Ibs Lte Design

Share Embed Donate


Short Description

fyr...

Description

IBS LTE Design

Li Youfu/00192732

HUAWEI TECHNOLOGIES CO., LTD

Challenges of LTE In-building Network Where to building LTE I n-building network?

What is the strategy of LTE in-building

MIMO or SISO ?

Huge deploy workload of dual-DAS

network? Hard to Deploy

Hard to reuse the existing DAS system

Higher coverage and capacity requirements

Which solution to select for a new-build LTE inbuilding network?

High Cost How to maximum reuse the existing 2G/3G DAS?

Interference among different systems(GUL)

Unbalance power strength of two way DAS Hard to predict the coverage result Passive components can’t meet the large range frequency band requirements

Bad Network Performance

How to meet the coverage and capacity requirements and control interference?

Band 

Support various bandwidth: 1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz E-UTRA Band

Uplink (UL)

Downlink (DL)

FUL_low  – FUL_high

FDL_low  – FDL_high

Duplex Mode

1

1920 MHz

 –

1980 MHz

2110 MHz

 –

2170 MHz

FDD

2

1850 MHz

 –

1910 MHz

1930 MHz

 –

1990 MHz

FDD

3

1710 MHz

 –

1785 MHz

1805 MHz

 –

1880 MHz

FDD

4

1710 MHz

 –

1755 MHz

2110 MHz

 –

2155 MHz

FDD

5

824 MHz

 –

849 MHz

869 MHz

 –

894MHz

FDD

6

830 MHz

 –

840 MHz

875 MHz

 –

885 MHz

FDD

7

2500 MHz

 –

2570 MHz

2620 MHz

 –

2690 MHz

FDD

8

880 MHz

 –

915 MHz

925 MHz

 –

960 MHz

FDD

9

1749.9 MHz

 –

1784.9 MHz

1844.9 MHz

 –

1879.9 MHz

FDD

10

1710 MHz

 –

1770 MHz

2110 MHz

 –

2170 MHz

FDD

11

1427.9 MHz

 –

1452.9 MHz

1475.9 MHz

 –

1500.9 MHz

FDD

12

698 MHz

 –

716 MHz

728 MHz

 –

746 MHz

FDD

13

777 MHz

 –

787 MHz

746 MHz

 –

756 MHz

FDD

14

788 MHz

 –

798 MHz

758 MHz

 –

768 MHz

FDD





17

704 MHz

...



…  –

716 MHz

734 MHz …

…  –

746 MHz

FDD …

Output Power  R0

Output Power is RS Power RS Power = RRU output – 10log(RE)-PA For GT 10log(RE)=27.8dB SISO: PA = 0 MIMO: PA = -3



 R0

  R0

 R0

 R0





 R0

 R0 l 





 R0

0





6 l  0







6

Resource element ( k,l )

 R0

 R0

 R0

 R0

 R0



0

 R1

 R0

 R0 l 



 R1

 R1

 R0 l 

 R1

 R 1

 R1

Reference symbols on this antenna port

 R1

6 l  0







6





0

 Not used for transmission on this antenna port

 R1 l 



6 l  0 





6

Bandwidth

1.4

3

5

10

15

20

RB

6

15

25

50

75

100

RE

72

180

300

600

900

1200

1RB = 12 Sub-Carriers

LTE Indoor Coverage Criteria Suggestion RSRP

≥-95dBm@95%

SINR

≥15dB@95%

Spillage



10m far away from the building   First outdoor cell RSRP - Indoor cell RSRP > 10dB



Pathloss constrained by UMTS MCL



UMTS Pathloss A2E: 5 - (-80) = 85dB



Suggested LTE ERIP: -95 + 85 + 20log(21/18) ≈ -10dBm



Suggested Radius: 10m

Handover MCS

Modulation Order

0~9

QPSK

10~16

16QAM

17~28

64QAM

29~31

Reserved

 



Throughput = TBS * RB * 1000 SINR -> CQI -> MCS -> MO -> TBS -> Throughput Different Cell share same frequency

LTE is sensitive to interference

A3 START: Mn + Ofn + Ocn - Hys > Ms + Ofs + Ocs + Off STOP: Mn + Ofn + Ocn + Hys < Ms + Ofs + Ocs + Off DEFAULT VALUE: Ofn = Ofs Ocn = Ocs IntraFreqHoA3Hyst: 1dB IntraFreqHoA3Offset: 1dB Handover condition: Mn - Ms = Off + Hys = 2dB IntraFreqHoA3TimeToTrig = 320ms Overlap area = 1m/s * 0.32s = 32 cm Suggested overlap area 1m~2m

SISO or MIMO

  

Hard to Split

  

LTE DAS Choice 1: SISO Pros: Lowest additional workload Time to market , easy to deploy, Fully utilized existing DAS

Coupler M  u l    t   i    s  y  s  t    e m  C   o m  b  i   n  e r 

Cons: Could not reflect the LTE MIMO high performance

GSM UMTS

Hard to upgrade

Antenna Splitter 

Applicable Scenarios: TCO is most important Existing DAS meet the requirements of the LTE system

LTE

Replace existing combiner to introduce LTE signal

LTE DAS Choice 2: MIMO Pros:

Antenna group I

Antenna group II

Fully reflect the LTE MIMO high performance Time to market

Cons: Need additional workload in existing High CAPEX

GSM UMTS

M  u l    t   i    s  y  s  t    e m  C   o m  b  i   n  e r 

Applicable Scenarios: Capacity is most important Existing DAS meet the requirements of the LTE system

 C   o  u  p l    e r 

Coupler

Partially utilized existing DAS

LTE

Splitter 

Splitter 

LTE DAS Choice 3: MIMO Pros:

Antenna group I

Antenna group II

Low power output for each path Low PIM

Cons:

 C   o  u  p l    e r 

Coupler

Need additional combiners GSM

Applicable Scenarios:

Splitter 

Capacity is most important Existing DAS meet the requirements of the LTE system

UMTS

LTE

Splitter 

LTE DAS Choice 4: SISO + MIMO Pros: Reflect the LTE MIMO high performance Time to market Partially utilized existing DAS

Cons: Need additional workload in existing Partially sacrifice the performance of the LTE MIMO high performance

Coupler

GSM UMTS

M  u l    t   i    s  y  s  t    e m  C   o m  b  i   n  e r 

Antenna Splitter 

Antenna

Applicable Scenarios:

LTE Macro

Coverage and Capacity is equally important Existing DAS meet the requirements of the LTE system

LTE Micro Splitter 

Isolation Requirement -- UMTS and LTE Taking UMTS2100 and LTE1800 as Example Isolation for spurious emission: P_spu = 10 log{ 10 exp (noisefloor+sendeg/10) – 10exp (noisefloor/10) } Where: P_spu is the acceptable receiving spurious power of the victim system Noisefloor is the noise floor power of the victim system, unit in dBm Sendeg is the allowable sensitivity degrade level of the victim system, unit in dB and taken as 1dB here When UMTS is the aggressor system and LTE is the victim system: The P_spu = 10 log { 10 exp (noisefloor+sendeg/10) – 10exp (noisefloor/10) } = -123.78 dBm/RB Since the spurious level of UMTS2100 is : -93dBm/RB, the minimum isolation for spurious emission is 30.8dB. Reversely, when LTE is the aggressor system and UMTS is the victim system, we can calculate the minimum isolation for spurious emission is 30.6 dB.

Isolation for barrage jamming: For 1dB sensitivity degrade, the UMTS2100 system should not receive a power higher than 5dBm at LTE1800 frequency. Because LTE eNodeB output 46dBm, thus the minimum isolation is 41dB. Reversely when LTE is the victim system, the isolation is 38dB. Conclusion:

Isolation Requirement

Spuriou s

Barrage jamming

LTE interferes UMTS

30.6 dB

41 dB

UMTS interferes LTE

30.8 dB

38 dB

Minimum isolation for co-site

Isolation requirement -- G/U/L

Target system

Interference system

LTE FDD 2600

GSM900

GSM900

LTE FDD 2600

LTE FDD 2600

DCS1800

DCS1800

LTE FDD 2600

LTE FDD 2600

UMTS2100

UMTS2100

LTE FDD 2600

LTE FDD 1800

GSM900

GSM900

LTE FDD 1800

LTE FDD 1800

UMTS2100

UMTS2100

LTE FDD 1800

Antenna and combiner isolation requirement 41dB 46dB 41dB 41dB 41dB

Guard Band is Only 200k Between GSM1800 and LTE 1800 for Co-existence

Isolation requirement -- LTE Combiner and POI

Combiners/POI can be customized according to Globe’s frequency bands

Co-existing -- Can existing GSM DAS meet LTE Coverage KPIs RRU Tx power

Cell Edge KPI

Max DL Link Loss

GSM 900

40 dBm

RxLev > - 80 dBm

120dB

LTE1800 SISO

18.2 dBm

RSRP > -95dBm

113.2dB

7/8” Cable loss per Space Loss 100m difference b/w Total Pow er balance difference b/w LTE 1800 & GSM for direct co-site LTE 1800 & GSM 900 900

0dB

6 dB

LTE1800 MIMO

21.2 dBm

RSRP > - 95dBm

116.2dB

2 dB

+14.8 dB

+ 11.8 dB

Note: The above Tx Power for GSM is the BCCH power, while the Tx Power for LTE is the RS Power. Conclusion: For SISO/MIMO mode, the 40W LTE RRU can not be directly coupled into the existing DAS from the signal source to meet the same coverage with GSM 900.

Co-existing -- Can existing GSM DAS meet LTE Coverage KPIs RRU Tx power

Cell Edge KPI

Max DL Link Loss

GSM 1800

40 dBm

RxLev > - 80 dBm

120dB

LTE1800 SISO

18.2 dBm

RSRP > -95dBm

113.2dB

Space Loss difference b/w LTE 1800 & UMTS 1800

7/8” Cable loss per 100m difference b/w Total Pow er balance LTE 1800 & UMTS for direct co-site 1800

0dB

0dB

LTE1800 MIMO

21.2 dBm

RSRP > - 95dBm

116.2dB

0 dB

+6.8dB

+3.8dB

Note: The above Tx Power for GSM is the BCCH power, while the Tx Power for LTE is the RS Power. Conclusion: For SISO/MIMO mode, the 40W LTE RRU can not be directly coupled into the existing DAS to meet the same coverage with GSM 1800.

Co-existing -- Can existing UMTS DAS meet LTE Coverage KPIs RRU Tx power

Cell Edge KPI

Max DL Link Loss

UMTS 2100

33 dBm

RSCP > - 78 dBm

111dB

LTE1800 SISO

18.2 dBm

RSRP > -95dBm

113.2dB

Space Loss difference b/w LTE 1800 & UMTS 2100

7/8” Cable loss per 100m difference b/w Total Pow er balance LTE 1800 & UMTS for direct co-site 2100

0dB

-1.3 dB

LTE1800 MIMO

21.2 dBm

RSRP > - 95dBm

116.2dB

Note: The above Tx Power for UMTS is the CPICH power, while the Tx Power for LTE is the RS Power. Conclusion: For SISO and MIMO mode, the 40W LTE RRU can be directly coupled into the existing DAS.

-0.4 dB

-3.9 dB

- 6.9 dB

Key Factors for LTE MIMO    

 R 

• • • • • • • •

 r    h   HS    N       r   h 1

11

h12   s1 

n    s   n      1

2

21

h22

2

2

Array Gain Diversity Gain Space Division Multiplex Gain Interference Rejection Combining Gain

-80dBm

-80dBm Restrictions 12m 4m 12m 4m 36.13Mbps -105dBm -105dBm 70.65Mbps Antenna port – Antenna number and RS pattern 14.88Mbps 18.90Mbps Codeword – Transport Block that Transmitter supports 8m 8m Layer  – Dimension of wireless environment -95dBm 70.59Mbps -95dBm 36.12Mbps Rank – Channel correlation Block Coding – Block coding scheme, e.g. SFBC, FSTD Algorithm – Schedule , pre-coding and combination that depend on Transmitter and Receiver realization and configuration Transport Mode – TM1-TM9 makes different throughput Transmission Scheme – TxD(Low channel quality; moving UE ) , OL-SM(Low channel quality; moving UE ) , CL-SM(Good/Low channel quality; static UE)

MIMO ≠ Multiple Antennas

MIMO System

Coaxial Cable Fiber BBU

Single-polarized antenna

Distributed System

RRU

Two Single-polarized Antennas Network Mode Dual-polarized antenna

Coaxial Cable Fiber BBU

RRU

Distributed System

One Dual-polarized Antenna Network Mode

Dual-polarized antenna and Single-polarized antenna 25

25

DL Throughput

DL Throughput 20

20

15

15

10

10

5

5

0

0 1

2

Open area suggest Single-polarized antenna

3

1

Cut off area suggest dualpolarized antenna

2

3

Space between MIMO paired antenna Cut off area

Open area 25

25

20

20





15



15

4λ 6λ

6λ 8λ

10



10

10λ 12λ

5

10λ 12λ

5

0

0 1

2

λ = C/F = 3e8 / 18e8 = 0.167m

3

1

2

3

MIMO Power Imbalance

Power imbalance should be controlled within 3dB for paired antennas.

Differences in design between LTE and G/U  

Rich Experience Seamless Solutions

160000 160000

140000

140000

120000

120000 100000

DL 15cm

80000



Deep Understanding

DL 50cm

60000

DL 110cm

40000 20000



End to End Capability

100000

Δ=0 dB

80000

Δ=3 dB

60000

Δ=5 dB

40000

Δ=10 dB

20000

0 1

2

0

3

1

Problem

Power imbalance

Analysis Components and cables in different position makes different pathloss - Low throughput and heavy fluctuation

No dual stream

Antennas with no/weak signal - MIMO system with only SISO throughput

Combination problem

Intermodulation/Wrong connection between LTE RRU and DAS in design or implementation – Wrong cell planning and interference

2

3

Level

High

LTE Retrofit Problem Statics

Middle

15%

19%

Power imbalance

Weak coverage Interference Hardware warning

Different ERIP requirement and path loss from GSM/UMTS for LTE, and improper RRU power - Low/Over-high RSRP, Call drop, Handover failure, Low throughput, Interference etc. Same frequency for all neighbor cells with no code division - low SI NR, Call drop, Low throughput, etc. VSWR

Middle

No dual stream 8%

18%

Combination problem Weak coverage

High 18%

Interference Hardware warning

High

22%

Middle

Existing & potential problem for indoor system will cut down the subscribers’ experience after on air, better discover and handle them under construction

HUAWEI IBS Solutions for LTE

Features 

Easy for deployment:



installing dual DAS system at one time, reduce workload



No unbalance issue of 2 way MIMO, improve the MIMO performance



Use dual-polarized antennas, less number, easy to deploy

2

core feeder

Dual-polarized

antenna

SingleMIMO - Use one feeder to achieve MIMO, easy for deployment

HUAWEI IBS Solutions for LTE •

DRH DRH DRH

• No need of dedicated equipment room profit from DCU cascading feature •

DRH

Full band, multi-operator, multi-system sharing

Easy for LTE evolution and frequency expansion with modularized structure

• Unified network management system , operation together with BTS • 3D traffic map based on DRH-level MR GSM UMTS

GSM

BTS

BTS

GSM

UMTS NodeB

NodeB

UMTS NodeB

LTE eNodeB

LTE eNodeB

LTE eNodeB

Operator B

Operator A

• Remote interference and inter-modulation detection, no need of onsite test

BTS

Operator C

• Diff-operator or diff-system precise expansion ondemand, no need of onsite hardware adjustment •

Stadium

Airport

Subway/Tunnel

33% less power consumption with wideband DPD technology

Skyscraper

SingleDAS – Multi-Operator & Multi-System solution

HUAWEI IBS Solutions for LTE Fiber

Cat5/6

100-150m

PoE  8

pRRUs per RHuB

RF

 4

cascaded RHuB per link

 392

Module design

 flexible

RFimbedded for G/U/L /Wifi

 100mW

per RF module, maximum 3

 2T2R

pRRU per BBU

Features High

capacity: 192 pRRU/BBU, each pRRU suppport 1 cell Fast deployment: fiber and CAT5 instead of feeder Antenna-level management: pRRU-level management

Lampsite – No cable solution

 LTE

new-build scenario with high capacity demand  Scenarios which can’t use feeder 

easy to deploy and cell expansion

HUAWEI IBS Solutions for LTE Outdoor site for in-building coverage with macro & Atomcell combination solution Macro Site

AtomCell

Low cost, fast deployment

Small residential area

Indoor micro scenario coverage w ith indoor AtomCell

Shopping street

Fast deployment

Villa

Coffee bar

Restaurant

AtomCell - Micro scenario solution

High capacity

Small office

Shops

THANK YOU WWW.HUAWEI.COM

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF