Sales Industry Sector Metallurgy
Formulary Hydraulics
Hydraulic Formulary
Author: Houman Hatami Tel.: +49-9352-18-1225 Fax: +49-9352-18-1293
[email protected]
30.08.2011
1
Sales Industry Sector Metallurgy
Formulary Hydraulics
CONTENTS RELATIONS BETWEEN UNITS ............................................................................................................. 4 IMPORTANT CHARACTERISTIC VALUES OF HYDRAULIC FLUIDS ................................................ 6 GENERAL HYDRAULIC RELATIONS................................................................................................... 7 PISTON PRESSURE FORCE ...................................................................................................................... 7 PISTON FORCES ..................................................................................................................................... 7 HYDRAULIC PRESS ................................................................................................................................. 7 CONTINUITY EQUATION ........................................................................................................................... 8 PISTION SPEED....................................................................................................................................... 8 PRESSURE INTENSIFIER .......................................................................................................................... 8 HYDRAULIC SYSTEM COMPONENT ................................................................................................... 9 HYDRO PUMP ......................................................................................................................................... 9 HYDRO MOTOR....................................................................................................................................... 9 Hydro motor variable ...................................................................................................................... 10 Hydro motor fixed ........................................................................................................................... 11 Hydro motor intrinsic frequency ..................................................................................................... 12 HYDRO PISTON..................................................................................................................................... 13 Differential piston............................................................................................................................ 14 Double acting cylinder .................................................................................................................... 15 Cylinder in differential control......................................................................................................... 16 Cylinder intrinsic frequency at differential cylinder......................................................................... 17 Cylinder intrinsic frequency at double acting cylinder .................................................................... 18 Cylinder intrinsic frequency at plunger cylinder ............................................................................. 19 PIPING................................................................................................................................................... 20 APPLICATION EXAMPLES FOR SPECIFICATION OF THE CYLINDER PRESSURES AND VOLUME FLOWS UNDER POSITIVE AND NEGATIVE LOADS........................................................ 21 DIFFERENTIAL CYLINDER EXTENDING WITH POSITIVE LOAD ..................................................................... 22 DIFFERENTIAL CYLINDER RETRACTING WITH POSITIVE LOAD ................................................................... 23 DIFFERENTIAL CYLINDER EXTENDING WITH NETAGIVE LOAD.................................................................... 24 DIFFERENTIAL CYLINDER RETRACTING WITH NEGATIVE LOAD .................................................................. 25 DIFFERENTIAL CYLINDER EXTENDING AT AN INCLINED PLANE WITH POSITIVE LOAD .................................. 26 DIFFERENTIAL CYLINDER RETRACTING AT AN INCLINED PLANE WITH POSITIVE LOAD................................. 27 DIFFERENTIAL CYLINDER EXTENDING AT AN INCLINED PLANE WITH NEGATIVE LOAD ................................ 28 DIFFERENTIAL CYLINDER RETRACTING AT AN LINCLINED PBLANE WITH NEGATIVE LOAD ............................ 29 HYDRAULIC MOTOR WITH POSITIVE LOAD ............................................................................................... 30 HYDRAULIC MOTOR WITH NEGATIVE LOAD.............................................................................................. 31 IDENTIFICATION OF THE REDUCED MASSES OF DIFFERENT SYSTEMS................................... 32 LINEARE DRIVES .................................................................................................................................. 33 Primary applications (Energy method) ........................................................................................... 33 Concentrated mass at linear movements....................................................................................... 35 Distributed mass at linear movements ........................................................................................... 36 ROTATION ............................................................................................................................................ 37 COMBINATION OF LINEAR AND ROTATIONAL MOVEMENT .......................................................................... 38 HYDRAULIC RESISTANCES………………………………………………………………………………...39 ORIFICE EQUATION ............................................................................................................................... 39 TROTTLE EQUATION .............................................................................................................................. 39 30.08.2011
2
Sales Industry Sector Metallurgy
Formulary Hydraulics
HYDRO ACCUMULATOR .................................................................................................................... 40 HEAT EXCHANGER (OIL- WATER).................................................................................................... 41 LAYOUT OF A VALVE ......................................................................................................................... 43
30.08.2011
3
Sales Industry Sector Metallurgy
Formulary Hydraulics
Relation between Units Size Lengths
Surfaces
Volume
Density
Unit
Symbol
Relation
Micrometer
m
1m = 0,001mm
Millimeter
mm
1mm = 0,1cm = 0,01dm = 0,001m
Centimeter
cm
1cm = 10mm = 10.000m
Decimeter
dm
1dm = 10cm = 100mm = 100.000m
Meter
m
1m = 10dm = 100cm = 1.000mm = 1.000.000m
Kilometer
km
1km = 1.000m = 100.000cm = 1.000.000mm
Square centimeter
cm2
1cm2 = 100mm2
Square decimeter
dm2
1dm2 = 100cm2 = 10.000mm2
Square meter
m2
1m2 = 100dm2 = 10.000cm2 = 1.000.000mm2
Are
a
1a = 100m2
Hectare
ha
1ha = 100a = 10.000m2
Square kilometer
km2
1km2 = 100ha = 10.000a = 1.000.000m2
Cubic centimeter
cm3
1cm3 = 1.000mm3 = 1ml = 0,001l
Cubic decimeter
dm3
1dm3 = 1.000cm3 = 1.000.000mm3
Cubic meter
m3
1m3 = 1.000dm3 = 1.000.000cm3
Milliliter
ml
1ml = 0,001l = 1cm3
Liter
l
1l = 1.000 ml = 1dm3
Hectoliter
hl
1hl = 100l = 100dm3
Gram/
g cm3
1
g kg t g 1 3 1 3 1 cm3 dm m ml
Cubic centimeter
Force
Newton
N
1N 1
Weight
kg m J 1 s2 m
1daN = 10N
Torque
Newton meter
Nm
1Nm = 1J
Pressure
Pascal
Pa
Bar
Bar
1Pa = 1N/m2 = 0,01mbar = 1kg m s2
psi
pound inch 2
1bar 10 Psi
1psi = 0,06895 bar
kp cm 2
30.08.2011
N N 100.000 2 10 5 Pa 2 cm m
1
4
kp 0,981bar cm 2
Sales Industry Sector Metallurgy
Formulary Hydraulics
Mass
Acceleration
Milligram
mg
1mg = 0,001g
Gram
g
1g = 1.000mg
Kilogram
kg
1kg = 1000g = 1.000.000 mg
Ton
t
1t = 1000kg = 1.000.000g
Mega gram
Mg
1Mg = 1t
Meter/
m s2
1
per square second
Angular speed
One/ Second Radiant/ Second
m N 1 s2 kg
1g = 9,81 m/s2 = 2n
1 s
n in 1/s
rad s
Nm J kg m m 1 1 2 s s s s
Watt
W
Newton meter/ second
Nm/s
Joule/ second
J/s
Work/ Energy
Watt second
Ws
Heat volume
Newton meter
Nm
Joule
J
Kilowatt hour
kWh
1kWh = 1.000 Wh = 10003600Ws = 3,6106Ws
Kilo joule
kJ
= 3,6103kJ = 3600kJ = 3,6MJ
Mega joule
MJ
Mechanic
Newton/ square
N mm2
1
tension
millimeter
Plane angle
Second
´´
1´´ = 1´/60
Minute
´
1´ = 60´´
Degree
°
Radiant
rad
1° = 60´ = 3600 ´´= rad 180
Power
1W 1
1Ws 1Nm 1
kg m m 1J s2
N 10bar 1MPa mm2
1rad = 1m/m = 57,2957° 1rad = 180°/
Speed
One/second
1/s
One/minute
1/min
1 1 s 60 min 1 s
1 1 min 1 min 60s
30.08.2011
5
Sales Industry Sector Metallurgy
Formulary Hydraulics
Important Characteristic Values of Hydraulic Fluids
HLP
HFC
HFA (3%)
HFD
Density at 20°C
0,00087
0,00105-0,00108
0,0001
0,000115
[kg/cm3] Kinematic Viscosity at 40°C
10-100
36-50
0,7
15-70
[mm2/s] Compressions Module E at 50°C
12000-14000
20400-23800
1500017500
1800021000
[Bar] Specific Heat at 20°C
2,1
3,3
4,2
1,3-1,5
[kJ/kgK] Thermal Conductivity at 20°C
0,14
0,4
0,6
0,11
[W/mK] Optimal Temperatures
40-50
35-50
35-50
35-50
[°C] Water Content
0
40-50
80-97
0
[%] Cavitation Tendency
low
high
very high
low
30.08.2011
6
Sales Industry Sector Metallurgy
Formulary Hydraulics
General Hydraulic Relations Piston Pressure Force Figure
Equation / Equation Variations
Symbols / Units
F 10 p A F p A 10 A
d
F = piston pressure force[N]
d2 4
p = fluid pressure[bar] 2
A = piston surface[cm ] d = piston diameter[cm] = efficiency cylinder
4 F 0,1 p
p 0,1
4 F d2
Piston Forces Figure
Equation / Equation Variations
Symbols / Units
F pe A 10 F pe A 10
F = piston pressure force[N] pe = excess pressure on the piston[bar]
d2 A 4
2
A = effective piston surface[cm ] d = piston diameter[cm] = efficiency cylinder
A For annulus surface:
A
(D2 d 2 ) 4
Hydraulic Press Figure
Equation / Equation Variations
Symbols / Units F1 = Force at the pump piston[N]
F1 F 2 A1 A 2
F2 = Force at the operating piston[N]
F1 s1 F2 s2
A2 = Surface of the operating piston [cm2]
A1 = Surface of the pump piston [cm2]
s1 = Stroke of the pump piston [cm] s2 = Stroke of the operating piston [cm]
30.08.2011
F1 A1 s 2 F2 A2 s1
= Gear ratio
7
Sales Industry Sector Metallurgy
Formulary Hydraulics
Continuity Equation Figure
Equation / Equation Variations
Q1 Q 2
Symbols / Units
3
3
3
Q1,2 = Volume flows [cm /s, dm /s, m /s]
Q1 A 1 v 1
2
2
2
A1,2 = Area surfaces [cm , dm , m ] v1,2 = Velocities
Q2 A 2 v2
[cm/s, dm/s, m/s]
A 1 v1 A 2 v 2 Piston Speed Figure
Equation / Equation Variations
v1
Q1 A1
v1,2 = Piston speed [cm/s] 3
Q v2 2 A2 A1
Symbols / Units
Q1,2 = Volume flow [cm /s] 2
A1 = Effective piston surface (circle) [cm ] 2
A2 = Effective piston surface (ring) [cm ]
d 4 2
(D2 d 2 ) A2 4 Pressure Intensifier Figure
Equation / Equation Variations
Symbols / Units
p1 = Pressure in the small cylinder [bar]
p1 A 1 p 2 A 2
2
A1 = Piston surface [cm ] p2 = Pressure at the large cylinder [bar] 2
A2 = Piston surface [cm ]
30.08.2011
8
Sales Industry Sector Metallurgy
Formulary Hydraulics
Hydraulic System Components Hydro Pump
Q
V n vol 1000
pQ Pan 600 ges
Q = Volume flow [l/min] [l/min]
V = Nominal volume [cm3] n = Drive speed of the pump [min-1]
[kW]
Pan = Drive power [kW] p = Service pressure [bar]
1,59 V p M [Nm] 100 mh
M = Drive torque [Nm] ges = Total efficiency (0,8-0,85)
ges vol mh
vol = Volumetric efficiency (0,9-0,95) mh = Hydro-mechanic efficiency(0,9-0,95)
Hydro Motor
Q = Volume flow [l/min] V = Nominal volume [cm3]
Q
V n 1000 vol
n = Drive speed of the pump [min-1] ges = Total efficiency (0,8-0,85) vol = Volumetric efficiency (0,9-0,95)
Q vol 1000 n V
M ab
mh = Hydro-mechanic efficiency
(0,9-0,95)
p V mh 1,59 V p mh 10 2 20
Pab
p = Pressure difference between motor inlet and
outlet (bar)
p Q ges
30.08.2011
Pab = Output power of the motor [kW] Mab = Output torque [Nm]
600
9
Sales Industry Sector Metallurgy
Formulary Hydraulics
Hydro Motor Variable
Md P n
Md n
30000 30000
Md n
30000 P n
P Md
M d max i Getr
n = Speed [min-1] Mdmax = Max torque [Nm] i = Gear ratio Getr = Gear efficiency mh = Mech./hydraulic efficiency vol = Vol. efficiency
Vg = Flow volume [cm3]
Md Vg mh
Vg n 1000 vol
QP P
P = Power [kW]
n max i
p 20
Q
Md = Torque [Nm]
Vg n vol 1000
Q p 600 ges
30.08.2011
10
Sales Industry Sector Metallurgy
Formulary Hydraulics
Hydro Motor Fixed
Md P n
Md n
30000 30000
Md n
30000 P n
P Md
M d max i Getr
n = Speed [min-1] Mdmax = Max torque [Nm] i = Gear ratio Getr = Gear efficiency mh = Mech./hydraulic efficiency vol = Vol. efficiency
Vg = Flow volume [cm3]
Md Vg mh
Vg n 1000 vol
QP P
P = Power [kW]
n max i
p 20
Q
Md = Torque [Nm]
Vg n vol 1000
Q p 600 ges
30.08.2011
11
Sales Industry Sector Metallurgy
Formulary Hydraulics
Hydro Motor Intrinsic Frequency
V ( G )2 2 E 2 0 VG J red VR ) ( 2
f0 0 2
30.08.2011
VG = Displacement [cm3] 0 = Intrinsic angular frequency [1/s]
f0 = Intrinsic frequency [Hz] Jred = Moment of inertia red. [kgm2] Eöl = 1400 N/mm2 VR = Volume of the line [cm3]
12
Sales Industry Sector Metallurgy
Formulary Hydraulics
Hydro Cylinder
d 12 d 12 0,785 2 A [cm ] 400 100 A st
d1 = Piston diameter [mm] d2 = Piston rod diameter [mm] p = Service pressure [bar]
d 2 2 0,785 2 [cm ] 100
v = Stroke speed [m/s] V = Stroke volume [l]
(d 12 d 2 2 ) 0,785 2 AR [cm ] 100
Q = Volume flow, considering the leakages (l/min)
p d1 0,785 [kN] FD 10000
Qth = Volume flow, without considering the
p (d 12 d 2 2 ) 0,785 Fz [kN] 10000
vol = Volumetric efficiency (approx. 0,95)
2
h = Stroke [mm]
h Q [m/s] t 1000 A 6
v
Qth 6 A v
Q V t
leakages (l/min)
V 60 t
t = Stroke time [s] FD
[l/min] FZ
Q th
vol.
FS
Ah [l] 10000
A h6 Q 1000
30.08.2011
[s]
13
Sales Industry Sector Metallurgy
Formulary Hydraulics
Differential Cylinder
dK = Piston diameter [mm]
4 FD pK
d K 100
dst = Rod diameter [mm] FD = Pressure force [kN]
pK
4 10 FD d K2
p St
4 104 FZ (d K 2 d St 2 )
4
Fz = Traction force [kN] pK = Pressure at the piston side [bar] = Aspect ratio
QK = Volume flow piston side [l/min] QSt = Volume flow rod side [l/min] va = Extending speed [m/s]
d K2 (d K 2 d St 2 )
ve = Retracting speed [m/s] Volp = Working volume [l]
6 2 QK va d K 400 QSt
ve
va
VolF = Fill-up volume [l] h = Stroke [mm]
6 2 2 v e (d K d St ) 400
QSt
6 (d K 2 d St 2 ) 400 QK
6 2 dK 400
Vol p Vol F
4 10
6
d St h
6
h (d K d St )
2
4 10
30.08.2011
2
2
14
Sales Industry Sector Metallurgy
Formulary Hydraulics
Double Acting Cylinder
pA pB QA
4 104
4 104
dK = Piston diameter [mm]
FA 2 (d K d StA 2 )
dstA = Rod diameter A-side [mm] dstB = Rod diameter B-side [mm]
FB 2 (d K d StB 2 )
FA = Force A [kN] FB = Force B [kN]
6 2 2 v a (d K d StA ) 400
pA = Pressure at the A-side [bar] pB = Pressure at the B-side [bar] QA = Volume flow A-side [l/min]
6 2 2 QB v b (d K d StB ) 400 ve
va
QB = Volume flow B-side [l/min] va = Speed a [m/s]
QSt
vb = Speed b [m/s]
6 2 2 (d K d St ) 400
Volp = Compensating volume [l] VolFA = Fill-up volume A [l]
QK
VolFB = Fill-up volume B [l]
6 d K2 400
Vol p
4 10
Vol FA Vol FB
d St h 2
6
6
h (d K d StA )
6
h (d K d StB )
2
4 10
4 10
30.08.2011
2
2
2
15
Sales Industry Sector Metallurgy
Formulary Hydraulics
Cylinder in Differential Control
dK = Piston diameter [mm]
4 FD d st 100 p St
dst = Rod diameter [mm] FD = Pressure force [kN]
4 104 FD pK d St 2
Fz = Traction force [kN] pK = Pressure at the piston side [bar] pSt = Pressure at the rod side [bar]
4 104 FZ p St (d K 2 d St 2 ) Q
h = Stroke [mm] QK = Volume flow piston side [l/min]
6 2 v a d St 400
QSt = Volume flow rod side [l/min]
Extension:
va
QP = Pump flow [l/min] va = Extending speed [m/s]
QP
6 d St 2 400
ve = Retracting speed [m/s] Volp = Working volume [l] VolF = Fill-up volume [l]
Q d 2 QK P 2 K d St QSt
Q P (d K 2 d St 2 ) d St 2
Retraction:
ve
QP
6 2 2 (d K d St ) 400
QSt=QP
QP d K2 QK (d K 2 d St 2 ) Vol p Vol F
4 10
6
d St h
6
h (d K d St )
2
4 10
30.08.2011
2
2
16
Sales Industry Sector Metallurgy
Formulary Hydraulics
Cylinder Intrinsic Frequency at Differential Cylinders
d K 2 AK 4 100
AK = Piston surface [cm2]
(d 2 d St 2 ) AR K 4 100
dSt = Piston rod diameter [mm]
VRK
VRSt
AR = Piston ring surface [cm2] dK = Piston diameter [mm] dRK = NW- piston side [mm] LK = Length of piston side [mm] dRSt = NW-rod side [mm]
d 2 L RK K 4 1000
LSt = Length of rod side [mm] h = Stroke [cm]
d 2 L RSt St 4 1000
mRK
VRK = Volume of the line piston side [cm3] VRSt = Volume of the line rod side [cm3] mRK = Mass of the oil in the line piston side [kg]
VRK Öl 1000
mRSt = Mass of the oil in the line rod side [kg] hK = Position at min intrinsic frequency [cm]
V öl RSt 1000
mRSt
f0 = Intrinsic frequency [Hz]
A h V V R RSt RK 3 3 3 AR AR AK hk 1 1 ( ) AR AK
01 0 f 01
A EÖL AR EÖl 1 ( K ) AR h hK m AK hK VRK VRSt 10 10 2
0
f0
0 = Angular frequency
2
0 2 4
mölred
1 d mRK K mRSt d RK d RSt
30.08.2011
400 A R
17
01 2
mred mölred mred
Sales Industry Sector Metallurgy
Formulary Hydraulics
Cylinder Intrinsic Frequency at Double Acting Cylinders
AR = Piston ring surface [cm2]
(d K 2 d St 2 ) AR 4 100
dK = Piston diameter [mm] dSt = Piston rod diameter [mm] dR = NW [mm]
d 2 L VR RK K 4 1000
LK = Length of the piston side [mm]
V öl mR R 1000
VR = Volume of the line [cm3]
h = Stroke [mm]
mR = Mass of the oil in the line [kg] f0 = Intrinsic frequency
AR2 2 Eöl 0 100 ( ) AR h mred VRSt 10 f0
0 2
mölred
1 2 mRK dR
01 0 f 01
0 = Angular frequency
400 A R
4
mred mölred mred
01 2
30.08.2011
18
Sales Industry Sector Metallurgy
Formulary Hydraulics
Cylinder Intrinsic Frequency for Plunger Cylinders
d K 2 AK 4 100
AK = Piston surface [cm2]
d 2 L VR K K 4 1000
LK = Length piston side [mm]
dK = Piston diameter [mm] dR = Diameter of the piping [mm] LR = Length of the line [mm] h = Stroke [mm]
V öl mR R 1000
VR = Volume of the line [cm3] MR = Mass of the oil in the line [kg] 2
E AK 0 100 öl ( ) mred AK h VRSt f0
f0 = Intrinsic frequency
0 = Angular frequency
0 2
m ölred
d 2 mR K dR
01 0 f 01
4
mred mölred mred
01 2
30.08.2011
19
Sales Industry Sector Metallurgy
Formulary Hydraulics
Piping
p
l v 2 10 d2
lam. turb.
0,316 4 Re vd
lam. = Pipe friction coefficient for laminar flow turb. = Pipe friction coefficient for turbulent flow
6 d2 d
l = Length of the line [m] v = Velocity in the line [m/s]
103
Q
v
= Density [kg/dm3] (0,89) = Pipe friction coefficient
64 Re
Re
p = Pressure loss at direct piping [bar]
102
d = Internal diameter of the piping [mm] = Kinematic viscosity [mm2/s]
Q = Volume flow in the piping [l/min]
4
400 Q 6 v
30.08.2011
20
Sales Industry Sector Metallurgy
Formulary Hydraulics
Application Examples for Specification of the Cylinder Pressures and Volume Flows under Positive and Negative Load Nomenclature
Parameters
Symbols
Units
Acceleration / deceleration
A
m/s2
Cylinder surface
A1
cm2
Ring surface
A2
cm2
Aspect ratio
=A1/A2
-
FT
daN
Fa=0,1ma
daN
External forces
FE
daN
Friction forces (coulomb friction)
FC
daN
Sealing friction force
FR
daN
Weight force
G
daN
Total force Acceleration force
Mass
G mK g
kg
Piston mass
mK
kg
Volume flow
Q=0,06Avmax
l/min
vmax
cm/s
T=J+ TL
Nm
m
Torque Load torque
TL
Nm
Angular acceleration
rad/s2
Inertia moment
J
kgm2
30.08.2011
21
Sales Industry Sector Metallurgy
Formulary Hydraulics
Differential Cylinder Extending with Positive Load
Calculation: Layout: FT = Fa+FR+FC+FE
p1
[daN]
Given Parameters
p 2 5,25
FT = 4450 daN PS = 210 bar PT = 5,25 bar A1 = 53,50 cm2 A2 = 38,10 cm2 = 1,40 vmax = 30,00 cm/s ==> p1 und p2
p S A2 R [ FT ( pT A2 )] bar A2 (1 3 ) p p p2 pT S 2 1 bar
Q N 96
Verification of the cylinder dimensioning and calculation of the nominal volume flow QN, depending on the load pressure p1. Q= 0,06A1vmax
QN Q
l/min
35 p S p1
l/min
Selection of a Servo valve 10% larger than the calculated nominal volume flow.
30.08.2011
210 120 52 bar 1,4 2
Q= 0,0653,530=96 l/min
2
p1
210 38,1 1,4 2 [4450 (5,25 38,1)] 120bar 38,1(1 1,4 3 )
22
35 60l / min 210 120
Sales Industry Sector Metallurgy
Formulary Hydraulics
Differential Cylinder Retracting with Positive Load
Layout:
Calculation:
FT = Fa+FR+FC+FE
[daN]
p2
Given Parameters
p 1 5,25 [(210 187)1,4 2 ] 52 bar
FT = 4450 daN PS = 210 bar PT = 5,25 bar A1 = 53,50 cm2 A2 = 38,10 cm2 = 1,40 vmax = 30,00 cm/s ==> p1 und p2
Q= 0,0638,130=69 l/min
( p A 3 ) FT ( pT A2 )] p2 S 2 bar A2 (1 3 )
Q N 96
p1 pT [( p S p2 ) 2 ] bar Verification of the cylinder dimensioning and calculation of the nominal volume flow QN, depending on the load pressure p1.
Q= 0,06A2vmax
l/min
35 pS p 2
l/min
QN Q
Selection of a Servo valve 10% larger than the calculated nominal volume flow.
30.08.2011
(210 381 , 14 , 2 ) 4450 (525 , 381 , 14 , )] 187bar 3 381 , (114 , )
23
35 84l / min 210 187
Sales Industry Sector Metallurgy
Formulary Hydraulics
Differential Cylinder Extending with Negative Load
Calculation: Layout:
FT = Fa+FR-G
p1
[daN]
Given Parameters
p2 0
FT = -2225 daN PS = 175 bar PT = 0 bar A1 = 81,3 cm2 A2 = 61,3 cm2 = 1,3 vmax = 12,7 cm/s ==> p1 und p2
p S A2 2 [ FT ( pT A2 )] bar A2 (1 3 ) p p p2 pT S 2 1 bar
Q N 62
Verification of the cylinder dimensioning and calculation of the nominal volume flow QN, depending on the load pressure p1.
Q= 0,06A1vmax
l/min
35 p S p1
l/min
Selection of a Servo valve 10% larger than the calculated nominal volume flow.
30.08.2011
175 36 82 bar 1,32
Q= 0,0681,312,7=62 l/min
p1
QN Q
175 61,3 1,32 [2225 (0 61,3)] 36bar 61,3(1 1,33 )
24
35 31l / min 175 36
Sales Industry Sector Metallurgy
Formulary Hydraulics
Differential Cylinder Retracting with Negative Load
Calculation: Layout:
FT = Fa+FR-G
p2
[daN]
(210 613 , 13 , 2) 4450 (0 613 , 13 , )] 122bar 613 , (113 , 3)
Given Parameters
p 1 0 [(210 122)] 149 bar
FT = -4450 daN PS = 210 bar PT = 0 bar A1 = 81,3 cm2 A2 = 61,3 cm2 = 1,3 vmax = 25,4 cm/s ==> p1 und p2
Q= 0,0661,325,4=93 l/min
p2
( p S A2 ) FT ( pT A2 )] bar A2 (1 3 ) 3
Q N 93
p1 pT [( p S p2 ) 2 ] bar Verification of the cylinder dimensioning and calculation of the nominal volume flow QN, depending on the load pressure p1.
Q= 0,06A2vmax
l/min
35 pS p 2
l/min
QN Q
Selection of a Servo valve 10% larger than the calculated nominal volume flow.
30.08.2011
25
35 59l / min 210 122
Sales Industry Sector Metallurgy
Formulary Hydraulics
Differential Cylinder Retracting at an Inclined Plane with Positive Load
Calculation: Layout:
(14019,9) 16 , 2[2225 (35 , 19,9)] 85bar 19,9(116 , 3)
FT = Fa+FE+FS+[G(cos+sin)] daN
p1
Given Parameters
p 2 35
FT = 2225 daN PS = 140 bar PT = 3,5 bar A1 = 31,6 cm2 A2 = 19,9 cm2 R = 1,6 vmax = 12,7 cm/s ==> p1 and p2
p1
Q= 0,0631,612,7=24 l/min
Q N 24
p S A2 2 [ F ( pT A2 )]
p2 pT
A2 (1 3 ) p S p1
2
bar
bar
Verification of the cylinder dimensioning and calculation of the nominal volume flow QN, depending on the load pressure p1.
Q= 0,06A1vmax
l/min
35 p S p1
l/min
QN Q
Selection of a Servo valve 10% larger than the calculated nominal volume flow.
30.08.2011
140 85 25bar 1,6 2
26
35 19 l/min 140 85
Sales Industry Sector Metallurgy
Formulary Hydraulics
Differential Cylinder Retracting at an Inclined Plane with Positive Load
Calculation: Layout:
(14019,9 16 , 3) 1780 [35 , 19,9 16 , )] 131bar 19,9(116 , 3)
FT =Fa+FE+FS+[G(cos+sin)] daN
p2
Given Parameters
p 1 3,5 [(140 131) 1,6 2 26bar
FT = 1780 daN PS = 140 bar PT = 3,5 bar A1 = 31,6 cm2 A2 = 19,9 cm2 = 1,6 vmax = 12,7 cm/s ==> p1 and p2
p2
Q= 0,0619,912,7=15 l/min
Q N 15
( p S A2 3 ) F ( pT A2 )] A2 (1 3 )
bar
p1 pT [( p S p2 ) 2 ] bar Verification of the cylinder dimensioning and calculation of the nominal volume flow QN, depending on the load pressure p1. Q= 0,06A2vmax
QN Q
l/min
35 pS p 2
l/min
Selection of a Servo valve 10% larger than the calculated nominal volume flow.
30.08.2011
27
35 30 l/min 140 131
Sales Industry Sector Metallurgy
Formulary Hydraulics
Differential Cylinder Extending at an Inclined Plane with Negative Load
Calculation: Layout: FT = Fa+FE+FR+[G(cos-sin)] daN
p1
(210106) 12 , 2[6675 (0106)] 131bar 106(114 , 3)
Given Parameters
FT = -6675 daN PS = 210 bar PT = 0 bar A1 = 53,5 cm2 A2 = 38,1 cm2 = 1,4 vmax = 25,4 cm/s ==> p1 und p2
p1
Caution!!!
Negative load is leading to cylinder cavitation. Specified parameters to be changed by means of using a larger cylinder size, increasing the system pressure or reducing the necessary total force. A1 = 126 cm2 A2 = 106 cm2
p S A2 2 [ F ( pT A2 )]
p2 pT
A2 (1 3 ) p S p1
bar
bar
2
Verification of the cylinder dimensioning and calculation of the nominal volume flow QN, depending on the load pressure p1. Q= 0,06A1vmax
QN Q
p2
Q= 0,0612625,4=192 l/min 35 Q N 192 88 l/min 210 44
l/min
35 p S p1
l/min
Selection of a Servo valve 10% larger than the calculated nominal volume flow.
30.08.2011
210 44 116bar 1,2 2
28
R=1,2
Sales Industry Sector Metallurgy
Formulary Hydraulics
Differential Cylinder Retracting at an Inclined Plane with Negative Load
Calculation: Layout:
(210 381 , 14 , 3) [6675 (0 381 , 14 , )] 107bar 3 3811 , ( 14 , )
F = Fa+FE+FR+[G(cos-sin)] daN
p2
Given Parameters
p 1 0 [(210 107) 1,4 2 ] 202 bar
F = -6675 daN PS = 210 bar PT = 0 bar A1 = 53,5 cm2 A2 = 38,1 cm2 = 1,4 vmax = 25,4 cm/s ==> p1 and p2
Q= 0,0638,125,4=58 l/min
Q N 58
( p S A2 3 ) F ( pT A2 )] bar p2 A2 (1 3 ) p1 pT [( p S p2 ) 2 ] bar
Verification of the cylinder dimensioning and calculation of the nominal volume flow QN, depending on the load pressure p2. Q= 0,06A2vmax
QN Q
l/min
35 pS p 2
l/min
Selection of a Servo valve 10% larger than the calculated nominal volume flow.
30.08.2011
29
35 34 l/min 210 107
Sales Industry Sector Metallurgy
Formulary Hydraulics
Hydraulic Motor with a Positive Load
Calculation: Layout: T = J+TL
p1
[Nm]
p 2 210 127 0 83bar
Given Parameters
T = 56,5 Nm PS = 210 bar PT = 0 bar DM = 82 cm3/rad M = 10 rad/s
QM= 0,011082=8,2 l/min
Q N 8,2
==> p1 and p2
p S p T 10T bar 2 DM p 2 p S p1 p T bar p1
Verification of the cylinder dimensioning and calculation of the nominal volume flow QN, depending on the load pressure p1. QM= 0,01MDM
QN QM
l/min
35 p S p1
l/min
Selection of a Servo valve 10% larger than the calculated nominal volume flow.
30.08.2011
210 0 10 56,5 127bar 2 82
30
35 5,3 l/min 210 127
Sales Industry Sector Metallurgy
Formulary Hydraulics
Hydraulic Motor with a Negative Load
Calculation: Layout: T = J-TL
p1
[Nm]
p 2 210 40 0 170bar
Given Parameters
T = -170 Nm PS = 210 bar PT = 0 bar DM = 82 cm3/rad M = 10 rad/s
QM= 0,011082=8,2 l/min
Q N 8,2
==> p1 and p2
p S p T 10T bar 2 DM p 2 p S p1 p T bar p1
Verification of the cylinder dimensioning and calculation of the nominal volume flow QN, depending on the load pressure p1. QM= 0,01MDM
QN QM
l/min
35 p S p1
l/min
Selection of a Servo valve 10% larger than the calculated nominal volume flow.
30.08.2011
210 0 10 ( 170) 40bar 2 82
31
35 3,6 l/min 210 40
Sales Industry Sector Metallurgy
Formulary Hydraulics
Identification of the Reduced Masses of Different Systems The different components (cylinder / motors …) have to be dimensioned for the layout of the necessary forces of a hydraulic system, so that the acceleration and the deceleration of a mass is correct and targeted. The mechanics of the system are defining the stroke of the cylinders and motors. Speed- and force calculations have to be carried out. Statements with view to acceleration and its effects on the system can be made by fixing the reduced mass of a system. The reduced mass (M) is a concentrated mass, exerting the same force – and acceleration components as the regular mass at the correct system. The reduced moment of inertia (Ie) has to be considered for rotational systems. The reduced mass has to be fixed in a first step for considerations with stroke measuring systems or for applications with deceleration of a mass! Newton’s second axiom is used for the specification of the acceleration forces.
F m a
F= force [N] m= mass [kg] a= acceleration [m/s2]
The following equation is applied for rotational movements:
I
= torque [Nm] Í= moment of inertia [kgm2]
= angular acceleration [rad/s2]
30.08.2011
32
Sales Industry Sector Metallurgy
Formulary Hydraulics
Linear Drives Primary Applications (Energy Method)
The mass is a concentrated mass and the rod l is weightless. The cylinder axis is positioned rectangular to the rod l. Relation between cylinder and rod:
vc v m r l
ac am r l
Needed torque for acceleration of the mass:
IX F r
m l 2 X m l2 X
I m l2
am l
am l
m lXa m ==>
F
m l am m i am r
i
l r
mi can be considered as mass movement m.
F m i am m i
l ac m i2 a c M a c r
mit
ac am r l
F= cylinder force M= reduced mass ac= acceleration of the cylinder rod
M m i General validity: The same result can be obtained by the aid of the energy method (kinetic energy of the mass m). The dependence of the mass movement with the cylinder movement can be specified with the help of the geometry of the system. 2
Energy of the mass:
1 1 KE I 2 m l 2 2 2 2
30.08.2011
(I=mi2)
33
Sales Industry Sector Metallurgy
Formulary Hydraulics
1 v m l2 c r 2 =
2
(vc=r )
l2 1 m 2 vc 2 r 2
1 2 M vc 2
30.08.2011
M=mi2 and i=l/r
34
Sales Industry Sector Metallurgy
Formulary Hydraulics
Concentrated Mass with Linear Movements
v is the horizontal component of v´. v´ is positioned rectangular to rod l. Energy method:
1 1 KE I 2 m l 2 2 2 2 v 1 m l2 2 r
2
( =v´/r)
1 l2 m 2 v 2 2 r 1 2 = m i2 v 2 with v=v´cos
==> KE
1 m i2 v 2 2 1 m i2 1 v2 M v2 2 2 (cos ) 2
with M m If:
i2 ==> M is position-depending (cos ) 2 = 0 then, =1
and M=mi2
=90° then, cos=0
and M=
=30° then, cos=0,7
and M=0
If a cylinder is moving a mass, as shown in the preceding figure, and the movement is situated between -30° and +30°, the acceleration- and deceleration forces have to be calculated in the center of motion with a reduced mass, twice as large as the one in the neutral center.
30.08.2011
35
Sales Industry Sector Metallurgy
Formulary Hydraulics
Distributed Mass at Linear Movements
When considering the same rod l with the mass m, you can here also calculate the reduced mass of the rod.
KE
1 1 1 I 2 X m l2 2 2 2 3
v 1 1 X m l2 2 3 r
1 m l2 3
2
( =v´/r)
1 1 l2 X m 2 v 2 2 3 r 1 1 2 = X m i2 v 2 3 with v=v´cos
M
1 1 m i2 1 X v2 M v2 2 2 3 (cos a ) 3
1 m i2 2 (cos a ) 2
30.08.2011
36
Sales Industry Sector Metallurgy
Formulary Hydraulics
Rotation
If considering now a rotating mass with a moment of inertia I, driven by a motor (ratio D/d).
KE
1 1 d I 2 m I ( ) 2 2 2 D
I= moment of inertia [kgm2]
2
1 d I 2 2 D
= angular acceleration [rad/s2]
1 I i2 2 2 1 = Ie 2 2
Ie= Ii2 i=d/D
If a gearbox has to be used, i has to be considered. If i=D/d, then Ie=I/i2
30.08.2011
37
Sales Industry Sector Metallurgy
Formulary Hydraulics
Combination of Linear and Rotational Movement
A mass m is here moved by a wheel with radius r. The wheel is weightless.
KE
1 2 m r 2
=
1 m v2 2 v=r
1 m r 2 2 2
1 Ie 2 2
30.08.2011
Ie= mr2
38
Sales Industry Sector Metallurgy
Formulary Hydraulics
Hydraulic Resistances The resistance of an area reduction is the change of the applied pressure difference corresponding volume flow change.
R
p to the
d (p) dQ
Orifice Equation
QBlende 0,6 K
dB 2 p 4 2
K = flow coefficient (0,6-0,8) = 0,88 [kg/dm ] 3
dB = orifice diameter [mm]
p = pressure difference [bar] Qorifice= [l/min]
Throttle Equation Q Drossel
r4 ( p1 p 2 ) 8 l
=
Qthrottle= [m3/s] = dynamic viscosity [kg/ms]
l = throttle length [m] r = radius [m] = kinematic viscosity [m /s] 2
= 880 [kg/m ] 3
30.08.2011
39
Sales Industry Sector Metallurgy
Formulary Hydraulics
Hydro Accumulator
1 1 p 0 p1 V V0 1 p1 p 2
p2
V0
p1 V 1 1 p0 V0 p 1
V 1 1 p 0 p1 1 p1 p2
30.08.2011
= 1,4 (adiabatic compression) V = effective volume [l]
V0 = accumulator size [l] p0 = gas filling pressure [bar] p1 = service pressure min [bar] (pressure loss at the valve) p2 = service pressure max [bar]
p0 =