Hydraulic Calculation of Sprinkler System(Rev.c)

September 22, 2017 | Author: Tuong Nguyen Duc Minh | Category: Fire Sprinkler System, Pipe (Fluid Conveyance), Soft Matter, Applied And Interdisciplinary Physics, Chemistry
Share Embed Donate


Short Description

for information...

Description

SOUTH ASIA PAKISTAN TERMINALS LIMITED (SAPT)

PAKISTAN DEEP WATER CONTAINER PORT BUILDINGS PHASE-1

HYDRAULIC CALCULATION OF SPRINKLER SYSTEM - GROUND FLOOR PLAN OF CRANE WORKSHOP

Document No.

Prepared by

Checked by

Approved by

Liu Yi

Mao Xiaofang

Zhong Liangsheng

Date: Dec. 2014 Rev:C

SOUTH ASIA PAKISTAN TERMINALS LIMITED (SAPT)

CONTENTS 1. BRIEF INTRODUCTION ...................................................................................... 1 1.1. General ....................................................................................................... 1 1.2. Codes and Standards ................................................................................. 1 2. HYDRAULIC CALCULATION OF SPRINKLER SYSTEM .................................. 2 2.1. The Extreme Pressure Point....................................................................... 2 2.2. Flow of Node .............................................................................................. 2 2.3. Flow Rate ................................................................................................... 2 2.4. Frictional Resistance .................................................................................. 2 2.5. Difference of Pressure ................................................................................ 2 2.6. The Results ................................................................................................ 3 ANNEX A.

DETAIL HYDRAULIC CALCULATION OF SPRINKLER SYSTEM ...... 5

ANNEX B.

FIGURE OF SPRINKLER SYSTEM ...................................................... 8

SOUTH ASIA PAKISTAN TERMINALS LIMITED (SAPT)

1. BRIEF INTRODUCTION 1.1. General 1) This hydraulic calculation of sprinkler system is for crane workshop of Pakistan Deep Water Container Port. 2) Galvanized steel pipe (meets the requirements of ASME B36.10M-2004 Welded and Seamless Wrought Steel Pipe) is adopted as the sprinkler system of this design. Standard (STD) wall thickness is adopted as the wall thickness of the pipe in this design. 3) HDPE pipe (meets the requirements of BS EN 12201-1-2003 Plastics Piping Systems for Water Supply-Polyethylene (PE) ) is adopted as the buried pipe in fire fighting system. 1.2. Codes and Standards 1) NFPA 13-2007 Standard for the Installation of Sprinkler Systems 2) ASME B36.10M-2004 Welded and Seamless Wrought Steel Pipe. 3) BS EN 12201-1-2003 Plastics Piping Systems for Water Supply-Polyethylene (PE)

1

SOUTH ASIA PAKISTAN TERMINALS LIMITED (SAPT)

2. HYDRAULIC CALCULATION OF SPRINKLER SYSTEM 2.1. The Extreme Pressure Point According to requirements of NFPA 13-2007. 1.0 bar will be adopt as the extreme pressure point at the remotest of the pipe in this design. 2.2. Flow of Node Pressure balancing shall be permitted through the use of a K-factor developed for branch lines or portions of systems using:

K p  q / ( p)0.5

(1)

So the equation can change as:

q  K p ( p)0.5

(2)

Where: q= flow of node in L/min; Kp= K-factor, for this project, Kp=80; p=pressure of point in bar. 2.3. Flow Rate v  1000Q / Di 2 / 0.785 / 60

(3)

Where: V=flow rate in m/s; Q= flow of pipe in L/min; Di= internal diameter in mm; 2.4. Frictional Resistance Pipe friction losses shall be determined on the basis of the Hazen-Williams formula, as follows:

pm  6.05(

Q1.85 )105 1.85 4.87 C dm

(4)

Where: pm= frictional resistance in bar per meter of pipe; Q= flow in L/min; C= friction loss coefficient, for galvanized steel pipe of this project, C=120; dm= actual internal diameter in mm. 2.5. Difference of Pressure P  pm ( L  Le )  H /10

(5) 2

SOUTH ASIA PAKISTAN TERMINALS LIMITED (SAPT)

Where: ΔP= difference of pressure in bar; pm= frictional resistance in bar per meter of pipe; L= length of Pipe in m; Le = equivalent length in m; ΔH= difference of level in m. The figure of density/Area Cruves is as follow:

Figure 1 Density/Area Curves 2.6. The Results Table 1 The results of the hydraulic calculation for crane workshop

Hydraulic Calculations for CRANE WORKSHOP GROUND FLOOR Date:

9-12-2014

Design Occupancy classification Density

Ordinary Hazard Group II

9.45 mm/min

Area of application

Coverage per sprinkler Special sprinklers

m2

254

7.12

m2

-----------

No. of sprinklers calculated

34 3

SOUTH ASIA PAKISTAN TERMINALS LIMITED (SAPT)

In-rack demand Hose streams

----------250 gpm

(946 L/m)

Total water required including hose streams

883 gpm

(3346 L/m)

According to the NFPA 13, the sprinkling density of this building is ordinary hazard Group 2.In figure 1, When the calculated area is 254 m2, the average sprinkling density is not less than 7.2 mm/min. So the design parameters can meet the requirements of the standard, and it is acceptable. For the detailed hydraulic calculation of sprinkler system refer to Annex A. For the figure of sprinkler system refer to Annex B.

4

ANNEX A.

DETAIL HYDRAULIC CALCULATION OF SPRINKLER SYSTEM Table 2 Hydraulic calculation of sprinkler system Flow of Pipe(Q)

Flow Rate(v)

Nominal Diameter (Dn)

Internal Diameter (Di)

Length of Pipe(L)

Equivalent Pipe Length (Le)

(L/min)

(m/s)

(mm)

(mm)

(m)

(m)

1~2

58.515

1.751

25

26.64

2.8

0.0

61.253

2~3

119.767

2.066

32

35.08

2.8

0.6367

63.834

3~4

183.602

2.326

40

40.94

4

0.6891

66.410

4~5

250.011

1.927

50

5

0.7168

67.731

5~6

317.742

2.449

6

0.7285

0.000

6~12

317.742

12

0.7971

0.000

7

0.5850

61.188

7~8

8

0.6406

64.032

9

0.6954

10

Difference of Level (ΔH)

Difference of Pressure (ΔP)

(m)

(bar)

120

0.0

0.0512

0.0

120

0.0

0.0505

2.8

0.0

120

0.0

0.0524

52.48

2.8

0.0

120

0.0

0.0277

50

52.48

0.8

0.0

120

0.0

0.0118

2.449

50

52.48

2.95

1.5

120

0.0

0.0686

61.188

1.831

25

26.64

2.8

0.0

120

0.0

0.0556

8~9

125.220

2.160

32

35.08

2.8

0.0

120

0.0

0.0548

66.714

9~10

191.934

2.431

40

40.94

2.8

0.0

120

0.0

0.0569

0.7523

69.390

10~11

261.324

2.015

50

52.48

2.8

0.0

120

0.0

0.0300

11

0.7824

70.762

11~12

332.086

2.560

50

52.48

0.8

0.0

120

0.0

0.0128

12

0.7951

0.000

12~18

649.827

3.512

65

62.68

3.3

3.7

120

0.0

0.1706

18

0.9658

0.000

13

0.7100

67.409

13~14

67.409

2.017

25

26.64

2.8

0.0

120

0.0

0.0666

14

0.7766

70.498

14~15

137.907

2.379

32

35.08

2.8

0.0

120

0.0

0.0655

15

0.8421

73.411

15~16

211.318

2.677

40

40.94

2.8

0.0

120

0.0

0.0680

16

0.9100

76.317

16~17

287.635

2.217

50

52.48

2.8

0.0

120

0.0

0.0359

17

0.9459

77.807

17~18

365.442

2.817

50

52.48

0.8

0.0

120

0.0

0.0152

18

0.9612

0.000

18~24

1015.269

3.496

80

78.52

3.3

4.6

120

0.0

0.1467

24

1.1079

0.000

Pressure of Node(p)

Flow of Node(q)

(bar)

(L/min)

1

0.5350

58.515

2

0.5862

3

Node

Pipe Section Number

Friction Loss Coefficient (C)

5

19

0.8280

72.796

19~20

72.796

2.178

25

26.64

2.8

0.0

120

0.0

0.0767

20

0.9047

76.094

20~21

148.889

2.569

32

35.08

2.8

0.0

120

0.0

0.0755

21

0.9802

79.204

21~22

228.094

2.889

40

40.94

2.8

0.0

120

0.0

0.0783

22

1.0585

82.307

22~23

310.401

2.393

50

52.48

2.8

0.0

120

0.0

0.0413

23

1.0998

83.898

23~24

394.299

3.040

50

52.48

0.8

0.0

120

0.0

0.0175

24

1.1173

0.000

24~41

1409.568

2.862

100

102.26

1.65

6.1

120

0.0

0.0730

41

1.1903

0.000

25

0.7950

71.330

25~26

71.330

2.134

25

26.64

2.8

0.0

120

0.0

0.0739

26

0.8689

74.572

26~27

145.902

2.517

32

35.08

2.8

0.0

120

0.0

0.0727

27

0.9416

77.629

27~28

223.531

2.832

40

40.94

2.8

0.0

120

0.0

0.0754

28

1.0170

80.678

28~29

304.209

2.345

50

52.48

2.8

0.0

120

0.0

0.0398

29

1.0568

82.242

29~30

386.450

2.979

50

52.48

0.8

0.0

120

0.0

0.0177

30

1.0745

0.000

30~41

991.110

3.413

80

78.52

1.65

4.6

120

0.0

0.1110

41

1.1856

0.000

31

0.7000

66.933

31~32

66.933

2.002

25

26.64

2.8

0.0

120

0.0

0.0657

32

0.7657

70.003

31~33

136.936

2.363

32

35.08

2.8

0.0

120

0.0

0.0646

33

0.8303

72.898

31~34

209.834

2.658

40

40.94

2.8

0.0

120

0.0

0.0671

34

0.8974

75.787

31~35

285.621

2.202

50

52.48

2.8

0.0

120

0.0

0.0354

35

0.9329

77.268

31~36

362.889

2.797

50

52.48

0.8

0.0

120

0.0

0.0158

36

0.9486

0.000

31~37

604.660

3.268

65

62.68

2.3

3.7

120

0.0

0.1280

30

1.0766

0.000

37

0.5000

56.569

37~38

56.569

1.692

25

26.64

2.8

0.0

120

0.0

0.0481

38

0.5481

59.228

38~39

115.797

1.998

32

35.08

2.8

0.0

120

0.0

0.0474

39

0.5955

61.736

39~40

177.533

2.249

40

40.94

2.8

0.0

120

0.0

0.0493

40

0.6448

64.239

40~36

241.772

3.063

40

40.94

6.0

3.6

120

0.0

0.2990

36

0.9438

0.000

6

41

1.1903

0.000

41~42

2400.678

4.874

100

102.26

2.3

13.5

120

5.0

0.8984

42

2.0887

0.000

42~43

2400.678

2.147

150

154.08

44.0

17.2

120

10.0

1.2096

43

3.2982

0.000

43~44

2400.678

2.979

160

130.8

25.0

8.6

150

0.0

0.1691

44

3.4673

0.000

Remark: The difference of level for pipe section number 41~42 (5 m) is the loss of the zone control valve. This calculation sheets indicate that the flow of this system is 2400.678L/min(40.01 L/s), the pressure of node 44 which is connected with underground fire fighting pipe is 3.4673 bar (34.67 m·H2O).

7

ANNEX B.

FIGURE OF SPRINKLER SYSTEM

Figure 2 Sprinkler system Remark:The calculated area of this building is 254 m2. 8

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF