1 + 51 1 − 51 , 10 10 5+

1 l − , −5 2

k

o −1 ±



b

1 f − , −4 2

3 e − , 4 2

1 2

21 4

1 2

c 2 ±

3 ± 101 2

7 + 13 7 − 13 , 2 2 3+

c −1,

6

8

420

1 3

1



d 

4+ 6 4− 6 , 5 5

h 

−2 + 10 −2 − 10 , 3 3

9 (10 + 5 2) cm and (10 - 5 2) cm 11 AP = 4 cm

IC E - E M M at h emat i c s   y ea r 1 0 B o o k 1

ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

Cambridge University Press

Challenge exercise 1

±2, ±3

2 -1, -2, 3, 4

6

7

7 10 + 2 21

8

a AA

b

−1 + 5 2

d

2(5 + 4

9

a 2x2 + 6x - 3 = 0

b

−3 + 15 2

c

−1 + 5 2

7 17 5 − , 2 2

4 x2 - 4x + 1 = 0

5)

10  0, 5a

Chapter 6 answers Exercise 6A 1

a 318 cm2

b 448 cm2 f 54 + 36π

m2



e 432



h  100 + 37.5π

m2

≈ 217.8

2

a 3 3 ≈ 5.1962 cm

c 760 cm2

d  192π cm2 ≈ 603.2 cm2

cm2

g 4140 cm2

i 1000

l  144 + 40 2 ≈ 200.6

k 194

6

≈ 167.1

m2

cm2



5

cm2

cm2

j 596 cm2

cm2

3 9 m b 216 + 18 3 ≈ 247.1769 cm2 350 cm ≈ 37.1 cm a 1425π cm2 ≈ 4476.8 cm2 b 3π b 216 m3 c 144 m3 d 28 000 mm3 a 280 cm3 cm3



f 1215π



i 3240 cm3

≈ 3817.0

cm3

g 23 040

j 1080 cm3 cm3

7

a 5.29 cm

b 761.98

9

a 4 cm

b 7.4 cm3

cm3

k 480 cm3

e 300π cm3 ≈ 942.5 cm3

1178.1 cm3

l 360 cm3

8 a  19.9 cm

b 6.31 cm

10 16.25 m2

11 4 cm

1500

12 180 + 24π cm3 ≈ 255.4 cm3

13 

14 a 1099.56 cm3

c 300.44 cm3

b 1400 cm3

h 375π

cm3 ≈

4 4.5 cm

2+3 2

cm ≈ 240.28 cm

Exercise 6B 1

60 cm3

2 a 80 cm3

cm3



e 216

3

a 400 cm3

f 180

b 120 cm3 m3

4

2 547 758.6

6

a 5 cm

5 a 800

7

a 64 + 32 13 ≈ 179.378

8

a 61 cm ≈ 7.810 cm

9

a



b i  10 cm

cm3

b 13 cm

VDA,

VAB,

cm2

c 56 cm3

d 144 cm3

c 28 cm3

d 53 13 cm3

e 80 cm3

b 2333.33

cm3

c 65 cm2

c 733.33

f 96 cm3

m3

d 360 cm2

b 36 + 12 34 ≈ 105.971 cm 2 b 2 13 cm ≈ 7.211 cm



VCB,

b 100 cm3

cm3

c (80 + 8 61 + 20 13 ) cm ≈ 214.593 cm 2

VDC: all are right-angled triangles.

ii 2 41 cm ≈ 12.806 cm

iii 10 cm

d 1099.56 cm2

c 192 cm2

Exercise 6C 1

a 138.23 cm2

b 235.62 cm2

2

a 24π cm2

b (16 π + 16 π 10 ) cm 2

3

a 10 cm

b 9.1652 cm b i 10 cm

cm2

5

a 104.72

6

a i  5 5 cm ≈ 11.18 cm



 360  ° ≈ 255° b   2 

c 395.84 cm2

c 70π cm2

 49 7 449  2 d  +  π cm 4   4

4 a  685.84 cm2

b 21.83 cm

c 19.41 cm

ii 3.33 cm

iii 9.43 cm

ii 25π 5 cm 2 ≈ 175.62 cm2

 360  ° ≈ 161° iii    5 

Answers to exercises ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

421

Cambridge University Press

7 8

a 100.53 cm3

b 335.10 cm3 9 a  648π cm

127 mm

c 235.62 cm3

3

b 270π cm

10 a (1800 + 36 21) π cm 3

d 513.13 cm3

e 376.99 cm3

f 339.29 cm3

2

b 726π cm3

11 $19 635

c 615.75 cm2

d 1385.44 cm2

Exercise 6D 1

a 804.25 cm2

2

a 64π cm ≈ 201.06 cm

3

6.3078 cm

4 a  2.11 m

b 1.72 m

5

a 195π cm2

b 115π cm2

c 512π cm2

d (440 + 16π) cm2

6

a 2144.66

c 904.78

d 1436.76

e 452.39 cm3

7 a  6.20 cm

b 179 mm

c 9.8 cm

c 575.96 cm3

d 329.87 cm3

9 8249 cm3

2

b 2827.43 cm2

b 128π cm ≈ 402.12 cm2

2

b 4188.79 3

3



g 883.57 cm

h 3619.11 cm

8

a 167.55 cm3

b 368.61 cm3

Exercise 6E 1

a i  9

ii 9

b  i 

9 4

9 ii 4

c  i 

2

a i  4

ii 8

b  i  9

ii 27

9 c  i  4

3

a 42 875 cm3 cm2

c 192π cm2 ≈ 603.19 cm2

2

36 25

ii

36 25

d i 

9 4

ii

9 4

ii

27 8

d i 

36 25

ii

216 125

b 7350 cm2

4 960 cm2



b 325.5 cm3

7

a 172 800

8

a 192 m3

9

a The area of the triangle increases by a factor of 7.



b 36



5 8

e i 

25 4

f 3619.11 cm3 10 545 131.78 mm3

ii

125 8

6 2 2

c (96 + 16 13 ) m 2 ≈ 153.7 m 2 d 614.8 cm2

b 1536 cm3 c 9

d 81

Review exercise 1

a i  1000 cm3 c i  480

cm3



e i  90π m3

2

a i  550 m3

3 4 5 6

ii 600 cm2 ii 528

b i  600 cm3

cm2

d i  168π

ii 460 cm2

)

(

ii 36 π + 12 58 π cm 2

cm3

2048 π m3 ii 78π m2 f i  3 ii 375 + 25 17 cm 2 ≈ 478.1 cm 2

ii 256π m2

)

(

 340 π  + 120 cm 2 ≈ 476.0 cm 2 b i  200π cm3 ≈ 628.3 cm3 ii   3  2 cm 250 π cm 3 ≈ 261.8 cm 3 a 1 500 000 m3 b 80 cm3 c 3 8 cm 848 π cm 3 ≈ 888.02 m 3 ii 168π cm2 ≈ 527.8 cm2 a i  3 2π  3 3 b i   4 + ii (16 + π) m2 ≈ 19.1 m2  m ≈ 6.09 m  3

d  156π cm3 ≈ 490.1 cm3

7

1.2 m

8 a  662.5 cm2

b 937.5 cm3

9

a 80 m3



2 2 b 63 + 8 34 + 3 89 m ≈ 137.95 m

10 a V =

250 000 12 500   π mm 3 , S =  20 000 + π mm 2   3 3



b V = 2250 cm3, S = 675π m2



875 d V = π m 3 , S = 150 π m 2 3

)

(

(

)

c V = 4 π m 3 , S = 6 + 13 π m 2

Challenge exercise

422

1

4 cm

3 6 cm

7

b 7 : 8

9 a  Use similar triangles.

6 c Substitute the result of part b into that of part a. c Show s2 = h2 + (R - r)2

IC E - E M M at h emat i c s   y ea r 1 0 B o o k 1

ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

Cambridge University Press

10 a Use Pythagoras’ theorem

c cross-section area = area of cylinder cross-section - area of cone cross-section 1 2 d π r 3 − π r 3 = π r 3 3 3 e Volume of a sphere is twice the result in part d.

Chapter 7 answers Exercise 7A 1

a x = 4, (4, 0)

b x = 1, (1, 2)

c x = 2, (2, 6)



f x = -7, (-7, -2)

g x = 3, (3, -4)

h x = -2, (-2, -3) i x = 6, (6, 6)

2

a -3

b 46

c 5

3

a



y

b

d x = -3, (-3, 7)

e x = -2, (-2, 3)

d -65 c



y

y

(0, 25)

(0, 7) 0



0



x

(0, −2)

d

x

(5, 0)

(−2, 3)

(1, −3)

0

e



y



y

f

(0, 13) (0, 7)

x

(4, −4) x

0

4

a y = (x - 3)2

b y = (x + b)2

c y = x2 - 6

5

a y = (x +

b y = (x -

c y = (x -



4)2

+ 3

- 5

a y =



y

(−3 + 2√2, 0)

6)2

x

0 (1, 6)

(4, −3)



y

(0, 12)

0

6

x

a)2

d y = x2 + c + b

x2

d y = (x + d)2 - c b y = (x + 5)2 - 11

c y = (x + 3 - a)2 - 8 + b

(0, 1) x

0 (−3 − 2√2, 0) (−3, −8)

7

a a = 0

8

a





b a = 2

y 0 (0, −√2)

( 2, 0) √ x

c a = -1

b



d a = -8

y 0 x

Answers to exercises ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

423

Cambridge University Press

Exercise 7B 1

a i 3

ii x = 0, (0, 3)

iii

y



iv no x-intercepts



iv two x-intercepts

(0, 3) x

0



b i -7

ii x = 0, (0, -7)

iii

y x

0 (0, −7)



c i 8





ii x = 2, (2, 4)

iii



y

iv no x-intercepts

(0, 8)

(2, 4) x

0



d i 2

ii x = 3, (3, -7)

iii

iv two x-intercepts

y

(0, 2) x

0 (3, −7)



e i 25

ii x = -5, (-5, 0)

iii

iv one x-intercept

y (0, 25) 0 (−5, 0)



f i 48

ii x = 7, (7, -1)

iii

x

iv two x-intercepts

y (0, 48)

0 (7, −1)

2

a i 0



v  two x-intercepts

ii y = (x - 3)2 - 9

iii x = 3, (3, -9)

x

iv

y

x

0 (3, −9)

424

IC E - E M M at h emat i c s   y ea r 1 0 B o o k 1

ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

Cambridge University Press



b i 0



v two x-intercepts





ii y = (x + 3)2 - 9

iii x = -3, (-3, -9)

iv

y

0

x

(−3, −9) 2



c i 0



v two x-intercepts

7 49  7 7 49  ii y =  x −  − iii x = ,  , − iv  2 4 2 2 4 

y

x

0 7 , 2

− 49 4



d i -4



v two x-intercepts

ii y = (x + 1)2 - 5

iii x = -1, (-1, -5)

iv

y



0 (0, −4)

x

(−1, −5)



e i -1



v two x-intercepts

ii y = (x + 2)2 - 5

iii x = -2, (-2, -5)

iv

y

0 (0, −1)

x

(−2, −5)



f i -3



v two x-intercepts

ii y = (x + 3)2 - 12

iii x = -3, (-3, -12)

iv

y 0 (0, −3)

x

(0, −2)

x

(0, −5)

x

(−3, −12)



g i -2



v two x-intercepts

ii y = (x + 4)2 - 18

iii x = -4, (-4, -18)

iv

y 0

(−4, −18)



h i -5



v two x-intercepts

ii y = (x + 5)2 - 30

iii x = -5, (-5, -30)

iv

y 0

(−5, −30)

Answers to exercises ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

425

Cambridge University Press

ii y = (x + 6)2 - 40



i i -4



v two x-intercepts

iii x = -6, (-6, -40)

iv

y 0 x

(0, −4)

(−6, −40) 2

3 11  3  3 11 ii y =  x −  + iii x = ,  ,   2 4 2 2 4



j i 5



v no x-intercepts

iv

y

(0, 5) 3 11 2, 4

0

x

2

5 17 5  5 17   ii y =  x −  − iii x = ,  , −  iv  2 4 2 2 4



k i 2



v two x-intercepts

y

(0, 2) 0

x 5 2,



17 4

2

7 49  7  7 49  iii x = − ,  − , −  iv  ii y =  x +  −  2 4 2  2 4



l i 0



v two x-intercepts

y

(0, 0) x

7

− 2, −

3

a -3, 1

b -5, 1



d 3, 5

e −1 −



g 4 −



7, 4 +

c -2, 8 2 , −1 +

f 3 −

2

5, 3 +

5

h −3 − 11, −3 + 11

i 1, -3

j 2 + 2 2 , 2 − 2 2

k 5 + 3 2 , 5 − 3 2

l 3 + 5 2 , 3 − 5 2



m −3 + 2 5, −3 − 2 5

n −2 + 4 2 , −2 − 4 2

o 3, -5

4

a −1 − 5, −1 +

b 3 −

c 4 −



d −2 − 2 2 , −2 + 2 2

5

a i -5

ii y = (x + 2)2 - 9

iii x = -2, (-2, -9)



iv -5, 1





7

5

49 4

2, 3 +

2

e -11, 1

3, 4 +

3

f 10 − 5 6 , 10 + 5 6 v

y (−5, 0)

(1, 0) 0

x (0, −5)

(−2, −9)

426

IC E - E M M at h emat i c s   y ea r 1 0 B o o k 1

ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

Cambridge University Press



b i 5

ii y = (x + 2)2 + 1



iii x = -2, (-2, 1)



iv no x-intercepts





v

y

(0, 5)

(−2, 1) x

0



c i 9

ii y = (x + 3)2



iii x = -3, (-3, 0)



iv -3





v

y

(0, 9)



d i -7

ii y = (x - 3)2 - 16 iii x = 3, (3, -16)



iv -1, 7



v



x

0

(−3, 0)

y

(−1, 0)

(7, 0)

0

x

(0, −7)

(3, −16)

ii y = (x + 4)2 - 19



e i -3



iv −4 − 19 , −4 + 19

iii x = -4, (-4, -19) v

y

(−4 − √19, 0)

(−4 + √19, 0) 0

x

(0, −3)

(−4, −19) 2



f i -7



iv

3  3 37  3 37  ii y =  x +  − iii x = − ,  − , −   2  2 4 2 4

−3 − 37 −3 + 37 , 2 2

v −3 − √37 2



y

−3 + √37 2

,0

,0 x

0 (0, −7)

3 37 − ,− 2 4

Answers to exercises ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

427

Cambridge University Press

2



g i 11



iv no x-intercepts

5 19  ii y =  x +  +  2 4

5  5 19  iii x = − ,  − ,  2  2 4 v y

(0, 11)

5

− 2,

19 4

x

0

2



h i -2



iv -1, 2

1 9  ii y =  x −  −  2 4

iii x =

1 1 9 , ,− 2  2 4 

v

y

(−1, 0)

(2, 0)

0

x

(0, −2) 1 2,

2



i i 10



iv no x-intercepts

5 15  ii y =  x +  +  2 4



9 4

5  5 15  iii x = − ,  − ,  2  2 4 v y

(0, 10)

− 52 , 15 4 0

2



j i  -3



iv

7 61  ii y =  x +  −  2 4

−7 + 61 −7 − 61 , 2 2



x

7  7 61 iii x = − ,  − , −  2  2 4 v

y

−7 − √61 2

−7 + √61 2

x

0 (0, −3)

7

− 2, −

428

61 4

IC E - E M M at h emat i c s   y ea r 1 0 B o o k 1

ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

Cambridge University Press

ii y = (x - 1)2 + 3



k i 4



iv no x-intercepts



iii x = 1, (1, 3)



v

y

(0, 4) (1, 3) x

0

2



l i -2



iv

11 129  ii y =  x −  −  2 4

11 + 129 11 − 129 , 2 2



iii x =

11  11 129  , ,− 2  2 4 

v



y 11 − √129 2

11 + √129 2

0

x

(0, −2)

11 2 ,

129

− 4

Exercise 7C 1

a i -7



iv no x-intercepts

ii x = 0, (0, -7)



iii

0



b i 7



iv two x-intercepts

ii x = 0, (0, 7)





y

iii

(0, −7)

y (0, 7) x

0



c i -4



iv two x-intercepts

x

ii x = 3, (3, 5)



iii

y (3, 5) 0 x (0, −4)

Answers to exercises ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

429

Cambridge University Press

ii x = 3, (3, -7)



d i -16



iv no x-intercepts

iii



y 0 (3, −7)

x

(0, −16)

ii x = -4, (-4, 0)



e i -16



iv one x-intercept

iii



y (−4, 0) x

0

(0, −16)

ii x = 6, (6, 0)



f i -36



iv one x-intercept

iii



y (6, 0) x

0 (0, −36)

2

a Reflect y = x2 in the x-axis then translate 9 units down.



b Reflect y = x2 in the x-axis then translate 3 units right.



c Reflect y = x2 in the x-axis then translate 4 units right and 7 units down.



d Reflect y = x2 in the x-axis then translate 4 units left and 3 units down.



e Reflect y = x2 in the x-axis then translate 3 units left and 11 units up.



f Reflect y = x2 in the x-axis then translate 1 unit right and 6 units up.

3

a



y

b

c

y

(0, 3)

(−2, 9)

(−2, 0) x

0

(− √3, 0)

(0, −4)

(−5, 0)

d



y

e

(−1, 1) (−2, 0)

x

x

y



(3, 22)

(0, 13) 0

x

(3 + √22, 0)

(3 − √22, 0) 0

430

( √3, 0) 0

(0, 5) (1, 0) 0





y

x

IC E - E M M at h emat i c s   y ea r 1 0 B o o k 1

ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

Cambridge University Press



f

y



(4, 9)

g

(4, 23)

(7, 0)

(1, 0)

x

0

(4 + √23, 0)

(0, 7) (4 − √23, 0)

(0, −7)





y

h



y

x

0

i

y

7 85 2, 4

(2, 7) (0, 3) (2 − √7, 0)

(2 + √7, 0) x

0

(0, 9) 7 − √85 2

7 + √85 2

,0 0



j

y



11 201 2, 4

k

,0

x



(6, 42)

y

(0, 20) (0, 6) 11 − √201 , 2

11 + √201 , 2

0

l

(6 − √42, 0)

(6 + √42, 0) x

0

x

0



0

y 1 5 2, 4

(0, 1) 1 − √5 2

1 + √5 2

,0

,0 x

0

Exercise 7D 1

a

y = 3x2

y

b



y 1

0

(1, 3)

(1,

(1, − 3)

y = x2

(1, 1) 0



y = 13 x2 1 3)

x

c

y y = 2x2

(1, 3)

(1, −1) x

y = −x2

y = 3x2 (1, 2) (1, 1)

y = − 13x2 (1, −3)

y = x2

0

x

y = −3x2

Answers to exercises ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

431

Cambridge University Press

2

y = 2x2 + 1

y

a



b

   c 

y

y = 6x2 − 1

(1, 3)

y = 4x2 −1

(0, 1) 0

x

1

−2

vertex: (0, 1) y-intercept: 1



d

y

vertex: (0, 8) y-intercept: 8 x-intercepts: −2, 2

8

0

1 2

(0, −1) vertex: (0, −1) y-intercept: −1 1 x-intercepts: − 2,

e

y 9

0

2

0 1 1 x − √6 √6 (0, −1) vertex: (0, −1) y-intercept: −1 x-intercepts: − 1 ,

x

1 2

√6

vertex: (0, 9) y-intercept: 9 3√2 x-intercepts: − 2 ,

x

−3√2 2

0

3√2 2

3√2 2

x

3

a, d, e, g are congruent; b, f are congruent; c, h are congruent

4

a y = 3(x + 1)2



7 25  d y = 2  x +  −  4 8

5

a i 3

ii y = 2(x + 1)2 + 1

iii x = -1, (-1, 1)



iv no x-intercepts



v

2

2

3 41  b y = 3  x −  +  2 4 2

1 √6

y = −2x2 + 9

y = −2x2 + 8 −2

y

5 51  c y = 2  x +  −  2 2

2

5 59  e y = 3  x +  +  6 12

f y = -5(x - 2)2 + 57

y

(0, 3) (−1, 1) x

0



b i 7

ii y = -2(x + 1)2 + 9

iii x = -1, (-1, 9)



−2 + 3 2 −2 −3 2 iv , 2 2

v

y (−1, 9) (0, 7) −2 − 3√2 , 2

432

0

0

−2 + 3√2 , 2

0

x

IC E - E M M at h emat i c s   y ea r 1 0 B o o k 1

ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

Cambridge University Press

ii y = 3(x + 2)2 - 31



c i -19



−6 + 93 −6 − 93 iv , 3 3



iii x = -2, (-2, -31) v

y −6 − √93 , 3

−6 + √93 , 3

0

0 x

0 (0, −19)

(−2, −31) 2



d i -2



iv

4 22  ii y = 3  x +  −  3 3

−4 + 22 −4 − 22 , 3 3



4  4 22  iii x = − ,  − , −  3  3 3 v

y −4 − √22 , 3

−4 + √22 , 3

0

x

0 4

− 3, − 2



e i -15



iv −3,

5 2

(0, −2)

22 3

1 121  ii y = 2  x +  −  4 8

1  1 121 iii x = − ,  − , − 4  4 8 



v



0

y

5 2,

(−3, 0 )

0

0

x (0, −15)

1

− 4, − 2



f i 5



iv no x-intercepts

1 39  ii y = 2  x −  +  4 8

iii x =

121 8

1  1 39  , , 4  4 8 

v

y

(0, 5)

1 39 4, 8

0

1  1 11 , , , no x-intercepts 2  2 4 

6

a x =



d x = −

7

a 6

b 8

c -8

9

a ±1



b ±3

5  5 181 , has x-intercepts b x = − ,  − , − 6  6 12 

5 5 59 3  3 131 , no x-intercepts e x = ,  , −  , has no x-intercepts , − , 6  6 12  10  10 20 

10 y = (x - 1)2 - 2

x

or y = x2 - 2x - 1

d -2

8 a  3 b 1 2 c ± 2 11  y = 3(x + 2)2 - 1

1 c 2

1  1 7 c x = − ,  − ,  , no x-intercepts 4  4 8 3  3 17  f x = ,  ,  , has x-intercepts 2 2 4 

d -3

d ± 3

or y = 3x2 + 12x + 11

12  y = -2(x - 1)2 + 6 or y = -2x2 + 4x + 4 Answers to exercises

ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

433

Cambridge University Press

13 a

y = 2(x − 1)2 + 3

y



y

b

(1, 8)

5

6

y = −2(x − 1)2 + 8

0

3

(1, 3) 0



−1

x vertex: (1, 3) y-intercept: 5 axis: x = 1

c 

vertex: (1, 8) y-intercept: 6 x-intercepts: −1, 3 axis: x = 1

d

y

(−3, 12) y

(2, 12) vertex: (2, 12) y-intercept: −4 x-intercepts: 2 − √3, 2 + √3 axis: x = 2

2

y = −4(x − 2) + 12 2 − √3 0

x 2 + √3 −24

e



y

f

y

y = 4(x + 2)2 − 16 −4

0

(−2, −16)

vertex: (−3, 12) y-intercept: −24 x-intercepts: −3 + √3, −3 − √3 axis: x = −3 −3 + √3 x 0

−3 − √3

−4



x

y = −4(x + 3)2 + 12

y = 2(x + 2)2 − 12 vertex: (−2, −12) x-intercepts: −2 − √6, −2 + √6 y-intercept: −4 axis: x = −2

x vertex: (−2, −16) x-intercepts: 0, −4 y-intercept: 0 axis: x = −2

0

−2 − √6

−2 + √6

x

−4

(−2, −12)



g

y (3, 4)

0

3 − √2

vertex: (3, 4) x-intercepts: 3 − √2, 3 + √2 y-intercepts: −14 axis: x = 3 3 + √2



x

h

y y = 3(x + 1)2 − 15

−12

−14 y = 4 − 2(x − 3)2

434

0

−1 − √5

(−1, −15)

−1 + √5 x

vertex: (−1, −15) x-intercepts: −1 + √5, −1 − √5 y-intercept: −12 axis: x = −1

IC E - E M M at h emat i c s   y ea r 1 0 B o o k 1

ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

Cambridge University Press



i



y

81

vertex: (−4, 1) y-intercept: 81 axis: x = −4

(−4, 1)

x

0

Exercise 7E 1

4

3

a

2 1

y

b

c



y



y

(0, 6) (4, 0)

(−1, 0)

x

0

(3, 0) (2, 0) 0 1 1 2 2, − 4

(2, −4)



d

e



y

(0, −15)

x

(1, −20)



y

(2, 18)

x

(3, 0)

0

f

y

(0, 60)

(0, 10) (−2, 0)

(5, 0)

(−1, 0)

x

0

(5, 0) 0



g



y (−2, 0)

x

1

1 −2,

1 , 2

3 −64

i



y (0, 72)

(0, −6)

x

1 2

1 73 2



y (2, 0)

(−5, 0)

x

0

x

(0, −40)

j

(6, 0)

5 2, −

h

(4, 0) 0



(1, 0) 0

(−6, 0) 0

(−1, −100)

(4, 0) x (0, −96)

k

1

x

0



y

(0, −70)

(4, 0)

(−3, 0)

(1, −45)

l

y (−3, 0)

3

−12 , −85 4 y (−1, 0)

(1, 0)

x (0, −7)

(0, −21) (−1, −28)

,0

0

x

0

1 2

1 −4

,

63 −8

Answers to exercises ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

435

Cambridge University Press



g -4, 4

5

a

b -4, -3 1 1 h − , 2 2 b

y

c -3, 6

d -5, 3

e −12, −

i 0, 3

j -4, 0

k -4, 0



y

x=3

3



−1

y

d −6



0

e



y

x=1

x = −2

x

y

f

−3

−12 0

3

(1, −4)

x

2

0

−3

x

0 1 3 (2, −1)

x

2 4 (3, −1)

0

1 f − , 10 2 4 l 0, 5

y

x=2

8

c

1 2

x=1

a -5, -1

x = − 32

4

−3, −9 2 4

x

2 (1, −1)

x

0

(−2, −16)

1 2 1 x

k

436















0

−3

l



n

3 2 x

3

y



3



x

6 a y = x2 - 4x b y = 9 - x2

1 25 , 4 8

−1

2

0



c y = -3x2 + 6x + 9

3 2 0

−2

x

y



7 1 ,− 12 24

4

0

x

0

x

0



x=



1

3 9 , 4 8

3



m y

x=4



x

y

8

1 3 − ,− 8 8

1 2 2 3

9

−1 4

−1 2

0

7 1 − ,− 4 8



y

2

1 4

j x = −3



y

−3 2

−2

3 1 ,− 4 8

i

6

x = − 74

x= 1

0



y

7 x = 12

h

x=0



y

x=0

g

3 4



3x 2 9x − +6 5 5 1 5x e y = x 2 − −2 3 3 7x2 21x f y = − − +7 4 4

d y = − x

IC E - E M M at h emat i c s   y ea r 1 0 B o o k 1

ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

Cambridge University Press

7

y = x2 - x - 2

8 y =

1 2 x x − − 3 2 2

9 y = 6x2 - 15x + 6

Exercise 7F 1

80 m, 130 m

2 60 cm

3 25, 26

4 14, 16

5

13, 15

6 3

7 8 years

8 $6

9

8 cm, 15 cm, 17 cm

10  20 cm, 21 cm, 29 cm 11 5 cm, 30 cm, 40 cm 12 44 sides 5 14  1.84 seconds 15 -7 16 4 73 d 46 b -2 c − 12 19 75 m by 150 m 20  31.888 m, 5.102 seconds

13 16 17 a  4 18 25 cm by 25 cm, 17cm

22  3 83 square units

21 62.5 m by 80 m, or 160 m by 31.25 m

Exercise 7G 1

a -3 < x < 5

b x < -4 or x > 1

c x = -2



d x ≤ -1 or x ≥ 2

e all values of x

f x < −

2

a x < -2 or x > 3

b -4 ≤ x ≤ -1

c x ≤ 2 or x ≥ 5

3 3 or x > 2 2 d -3 < x < 0

3

a x < -10 or x > 7

b -3 < x < 8

c x ≤ -5 or x ≥ -4

d 3 ≤ x ≤ 4

4

a -8 < x < 5

b -3 ≤ x ≤ 8

c x ≤ 5 or x ≥ 7

d x < 0 or x > 11

Review exercise 1

a 2

b 24

c 0

d 0

2

a 0

b ±4

3

a -4, 1

1 b −6, − 2

c ±3 3 3 c − , 4 2

d ±2 1 5 d − , 2 2

4

a −2 −



d 2 −

5, 2 +



g 3 +

35 ,3− 5

5

a − 2 − 6 , −2 +

6

5, −2 +

b 3 −

5 5 35 5

5 19 5 − ,− + 2 2 2 a Minimum c −

2, 3 +

2

e −2 −

6 6 , −2 + 2 2

h 2 +

2, 2 −

c −1 − f 1 −

e 4

f -16

e -7, 7

f 0, 5

5 , −1 + 2, 1 +

5

2

2 b 3 − 2 2 , 3 + 2 2

6 19 2

26 , −2 + 2 c Maximum d −2 −

b Maximum

26 2 d Minimum

7

y = x2 is congruent to y = x2 - x, y = -2x2 is congruent to y = 3 - 2x2, y = 3x2 is congruent to y = 3x2 + 1, y = 2 + 3x - 4x2 is congruent to y = 1 + 4x2

8

a Translate 1 unit down



d Reflect in the x-axis then translate 1 unit up

9

a Translate 2 units left



d Translate 1 unit left and 3 units down

b Translate 2 units up c Reflect in the x-axis then translate 4 units up (There are other correct answers to this question.)

b Translate 1 unit right c Reflect in the x-axis then translate 1 unit left e Translate 2 units right and 3 units down



f Reflect in the x-axis then translate 3 units right and 1 unit up



(There are other correct answers to this question.)

10 a y = (x - 3)2

b y = (x + 2)2

11 a y = (x - 3)2 + 1

b y = (x - 5)2 - 2

12 a y = 3(x +

b y = 3(x -

3)2

+ 2

13 a y = -(x - 1)2 14 a (1, 2)

d (5, 11)

15 y = x2 - 2x - 1

3)2

c y = (x + 3)2 - 2

-2

b y = -(x + 2)2

c y = -(x + 1)2 - 2

b (-2, 3)

c (-4, -2)

e (-2, -1)

f (3, 4)

16 y = x2 + 2x - 15

17 y = -x2 - 6x - 8

Answers to exercises ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

437

Cambridge University Press

5 x

−2

0

6

x

(2, −16)

−4

4

−1 − √2

0

x

axis of symmetry x = −1

b

x=3

13



1 1 , 6 4

0

x=0

x

y

axis of symmetry

x = −5 2 0

axis of symmetry

y

f

(0, 16)

5 25 − ,− 2 4

19 a



y

−1 + √2

0

(3, 4)

c

y

−3 − √5

x

−3

y

5 − √2 0 −69

−3 + √5 0

x

−4

(5, 6) 5 + √2 x

x=5

d



x

axis of symmetry



x

y

(−3, 5)

(−1, −6) 0

1 3

x=1 6

e

x

3 9 ,− 2 4

axis of symmetry



y

axis of symmetry

−5

axis of symmetry

(3,−4)

d

3

0

−12



y

2

c

x = −3

0 1



x=3

y

axis of symmetry

b

x=2 axis of symmetry

5



x=3

y

axis of symmetry

18 a

20 y = 11(x - 2)2 - 4 21 h = 1 or h = -1

438

IC E - E M M at h emat i c s   y ea r 1 0 B o o k 1

ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

Cambridge University Press

c

y 2

−1 + 6 x

0

y

0 3− 7

0 3+ 7 x

(−2, −3)

−5 (−1, −6)

d

(3, −7)



y

e

axis of symmetry



(4, 3)

4+ 3

4− 3

x

axis of symmetry

0

−13



y

f

−7

y 3 23 , 2 2 7 3 − 23 2 0

5 (−1, 3) 0

23 The side lengths are 5 cm, 12 cm and 13 cm

x

x

axis of symmetry

b

axis of symmetry

−1 − 6



y

axis of symmetry

axis of symmetry

22 a

3 + 23 2 x

24 52 cm, 42 cm and 4 cm

25 125 m by 250 m 26 a -3 < x < 5

b -5 ≤ x ≤ -2

c x < 2 or x > 5

d x < 0 or x > 2

Challenge exercise 1

a -5

b -5

2

a -21

b 4

3 4 5

c c > 4

1+ 5 1− 5 1− 5 1+ 5 x= ,y= ;x= ,y= ; x = 1, y = 1; x = −2, y = −2 2 2 2 2 3 4 d x = 80, t = ; x = 90, t = 2 3 40 km/h 6 45 cattle 7   32 km/h, 40 km/h

8

9 4.844 m/s, 5.844 m/s

75 runs 24 11 a = 5 2

10  40 km/h, 60 km/h

2

5 7 25   12 a  x −  +  y −  =   2 2 2

b Let A(0, 1) and B(g, h) be the given points and P(x, y) be any point. P is on the circle with diameter AB if ∠APB = 90° (angle in

B(5, 6)

semicircle). If gradient of AP × gradient of y−1 y−h BP = -1, then × = 1. x x−g

5 7 , 2 2 A(0, 1) 2

3

x



So (y - 1)(y - h) + x(x - g) = 0 is the equation of the circle. This meets the x-axis when y = 0. That is when x2 - gx + h = 0.

2500 100 π x2 (100 − x )2 cm 2 when x = + b The minimum area is π+4 π+4 4π 16 14 d If (x, y) goes to (x, 5y), then (a, a2) goes to (a, 5a2). The graph of y = x2 goes to the graph of y = 5x2. (0, 0) goes to (0, 0), (1, 0) goes to (1, 0), and (0, 1) goes to (0, 5). It is not a similarity transformation since some distances are unchanged and others multiplied by 5. Note that 5 can be replaced by any a > 0.

13 a

Answers to exercises ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

439

Cambridge University Press

2

 a a2  a2  a 1 e T  he enlargement with centre at (0, 0) and enlargement factor maps A(a, a2) to B  ,  . Since = 5   , B lies on  5 5 5 5 5  y = 5x2. That is y = x2 is similar to y = 5x2. f By c y = ± ax2 + bx + c is congruent to y = ax2, a > 0. By d y = ax2 is similar to y = x2. That is, all parabolas are similar. 15 a



y (−8, 17)

17

b

y y = 2x2 + 5x − 3

y = x2 + 8x + 17

0 (− 4, 1)

0

x

− 5 ,− 4



y

c

y = 3x2 + 11x − 12

d

y = dx2 + ex − f x

0

−12

3

49 8

y

x

0

− 11 , −12



x −3

− 5 ,−3 2

e − , −f d

− 11 , − 265 6 12



−f

e2 e , − −f 4d 2d

Chapter 8 answers Exercise 8A 1

a y = 6, b = 45° d a = 90°, b = 60°

2

a q = 75° (isosceles

b x = 5, a = 30° e x = 4, a = 45°  ABC), a = 30° (angle sum of

b a = b = g = 60° (equilateral c 3a = 180° (angle sum of d q = 20° (angle sum of

 ABC)

 RST)  FGH), a = 60°, x = y = 6 m (equilateral

WXY), x = 12 cm (isosceles

e ∠RQP = 60° (base angle of isosceles f a = 60° (angle sum of

c a = g = 60°, b = 120°, x = 6 f a = 60°, x = 5

WXY)

PQR), q = 60° (angle sum of

 IJK), x = 3 cm (equilateral

g y = 5, a = 60° (equilateral

FGH) PQR), y = 7 cm (equilateral

RPQ)

IJK)

 LNQ), a = 2b (exterior angle of isosceles

 LQM), b = 30°

h ∠  GCB = 70° (base angle of isosceles BCG), q = 70° (vertically opposite angles at C), a = 40° (angle sum of b = 140° (straight angle at G), ∠BGF = 70° (alternate angles, FG || AD), g = 110° (straight angle at G)

 BCG),

 ABD = 55° (straight angle at B), ∠BAD = 55° (base angle of isosceles ABD), ∠ADB = 70° (angle sum of ABD), i ∠ q = 70° (vertically opposite angles at D), ∠AGE = 55° (alternate angles, AC || HE), a = 125° (straight angle at G) j ∠DCG = 55° (vertically opposite angles at C), ∠CDG = 55° (base angle of isosceles CDG), a = 70° (angle sum of CDG), ∠AGE = 55° (corresponding angles, BD || HE), ∠EGD = 55° + 70° = 125° b = 125° (vertically opposite angles at G) k ∠  DAB = 50° (complementary angles), a = 50° (alternate angles, AB || CE), ∠AFD = 40° (base angle of isosceles a + ∠FDC = 100° (angle sum of  ADF), ∠FDC = 50°, q = 130° (straight angle at D)

440

l a = 60° (equilateral

 KLM), b = 120° (exterior angle of

m a = 60° (equilateral

 ABC, vertically opposite angles at A), b = g = 120° (exterior angles of

 ADF),

KLM)  ABC)

IC E - E M M at h emat i c s   y ea r 1 0 B o o k 1

ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

Cambridge University Press

n y = 2 m (radii of circle), b = 25° (base angle of isosceles BCO)

 ABO), a = 60° (base angle of isosceles

 BCO, angle sum of

o 3a + b = 180° (co-interior angles, AD || BC), a + 2b = 180° (angle sum of isosceles triangle), a = 36°, b = 72° 3α p ∠  CBO = 2a (  BOC isosceles), ∠OBA = 90 (angle sum of isosceles triangle), ∠OBC + ∠ABO = 95° (alternate 2 angles, AB || CD), a = 10° q a = 120° (co-interior angles, AD || BC), 3b = 180° (angle sum of quadrilateral), b = 60° (co-interior angles, AD || BC) r a = 130° (angle sum of quadrilateral) s a = 108° (angle sum of regular pentagon) t a = 120° (co-interior angles, AB || DC), b = 60°(co-interior angles, BC || AD) 3

4 36°

6 sides

Exercise 8B BAC ≡ ABC ≡

b e

ABC ≡ PQR ≡

a d

2

a ∠BCA = 40°, ∠FED = 100°, ∠FDE = 40°, AB = BC = 3 cm, FD = 4.6 cm

YXZ (SAS) XYZ (ASA)

XZY (ASA) XYZ (ASA)

c

ABC ≡

1

PQR (SSS)

b ∠ABC = 10°, ∠EFD = 130°, CB = 4.2 cm, AC = 1.1 cm, ED = 5 cm c ∠ABC = 28°, ∠FED = 28°, ∠FDE = 62°, AC = 8 mm, FE = 15 mm, DE = 17 mm d ∠FED = 32°, ∠CAB = 111°, ∠BCA = 37°, AB = 9.1 cm, AC = 8 cm, FE = 14.1 cm e ∠FED = 67°, ∠CAB = 67°, ∠ABC = 67°, ∠BCA = 46°, CB = 38.3 mm, AC = 38.3 mm, FE = 38.3 mm, ED = 30 mm 3

a AD = BC (equal side lengths of square), DE = CE (given), ∠ADE =∠BCE



b AE = BE (matching sides in congruent triangles)

4

a PR = RS (equal side lengths of square), PX = ST (half side lengths of square),

(given),

5

ADE ≡

BCE (SAS)



b

∠RPX =∠RST = 90°,  RPX ≡  RST (SAS), RX = RT (matching sides in congruent triangles), RX = RT (from a), VR = VR (common side), VT = VX (half side lengths of square)

X



 RXV ≡  RTV (SSS), ∠TRV =∠XRV (matching angles of congruent triangles)

V

T

S

a Diagonals of a rectangle are equal and bisect each other. b i  ∠AOD = 56°

6

R

P



ii ∠AOB = 124°

iii ∠OBC = 62°

iv ∠ABO = 28°

∠YDO = ∠OBX (alternate angles, AB || CD), ∠BOX = ∠DOY (vertically opposite), OB = OD (diagonals of a parallelogram bisect each other), BOX ≡ DOY (AAS), OX = OY (matching sides of congruent triangles) Q

7

P

B

A

8

Y

B  P = PC (P is the midpoint of BC), ∠QPB = ∠CPD (vertically opposite), ∠PQB = ∠CDP (alternate angles, AQ || DC), BQP ≡ CDP (AAS), BQ = CD (matching sides of congruent triangles), CD = AB (opposite sides of parallelogram), AQ = 2AB



C

D D

C

A

B

 C = AB = YX (opposite sides of parallelogram), DC || AB || YX (opposite sides of D parallelogram) Therefore, DCXY is a parallelogram (opposite sides equal and parallel).

X

Answers to exercises ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

441

Cambridge University Press

9

 AKO = ∠AOK (isosceles triangle AKO), ∠ ∠KAO = 45° (diagonals of a square bisect the vertex angles), ∠AKO = ∠AOK = 67 12 ° (angle sum of triangle), ∠BOA = 90° (Diagonals of a square intersect at right angles), ∠KBO = 45° (Diagonals of a square bisect the vertex angles), ∠BOK = 22 12 °, ∠AOK = 3∠BOK

C

B K O

D

A

10 a

B

  DBC ≡



 DBA (AAS)







AB = CB (matching sides of congruent triangles)







DA = DC (matching sides of congruent triangles)

A

C

D



b

B

  AXB ≡ CXB (SAS) So AB = CB (matching sides of congruent triangles)  CDX ≡  ADX (SAS)   AD = CD (matching sides of congruent triangles)



A

C

D

11

442

C

B





β α

∠DAC = ∠BCA (Alternate angles, AD || BC) ∠ACD = ∠CAB (Alternate angles, AB || CD)  ABC =













CD = BA (matching sides of congruent triangles)







AD = BC (matching sides of congruent triangles)



A









∠ABC = ∠CDA (matching angles of congruent triangles)







∠BAD = a + b = ∠OCB Thus, opposite angles are equal.

α

β

D

CDA (AAS)

Thus, opposite sides are equal.

IC E - E M M at h emat i c s   y ea r 1 0 B o o k 1

ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

Cambridge University Press

12

C

B























A



α

β

Let X be the point of intersection of diagonals BD and AC.

β α

We use the results of Question 11. AD = CB



∠DAC = ∠BCA (alternate angles, BC || AD)



∠BXC = ∠DXA (vertically opposite)



 BXC ≡

D

 DAX (AAS)



CX = AX (matching sides of congruent triangles)





DX = BX (matching sides of congruent triangles)





Thus, the diagonals of a parallelogram bisect each other.

13

C

B























A





A rhombus is a parallelogram.

β α

BC = CD (all sides of a rhombus are equal) BX = DX (diagonals of a parallelogram bisect each other)  BXC ≡

α

β



∠BXC + ∠DXC = 180°

D



So ∠BXC = ∠DXC = 90°



Thus, diagonals of a rhombus are perpendicular. C    BAD ≡

14 B

DCB (SAS) BD = AC (matching sides of congruent triangles)

A

15

 DXC (SSS)

∠BXC = ∠DXC (matching angles of congruent triangles)



D B 2α

Let ∠ABK = ∠DBK = a



Then ∠CBD = 2a (diagonals of rhombus bisect the vertex angles)









∠BKA = 180° – (180° – 4a) - a (angle sum of triangle)   = 3a   = 3∠ABK A

16

α α



C



∠BAK = 180° - 4a (co-interior angles AD || BC)



K

D C

B













X



60°

∠CBX = ∠CDY = 90° + 60° = 150° ∠XAY = 360° – (90° + 60°+ 60°) = 150°



XBC ≡

CDY ≡

XAY (SAS congruence test)

 ence, XC = CY = YX (matching sides of congruent H triangles)

60° A

60°

60°

D

Y

Answers to exercises ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

443

Cambridge University Press

17

B β























18

α

A

C

α



2a + 2b = 360° (angle sum of quadrilateral ABCD) a + b = 180° so ∠ABC + ∠BAD = 180° so ∠BCD + ∠ADC = 180° Thus, AB || OC and BC || AD (co-interior angles are supplementary).

β D

B

C

BC = AD and AB = DC BCD ≡













Hence,







∠ABD = ∠CDB (matching angles of congruent triangles)







∠ADB = ∠CBD (matching angles of congruent triangles)



A





D



DAB (SSS)

Hence, AB || CD (alternate angles are equal) and BC || AD (alternate angles are equal)

Exercise 8C 1

a

 ABC is similar to

RQP (SSS)

b

LMN is similar to

QRP (AAA)



c

 STU is similar to

XZY (AAA)

d

LNM is similar to

TSU (SAS)



e

 BCA is similar to

ECD (AAA)

f

GHF is similar to

JHI (SAS)



g

OMK is similar to

LMN (AAA)

h

STR is similar to

SUQ (AAA)

 EDC is similar to

ADB (SAS)

j

IFG is similar to

IHF is similar to



i

2

a AAA

4

b a = 49° a = b, b = 131 - b EC ED DC c x = 2 DBA (SAS) b a  DEC is similar to = = BA DB DA a ∠ACB = ∠DCE, ∠CAB = ∠CED, ∠ABC = ∠EDC b 3.75 cm c 7.2 cm

b x = 3.5

a

 JKL is similar to

IGH (SSS)

7

a

ADE is similar to

ACB (AAA)

8

a AAA

5 6

FHG (AAA)

b y = 14.4

3 a  SAS

b 8 47 cm

b  LM = 16 23 cm 10  130 m

12  33 m 11  26 23 m 13 ∠BAE = ∠BDC (alternate angles, AE || DC), ∠BEA = ∠BCD (alternate angles, AE || DC), ∠ABE = ∠CBD (vertically opposite), ABE is similar to DBC (AAA)

9

18.75 m



2 CD DB = = , DB = 2AB 1 AE AB

14 ∠DOC = ∠AOB (vertically opposite), ∠ABO = ∠CDO (alternate angles, AB || CD),

AOB is similar to

15 a ∠BAD = ∠BAC (common angle), ∠ADB = ∠ABC = 90°,

ABD is similar to

 ACB (AAA)

b ∠BCD = ∠BCA (common angle), ∠ABC = ∠BDC = 90°,

BCD is similar to

 ACB (AAA)



16 a ∠BAP = ∠DCP = 90° and ∠APB = ∠CPD (given),

 BAP is similar to

 DCP (AAA)

AB AP x b qx = , = ,y= CD CP y q b

b

17 a ∠AEP = ∠CBP (alternate angles, CB || AD), ∠EPA = ∠BPC (vertically opposite),

COD (AAA)

OB OA = = 2 , OB = 2OD OD OC

APE is similar to

CPB (AAA)

AP AE AE (ratios of matching sides of similar triangles) = = PC AD CB AD AE AE 1 = = = , and AD = CB (opposite sides of a parallelogram) PC CD CB 2

b 

AP = 2PC and AC = 3AP 18 a ∠EDB = 180° - ∠ACB (given), ∠ADE = ∠ACB (supplementary), ∠BAC = ∠DAE (common), ACB (AAA)

444

b

ADE is similar to

AE AD (equal ratios of matching sides of similar triangles) = AB AC

IC E - E M M at h emat i c s   y ea r 1 0 B o o k 1

ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

Cambridge University Press

19 a ∠PDB = 90° (given), ∠AFB = 90° (given) ∠DBP = ∠ABF (common).  PBD is similar to  ABF ≡

 ABF (AAA)

 ACF (RHS) So

PDB is similar to

 ACF

FC AC (matching sides of similar triangles) = DB PB

b

1 1 AC and NM = AB. But AC = AB. Therefore, LM = NM. 2 2 21 a ∠ABC = ∠ADB = 90°, ∠BAC = ∠BAD (common),  ABC is similar to b a c = = b . Therefore, a(a - y) = c2 (1) x c a− y

20 LM =



c ∠ABC = ∠BDC = 90°, ∠BCA = ∠BCD (common), c b a d = = , so ay = b2 (2) x y b



e From (1)





From (2)

ABC is similar to

 ADB (AAA)

BDC (AAA)

a(a - y) = c2 and a2 = c2 + ay ay = b2 a2 = b2 + c2



Exercise 8D 1









B



Let N be the midpoint of BC.



1 1 AB and NB = CB. 2 2 MB 1 NB 1 = and = Hence, AB 2 CB 2

































2







M

A

Let M be the midpoint of AB.

MB =

N



MBN is similar to

Hence, ∠BAC = ∠BMN (matching angles of similar triangles)

C

MN || AC (corresponding angles equal) 1 1 Also, MN = AC (similarity factor of ) 2 2

B

∠BMN = ∠BAC (corresponding angles, MN || AC) BMN is similar to BAC (AAA) BM = 1 BA 2 BM BN 1 = = (matching sides of similar angles) BA BC 2 Thus, N is the midpoint of BC.



























3





















A

N



C



B

M is the midpoint of AB. N is the midpoint of BC.

γ

M

Let M be the midpoint of AB and MN || AC.





M

ABC (SAS)

P is the midpoint of AC. β

α γ β

α

From Question 1, 1 1 1 MN = AC , MP = BC , PN = AB 2 2 2 Therefore,

N











A













MP = BN = NC







Hence, all the triangles are congruent by the SSS test.







All triangles have angles a, b, and g.







 herefore, each of the small triangles is similar to the large T triangle.

α

β



γ P

α

γ β

C

NP = MB = AM MN = AP = PC

Answers to exercises ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

445

Cambridge University Press

4

























5

C N B Q M A

Join vertices B and D.



In

CBD, NQ || BD (Question 1)



In

 ABD, MP || BD (Question 1)



Therefore, NQ || MP.



In a similar way, MN || PQ.



Thus, MNQP is a parallelogram.

D

P



A 12



In   PAQ and  BAC ∠PAQ = ∠BAC (Common) BA AC 7   PA = AQ = 4

4

P

 PAQ is similar to  BAC (SAS) ∠APQ = ∠ABC (matching angles of similar triangles PQ || BC (corresponding angles are equal)

Q

9

3

B

6

Let M, N, Q and P be the midpoints of AB, BC, CD and DA respectively.



C



QB = 10 and PQ : BC = 3 : 8

A 6 Q

9 P

B

15 C

7



a

B

A













S

C

 SAC is similar to

 SBD

SA SC = SA + AB SC + CD

SA × (SC + CD) = SC(SA + AB) D

SA × SC + SA × CD = SC × SA + SC × AB

SA × CD = SC × AB SA = SC AB CD SA : AB = SC : CD





b

SAC is similar to

SBD



SB SD = SB − AB SD − CD SB × (SD - CD) = SD × (SB – AB)

SB × SD - SB × CD = SD × SB – SD × AB SB SD = . That is, SB : AB = SD : CD. so SB × CD = SD × AB, AB CD SA SC = c or SAC is similar to SBD. SB SD SA : SB = SC : SD.

446

IC E - E M M at h emat i c s   y ea r 1 0 B o o k 1

ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

Cambridge University Press

8

SA SC = AB CD













A







SA × SC + SA × CD = AB × SC + SC × SA







SA × (SC + CD) = SC(AB + SA)



S











C

B

SA × CD = AB × SC

SA × SD = SC × SB SA SC = SB SD

D



Therefore,  SAC is similar to Hence, AC || BD.

SBD (SAS).

Review exercise 1

a = 37°, b = 80°, g = 20°

2

a

3

a In



b  i  2

4

a a = 112°

b a = 78°, b = 58°

c a = 20°



d b = 104°, a = 76°, g = 52°

e a = 36°, b = 144°

f a = 130°, b = 50°, g = 130°

PCQ is similar to  BEC and

to

5

b x = 5

 ACB

 FED, ∠CBE = ∠DFE (alternate angles, BC || AD) ∠CEB = ∠FED (vertically opposite),

 BEC is similar

 FED (AAA) ii 4

a ∠BAC =

70°,

∠ACB =

55°

b ∠FIC = 55° (corresponding angles, FI || AB). ∠FCI = 55°. So c ∠DIB = 55° (corresponding angles, AC || DI).

FIC is isosceles.

DBI is isosceles (equal base angles), DB =DI

d ∠GIF = 53°, ∠EFG = 17° ONM ≡

6

a

7

a 6x

8

b

ZYX (AAS)

ABC ≡

b x =

 AOB is similar to

9

RTS (RHS)

3 2

COD (AAA). Ratio of matching sides gives:

B





F

BO AO = OD OC

In CFA and BEA, ∠CFA = ∠BEA = 90° (altitudes), ∠FAC = ∠EAB (common), CFA is similar to BEA (AAA) BE AB (ratios of matching sides) = CF AC

A

E

C

b x =

10 a x = 10 11 a x = 13, EF =

102 11

c x =

21 4

d x =

9 2

119 12 20 cm 13

Challenge exercise Only outlines of proofs are given in the challenge exercise b 50 55 cm

c 16 55 cm

Z

1

a 272 cm

2

Produce AY to Z. Let ∠BAY = a ∠AZC = a (alternate angles, BA || ZC) Then ∠YAC = a (angle bisector), and ZCA is isosceles So ZC = CA = 2OA Next,  AOX is similar to  ZCY (AAA) CY ZC = = 2 or CY = 2OX OX OA

d approximately 67 cm Y

B

C

X α A

O D

Answers to exercises ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

447

Cambridge University Press

3

PQ = BC = AB = CD = x and BP = CQ = 2x



AXB ≡ QXP (AAS) ∴ PX = XB = x = QY = YC



PQYX is a rhombus and XQ and PY are diagonals of a rhombus. Hence, AQ ⊥ DP.

X

A

4

Show that ∠BAD = ∠BDA = ∠ACF = 54°. Hence,  ABD is isosceles with AB = BD.



Draw the perpendicular from B to AD. Let X be the point where the perpendicular meets AD. X is the midpoint of AD.  AFC ≡

Q

P





Y

B



A F

X

 BXD (AAS). Hence, FC = XD and AD = 2FC. B

5

6



448

C

SXY is similar to SPR. 1 1 SX = PS , SY = SR Q 2 2 1 area of  SPR Therefore, area of  SXY = 4 1 Therefore, area of  SPR = area of parallelogram PQRS 2 P X 1 area of parallelogram PQRS Therefore, area of  XYS = 8 a ∠BAD = ∠BEC (corresponding angles, AD || EC) ∠DAC = ∠ACE (alternate angles, AD || EC)  BAD is similar to  BEC (AAA)  AEC is isosceles; AC = AE (Base angles of AEC) BD BA = BD + DC BA + AE BD BA BD + DC = BA + AC ( AC = AE )

R Y S

A

B

BD (BA + AC) = BA (BD + DC) BD × BA + BD × AC = BA × BD + BA × DC BD × AC = BA × DC BD BA DC = AC BC BE BA BE b From a, = and = . CD ED AD ED BC BA = CD AD AD CD Therefore, = AB CB

D

E





D

C

D

C

C

B

Therefore,

E







AF AC = c From a, FB BC





    BD = BA DC CA





     AE = AB EC BC





BD CE AF BA BC AC × × = × × =1 DC EA FB CA AB BC







A

D B

F

A

D

E

C

IC E - E M M at h emat i c s   y ea r 1 0 B o o k 1

ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

Cambridge University Press

7

a B’



C’

8



c

A”, B’

ca

cb

ab



b B”

C”

A’

2

b

cb

ca

a2

a2

A”

ab

ab

B”

d  ∠B" A" A'  is a right angle. The new triangle is similar to triangle ABC. 1 1 AC = WZ and YZ = BD = XW. 2 2 Therefore XYZW is a parallelogram. Diagonals bisect each other. XY =

A’

b2

C” , C’

f a2 + b2 = c2

e c



B Y X

C

A

Z W



















D



Chapter 9 answers Exercise 9A 1

a 16

b 125

c 64

d 27

e 10 000

f 216

2

a 23

b 26

c 34

d 25

e 54

f 35

3

a 13-1

b 7-2

c 13-3

d 2-10

e 3-4

f 11-10

4

a a15 f m9n6

c m15 h 15x5y4

d p11 i 15x8y9

e a6b7

5

a

c a4m3

d

c a5b10c15d 20

5 xy 4 d 4a6b2

e

6

x y a a6b12

b a11 g 8a5b5 3 xy 2 b 2 b x21y35

3b e 9a4b8

4 x3 y f 64a9b6

7

a 18m12

b p 4

c a6b3

d m5n

e a5b2

f p12q

8

1 2 1 f 25

b

1 4

g

1 343

9

a

k

11 a



14 15 1 b 81

1 7 f 6

g

1 2

2x y 1 m 1 4 9

a b 7 x m 2 y

b b



1 4 4

9x y 8 4 3

a b

h m7n6

d





i

1 1000 h 1

d

c c i

y3 64 x

3

15 p3 q

5

p8 n2 m

4

1 9

e

5 3 27 n 8

h

c

g 4

1 3

1 1000 25 m 9

l

a

10 a



8 7

c

d



d



j

y6 8x

6

3 p11 2q

6

a2 8 2

b c

2



f

1 27

11 4 1331 o 125 j

4 3 i 1



2c 2

e

125 8

e

x6 y6 27

f 4x10y10



e

y 2x6

f



k

4 ab 5 3

l



x4 16 1 m 9 n17

n a3b11

Answers to exercises ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

449

Cambridge University Press

12 a

1 27

b

x y

b

15 a −

1 64 1 x2



c − 1 y2

c



1 64

7 208

13

3x 2 y 2 x+ y

14

2 2 d x y + xy 2 2 x + y

e

13 3 x4 1 + 2x2 y + x4 y2

f

x2 y x2 + y

Exercise 9B 1

a 6.3 × 101



e 2.1 ×

b 4 × 10-1

c 6.2 × 10-1

-4

-5

d 7.4 × 103

-2

f 2.6 × 10

107

g -8.6 × 10

h 2 × 1012

-3

l 1.00051 × 10-1



i 9.1345 × 10

j 5.732 × 10

k 3.012 × 10

2

a 2.25 × 107

b $1.5585 × 108

c 6.700 × 10-7 m

3

a 6400

b 92 000

c 0.048



e 7 412 000

f -402

g -0.004 657

h 47.26

4

a 8 × 105

b 1 × 106

c 1.26 × 108

d 2.04 × 106



e 2 × 10-4

f 4 × 10-6

g 1.21 × 10-16

h 2 × 10-21



i 2.5 ×

k 5 ×

106

l 5 × 100

5

a 1.026 ×

c 6 ×

10-7



d 4.34 × 109

6

5.8473 × 109 kg = 5.8473 × 106 tonnes

7

a 2.18 × 1018 km

8

1840 electrons

9

a 5.766 × 102

b 4.73 × 102

c 4.7 × 102

d 5 × 102

e 5.124 × 10-2

f 5.12 × 10-2



g 5.1 × 10-2

h 5 × 10-2

i 1.603 × 103

j 1.60 × 103

k 1.6 × 103

l 2 × 103



m 2.994 ×

n 2.99 ×

o 3.0 ×

p 3 ×

q 5.73 ×

r 4.32 × 105

j 3 ×

101

1027

e 0.003 51

11 2.93 × 10-8 m3

101

e 1.2 × 102

d 0.0087

f 1.6 × 102

b 1.23 × 1023 km

1027

c approximately 8 minutes 18 seconds

1027

1027

b 538

c 9670

d 732 000

f 0.0142

g 372

h 478 000

12 1.82 × 1016

13 a  4.14 × 104

b 2.97 × 109

14 a 20

d 1.5 × 1011 m



10-2

b 5.83 ×

109

10 a 5.60

4

e 0.007

b 500

c 420

d 34 000

f 0.0492

g 475.235

h 0.006 84

105

15 a between 14.5 cm and 15.5 cm

b between 1.995 × 103 kg and 2.005 × 103 kg



d between 4.874 45 × 107 ml and 4.874 55 × 107 ml

c between 18.665 m and 18.675 m

16 a 2820

e 1.24 × 1012

b 42 900

c 3.22

d 11.3

f 1.44 × 105

g 1.93

h 1.13

Exercise 9C 1

a 2

b 7

c 5

d 11

e 3

f 3



g 2

h 10

i 5

k 5

l 7

2

1 a 2

j 2 1 d 2

3

f 100 000



k

8 125

l

4

a

3

b

5

2

a

1 43

f

3 72



1 5

1 100 c 27 16 h 81

h 1 10 b 16 1 g 4

g 1 5 a 9



450

b

1 c 4 i

125 216 4

3

b

1 13 7

g

3 115



e 243

i 1331

j 14 641

1 1000

n

7 10

c

5

d

4

c

1 54

h

2 10 7



1 8

j 1 10 d 8

m

20

e

d

10

2 117



e e

5

f

1 2

9

2 53

IC E - E M M at h emat i c s   y ea r 1 0 B o o k 1

ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

Cambridge University Press

4

3

a 5 2

b 5 3

c 6 4

7

a

1 3

b

1 2

c

8

a

1 8

b

1 1000

c 4

9

a 2



f 10 12

17

7

h

1 1 2 20

e

1 1000

f

1 11

d

1 625

e

1 100

f

1 8

i

e 10 2

1 3

510

9

2

3

d 312

1

10 a 2 5

b 7

c 2 28

d 7 6

11 a 3.9811

b 8.3203

c 12.748

d 3.7477

e 9.3152

f 2.4150

g 2202.7

h 2.4721

11 m12

11 a 15



12 a

b



c

8

5 b 21



g



m 4 m 2

h 4 m 5

5

i

3

n

f 112

1 10

7

c 7 5

g 315

e 5 3

d

3

b 315 11

d 7 5

1 11

5

7

6

5

6

3 11 x 4 y 15

d



1

j



3 27m 2

e 2

10 5 a 11 b 6

f

1

e a 2



f

a2 625

k

7 m12



c 1.130

d 0.9547

e 0.010 46

b m6

c p3.6

d b1.25

e 4p2.6

b1.6 2a

0.7

h



2 n8 3m

4.2

i



b 5.1 a

0.8

1 13

80

14 a a4.8

g

1 m6

13 a 8.586

f 64p6.3

2

10 7

8m3 b 458.2



1

j



l m 6

f 0.001406

1 2.1 5.8

m n

Exercise 9D 1

a

x 2x









-2 0.25

-1 0.5

0 1

1 2

2 4



y



y = 2x

8 7 6 5 4 3 2 1 –2



b

x 2-x

-2 4

-1 2

0 1

1 0.5

–1

1

2

1

2

x

y

y = 2−x

2 0.25

0

8 7 6 5 4 3 2 1 –2



c

x 4x

-2 -1 0.0625 0.25

0 1

1 4

2 16



–1

0

y



y = 4x

x



30 20 10

–2

–1

0

1

2

x

Answers to exercises ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

451

Cambridge University Press



d



x

-2

-1

0

1

2

5-x

25

5

1

0.2

0.04

y





40

y = 5−x

30 20 10 –2

2

y = 3 × 4x y = 2 × 4x y 5

y=

4

3



0

–1

1



y = 2 × 2x y = 2x y

x

2

4 

y = 5−x y=

4x

y

3−x

y = 2−x

3 2

2

1

y=

1

x

0

1 2

× 2x

1 2

−2

−1

0

1

1

x

2

x

0

Exercise 9E 1

a 3

b 9

c 5

d 2

e 3

f 2



g 3

h 2

i 5

j 3

k 6

l 4



m 9

n 12

o 5

p 3

2

a -4

b -4

c 0

d -3



g -5 1 a 2

h -10

i -11

3

5 3 

4

a

5

a 5

b

3 2

c

3 2

d

2 3

e

3 2

j -6 2 f 3

b

7 2

c

5 7

d

3 4

e

1 3

2 f − 3

1 g − 3

b -2

c

4 3

d

2 15

e

3 2

f 6

g −

g

2 3

e -5

f -3

k -4 3 h 4

l -5

h −

5 4

h

3 2

3 2

6

a 4 and 5

b 2 and 3

c 5 and 6

d 2 and 3

e 4 and 5

f 2 and 3



g 1 and 2

h 2 and 3

i 3 and 4

j -1 and 0

k 0 and 1

l 1 and 2

Exercise 9F 1

a

t y

0 200

1 400

2 3 4 5 800 1600 3200 6400

b y 7000 6000 5000



4000

c i 303.14 ii 918.96 iii 2262.74

3000 1000 200

0

2



a

t y

0 200

1 100

2 50

3 25

4 5 12.5 6.25

1

2

3

4

5

t

5

t

b y

c i 131.95 ii 21.76 iii 8.25

200

y = 200 × 100

0

452

y = 200 × 2t

2000

1

2

3

()

4

1 t 2

IC E - E M M at h emat i c s   y ea r 1 0 B o o k 1

ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

Cambridge University Press

3

a i 60

4

a 8.2007 × 109

ii 3840

iii 10 861 b i 1000 b 1.360 × 1011

ii 100

iii 1

iv 0.1

5

a 63.2°

b 42.0°

6 a  80 000

b 86635

7

a 1000

b i 250

ii 125

iii 31

Exercise 9G 1

a log2 8 = 3



d 34 = 81 is equivalent to log3 81 = 4

e 53 = 125 is equivalent to log5 125 = 3



f 73 = 343 is equivalent to log7 343 = 3

g 25 = 32 is equivalent to log2 32 = 5



h 104 = 10 000 is equivalent to log10 10 000 = 4 2-1

b log10 100 = 2

c log7 49 = 2

i 10-3 = 0.001 is equivalent to log10 0.001 = -3

= 0.5 is equivalent to log2 0.5 = -1



j

2

a 2

b 6

c 7

d 12

e 0

f 8

g 3

h 2

3

a 3

b 4

c 3

d 2

e 3

f 0

g 4

h 3

4

a -2

b -1

c -2

d -2

e -3

f -5

g - 4

h -3

c 3

d 5

e 100

f -2

g -7

h -13

5

a 1

b 0

6

1

7 0

8

a 3

b 1.6021

c 2.8971

d -3.5229 e 7.8573

9

a 6

b 5

c -4

d -3

e 27



i 2 

j 4

k 5

l 4

m 2

f -3.9085 g -2.2680 h 56.8028 1 1 h f 25 g 5 8

Review exercise 1 2

a a17 1 a 16

3

a

4

a



g

5 6

1 a8 1 52

b 1296m16 b 6



b



b

1 3

c a6b2 1 c 10 000

h



14 a3 1 34



c



c

1 5a

4

4 a2 1 a6

81 16

d



1

4a6 1 d 3 b



i 2x2



d

e

j 4x3

k

2 x4

4b3 a

f



2

l



2x 1 a 36

1 b 64

1 c 64

1 d 16

1 e 5

1 f 100

1 g 49

h

1 64

a 1

b 5

c 1

d 7

e 1

f 5

g 1

h

1 3

7

a 8ab

b ab5

8

22n - 4

9 63x



1 6

c 2b

11

1 d 32a

7

e

9 a2



5 x3 5m3 6

i 1

3

b a 20

c 2 3

d 2 5

11 a 4.2 × 103

b 6.2 × 10-3

c 7.4 × 108

d 2 × 10-7

12 a 5400 e 0.18

b 112 000 f 0.000 064

c 0.068 g 7 410 000

d 0.0097 h 402

13 a 63 000 000

b 1 400 000 000

c 0.000 08 m

d 0.003 cm

14 a 20 f 0.0492

b 500 g 480

c 420 h 600

d 34 000 i 0.09

e 0.0068 j 0.00684

15 a 3 g -2

b 4 h -3

c -2 i -4

d 0 j -2

e 2 k -3

16 a 1

b 2

c 3

d 4

e 5

f 6

h 15

i -1

j -2

k -3

l -6

10 a 2



g 10



j 4

a4 f 2

f 3 l -2

Answers to exercises ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

453

Cambridge University Press

5 17 a − 3

7 b − 3

18 a 12

b

19 a

37 b 2 3a

4



20 a 32 5 5 21 a 8400



f

1 2

1 c − 5

d -2

c 4

d

37 a 8 27 b 9

e -5

1 128

b 1 x10

c

b 37 = 2187

c 1

d 72 = 49

g 5

h 3

i 10

e

1 2

e

1 10

3

1 6

5 7

c 8000 × (1.05)n

b 9261

x 16 a 2306, 2308, 2312, 2320, 2336, 2368, 2432, 2560 1 c x = 5, y = 3 a x = 3, y = 2 b x = , y = 2 2 a 120x

1 a3

+

b 128

1 b3

+

1 c3

a

9

a 3a − 2a 3 b 2 − a 3 b 1

1

1 1

c

b x + x −1 +

8



1

f 7 2

d ab4

Challenge exercise 1

f 6

1



1 2

1

10 3 3 > 2 2 > 5 5

2 -8

4 -1

b n = 12 d x = 3, y = 7

1 32

2



2 3

1

− 6a 3 b + 4 a 3 b 2 + 2b 2 b a - b2 1 11  xy 12  5

13  18 063

Chapter 10 answers 10A Review Chapter 1: Consumer arithmetic 1

$4500

2 $5100

3 3 years

4

3 years

5 8.25% p.a.

6 8.7% p.a.

7

a $239.40

b $72

8 a  $30.60

b $102

9

20%

10  30%

11 a  $24

b $120

b 103.5

c 36

d 20.8

f 150% increase

g 253.75

b 15.5% increase

c 4.32% decrease

d 19% decrease

15 a 20% increase

b 5% increase

c 20% decrease

d 15% decrease

16 $56 314.12

17 a  $19 042.49

b $19 301.25

c $19 362.03

12 a 108

e 25% decrease

13 a 4% decrease 14 11.384% increase

Chapter 2: Review of surds

454

1

a 5 2 + 2 3

b 7 5 + 4

2

a 3 2

b 8 2

c 24 2

d 9 3

3

a − 2

b 26 3

c 16 3

d 8 7

4

a 4 3 − 4

b 2 2 − 13

c 13

d 5 − 2 6

5

a 8

b a - b

c a + 2 ab + b

6

a

7

a

6 7 + 2 10 3

b b

3

c

3+5 3 3

13 + 5 6 19

c

4 3+4 2 + 2

2 +

d

15 − 5 5

6 +2



e 7 5 + 18 2

f 2 a

e 2 15 + 2 2

f

d

14 2 − 9

2 2 −1 3

5

IC E - E M M at h emat i c s   y ea r 1 0 B o o k 1

ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

Cambridge University Press

Chapter 3: Algebra review 1

a 9mn2 - 3m

b 0

2

a 5a + 4

b 2b + 21

c



e 2x2 + 11x + 5

f 6a2 + 17a - 14

g y2 + 5y + 9

3

a

6x2

+ 33x + 45

b 12a2

4

a

5 a + 1 4

b



e

2x2 7x 1 + + 3 6 4

f −

5

a x =



17 2 10 f y = − 3

c 7ab2 + a2

- 10a - 8

7 7 b+ 6 3

c c

4 y 2 15 y 73 + + 9 4 12 10 b x = − 3 g x = 16

6x2

+ 7y - 14

2

2

11 3 79 h x = 7

a (x - 5) metres

b length 17.5 m, width 12.5 m 8 4 litres

9

a x > 4

12 a  g =

d −

y 7y2 − 10 10

38 3 65 x = j 2 e x =

i y = -9

c x ≥



d 7b2 + 37b + 1

d y = -4

11 6 g x > 3

7 4 f x ≤ -5 b x ≤ −

t2

h b2 + 23b - 1

c x = −

24 km/h

2(s − ut )

d 17y - 5y2

11x 31x + 12 12

6

b a =

- 2x

10y2

7

17 e x ≤ − 7 11 a s = 42.225

d 10p2q2 - 5p3

d x < 37 10 9.61 × 106 watts 2

4π p T2



b g = 9.8

v 2 − u2 13 a a = 2x c−b 14 a x = a yc f x = y−c

b x =

c x =

d x =

e x = ya2

15 a x2 - 25

b x2 - 4

d 9x2 - 1 1 2 4 2 x − y i 16 9 d (2a - 3)(2a + 3)

e 4b2 - 49

b (x - 4)(x + 4)

c a2 - 9 1 2 h a − 1 4 c (a - 8)(a + 8)

f (9b - 1)(9b + 1)

g (x - 2y)(x + 2y)

h (3x - 2y)(3x + 2y)

b 3x(x - 6)

c 4(a - 4)(a + 4)

d 9(a - 2)(a + 2)

f 3(2b - 3)(2b + 3)

g 5(x - 2y)(x + 2y)

h 7(2x - 3y)(2x + 3y)



f x2 - y2

16 a (x - 6)(x + 6)

e (3b - 5)(3b + 5)

17 a x(x - 18)

e 2(3b - 5)(3b + 5)

b v = 7.9 c − ab a n− p g x = m2

g 25x2 - 4y2

cd − b a − (a + b) h x = a

c−b r −t 3y − 1 i x = 2

1 1  1 1 i 6(3a - 2b)(3a + 2b) j  x − y  x + y  k 2  x − 2 y  x + 2 y 3 3  2 2  2 1 2  1 l 3  x − y   x + y  2 5 2 5 

18 a (x + 2)(x + 3)

b (x + 1)(x + 6)

c (x + 2)(x + 6)

d (x + 1)(x + 12)



e (x - 1)(x - 2)

f (x - 2)(x - 5)

g (x - 1)(x - 5)

h (x - 3)(x - 6)



i (x - 6)(x + 1)

j (x - 5)(x + 2)

k (x - 4)(x + 2)

l (x - 7)(x + 3)

19 a (x + 2)(2x + 3)

b (3x + 1)(x + 6)

c (5x + 4)(x + 3)

d (3x + 2)(x + 6)



e (2x - 1)(x - 2)

f (3x - 10)(x - 1)

g (5x - 1)(x - 5)

h (7x - 9)(x - 2)



i (3x + 2)(x - 3)

j (2x - 5)(x + 2)

k (5x + 4)(x - 2)

l (2x + 3)(x - 7)

20 a (2x + 1)(2x + 3)

b (3x + 2)(2x + 3)

c (4x + 3)(x + 4)

d (2x + 1)(4x + 3)



e (2x - 5)(2x - 3)

f (2x - 5)(3x - 2)

g (2x - 5)(4x - 1)

h (5x - 6)(2x - 3)



i (2x - 5)(2x + 3)

j (2x - 5)(3x + 2)

k (4x + 5)(x - 2)

l (4x + 5)(2x - 3)

b 5(x + 2)(x + 3)

c 4(x + 1)(x - 4)

d 3(x - 1)(x + 5)

21 a 2(x + 3)(x - 7)

e 3(2x + 5)(x - 1)

f 4(2x + 1)(x + 2)

g 3(2x + 3)(3x - 1)

h 2(2x - 3)(4x + 3)



i 3(x + 7)(x - 5)

j 5(2x + 1)(x - 6)

k (4 - x)(x - 6)

l -2(3x + 4)(x + 1)

Answers to exercises ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

455

Cambridge University Press

22 a

d

23 a

d

34 x + 13 35

b

5x + 7 ( x + 2)( x + 1)

c

−3 x − 11 ( x + 2)( x − 3)

4x + 5 x ( x + 2)(2 x + 3)

e

x−4 x( x − 1)( x + 1)

f

5x + 9 ( x − 3) ( x + 3)( x + 1)

x+2 x+4

b

( x + 1)( x + 6) ( x − 1)( x + 1)

c

x+5 x−5

( x + 1)( x − 1) ( x + 2)( x + 4)

e

1 x

f

− x ( x + 3) 3( x + 1)

Chapter 4: Lines and linear equations 1

34

c

b 2 2

a 2 13

d

2

a (3, 2)

b (4, 3)

3

2 a 3

b 1

 1 7 c  − ,   2 2 3 c 5

4

a m = 2, c = -1

b m = 1, c = 3

c m = -1, c = 7



d m = -1, c = 4

f m =

5

a i 3

2 1 e m = − , c = 3 3 1 ii − 3



c i

6

a

1 2

y

b

0

x



y

e

0

3

0



y

x

f

y

x (1, −2)



y

h

x

(1, 4) 0

−3

0

x

(−1, 2)

4

g

y

2

3 2

0



c

3

− 12

d

1 2 3 ii 2 ii

2 d i − 3

y

1



3 1 ,c=− 4 2

b i -2

ii -2

34

 5 1 d  − , −   2 2 5 d 3

0

x

y

x 0

3

x

−4

7

a y = 3x + 2

c y = -x - 3

8

a 3x + 2y = 6

b 2y - x = 2

c y = 3



d x = 5

e y = 2x - 1

f y = 1 - x

b x = 1, y = 1

c x = 6, y = -5 1 44 f x = , y = 13 13

a x = 2, y = 3 1 2 d x = , y = 2 3 10 a = 3, b = 2 9

456

b y = 2x + 1

e x = 6, y = -5

d  x + 2y = 8

IC E - E M M at h emat i c s   y ea r 1 0 B o o k 1

ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

Cambridge University Press

b i a - 2

11 a 3

c i

2 a

ii



d i

2 5

ii y =

e i a 2 + 4 12 a 31 000 L

2 4−a 2 x + 1 5

5  iii  , 2 2 

ii 3 5 b 40 L/h

c V = 31 000 - 40t

13 a i

ii (a - 2, 1)

d after 775 hours

A started in Melbourne, B started 100 km from Melbourne.



ii A finished 160 km from Melbourne, B finished in Melbourne.



iii A took 2 hours 20 minutes, B took 1 hour 36 minutes.



iv A averaged 68 47 km/h, B averaged 62.5 km/h. 480 b A: d = t, B: d = -62.5t + 100. 7 c They passed after 46 minutes of travelling.



Chapter 5: Quadratic equations 1

a -4, 4



f -2, 2

2

3 a 0, 2

b -8, 8 1 1 g , − 2 2 1 b 0, − 3

g 0, -5

h 0, 7

a a = 4 or -3

b t = -3 or -5 1 11 b , 3 3

3

5

5 a , 7 2 1 e − , 1 3 a 3

6

a ( x +



d ( x − 4 +



f 2( x − 3 – 5 )( x − 3 +

5)

7

a y = −1 ±

b a = 2 ±



e y = −

8

a d = ± 2

b y = ±



d y = 4 ± 13

e m =

9

a (x + 7) metres, (x + 8) metres

4

b 2( x − 6 )( x +

5)

7 )( x − 4 −

5

1 2 ± 4 4

10 a 381.6 m

f − 3 , 5 2 6 c -6

b -5

5 )( x −

c -2, 2 5 5 h , − 2 2 3 c 0, 5 3 i 0, 4 c m = -7 or 3 1 c , −8 3 3 g , −4 2 d 7 e -1

7)

f x =

12 a

13 a b = ±4 14 a a =

4 3

d 0, -3

1 2 1 k 0, 2 e x = 4 e 0,

j 0, 12 d m = 4 or -1

f 0,

2 7

1 4 f b = 9 or -3 l 0, −

7 3 d − , − 6 2 h 3 f 4

6)

3 g − 2

h 5

c 6( x − 2 3 )( x + 2 3 )

e ( x + 2 − 2 2 )( x + 2 + 2 2 )

6



33 4



30 2 1 5 ± 2 2

41 2

c x = 1 ± g n =



41 2



d x = h x =



41 2

−1 + 2 4

c x = 10 ± 2 5 f n =



21 2

b 5 cm, 12 cm, 13 cm b 102 seconds

11 a length = 24 - 2x cm, width = 17 - 2x cm x2 m2

5 5 e − , 2 2

d -7, 7 3 3 i , − 2 2

b (8x + 16)

m2

b x = 2.5

5x 2 c 8 x + 16 = 4 c -4 < b < 4

b b < -4 or b > 4 4 4 c a > b a < 3 3

15 a c = 4

c 19 cm × 12 cm × 2.5 cm d 8 m × 8 m b c < 4

c c > 4

Answers to exercises ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

457

Cambridge University Press

Chapter 6: Surface area and volume 1

a 2200 cm2 cm2

b 6000 cm3

2 5 cm

b 728 cm2

c 880 cm3

5 a  4712 litres

b i 96π cm2

ii 96π cm3

8 a  4 cm

b 8 6 cm

c 328 cm3

c 2, 8

d 6, 216

e 5, 25

4

a 44

6

a i 360 cm2

ii 400 cm3

7

a 254.6 m2

9

a 18π m2

b 160 m3 45 b π m3 4 b 2.25, 3.375

10 a 9, 27

3 5 cm b 64 cm

f 9, 81

Chapter 7: The parabola 1 b − , 6 2 a y = (x + 3)2 - 6, (-3, -6) 2 3 7  3 7  c y = 2  x +  − ,  − , −   2 2  2 2

c −4 +

3, −4 − 3

b y = (x -

2)2

3

a y = -2x2 + 6x + 8



b y = x2 - 8x + 15

4

a y =

2x2



5

a y =

3x2

6

a

1 2

a -1, -3

- 12x + 16 - 12x + 12

- 2, (2, -2)

b y = -3x2 + 12x - 7 -x2

- 2x + 2

b

c y = x2 - 10x + 21

y

5

5

2

2

1 25 −2, 4

0 1

2, 2 −

4 10  4 10   d y = 3  x +  − , − ,−   3 3  3 3

b y =

y

d 2 +

c

y 4

6

−2

x −3



2

0

2

0

x

x

(3, −4)



d



y

e



y

f



y

9

0 −1

−3



g

0

3

−√2

x

−3

x

√2

0

x

−2 (1, −4)



y

h



y

1

−1 − √2



y −5−√37 2

(−1, 2)



i

x

0

−1 + √2

0

−5+√37 2

x

−3

11 0

5

− 2, −

(3, 2)

37 4

x

458

IC E - E M M at h emat i c s   y ea r 1 0 B o o k 1

ISBN 978-1-107-64844-9 © The University of Melbourne / AMSI 2011 Photocopying is restricted under law and this material must not be transferred to another party.

Cambridge University Press



j





11

361 24

− 12 ,



y

k



y



l

y

1 + √57 4

6 1 – √57 4

10 7



5 2

− 8,

2 3

−7

47 16

0

x

0

7

 1 4 a  , −   3 3

 1 b  − ,  3

9

a 12 - 2x

b A = x(12 - 2x)

10 a (-1, -8)

 0 , (1, 0) 

1 4,

x

)(

)

b (0, −7), −1 − 2 2 , 0 , −1 + 2 2 , 0



d −2 2 − 1 ≤ x ≤ 2 2 − 1

57 8

c 3 m by 6 m c





8 5 cm × 10 cm × 20 cm



(

x

0



y −2√2 − 1

2√2 − 1 x

0



−7 (−1, −8)

11 a

y







1 − √3 2 1 0



3 3 < x
View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF