IBA Test Prep Material
January 26, 2023 | Author: Anonymous | Category: N/A
Short Description
Download IBA Test Prep Material...
Description
IBA Entry Test Preparation Material
IBA Entry Test Preparation Function Function: An equation equation will be a function function if for any x in the domain of the equation, the equation will yield exactly one value of y . For example, Q. y x 2 1 is a function or not? Solution: y x 2 1 can also be written as, f ( x) x 2 1 Put x 0 we have f (0 ) 02 1 1 f ( x ) that is, 1.
For x 0 we have exactly one value of
Put x 1 we have f (1 ) 12 1 2 For x 1 we have exactly one value of f ( x ) that is, 2 In the above equation, for any x in the domain of the equation, the equation will yield exactly one value of y. Hence, it is a function. Q. y 2 x 1 is a function or not? Solution: Put x 0 in the above equation, y 2 0 1 y 2
1
y 1 So, for x 0 we have 2 different values of y . Hence it is not a function.
Even and Odd Function Even Function
Suppo posse f ( x) is a function, And if, f ( x) f ( x) then the function is EVEN. Odd Function
Suppo posse f ( x) is a function, And if, f ( x) f ( x) then the function is ODD. For example, Q. Whether the Function f ( x) x 2 is Even or Odd? Solution Replace x by x . f ( x) ( x ) 2 x 2 Hence, f ( x) f ( x) The function is Even.
IBA Entry Test Preparation Material Q. Whether the Function f ( x) x3 is Even or Odd? Solution Replace x by x . f ( x) ( x )3 x 3 Hence, f ( x) f ( x) The function is Odd.
Domain and Range of a Function Domain of a Function
The Domain of a function is the set of all values that could be put into a function and have the function exists and have a real number of value. So, for the domain we need to avoid division by zero, square root of negative numbers, logarithm of zeroes and negative numbers. Range of a Function
The range of a Function Fun ction is simply the set of all possible values that a function can take. For example, Q. Find Domain and Range of f ( x) 2 x 7 Solution In this function, we can put any value of x . Domain: (, ) Range: (, ) Q. Find Domain and Range of f ( x) 4 x 2 . Solution We coul could d NOT NOT have have nega negati tive ve val value ue in sq squa uare re root root.. So, So, 4 x 2 4 x 2 0 4 x
x x
2 2
4 1 2
1 Hence, domain: [ , ) 2 Range: [0, )
0
IBA Entry Test Preparation Material
Q. Find Domain and Range of f ( x)
1 x 1
Q.76 IBA Entry Test BBA -2010
Solution We cannot have 1 in the denominator for which the function is, 1 1 1 f ( x ) does not exists x 1 1 1 0 Hence, All numbers 1. x the function Range: Domain: For different values ofexcept will take different values. For x 0 , f ( x) 1 1 For x 1 , 2 For x 2 , f ( x) 1 Hence, Range could be any Real Value Answer: (D) The set of all Real Values.
View more...
Comments