How and Why Wonder Book of the Microscope
February 22, 2017 | Author: kett8233 | Category: N/A
Short Description
Download How and Why Wonder Book of the Microscope...
Description
7 m H
O
W
A
N
D
W
H
Y
U/onda/iBoo&ofr
T h e ,
I
M
i
M
i
M
r
A N D
t
W H A T
Y O U
/ / ! ' _ \J? 0W'
^
**d Why Wonder^ A
S E E
T H E
T
h
H O W
e
A N D
A N D
W H Y
W O N D E R
B O O K
,
W H A T
Y<
W r i t t e n by M A R T I N
KEEN
I l l u s t r a t e d by W A L T E R
FERGUSON
Editorial Production: D O N A L D
D. W O L F
E d i t e d u n d e r t h e s u p e r v i s i o n of Dr. P a u l E. B l a c k w o o d Specialist for Elementary Science U. S. D e p a r t m e n t of H e a l t h , E d u c a t i o n a n d W e l f a r e W a s h i n g t o n , D. C . T e x t a n d i l l u s t r a t i o n s a p p r o v e d by O a k e s A. W h i t e Brooklyn Children's Museum Brooklyn, New York WONDER
BOOKS
•
NEW
YORK
O F
Introduction The How and Why Wonder Book of the Microscope i n t r o d u c e s o n e of the i n s t r u m e n t s that h a s b e e n m o s t i m p o r t a n t to scientists in their nevere n d i n g search for a c c u r a t e k n o w l e d g e a b o u t o u r world. T h e i n s t r u m e n t helps o u r eyes, wonderful as they are, to b e even m o r e wonderful, b y extending the sense of sight. It brings before o u r eyes the w o r l d of invisible life, the world of tiniest p l a n t s a n d animals, t h e bacteria a n d protozoa. Indeed, the m i c r o s c o p e m a k e s the " u n s e e n w o r l d " visible. B u t to get full p l e a s u r e a n d benefit from this r e m a r k a b l e i n s t r u m e n t requires k n o w l e d g e of h o w to o p e r a t e it carefully. It requires p r a c t i c e in focusing light a n d in p r e p a r i n g specimens for e x a m i n a t i o n . T h i s b o o k will help the beginning microscopist learn these things. A n d it gives directions for using the m i c r o s c o p e to observe the details of m a n y c o m m o n things all a r o u n d us. A p a g e of this b o o k suddenly b e c o m e s a m a s s of stringy fibers, while the surface of a tree leaf b e c o m e s a m i r a c l e of designs w h e n viewed through a microscope. E v e r y y o u n g scientist h a s a h e a d of him m a n y exciting experiences exploring t h e u n s e e n world. The How and Why Wonder Book of the Microscope, like t h e o t h e r p u b l i c a t i o n s in the series, is a useful t e a c h e r a n d guide in t h a t exploration. Paul E. Blackwood Specialist for Elementary Science U.S. Department of Health, Education and Welfare Washington, D. C. ff
© 1961, by Wonder Books, Inc. All rights reserved under International and Pan-American Copyright Conventions. Published simultaneously in Canada. Printed in the United States of America.
Contents Page AN UNSEEN WORLD
4
THE MICROSCOPE What is a microscope? How does it work? What is a simple microscope? What can you see with a simple microscope? How can you keep a record of what you see? What is a focus? How can you make a water-lens microscope? Who invented the microscope? What is a microscopist? How was diamond dust used for a microscope? What objects did he study?
5 5 5 6 7 8 9 10 11 11
THE COMPOUND MICROSCOPE What is a compound microscope? What are the two systems of lenses? What are some parts of a compound microscope? How do you find out the magnifying power of a microscope? What are the other parts of a compound microscope? How do you use a laboratory compound microscope? How do you focus it? How do you clean the equipment? What equipment will you need to become a microscopist? What kind of microscope should you get?
12 12 13
THE WORLD OF INVISIBLE L I F E BACTERIA AND PROTOZOA What are the smallest plants in the world? Where are bacteria found? How are bacteria useful? What do bacteria look like? When do they thrive best? What is the process of pasteurization? How fast do bacteria reproduce? How can you get bacteria? How do you prepare bacteria for the microscope? How can you stain bacteria? How can you prepare a stained slide? What is a hanging drop mount? How can you make your own hanging drop mount? What are the smallest animals in the world? What do the protozoa eat? How can you examine protozoa? How can you keep protozoa in place? How do protozoa move about?
12 12
13 14 14 15 17 17 18 18 19 19 19 19 20 20 21 21 21 22 23 24 24 25 25 26 26 27 27
Page What is a Peranema? 28 What is an amoeba? 28 How does an amoeba move? 28 What is a paramecium? 28 What is inside a protozoan? 29 How do protozoa collect wastes and water? 29 How does the amoeba eat? 30 How does a paramecium get its food? 30 How can you feed protozoa? 30 How do bacteria and protozoa suspend life? 31 Where do hay-infusion bacteria and protozoa come from? 31 How do the number of bacteria and protozoa increase? 31 How do they reproduce? 32 What kind of microscopic plants live in "houses"? 33 MOLDS, MILDEW, YEAST BUDDING How can you grow plants on a slice of bread? What do molds look like? How are molds useful to man? What is mildew? What is yeast budding? How else does yeast budding differ from cell division? How are yeasts useful to man? How can you see fermentation?
34 34 35 35 35 37
INSECTS Where can you keep insects? What does a fly's eye look like? How can a fly walk upside down?
39 39 39 40
FABRICS How is cotton thread made? How do natural fibers differ from man-made (artificial) ones? How is muslin woven? How is knitted fabric made?
40 40
BLOOD What does blood do? What is blood made of? How can you get a sample of your blood? How do you make a blood smear? What do blood cells look like? How can you see blood in circulation? How can you observe the insides of living things? THE ELECTRON MICROSCOPE What are the limitations of optical microscopes? What is an electron microscope? How does this microscope help man?
38 38 39
A n
T h e h u m a n e y e is a w o n d e r f u l
U n s e e n
W o r l d
organ.
t h e r e a r e m a n y things t h e y c a n n o t en-
O u r e y e s tell u s m o r e a b o u t t h e w o r l d
a b l e u s t o see. A m o n g t h e s e a r e v e r y
a r o u n d u s t h a n a n y of o u r o t h e r s e n s e
small
things.
o r g a n s d o . T h e size a n d s h a p e of t h i n g s ,
about
small
Usually, things,
when
we
we
mean
talk things
their color, their distance from us, a n d
a b o u t t h e size of t h e p e r i o d a t t h e e n d
w h e t h e r o n e o b j e c t is in f r o n t o r i n b a c k ,
of t h i s s e n t e n c e . N o w , y o u c a n s e e t h e
a b o v e o r b e l o w , a r e all t h i n g s w e l e a r n
p e r i o d q u i t e e a s i l y , a n d if it w e r e o n l y
b y u s i n g o u r eyes. W e c a n see t h i n g s
o n e - t e n t h i t s size, y o u c o u l d still see it.
t h a t a r e o n l y a f e w i n c h e s in f r o n t of
B u t if t h e p e r i o d
o u r eyes, a n d then w e c a n look o u t the
d r e d t h of its p r e s e n t
w i n d o w a n d i n s t a n t l y see things m o r e
p r o b a b l y l o s e s i g h t of it. Y e t , s m a l l a s
than a mile away.
t h e s h r u n k e n p e r i o d m i g h t b e , it w o u l d
Y e t , r e m a r k a b l e as o u r eyes m a y be,
still b e m u c h
shrank
to
one-hun-
size, y o u
larger than
would
millions
of
Microorganisms are organisms of microscopic size.
s * ; :'^pHffflf. •
1 2 3 4
FAIRY SHRIMP DINOFLAGEUATE HYDROIDS NEMATODE
5 6 7 8
NOCTILUCA PLANARIAS PROTOMYXA HAIOSPHAERA
different
k i n d s of t h i n g s t h a t e x i s t in
your everyday world. T h e r e are certain plants — which we shall soon learn a b o u t — that are
so
s m a l l y o u c o u l d p u t 2 5 0 , 0 0 0 of t h e m o n t h e p e r i o d a t t h e e n d of t h i s s e n t e n c e . And much
there
are
animals
that
are
not
bigger.
N o m a t t e r h o w closely you look at t h e s h e e t of p a p e r o n w h i c h t h e s e w o r d s a r e p r i n t e d , it will still l o o k like a f a i r l y s m o o t h s u r f a c e , b u t if y o u r e y e s c o u l d see m u c h s m a l l e r t h i n g s t h a n t h e y n a t u rally can, y o u w o u l d see t h a t t h e p a p e r
learn about these details? W h a t can we
is r e a l l y a t w i s t e d m a s s of
u s e t o a i d o u r e y e s in s e e i n g t h e u n s e e n
fibers.
T h e r e a r e h u n d r e d s of d e t a i l s a b o u t the world that are t o o small for
your
u n a i d e d e y e s t o see. H o w , t h e n , d o w e
T h e
ing
at
small
things.
The word
microscope
comes
two
from
c i e n t G r e e k w o r d s , mikros, " s m a l l , " a n d skopein,
called a
instrument
microscope.
W h e n w e s e e a n y t h i n g , w e d o so b e How does it work?
an-
which means
which means "to
cause from
light
is
reflected
the object to
our
e y e s . If t h e r a y s of l i g h t
c o m e straight from the object to
our
eyes, w e see t h e o b j e c t in its n a t u r a l size. B u t if t h e r a y s of l i g h t c o m i n g t o
look at." in
o u r e y e s a r e b e n t in a c e r t a i n w a y , t h e n
more
the object looks bigger. W h e n this hap-
All microscopes have one thing common:
a r o u n d us? W e can use an
M i c r o s c o p e
A m i c r o s c o p e is a n i n s t r u m e n t for lookWhat is a microscope?
w o r l d of v e r y s m a l l t h i n g s t h a t a r e all
They contain
p a r t s c a l l e d lenses.
one or
A l e n s is a n y c l e a r
p e n s , w e s a y t h e o b j e c t is magnified.
A
s u b s t a n c e t h a t h a s a definite s h a p e a n d
l e n s of t h e p r o p e r s h a p e c a n b e n d l i g h t ,
will b e n d l i g h t r a y s a s t h e y p a s s t h r o u g h
s o t h a t t h i n g s w e see t h r o u g h t h e l e n s
it. M o s t l e n s e s a r e m a d e of g l a s s ,
a r e m a g n i f i e d . A n y l e n s t h a t d o e s t h i s is
but
a l e n s c o u l d b e m a d e of w a t e r , of oil, o r of c l e a r p l a s t i c .
a microscope. Y o u m a y w o n d e r if l e n s e s c a n a l s o
H
LINEN TESTER
m a k e things look smaller. T h e answer is " y e s . " Y o u c a n e a s i l y p r o v e t h i s b y l o o k i n g t h r o u g h t h e l a r g e e n d of a h a n d t e l e s c o p e o r a p a i r of
field
glasses.
M i c r o s c o p e s t h a t a r e m a d e of o n e , o r
these are
examples
of
simple
micro-
p e r h a p s two, lenses are
scopes.
usually
magni-
is m a d e u p of o n e o r m o r e l e n s e s t h a t
or
hand
s h o w y o u a magnified object right-side-
These
are
u p a n d in the s a m e place w h e r e
are
w o u l d s e e it w i t h o u t t h e l e n s . Y o u w i l l
also microscopes. H a v e y o u ever seen
u n d e r s t a n d this definition better w h e n
t h e m a g n i f y i n g g l a s s u s e d b y s t a m p col-
w e l e a r n a b o u t t h e o t h e r k i n d of m i c r o -
l e c t o r s ? I t is m a d e u p of j u s t o n e
scope.
What is a simple microscope?
fying
called
glasses,
lenses. p r o p e r n a m e s for
ft
FINGERPRI
There are many kinds of instruments for looking at small things—used by detectives and others.
them, but they
or
A s i m p l e m i c r o s c o p e is o n e t h a t
you
t w o s m a l l l e n s e s fixed i n a m e t a l f r a m e
Y o u c a n b u y a single- o r double-lens
a n d h e l d i n t h e h a n d of t h e p e r s o n u s i n g
m i c r o s c o p e in almost a n y toy store or
it. H a v e y o u e v e r seen a j e w e l e r o r a
five-and-ten-cent store. Such
watchmaker
a
s c o p e s r a n g e in p r i c e f r o m less t h a n a
snouty-looking
dollar to three or four dollars. T h e very
o b j e c t h e l d a t o n e eye?" T h i s is a m i c r o -
c h e a p ones m a y h a v e p o o r l y - m a d e glass
s c o p e c a l l e d a loupe.
lenses
looking
at
watch through a black,
picture
of
the
Holmes holding
a
or
D i d y o u e v e r see a
detective a
gem
round
or
plastic
lenses
that
micro-
scratch
Sherlock
e a s i l y . A d o l l a r a n d a h a l f is p r o b a b l y
magnifying
the price for w h i c h you can b u y a very
g l a s s fixed i n a c i r c u l a r b a n d of m e t a l
useful h a n d lens, s u c h as is u s e d
and attached to a short handle?
s t a m p collectors.
All
by
When you have obtained your microscope, What can you see with a simple microscope?
simple
you
u s e it t o l e a r n
can things
a b o u t your daily world that you
never
knew
before. O b t a i n a mag-
will see t h a t t h e r e a r e m o r e r e d
dots
c r o w d e d closer t o g e t h e r in o r d e r t o produce the redder color. O p e n your handkerchief and look at i t a s y o u h o l d it u p t o t h e l i g h t .
You
c a n e a s i l y s e e t h a t it is w o v e n of t h o u -
azine with a smooth, or slick, p a p e r c o v e r t h a t b e a r s t h e c o l o r p h o t o g r a p h of a p e r s o n . T h e of
the
slick
paper
majority
magazines
have
covers like this. W i t h y o u r m i c r o s c o p e , e x a m i n e t h e f a c e of t h e p e r s o n i n t h e p i c t u r e . Y o u w i l l s e e t h a t t h e c o l o r of
t f -iSwfr
L
i r mnjtj
n Hwni
i j i WKJJT—»
t h e flesh of t h e f a c e is m a d e u p of m a n y t i n y d o t s o r s p e c k s of d i f f e r e n t
colors.
'**'*"" M&tfiji'
T h e r e are red, yellow, a n d green or blue
>4 ,
1 v-4
-J j j—I
_
I 0||4.—
d o t s , a n d t h e w h i t e c o l o r of t h e p a g e *i—I-
shows t h r o u g h in spaces n o bigger t h a n the colored dots. T a k e the
magnifying
lens a w a y a n d look at the p a g e with
-]—L t ~
r
1 — I •"
A swatch of wool under a microscope shows its weave. Cotton gabardine twill as viewed under a microscope.
y o u r u n a i d e d eye. Y o u will see h o w t h e c o m b i n a t i o n of t h e s e d o t s , t o o s m a l l t o b e seen w i t h o u t the m i c r o s c o p e , b l e n d s t o g e t h e r t o p r o d u c e t h e c o l o r of
flesh.
W i t h the microscope, look at the red a r e a of t h e c h e e k o r a t t h e l i p s .
You
Newspaper print looks like this when it is magnified.
s a n d s of t h r e a d s . N o w u s e y o u r m i c r o scope to look at the handkerchief. Y o u w i l l s e e h o w e a c h t h r e a d is w o v e n ,
first
under, then over, the threads near
it.
N o t e t h a t all t h e t h r e a d s a r e n o t e q u a l l y t h i c k . Y o u w i l l s e e t h a t m o s t of t h r e a d s look fuzzy b e c a u s e from sides tiny, frayed
filaments
the their
of fiber s t i c k
out. L o o k a t s e v e r a l d i f f e r e n t s a m p l e s of
m * * • <
Amethyst crystal's form when magnified.
When you look at this print of a baby under a microscope, you can see that it is made up of many dots. cloth that have colored patterns. c a n y o u tell w h i c h
samples have
How the
color printed on them and which have the color woven into them? Y o u
Y o u will a d d g r e a t l y t o y o u r
can
and H o w can you keep a record - . _ of w h a t y o u s e e ?
y o u r m i c r o s c o p e . If, a s f a r a s y o u c a n follow t h e t h r e a d , it is o n e c o l o r , t h e n the cloth has a woven pattern. O n the o t h e r h a n d , if y o u t r a c e a s i n g l e t h r e a d a n d find t h a t it is c o l o r e d d i f f e r e n t l y i n d i f f e r e n t p a r t s of t h e p a t t e r n , t h e n t h e pattern was printed on the cloth. Your
microscope
will
reveal
d r e d s of n e w t h i n g s , if y o u a
stone
that
has
carefully different
c o l o r s i n it. L o o k a t t h e s m a l l h a i r s o n t h e b a c k of y o u r h a n d . E x a m i n e a p i e c e of w o o d a l o n g t h e s u r f a c e w h e r e a c a r p e n t e r h a s s a w e d it. L o o k a t t h e l e g of a n insect. 8
w o r k i n g
. ., with
a
micro-
s c o p e , if y o u k e e p a r e c o r d of w h a t y o u see. Y o u c a n k e e p such a record in a n o t e b o o k or o n
file
c a r d s t h a t a r e five i n c h e s l o n g a n d t h r e e inches wide. B o t h the notebook and the c a r d s c a n b e b o u g h t i n a l m o s t a n y stationery or
five-and-ten-cent
store.
H e r e are the things to p u t in y o u r hun-
e x a m i n e t h e o b j e c t s of y o u r d a i l y w o r l d . Examine
knowledge
w h e n
d o this b y tracing a single t h r e a d w i t h
interest
record book or cards: Examination Date
number
of examination
Object
examined
Where
I found
What Remarks
I saw
. . . . . .
. . . it . . .
. . .
. . .
Under remarks, you might want
to
An image out of focus (left). Image now in focus (right).
Diagram (left): light passing through simple microscope. write something
like:
"Compare
this
Y o u r eye h a s a lens. T h i s lens covers
For
t h e p a r t of y o u r e y e t h a t is c o l o r e d a n d
example, you m a y have just examined
also the d a r k spot, t h e pupil, at its cen-
t h e a n t e n n a of a b u t t e r f l y , a n d
some
ter. L i k e all lenses, t h e o n e in y o u r eye
time before, you h a d e x a m i n e d the an-
b e n d s r a y s of l i g h t . T h e l i g h t is b e n t s o
t e n n a of a m o t h . Y o u w o u l d p r o b a b l y
t h a t i t falls o n t h e b a c k of y o u r
eye
w a n t t o m a k e n o t e of t h e f a c t t h a t t h e
w h e r e light-sensitive materials a r e
lo-
a n t e n n a s of t h e s e t w o k i n d s of i n s e c t s
cated. W h e n the lens in y o u r eye w o r k s
are quite
j u s t r i g h t , it b e n d s l i g h t so t h a t
with Examination n u m b e r
different.
So,
"
on
the
card
each
b e a r i n g y o u r r e c o r d of t h e e x a m i n a t i o n
light ray entering y o u r eye from a n ob-
of t h e b u t t e r f l y ' s a n t e n n a , y o u r e f e r t o
ject falls e x a c t l y in t h e p r o p e r p l a c e t o
t h e c a r d b e a r i n g t h e r e c o r d of t h e e x a m -
g i v e a s h a r p i m a g e of t h e o b j e c t o n t h e
i n a t i o n of t h e m o t h ' s a n t e n n a ; a n d o n
b a c k of t h e e y e . A s l o n g a s t h e p o i n t
the moth's card, you refer to the butter-
w h e r e the light rays form a s h a r p image
fly. C r o s s - r e f e r e n c e s l i k e t h i s w i l l g r e a t l y
is e x a c t l y o n t h e b a c k of t h e e y e , w e
i n c r e a s e y o u r k n o w l e d g e of t h e t h i n g s
s e e t h e o b j e c t s h a r p l y a n d c l e a r l y . If t h i s
you examine.
p o i n t is t o o f a r f o r w a r d o r t o o f a r b a c k , objects w e see are fuzzy a n d
W h e n you were examining things with u r
»A,L . •
y°
a focus?
y o u
P
T h i s is w h a t h a p p e n s t o n e a r - a n d far-
microscope,
sighted persons. T h e point at which a
y noticed that
l e n s f o r m s a s h a r p i m a g e is c a l l e d t h e
simple r o b a b l
blurred.
y o u c o u l d n o t see clearly
focus
of t h e l e n s .
w h e n y o u h e l d t h e l e n s j u s t a n y o l d dis-
T h e l e n s of y o u r m i c r o s c o p e a l s o h a s
tance from the object. Y o u h a d to m o v e
a focus. Y o u h a d t o m o v e the micro-
the lens b a c k a n d forth until the object
s c o p e b a c k a n d f o r t h u n t i l t h e f o c u s of
b e c a m e clear. W h y w a s this necessary?
its lens w a s exactly w h e r e it c o u l d w o r k
w i t h t h e lens in y o u r eye, so as t o f o r m
a water lens can also be m a d e . W i t h a
a s h a r p i m a g e o n t h e b a c k of y o u r e y e .
h e a v y shears, cut a strip from a tin can.
W e c a l l t h e m o v i n g b a c k a n d f o r t h of a
T h i s tin strip should b e a b o u t o n e inch
l e n s t o f o r m a s h a r p i m a g e focusing
w i d e a n d four inches long. B e careful
the
n o t to cut yourself on the sharp edges
lens.
of t h e t i n . W h e n t h e s t r i p is c u t , d u l l W i t h a p a i r of p l i e r s , s t r a i g h t e n o u t a paper H o w can you make a water, . „ lens microscope?
p i e c e
clip or of
. ., similar
w k e
a of
. . , thickness.
t h e e d g e s w i t h a file, o r c o v e r t h e e d g e s with adhesive tape. M a r k t h e e x a c t c e n t e r of t h e t i n s t r i p . P l a c e t h e s t r i p o n a p i e c e of w o o d , a n d
A t o n e e n d of t h e wire, b e n d a complete loop a b o u t one-
drive a medium-size nail through the
s i x t e e n t h of a n i n c h a c r o s s . R u b a l i t t l e
a h o l e m o r e t h a n o n e - s i x t e e n t h i n c h in
g r e a s e o r c o o k i n g oil o n t h e l o o p . D i p
diameter. R e m o v e the nail and the piece
t h e l o o p i n w a t e r a n d g e n t l y r e m o v e it.
of w o o d .
c e n t e r . D o n o t u s e a n a i l t h a t will m a k e
W i t h i n t h e l o o p w i l l b e a d r o p of w a t e r
B e n d t h e e n d s of t h e s t r i p d o w n w a r d ,
t h a t forms a lens. L o o k at t h e p r i n t o n
so t h a t t h e strip will s t a n d . A s w i t h t h e
a p a g e t h r o u g h the w a t e r lens. T h e lens
l o o p m i c r o s c o p e , r u b a little grease o r
will p r o b a b l y m a g n i f y t h e p r i n t t o twice
oil a r o u n d t h e h o l e in t h e strip. S t a n d
i t s n a t u r a l size. E v e n t u a l l y , t h e
water
t h e strip o n its t w o e n d s . D i p a pencil
w i l l e v a p o r a t e , b u t it is e a s y t o m a k e
i n w a t e r a n d c a r e f u l l y r e m o v e it. T r a n s -
a n o t h e r w a t e r lens.
f e r a d r o p of w a t e r f r o m t h e e n d of t h e
A d i f f e r e n t k i n d of m i c r o s c o p e w i t h
pencil t o t h e hole, so t h a t a d r o p h a n g s in the hole, f o r m i n g a lens. P l a c e a s m a l l p a n e of w i n d o w g l a s s o n t h e t o p s of t w o t i n c a n s of t h e s a m e
WATER DROP
BENT TIN STRIP WINDOW GLASS PANE
SALT CRYSTALS MAGNIFIED TIN CAN
LIGHT REFLECTED FROM MIRROR
10
The first microscopist was Antony van Leeuwenhoek, a cloth merchant from Holland. He is pictured here with the microscope of his design, (b. 1632,d. 1723)
size. P l a c e t h e t i n s t r i p c a r e f u l l y o n t h e
a l e n s a t o n e e n d . T h e s e w e r e c a l l e d flea
c e n t e r of t h e g l a s s . B e n e a t h t h e g l a s s ,
g l a s s e s o r fly g l a s s e s , a n d t h e s e n a m e s
p r o p a flat m i r r o r , s u c h a s is f o u n d in
show
l a d y ' s h a n d b a g s , s o t h a t l i g h t is r e f l e c t e d
scopes w e r e u s e d for.
pretty
well
what
these
micro-
u p w a r d t h r o u g h the glass a n d the water lens.
Although we do not know who invented
B e n e a t h the lens, place a few grains of p e p p e r , s a l t , o r s u g a r , a n d l o o k d o w n through
the lens. F o c u s
the lens
by
What is a microscopist?
the microscope, we do k n o w w h o w a s t h e first microscopist.
A
micro-
gently pressing o n the strip. H o w m a n y
s c o p i s t is a p e r s o n w h o u s e s a m i c r o -
times d o you think the w a t e r lens mag-
s c o p e t o s t u d y small t h i n g s in a careful
nified t h e g r a i n s ?
a n d s y s t e m a t i c w a y . If y o u s t u d y t h i n g s carefully with y o u r simple microscope
W e don't k n o w just w h o m a d e the Who invented the microscope?
first
a n d k e e p a r e c o r d of y o u r
findings,
you
microscope. In the
a r e a m i c r o s c o p i s t . T h e first m i c r o s c o -
thirteenth
pist w a s A n t o n y van L e e u w e n h o e k .
a
century,
monk
named
V a n L e e u w e n h o e k was a cloth mer-
B a c o n
c h a n t w h o lived in Delft, H o l l a n d d u r -
learned h o w to g r i n d glass to m a k e spec-
i n g m o s t of t h e s e v e n t e e n t h c e n t u r y a n d
tacles. A little while a f t e r w a r d , gentle-
p a r t of t h e e i g h t e e n t h . H e l i v e d a q u i e t
men carried about with them a
small
life a s a t r a d e s m a n , b u t h e w a s , i n h i s
m i c r o s c o p e t h a t - c o n s i s t e d of a
metal
s p a r e t i m e , o n e of t h e w o r l d ' s
R o g e r
t u b e , a b o u t t h e size of y o u r t h u m b , w i t h
great
scientific d i s c o v e r e r s . 11
He
obtained
diamond
dust from diamond
How was diamond dust used for a microscope?
of
the
cutters
Delft
with
H e s t u d i e d t h e e y e s of a s h r i m p , c o d f i s h , whale, rabbit,
What objects did he study?
a n d beetle. H e studied t h e e g g s of a n t s a n d
which he ground a
nearly-spheri-
cow,
lice. Seeds, b l o s s o m s , fruits, a n d
other
cal lens. H e m o u n t e d t h e lens o n a de-
p a r t s of t h e p l a n t ; t h e c i r c u l a t i o n
vice that
b l o o d i n t h e t a i l of a fish; t h e t a r t a r o n
included
a
metal
rod
into
of
which a screw-thread was cut. B y turn-
t h e t e e t h of a n e i g h t - y e a r - o l d b o y
ing the rod, he could m a k e very
t w o ladies; v i n e g a r eels, crabs, a n d oys-
fine
and
focusing a d j u s t m e n t s for his lens. T h e
ter eggs — all t h e s e w e r e a m o n g
the
lens a n d the focusing device w e r e b o t h
things
be-
attached to a metal plate that h a d
n e a t h his microscope.
a
h o l e i n it, j u s t b e l o w t h e l e n s . B y p l a c -
van
Leeuwenhoek
placed
W h e n h e w a s eighty-five, h e discov-
ing objects b e n e a t h the hole, v a n Leeu-
ered
that
"some
hundreds
of
nerves
wenhoek could magnify them as m u c h
e q u a l t h e size of a s i n g l e h a i r of a m a n ' s
a s 3 0 0 t i m e s t h e i r n a t u r a l size.
beard!" A n d when he was past ninety,
H e w a s f a s c i n a t e d b y t h e w o r l d of
he w a s studying "the wonderful perfec-
tiny things that his microscope o p e n e d
t i o n s a n d f o r m a t i o n s " i n t h e e y e of a fly.
u p for him, a n d spent h o u r s examining
W i t h his simple microscope, his care-
a l l s o r t s of t h i n g s a r o u n d h i m a n d w r i t -
ful w o r k , a n d h i s e n t h u s i a s m ,
ing careful reports on w h a t he saw. H e
van Leeuwenhoek opened up a world
p u t m a n y of h i s r e p o r t s i n t o l e t t e r s t h a t
t h a t e v e n t u a l l y l e d t o t h e c o n q u e s t of
h e s e n t t o t h e R o y a l S o c i e t y of L o n d o n ,
m a n y d i s e a s e s a n d a n u n d e r s t a n d i n g of
a n a s s o c i a t i o n m a d e u p of
h o w the m a n y things in t h e w o r l d a r e
The
scientists.
scientists m a r v e l e d at w h a t
van
Antony
constructed.
Leeuwenhoek wrote. They honored him by making their own microscopes a n d imitating his observations. H e h i r e d a n illustrator, called a limner, w h o joined him in his observations
T h e
a n d t h e n m a d e d r a w i n g s of w h a t
M i c r o s c o p e
they
C o m p o u n d
both saw. O n e time van L e e u w e n h o e k p u t a louse u n d e r his microscope. T h i s little a n i m a l w a s t o o active t o o b s e r v e LOUSE
well, so v a n L e e u w e n h o e k r e m o v e d its head. However,
t h e louse's legs
kept
W h e n m o s t people h e a r the w o r d "miWhat is a compound microscope?
croscope," they usually t h i n k of t h e k i n d t h a t is s e e n i n l a b o r a t o r i e s . This
kicking for m o r e t h a n a n h o u r . M e a n -
microscope,
as
in
seen from the outside, h a s a heavy metal
his notes, "the L i m n e r could n o t a d m i r e
foot, a platform o n w h i c h to place w h a t
t h e s i g h t e n o u g h , a n d it t o o k h i m a l o n g
is b e i n g e x a m i n e d ,
time to p u t his h a n d to p a p e r . "
points at the platform, and a long tube
while, as v a n L e e u w e n h o e k w r o t e
GRASS SPIKELET ANTHERS OF FLOWERS
a
nosepiece
that
EYEPE I CE
[ (CONVEX LENS) Part of a feather magnified (below); how light rays pass through a compound microscope (right); a compound microscope (far right) with its parts indicated.
COARSE ADJUSTMENT
L FIRST IMAGE
(CONVEX LENS)
C0NDENSER
SUBSTAGE
NCLINATION JOINT PILLAR
second system can greatly magnify the i m a g e a n d l o c a t e it j u s t a t t h e p l a t f o r m of t h e m i c r o s c o p e .
a t t h e t o p of w h i c h t h e
microscopist
p l a c e s h i s e y e . T h i s k i n d of m i c r o s c o p e is c a l l e d a biological laboratory pound
microscope.
microscope,
or a
I t is a l s o a
com-
Let us examine the compound laboratory microscope in What are some Q r d e r t Q l e a r n i t § . compound microscope?
microscope.
pr a r t s .
First,
examine
let
the
us
part
t h r o u g h w h i c h light passes. R i g h t above the platform, which
In a compound microscope, there are What are the two systems of lenses?
m a n y lenses.
These
i s p r o p e r l y c a l l e d t h e stage,
is a n a r r o w
t u b e t h a t c o n t a i n s l e n s e s . T h i s t u b e is
lenses a r e g r o u p e d in-
c a l l e d t h e objective.
to two systems.
m a y have only one objective that
system
does
One
exactly
what a simple microscope does —
The
into a wider tube, called the
microscope fits
nosepiece.
it
However, most laboratory microscopes
shows an upright image, just as the eye
h a v e two or three objectives attached to
w o u l d s e e it, o n l y l a r g e r . T h e f o c u s of
a rotating nosepiece. W i t h this arrange-
t h i s set of l e n s e s is a t a p o i n t w h e r e t h e
ment, the microscopist need only turn
13
the nosepiece to the right location
in
T h e p a r t s of t h e m i c r o s c o p e y o u h a v e just learned
order to bring into use the objective he wants. Y o u may wonder why a microscope would have more than one
objective.
What are the other parts of a compound microscope?
most
chooses
the objective which magnifies
that
the
important,
but
it w o u l d b e h a r d
to
use them without the o t h e r p a r t s of a m o d -
E a c h objective h a s a different magnifying power. T h e microscopist
are
e r n m i c r o s c o p e . A t t h e b o t t o m of t h e m i c r o s c o p e , is a b r o a d , h e a v y m e t a l
a m o u n t w h i c h best enables h i m to ob-
base,
s o m e t i m e s c a l l e d t h e foot.
s e r v e w h a t h e is l o o k i n g a t . If y o u l o o k
base holds the working
c l o s e l y a t t h e o b j e c t i v e s of a l a b o r a t o r y
microscope
m i c r o s c o p e , y o u will see m a r k e d o n o n e
b a c k of t h e b a s e is t h e pillar.
lOx, on the second 43x, a n d o n the third
holds the microscope steady, but at the
97x. T h e "x" means "times" and stands
t o p of t h e p i l l a r is a j o i n t , t h e
f o r j u s t w h a t it d o e s in m u l t i p l i c a t i o n .
joint,
A n o b j e c t i v e w i t h 4 3 x o n it m e a n s t h a t
m i c r o s c o p e to be tilted b a c k w a r d
and
its lenses will m a g n i f y 4 3 t i m e s n a t u r a l
forward. T h e large curved part
that
size.
d o e s t h e t i l t i n g is c a l l e d t h e arm.
The
steady.
parts
Rising
This of
the
from
the
This, too, inclination
t h a t a l l o w s t h e u p p e r p a r t of t h e
u p p e r e n d of t h e a r m h o l d s t h e t u b e , A b o v e t h e n o s e p i e c e , is a w i d e tube. is u s u a l l y e m p t y , How do you find out the magnifying power of a microscope?
but
sometimes one or two special
lenses
are
within the tube. Fitting i n t o t h e u p p e r p a r t of it is a n a r r o w e r
c a l l e d t h e extension
tube.
tube
T h i s one con-
tains lenses. T h e lenses in t h e portion together make u p the o r ocular.
It
upper eyepiece,
O n t h e o c u l a r , y o u will see its
while the lower end holds the
A f f i x e d t o t h e s t a g e a r e t w o s t r i p s of s p r i n g y s t e e l . T h e y a r e c a l l e d clips,
and
t h e i r t a s k is t o h o l d s p e c i m e n s o n t h e s t a g e , e s p e c i a l l y w h e n t h e s t a g e is t i l t e d . On
more
expensive
microscopes,
the
s t a g e is m a d e i n t w o l a y e r s . T h e u p p e r layer can be moved forward
or back-
w a r d , o r t o t h e r i g h t o r left, b y t u r n i n g p a i r s of k n o b s . W h e r e t h e t u b e m e e t s t h e a r m is a
magnifying p o w e r m a r k e d . Usually, this
very important mechanism —
i s 5 x o r l O x . If y o u u s e a l O x o c u l a r
justment.
with a 43x objective, the
a n d a fine
microscope
stage.
T h e r e is a coarse adjustment.
You
the
ad-
adjustment remember
h a s a t o t a l m a g n i f y i n g p o w e r of 1 0 x 4 3 ,
the screw-threaded rod that van Leeu-
GLOEOCAPSA o r 4 3 0 . I n s h o r t , t o k n o w w h a t t h e m a g n i f y i n g p o w e r of a m i c r o s c o p e is,
w e n h o e k fitted t o h i s s i m p l e m i c r o s c o p e . The
coarse
y o u m u l t i p l y t h e p o w e r of t h e o c u l a r b y
both
t h e p o w e r of t h e o b j e c t i v e .
chined
and the
consist screw
of
fine
very
threads,
adjustments
accurately by
ma-
means
EUGLENA SCENADESMUS
of
which the tubes a n d objectives can be
o n t h e b a l s a m a v e r y t h i n p i e c e of g l a s s ,
raised a n d l o w e r e d , in o r d e r t o
about one inch square, called a
focus
glass
the microscope. A t the very bottom
of t h e a r m ,
a
o r cover
slip.
cover
If y o u s e e b u b b l e s
b e n e a t h t h e c o v e r glass, gently
press
is affixed, s o t h a t a b e a m of l i g h t
d o w n u p o n the cover glass with the tip
can b e shined u p , t h r o u g h a h o l e in t h e
of a p a i r of t w e e z e r s o r a t o o t h p i c k .
s t a g e , t o t h e b o t t o m of t h e
This should help to expel the bubbles.
mirror
objective,
and from there, through the tubes to the eyepiece. B e t w e e n the m i r r o r a n d stage, s o m e m i c r o s c o p e s h a v e a s y s t e m of l e n s e s t o b e t t e r
the third
concentrate
N o w t h e h a i r is p r o p e r l y
mounted.
N e x t , t a k e c a r e of t h e l i g h t i n g .
To
d o this, l o o k a t the stage from t h e side, and with the coarse adjustment,
move
the light from the m i r r o r . T h i s system
t h e b o t t o m of t h e o b j e c t i v e t o a p o i n t
is c a l l e d a substage
a b o u t o n e - s i x t e e n t h of a n i n c h
condenser.
Suppose you wish to examine a from How do you use a laboratory compound microscope?
your
hair
head.
above
t h e c o v e r g l a s s . If t h e m i c r o s c o p e
has
m o r e t h a n one objective, use the
one
with
the
lowest
magnifying
power.
First, place on the
W h e n t h e o b j e c t i v e is p o s i t i o n e d c l o s e
s t a g e a glass
slide,
t o t h e slide, l o o k i n t o t h e eyepiece. W i t h
w h i c h is a p i e c e of
o n e h a n d , m o v e the m i r r o r a b o u t until
clear glass o n e inch
you
see a bright,
evenly-lit
circle
wide a n d three inches long, a n d a b o u t
light, n o t glaring, not dim. N o w
half as t h i c k as w i n d o w glass. P u s h t h e
are r e a d y to focus.
slide u n d e r t h e c l i p s , s o t h a t it is h e l d firmly.
T h e n c u t a o n e - i n c h l e n g t h of
h a i r a n d p l a c e it o n t h e s l i d e r i g h t a b o v e t h e h o l e in t h e s t a g e . Y o u r b r e a t h m i g h t e a s i l y b l o w t h e h a i r a w a y , s o fix it i n p l a c e . T h i s is b e s t d o n e w i t h a m a t e r i a l c a l l e d Canada
balsam.
H o w e v e r , if y o u
h a v e n o b a l s a m , u s e c l e a r h o u s e h o l d cement or clear
fingernail
polish.
P u t a s m a l l d r o p of b a l s a m o n of t h e h a i r . W a i t a f e w m o m e n t s
top in
the h o p e t h a t a n y tiny b u b b l e s in t h e b a l s a m will rise t o t h e s u r f a c e a n d b u r s t . D o n ' t wait t o o long, for C a n a d a b a l s a m (and household cement and
fingernail
polish) h a r d e n in air. So g e n t l y p l a c e ZYGNEMA SYNURA
Preparing a slide for the microscope properly will make viewing easier.
of you
HARVEST MITE GNAT
BURNET BUTTERFLY SWALLOWTAILIL BUTTERFLY
1? ij ?»
EMPEROR MOTH | : i , i
WATER MITE COMMON BLUE BUTTERFLY AZURE BLUE BUTTERFLY
WATER MITE I CABBAGE WHITE BUTTERFLY
RED SPIDER
HAIRSTREAK BUTTERFLY INSECT SCALES
CHEESE MITE
kIT WATER M ITFE
WORM
MITES
DIATOMS
COPEPOD
PROTOZOAN
L
v
MEDUSA JELLYF
OSTRACOD
GASTROTRICHAS
I COPEPOD
DAPHNIA WHITING LARVA V
MARINE PLANKTON CYCLOPS
WATER BEAR nDA HYDRA •
FRESH-WATER PLANKTON
COPEPOD
W h e n f o c u s i n g , y o u m u s t always How d o you , ( . ,
l o w e r p a r t of t h e n o s e p i e c e a r o u n d s o
Always
focus
up-
If y o u f o c u s d o w n w a r d , y o u w i l l front
will n o t o n l y b r e a k t h e s l i d e , a n d p e r h a p s r u i n a v a l u a b l e s p e c i m e n , b u t it m a y a l s o b r e a k t h e f r o n t l e n s of objective. Mindful
of t h i s , t u r n
the slow-
ly t h e c o a r s e a d j u s t m e n t t o w a r d y o u r self, so t h a t t h e t u b e r i s e s f r o m t h e s l i d e . W h e n the hair comes clearly into view, change from the coarse adjustment t h e fine o n e . A l t h o u g h y o u m u s t
to
turn
the c o a r s e a d j u s t m e n t o n l y in o n e direction w h e n focusing, y o u m a y t u r n the
half
a d j u s t m e n t in e i t h e r d i r e c t i o n , as you a turn.
do not
turn
it more
as than
T h u s , w i t h t h e fine a d j u s t -
ment, you can bring the hair into clear f o c u s . Y o u w i l l p r o b a b l y find t h a t y o u have to adjust the mirror again. After you have studied the hair for a w h i l e , y o u m a y w a n t t o m a g n i f y it m o r e .
objectives,
nosepiece
with two
mind this rule: , , Never focus down-
of t h e o b j e c t i v e t h r o u g h t h e s l i d e . T h i s
long
has a
Ar
surely, s o o n e r o r later, p u s h t h e
fine
If t h e m i c r o s c o p e
in
ward. ward.
keep
simply turn
the
t h a t t h e o t h e r o b j e c t i v e is i n l i n e w i t h the
tube.
If
the
microscope
is
well
made, changing the objective should not change the focus very m u c h . However, s o m e f o c u s i n g w i t h t h e fine a d j u s t m e n t will p r o b a b l y b e n e c e s s a r y . A l s o , y o u will h a v e t o a d j u s t t h e l i g h t i n g a g a i n . If t h e m i c r o s c o p e h a s a t h i r d o b j e c t i v e , m o v e it i n t o p l a c e j u s t a s y o u d i d the second one. However, you use this objective simply b y
cannot
focusing.
T h i s objective, usually the one m a r k e d 9 7 x , i s a n oil immersion name because
lens. I t h a s t h i s
t o u s e it, y o u
put the foremost
usually
l e n s of t h e
objec-
t i v e i n t o a d r o p of oil p l a c e d u p o n t h e cover glass. focus,
and
Again
you
will h a v e
this time b e very
because the front
to
careful,
of t h e o b j e c t i v e
is
n e a r l y t o u c h i n g t h e c o v e r glass. T h e oil y o u u s e m u s t b e cedarwood oil c a n b e o b t a i n e d f r o m
oil.
This
microscope
dealers.
If t h e m i c r o s c o p e h a s o n l y o n e n o s e piece, raise t h e objective far a b o v e t h e slide, u n s c r e w t h e o b j e c t i v e t o t a k e it
A f t e r e x a m i n i n g t h e h a i r , y o u will h a v e H o w d o you
to clean the equipment. T u m t h e c o a r s e adjust.
o u t of t h e n o s e p i e c e , a n d t h e n p u t a n other, higher-power, objective into the
' e q u i p m e n tx?0
oil
nosepiece. T h e n focus in t h e s a m e w a y as y o u did w h e n using t h e
low-power
objective. Illustrated on the left are other specimens which may be viewed under the microscope. Mites belong to a family of tiny animals related to spiders and scorpions. They often infest other animals, including humans, plants, and foods. Protozoa, along with other tiny animals, as well as plants, make up the plankton, which floats on the surface of oceans and lakes. Plankton serves as the food for many forms of sea life.
m e n t k n o b to raise the immersion
lens
f r o m t h e slide. T h e n w e t a special k i n d of t i s s u e , c a l l e d lens c a l l e d xylol.
With
tissue, the
in a liquid
wetted
w i p e a l l t h e o i l off t h e o i l lens.
I t is w e l l t o
use
two
tissue,
immersion separate
p i e c e s of t i s s u e f o r t w o w i p i n g s .
The
xylol e v a p o r a t e s quickly, b u t m a y leave a f o g g y d e p o s i t o n t h e l e n s , so w i p e t h e l e n s w i t h a d r y p i e c e of l e n s t i s s u e .
17
If y o u w i s h t o k e e p t h e s l i d e w i t h t h e
m i c r o s c o p e will n o t m a g n i f y m o r e t h a n
m o u n t e d h a i r , w i p e off w i t h x y l o l a n y
1 Ox, a n d t h e v e r y b e s t w i l l m a g n i f y o n l y
excess b a l s a m that has oozed o u t from
20x. In order to really do
u n d e r t h e c o v e r glass, label t h e slide,
w o r k in m i c r o s c o p y , y o u n e e d a com-
a n d s t o r e it. If, o n t h e o t h e r h a n d , y o u
pound
interesting
microscope.
d o n o t w i s h t o k e e p t h e slide m o u n t , p l a c e a d r o p o r t w o of x y l o l
around
A laboratory, or biological, c o m p o u n d microscope
t h e e d g e s of t h e c o v e r g l a s s . T h i s w i l l w o r k i t s w a y u n d e r t h e g l a s s a n d dissolve t h e b a l s a m so t h a t y o u c a n r e m o v e
What kind of microscope should you get?
is w i p e t h e c o v e r g l a s s a n d t h e
slide
very expensive
hundred
d o l l a r s . H o w e v e r , it is p o s s i b l e t o p u r c h a s e a s o - c a l l e d amateur
w i t h s o m e xylol o r lens tissue.
in-
strument that costs several
t h e c o v e r g l a s s . N o w all y o u h a v e t o d o
is a
microscope
w h i c h is m u c h l e s s e x p e n s i v e . T h i s is a If y o u w a n t t o m a k e m i c r o s c o p y y o u r hobby, you What equipment will you need to become a microscopist?
%
will
s m a l l e r m o d e l of t h e l a b o r a t o r y m i c r o scope. It lacks some refinements
have to start with
only
certain
n e e d for his w o r k , b u t in y o u r micros-
basic
equipment:
a
mi-
a
highly-trained
scientist
that
would
c o p y , y o u will n o t miss t h e m a t
all.
glass
T h e s e a m a t e u r microscopes are not toys
slides ( a t least a d o z e n t o begin w i t h ) ;
— they are real c o m p o u n d microscopes
cover glasses ( a b o u t t w o dozen, since
t h a t will p r o d u c e a clear i m a g e magni-
these b r e a k very easily); tweezers
(or
fied 3 0 0 t o 5 0 0 t i m e s . Y o u c a n b u y s u c h
forceps); a medicine dropper; a probe
a m i c r o s c o p e for $ 1 1 to $20. T h i s m a y
(made
croscope;
of
a
s e e m l i k e q u i t e a l o t of m o n e y , b u t if
needle into an eraser removed from
a
you
by
sticking the eye-end
p e n c i l ) ; a sharp knife, or
single-edge
begin
immediately
to put
nickels and dimes that you
find
away you
scissors;
r e a l l y d o n o t h a v e t o s p e n d , y o u will
polish);
have saved u p the needed m o n e y sooner
a n d xylol ( o r a c e t o n e ) . W h i l e a simple
t h a n n o w seems likely. W h e n y o u a r e
m i c r o s c o p e will reveal m a n y
wonders
r e a d y t o b u y y o u r m i c r o s c o p e , y o u will
of t h e w o r l d a r o u n d y o u , t h i s i n s t r u -
b e wise t o c o n s u l t a science t e a c h e r in
m e n t h a s its limits. Y o u c a n n o t b u y o n e
y o u r school. H e c a n give y o u advice o n
t h a t w i l l g i v e t h e 3 0 0 x p o w e r of v a n
h o w to go about buying the microscope.
Leeuwenhoek's.
O n e g o o d p l a c e to b u y a n a m a t e u r mi-
razor
blade;
sharp-pointed
Canada balsam (or
18
Even
fingernail
a
good
simple
SNOW CRYSTALS MAGNIFIED it EEZERS PROBING NEEDLE
c r o s c o p e is f r o m
a mail-order
house.
C o n s u l t its c a t a l o g carefully
before
y o u o r d e r . M a k e s u r e t h e r e is a g u a r a n tee t h a t t h e m i c r o s c o p e will b e r e p l a c e d if it is d e f e c t i v e w h e n y o u g e t it.
T h e
W o r l d
of
Bacteria
a n d
A l l a r o u n d u s a r e b i l l i o n s of t i n y l i v i n g things that are What are the smallest plants • .L 1-10 in the world?
s m a U tQ b e §een
Invisible
Life
P r o t o z o a
B a c t e r i a m a y b e f o u n d all a r o u n d u s — in t h e e a r t h , in w a t e r a n d
too w i t h
, . , , the u n a i d e d eyes. J
—
Where are bacteria found?
in t h e air. T h e r e a r e mill i o n s of b a c t e r i a o n y o u r skin, in y o u r m o u t h , y o u r
A m o n g the smallest
nasal
passages,
and
elsewhere
inside
of t h e s e l i v i n g t h i n g s a r e p l a n t s c a l l e d
y o u r b o d y . T h e r e a r e t h o u s a n d s of dif-
bacteria.
f e r e n t k i n d s of b a c t e r i a . T h e y a r e m a n ' s
A s i n g l e o n e of t h e s e p l a n t s is
a bacterium.
S o m e b a c t e r i a a r e so small
t h a t 1 0 , 0 0 0 of t h e m c o u l d b e p l a c e d o n
invisible friends a n d foes. T h e y a r e b o t h useful a n d harmful to m a n .
t h e p e r i o d a t t h e e n d of t h i s s e n t e n c e . E a c h b a c t e r i u m is a s i n g l e l i v i n g cell.
Among
the useful
T h i s m e a n s t h a t it is a s e p a r a t e b i t of living m a t t e r t h a t c a n live a n d g r o w b y itself. I t c a n t a k e i n t o itself f o o d oxygen. It uses t h e food for
and
nourish-
m e n t , a n d t h e o x y g e n t o h e l p it n o u r i s h
that How are bacteria useful?
bacteria produce
are
those
buttermilk
a n d vinegar, age
cheese,
a n d h e l p i n t h e c u r i n g of leather. Probably the most
v a l u a b l e service t h a t b a c t e r i a give
to
itself, g r o w a n d m o v e . 19
a n d forth rapidly a n d push the bacterium t h r o u g h the liquid. Some bacteria h a v e c i l i a g r o w i n g o u t f r o m a l l p a r t s of t h e cell wall. O t h e r s h a v e just a single t h r e a d a t o n e o r b o t h e n d s . Still o t h e r s h a v e a t u f t of c i l i a a t o n e e n d . Since bacteria are so i m p o r t a n t to m a n , n
When do they thrive best?
it is useful t o k n o w in w h a t c o n d i t i o n s b a c . ,. , t e n a live a n d g r o w .
M o s t bacteria thrive best at the
tem-
p e r a t u r e of t h e h u m a n b o d y — a l i t t l e
Bacilli are rod-shaped bacteria which need oxygen.
m a n is t o c a u s e d e c a y . If d e c a y b a c t e r i a were not constantly at work, the earth would b e c o m e littered with the
dead
b o d i e s of a n i m a l s a n d p l a n t s . Harmful bacteria are those that cause disease in animals a n d plants.
Among
the diseases caused in m a n b y bacteria are p n e u m o n i a , typhoid fever a n d tuberculosis.
Fortunately,
there
are
more
harmless bacteria t h a n harmful ones. B a c t e r i a m a y h a v e a n y o n e of shapes. Some are What do bacteria look like?
like a ball. A
three round
bacterium
of t h i s s h a p e is c a l l e d a coccus.
A n o t h e r k i n d of
Spirilla are threadlike and spiral-shaped bacteria.
b a c t e r i u m is s h a p e d like a r o d , a n d is c a l l e d a bacillus.
T h e t h i r d k i n d of b a c -
less t h a n 9 9 d e g r e e s F a h r e n h e i t .
Both
t e r i u m h a s a s p i r a l s h a p e , a n d is c a l l e d
lower a n d higher temperatures slow the
a
g r o w t h of b a c t e r i a . F r e e z i n g a n d b o i l -
spirillum. they
ing will kill m o s t b a c t e r i a . Y o u c a n n o w
a r e i n a l i q u i d . A b a c t e r i u m of t h i s k i n d
see t h a t p u t t i n g f o o d in t h e refrigerator
has
s l o w s t h e g r o w t h of b a c t e r i a t h a t m a y
Some bacteria can move when extremely
thin
threads
of
living
m a t t e r g r o w i n g o u t f r o m i t s cell w a l l .
be on the food, a n d thereby
T h e s e t h r e a d s , c a l l e d cilia,
the food from b e c o m i n g spoiled. Also,
20
lash
back
prevents
Bacteria reproduce themselves very rapidly. It t a k e s only a b o u t How fast d o t h i r t y m m u t e s f o r o n e bacteria , , _ bacterium to become reproduce? . t w o . If a l l t h e o f f s p r i n g of o n e b a c t e r i u m c o u l d g o o n r e p r o d u c ing for twelve hours, there w o u l d
be
s e v e n t e e n m i l l i o n of t h e m . If t h i s p r o c ess c o n t i n u e d for
five
days,
bacteria
w o u l d fill a l l t h e o c e a n s t o a d e p t h of o n e mile. Of course, n o t h i n g like this can take place, because most bacteria d o n o t find t h e n o u r i s h m e n t o r
favor-
Cocci are ball-like, or spherically-shaped, bacteria.
c o o k i n g f o o d n o t o n l y m a k e s it e a s i e r a n d tastier t o eat, b u t also kills h a r m f u l b a c t e r i a t h a t m a y b e o n it. B a c t e r i a n e e d m u c h m o i s t u r e in o r d e r t o t h r i v e . T h u s , if w e k e e p f o o d
dry,
w e k e e p it f r o m s p o i l i n g b y t h e g r o w t h of b a c t e r i a u p o n it. D a r k n e s s is a n o t h e r condition in w h i c h bacteria thrive.
A
s t r o n g l i g h t w i l l s l o w t h e g r o w t h of b a c teria o r kill t h e m . N o w y o u c a n
see
w h y a s u n n y r o o m is a h e a l t h y r o o m . I n m o s t c i v i l i z e d c o u n t r i e s , t h e l a w requires that What is the process of pasteurization?
bacteria
in milk b e killed b y raising the temperat u r e of t h e m i l k
Cocci may also grow in pairs, clusters or in chains.
to
1 4 5 d e g r e e s F a h r e n h e i t a n d k e e p i n g it
a b l e c o n d i t i o n s in w h i c h t o g r o w
at this t e m p e r a t u r e for thirty minutes.
reproduce.
and
T h i s p r o c e s s f o r k i l l i n g b a c t e r i a is c a l l e d pasteurization
and was discovered
the great F r e n c h bacteriologist
by
O n e of t h e b e s t w a y s t o g e t h a r m l e s s
Louis
b a c t e r i a is t o m a k e a hay infus[orii pjH a two-quart
P a s t e u r . A b a c t e r i o l o g i s t is a s c i e n t i s t
How c a n
w h o studies a n d w o r k s with bacteria —
. . , bacteria?
o r t h e s c i e n c e of b a c t e r i o l o g y .
g l a s s j a r a l m o s t full of w a t e r . If y o u c a n g e t w a t e r 21
9:00 A.M.
from a stream or lake, you can proceed
c a r e f u l l y a n d a d j u s t t h e m i r r o r i n sev-
i m m e d i a t e l y w i t h t h e r e s t of t h e e x p e r i -
eral different positions as y o u seek for
m e n t . If y o u t a k e w a t e r f r o m
b a c t e r i a i n t h e field of y o u r m i c r o s c o p e .
a
tap,
If y o u s e e n o t h i n g b u t a b l u r r y
blob
t h r e e d a y s , s o t h a t e x c e s s o x y g e n t h a t is
of
have
p r o b a b l y dissolved in the water
may
p l a c e d t o o l a r g e a n a m o u n t of s c u m o n
e s c a p e . P a s t e a l a b e l o n t h e o u t s i d e of
t h e slide. M a k e a n e w slide, u s i n g o n l y
t h e j a r a t t h e l e v e l of t h e s u r f a c e of t h e
one-tenth as m u c h scum. In trying to
w a t e r , so t h a t y o u m a y a d d m o r e w a t e r
find b a c t e r i a , t h e l i g h t i n g is v e r y i m p o r -
t o t h e j a r , if n e e d e d . A d d o n l y w a t e r
t a n t . S p e n d c o n s i d e r a b l e t i m e in m a n i p -
that y o u h a v e allowed to stand for
u l a t i n g t h e m i r r o r . I n y o u r r e p o r t , de-
allow the jar to stand uncovered
GfiXfe 1
10:00 A.M.
9:40 A.M.
9:20 A.M.
Many bacteria reproduce by splitting in two — a half hour process. Some split in 20 min.
for
a
C u t a h a n d f u l of h a y o r d r y
it m e a n s
that you
s c r i b e t h e s h a p e s of t h e b a c t e r i a
while, like t h e original jar. 2
material,
grass
i n t o s h o r t l e n g t h s a n d p u t it i n t o
the
you
see. T h e r e a r e m a n y o t h e r s o u r c e s of b a c -
w a t e r in the jar. C o v e r t h e j a r a n d p l a c e
teria a m o n g
it w h e r e d a y l i g h t , b u t n o t d i r e c t
L e e u w e n h o e k by scraping with a tooth-
sun-
everyday things.
Imitate
l i g h t , w i l l r e a c h it. I n a b o u t t h r e e o r f o u r d a y s , y o u will n o t i c e a s c u m
on
An organism continues to reproduce in a new culture.
t h e s u r f a c e of t h e w a t e r a n d a n a c c o m p a n y i n g u n p l e a s a n t o d o r . T h e s c u m is f o r m e d b y b i l l i o n s of b a c t e r i a .
REMOVE DROPLETS FROM HAY INFUSION AND PLACE ON SLIDE
P l u n g e t h e t i p of y o u r m e d i c i n e d r o p p e r beneath the scum, and How do you prepare bacteria for the microscope?
| i \ V
d r a w u p some clear wat e r . P l a c e a d r o p of t h i s w a t e r o n a glass slide. Using your probe, pick
\ h
u p a very small a m o u n t of s c u m —
just e n o u g h to cover
the
p o i n t of t h e n e e d l e — a n d d i p t h e n e e d l e into the drop k
of w a t e r o n t h e
t
PICK UP ORGANISM WITH DROPPER AND PLACE IN NEW CULTURE MEDIUM
slide.
Place a cover glass over the drop. F o c u s I
(1) Streptococci. (2) Sfaphy/occi. (3) Tetanus bacilli. (4) Typhoid bacilli. (5) Tuberculosis bacilli. (6) Cholera vibrio. All are disease-causing bacteria in man. 22
p i c k a t i n y b i t of t h e w h i t e
material
from y o u r teeth, just at the gum-line.
preparing
bacteria
that
makes
them
m u c h e a s i e r t o see.
P l a c e t h i s w h i t e m a t e r i a l i n a d r o p of w a t e r , o n a slide. M a k e a few c u t s in a
Y o u c a n p r e p a r e a s l i d e of b a c t e r i a s o that
p e a c h o r a n a p p l e , a n d let t h e fruit s t a n d in a w a r m , d a m p p l a c e for a few d a y s . P l a c e a b i t of t h e m a t e r i a l f r o m t h e c u t
How can
§een^
you s a m bacteria?
^ ^
i n a d r o p of w a t e r o n a s l i d e , a n d e x a m i n e it f o r b a c t e r i a . M i x a p i n c h of soil in a l i t t l e w a t e r . P l a c e a d r o p of t h i s m i x t u r e o n a s l i d e a n d e x a m i n e it f o r bacteria.
they will b e •£ y Q U sfa^n ^
easily ^ac_
Q\faeT
blue.
recj
o r
F i r s t , of c o u r s e , y o u w i l l n e e d t h e s t a i n . T h e b l u e s t a i n is c a l l e d methylene eosin.
blue,
and the red
stain
is
Y o u c a n b u y b o t h of t h e m f r o m
a pharmacist. They are cheap, and you
P l a c i n g b a c t e r i a i n a d r o p of w a t e r
n e e d v e r y l i t t l e of e a c h . If y o u b u y t h e
o n a slide m a k e s a p r e p a r a t i o n t h a t re-
s t a i n s in d r y f o r m , d i s s o l v e i n h a l f
q u i r e s m u c h m a n i p u l a t i o n of t h e m i r r o r
tumblerful
in o r d e r t o b e a b l e t o s e e t h e b a c t e r i a
e i t h e r a s y o u c a n p i c k u p o n t h e e n d of
at all. T h i s m e t h o d h a s t h e a d v a n t a g e
a knife b l a d e . T h i s will give y o u e n o u g h
o f . p r e s e n t i n g for e x a m i n a t i o n live bac-
t o l a s t f o r m o n t h s . I t is w i s e t o k e e p
t e r i a , s o m e of w h i c h m a y b e
t h e stains in s t o p p e r e d bottles, so t h a t
moving.
T h e r e is, h o w e v e r , a n o t h e r m e t h o d of
of w a t e r j u s t a s m u c h
a of
the water does not evaporate.
Many microorganisms flourish in a hay infusion. Shown are the co/poda, hay bacillus, and vo/vox, all magnified.
If y o u c a n n o t b u y t h e s e t w o s t a i n s ,
ter, a n d spread the m i x t u r e into a b r o a d
you can use ink. F o r the blue stain use
s m e a r . G r a s p t h e slide b y the edges n e a r
t h e " p e r m a n e n t " k i n d of b l u e f o u n t a i n
one
pen ink, which contains methylene blue.
above a candle
F o r r e d s t a i n u s e a n y k i n d of r e d i n k .
e v a p o r a t e s . H o l d t h e slide
end,
and
hold
it
flame
several
inches
until the
water
sufficiently
h i g h a b o v e t h e flame s o t h a t t h e w a t e r P r e p a r e t h e stained slide in this m a n n e r : P l a c e a d r o p of w a t e r & d e a n s H d e Ug_ , , , m o u r r o b e a d d a ^ y P ' s m a l l a m o u n t of t h e
H o w can you prepare a s t a i n e d slide?
Q n
bacteria-containing material to the wa-
does n o t boil. Y o u d o n o t w a n t to cook the bacteria. W h e n a l l of t h e w a t e r h a s e v a p o r a t e d a n d t h e s l i d e is t h o r o u g h l y d r y , p a s s t h e slide t h r o u g h t h e c a n d l e
rapidly
t h r e e o r f o u r t i m e s . T h i s a c t i o n is c a l l e d fixing
Picture-instructions for preparing a stained slide:
flame
the smear.
When
the
slide
has
cooled
thor-
oughly, d r o p a stain from your medicine d r o p p e r o n t h e fixed s m e a r . S o m e b a c teria i> 2. HOLD HIGH ABOVE FLAME TO EVAPORATE WATER
stain better
with blue dye
and
others stain better with red dye.
You
will h a v e t o e x p e r i m e n t w i t h b o t h colors t o s e e w h i c h o n e b e s t s t a i n s t h e k i n d of
1. PLACE MATERIAL ON SMEAR OF WATER
bacteria you are working with. Leave
^
stain on
the smear
for
a b o u t a m i n u t e . S o m e b a c t e r i a will n e e d
C M )
\
the
m o r e t h a n a m i n u t e to stain thoroughly. A g a i n , y o u will h a v e t o l e a r n this b y experience. After the stain has been on t h e s m e a r f o r t h e p r o p e r l e n g t h of t i m e ,
PASS SLIDE THROUGH FLAME THREE TIMES TO "FIX" SMEAR 4. ADD STAIN TO SMEAR
wash
i t off
with running
tap
water.
T h e n , p l a c e t h e slide, s m e a r - s i d e u p , o n a p a p e r towel. F o l d the towel over and b l o t t h e slide carefully. D o n o t r u b t h e towel o n t h e s m e a r . T h i s will destroy t h e s m e a r . N o w , e x a m i n e t h e slide un-
\ 5. WASH OFF EXCESS STAIN
der the microscope. T h e r e is a n o t h e r w a y t o p r e p a r e a s l i d e a t is a demount?
6. BLOT DRY
fi
1
of b a c t e r i a , s o t h a t yOU c a n 0 b s e r v e thern a l i v e . T h i s is c a l l e d t h e hanging drop m e t h o d .
T h e r e is a k i n d of t h i c k g l a s s s l i d e t h a t
h a s a little well g r o u n d i n t o its center. T h i s slide is u s e d t o set u p a h a n g i n g drop
mount.
Such
slides a r e
1. LINE RIM OF COVER SLIP WITH VASELINE
expen-
sive, so y o u w o u l d p r o b a b l y d o
best
if y o u m a k e y o u r o w n h a n g i n g
drop
2. ADD DROP OF CULTURE TO CENTER
apparatus. C u t a p i e c e of c a r d b o a r d e x a c t l y s i z e of a g l a s s How can you make your own hanging drop mount?
the
slide.
Y o u can d o this best by tracing the outline of t h e s l i d e o n
the
cardboard.
cut
Now,
^
W
,
BUILD A WELL OUT OF THREE CARDBOARD WASHERS
the cardboard into three equal lengths. W i t h y o u r p o i n t e d scissors, c u t a hole, n o bigger t h a n half a n inch, in t h e cent e r of e a c h of t h e t h r e e p i e c e s of c a r d board. G l u e the three pieces together,
4. TURN UPSIDE DOWN AND PLACE AGAINST COVER SLIP
o n e o n t o p of t h e o t h e r , s o t h a t t h e r e i s a single h o l e t h r o u g h all t h r e e . C e m e n t this c a r d b o a r d " w a s h e r " to the
center
of a g l a s s s l i d e . C o v e r o n e of y o u r
5. TURN RIGHT SIDE UP QUICKLY
finU = i ^ t = j
gers lightly w i t h p e t r o l e u m jelly — like Vaseline. H o l d i n g a cover glass in y o u r h a n d , s c r a p e t h e j e l l y off y o u r
SIDE VIEW OF SLIDE, WELL, HANGING DROP
finger,
u s i n g a l l t h e e d g e s of t h e c o v e r g l a s s , u n t i l t h e r e is a r i m of j e l l y a l l a r o u n d t h e e d g e s of t h e c o v e r g l a s s . P l a c e t h e
Picture-directions for preparing hanging drop mount.
glass o n t h e table, jelly-side u p . U s i n g y o u r p r o b e , p l a c e a m i x t u r e of a n d a d r o p of t h e
water
bacteria-containing
material you want to examine on
the
will b e h a n g i n g d o w n f r o m t h e
cover
glass. E x a m i n e t h e d r o p u n d e r t h e mic r o s c o p e , f o c u s i n g it c a r e f u l l y .
c e n t e r of t h e c o v e r g l a s s . H o l d t h e glass slide so t h a t t h e c a r d board washer
is u n d e r n e a t h
and
Perhaps, when you were looking at bacteria from
the
h o l e i n t h e w a s h e r is r i g h t o v e r t h e cent e r of t h e c o v e r g l a s s . L o w e r t h e s l i d e ,
What are the smallest animals in the world?
r i m of t h e c o v e r g l a s s . T h e n , w i t h
a
field
quick m o t i o n , t u r n t h e slide over.
A
one-celled
you
saw a large object swim across
a n d p r e s s t h e w a s h e r firmly o n t h e j e l l y
d r o p of t h e m i x t u r e y o u a r e t o e x a m i n e
h a y infusion,
your
your
of v i e w . T h i s l a r g e o b j e c t w a s a
protozoa.
animal
of
This name
the kind means
called
"earliest
25
•»K__i
easier
to
find
protozoa
and
a
little
h a r d e r to find bacteria. Also,
the
a m o u n t of s c u m s e e m e d t o l e s s e n . T h i s was because the protozoa were feeding o n t h e b a c t e r i a . T h e y i n c r e a s e d in n u m ber as they ate u p the bacteria. Protozoa
are
interesting
to
watch
under a microscope because they have so m a n y different f o r m s a n d t h e y m o v e a b o u t in m a n y different ways. Y o u c a n see t h e m
hunting
and
catching
their
f o o d , w h i c h is u s u a l l y b a c t e r i a , b u t m a y
The whips of flagellated bacteria help them to swim.
Foul water teems with harmful disease-causing bacteria. f o r m of a n i m a l s " a n d r e f e r s t o t h e f a c t that protozoa were probably the
first
CHRYSAMOEBA
a n i m a l s t o a p p e a r i n t h e o c e a n s of t h e
GONYAULAX
e a r t h h u n d r e d s of m i l l i o n s of y e a r s a g o . T h e y a r e still w a t e r a n i m a l s , a n d f o u n d in t h e seas, lakes a n d
are
streams.
A s i n g l e o n e of t h e s e a n i m a l s i s c a l l e d a
b e j u s t b i t s of o n c e - l i v i n g p l a n t o r a n i mal material
floating
a b o u t in the water
— o r it m a y b e o t h e r p r o t o z o a .
protozoan. A p r o t o z o a n , l i k e a b a c t e r i u m , is a
s e p a r a t e b i t of l i v i n g m a t t e r t h a t
T h e h a n g i n g d r o p m e t h o d is o n e of t h e
can
t a k e i n a n d u s e f o o d , g e t r i d of w a s t e s , move, grow and reproduce. There are t h o u s a n d s of k i n d s . M o s t a r e h a r m l e s s ,
b e s t w a y s of p r e p a r i n g How can you examine protozoa?
a slide for t h e examin a t i o n of The
main
protozoa. difficulty
b u t a few are harmful to m a n . A m o n g
w i t h t h i s m e t h o d is t h a t t h e d r o p p r o -
the harmful ones are those that
cause
vides the tiny animals with such a large
such diseases as malaria, dysentery a n d
ocean to swim in that they swim either
sleeping sickness.
a b o v e o r b e l o w t h e level o n w h i c h y o u r m i c r o s c o p e is f o c u s e d . O n e b i g a d v a n -
If y o u w o r k e d w i t h y o u r h a y What do the protozoa eat?
26
infusion
t a g e of t h e h a n g i n g d r o p m o u n t f o r p r o -
for several days, you
t o z o a is t h a t t h e w a t e r d o e s n o t e v a p o -
may have noticed that
r a t e easily, a n d y o u c a n w a t c h t h e tiny
it b e c a m e c o n t i n u a l l y
animals for a long time.
A n o t h e r w a y t o p r e p a r e a slide for
O n e w a y to k e e p the protozoa in place
t h e o b s e r v a t i o n of p r o t o z o a is s i m p l y
is t o t r a p t h e m i n t h e fibers of a p i e c e
t o p l a c e a d r o p of w a t e r f r o m a h a y
of t h r e a d .
i n f u s i o n o n a g l a s s s l i d e a n d c o v e r it
t h r e a d so t h a t the
gently w i t h a cover glass. W h e n obtain-
Flatten
ing the drop, p o k e y o u r medicine drop-
d r o p of w a t e r o n t h e s l i d e , b e f o r e y o u
p e r b e n e a t h t h e s c u m o n t h e s u r f a c e of
p u t o n t h e cover glass. T h e
the infusion.
form
T h e cover glass
flattens
t h e d r o p of
w a t e r so m u c h t h a t t h e r e is v e r y little
a
Fray
a half-inch fibers
piece
of
make a mat.
t h i s m a t , a n d p l a c e it i n
the
fibers
will
" n e t " t h a t will e n t a n g l e
and
hold, or slow d o w n , the p r o t o z o a in the water.
r o o m for the p r o t o z o a to swim u p a n d down. Once you have focused on one
You
may
see o n e or m o r e
of t h e m , i t w i l l u s u a l l y r e m a i n i n f o c u s for a long time. T h e m a i n d i s a d v a n t a g e of t h i s m e t h o d of m o u n t i n g is t h a t t h e water evaporates quite rapidly.
While
you are looking at a particularly interesting p r o t o z o a n , the slide m a y d r y u p right u n d e r y o u r eyes. Y o u c a n p r e v e n t this from h a p p e n i n g b y p u t t i n g a r i m of p e t r o l e u m j e l l y a r o u n d t h e e d g e s of
How do protozoa , ._ move about?
protozoa
move around under y Q u r microscope, and, , . unless y o u k n o w lust , , , w h a t t o l o o k for, y o u
m a y b e u n a b l e t o tell j u s t h o w
they
move. Some protozoa move through the w a t e r b y m e a n s of c i l i a a l o n g t h e s i d e s of t h e i r b o d i e s . S o m e p r o t o z o a n s h a v e a t o n e e n d a t h r e a d of l i v i n g
matter
t h a t is l o n g e r a n d t h i c k e r t h a n a c i l i u m . Ciliated bacteria have fringed hairs which vibrate.
T h i s t h r e a d is c a l l e d a
flagellum,
a Latin
The tsetse fly carries the parasite (left) of human sleepng sickness.
DIDIDIUM STYLONICHIA t h e c o v e r g l a s s , after
it is p l a c e d u p o n
t h e d r o p of w a t e r . Y o u w i l l find t h a t m a n y p r o t o z o a
are
simply t o o active t o enHow can you keep protozoa in place?
able you to get a look at them,
especially
when you are using high-power
good the
objective.
The anopheles mosquito, which carries the malaria parasite (right), transmits malaria.
word that means "whip." Some proto-
a half d o z e n r a g g e d projections
zoa pull themselves through the water
ing out from
by beating these whips d o w n to their
body.
stick-
t h e c e n t r a l m a s s of
its
sides. O t h e r s use t h e w h i p as a tail a n d p u s h themselves t h r o u g h t h e w a t e r in
Y o u m u s t w a t c h a n a m o e b a for s o m e
the same way you can push a small boat along b y m o v i n g a single o a r b a c k a n d forth
in t h e w a t e r b e h i n d
the
boat's
stern.
How does an amoeba move?
t i m e in o r d e r to see h o w it m o v e s . I n t h e first p l a c e , i t s p e n d s
a g r e a t p a r t of its t i m e resting, or, a t least, n o t moving. Secondly, an a m o e b a that
m o v e s very slowly. A s y o u w a t c h , you
y o u a r e l i k e l y t o find i n , . - . a h a y i n f u s i o n is o n e *
w i l l s e e t h a t a p r o j e c t i o n of l i v i n g m a t e -
called
is c a l l e d a pseudopod,
T h e only whip-bearing protozoan W h a t is a _ . Peranema?
Peranema.
You
rial slowly m o v e s
outward
from
the
m a i n p a r t of i t s b o d y . T h i s p r o j e c t i o n o r false
foot.
will r e c o g n i z e this o n e b e c a u s e it h a s
T h e n , y o u will see m o r e living
two whips, a long one a n d a short one,
rial s t r e a m i n g i n t o t h e false foot, w h i c h
a t o p p o s i t e e n d s of t h e b o d y . Y o u m a y
will
be puzzled to understand what
the amoeba
Peranema
makes
m o v e , w h e n its w h i p s s e e m
grow
larger.
Eventually,
will h a v e
mateall
streamed
of into
what was a pseudopod, and the whole
t o b e s t a n d i n g still. If y o u l o o k c l o s e l y
a m o e b a will n o w b e at t h e p l a c e
a t t h e t i p of t h e l o n g o n e , y o u w i l l s e e
w h i c h t h e p s e u d o p o d first r e a c h e d o u t .
that
it
is
vibrating
back
and
v e r y r a p i d l y . A l s o , Peranema
forth
is a l w a y s
c h a n g i n g s h a p e . S o m e t i m e s it l o o k s like a radish, sometimes like a bulging pot a t o . T o s e e Peranema
well, y o u m u s t
use a high-power objective a n d a rather d i m light. If
you
scrape
the
inside
of
to
your
mouth with a toothpick and make
a
s l i d e of t h e m a t e r i a l o b t a i n e d , y o u m a y b e a b l e t o see o t h e r w h i p - b e a r e r s . Seve r a l k i n d s live in t h e h u m a n b o d y , a n d a l m o s t a l l of t h e m a r e e n t i r e l y h a r m l e s s .
O n e of t h e m o s t c o m m o n k i n d of p r o t o z o a is a paramecium. What is a I t is s h a p e d s o m e t h i n g Paramecium? like a long slipper. Its b o d y is c o v e r e d w i t h c i l i a t h a t b e a t b a c k a n d forth very rapidly. Since there are h u n d r e d s of c i l i a o n t h e b o d y , a n d a l l are acting like tiny oars, the p a r a m e c i u m is m o v e d t h r o u g h t h e w a t e r v e r y r a p i d l y . A p a r a m e c i u m is a l s o o n e of t h e l a r g e s t of t h e p r o t o z o a . I t m a y r e a c h a d i a m e t e r of m o r e t h a n 1 / 1 0 0 of a n
Y o u r h a y infusion m a y yield a m o r e or
i n c h . If y o u s e e o n e u n d e r y o u r m i c r o -
less shapeless p r o t o z o a n
scope, it m i g h t b e i n t e r e s t i n g t o r e m o v e
c a l l e d a n amoeba.
This
t h e slide f r o m t h e clips a n d see w h e t h e r
protozoan has n o partic-
y o u c a n see t h e p a r a m e c i u m w i t h y o u r
u l a r s h a p e . S o m e t i m e s it m a y b e n e a r l y
n a k e d eye. T o d o this p l a c e t h e slide o n
r o u n d , a n d a t o t h e r t i m e s it m a y h a v e
a b l a c k b a c k g r o u n d , a n d shine a light
What is an amoeba?
28
directly d o w n u p o n t h e cover glass. T h e p a r a m e c i a will b e seen a s b r i g h t m o v i n g specks. Protozoa,
such
as
What is inside a protozoan?
the
amoeba
and
paramecia, are large enough not
so
only
that
can
we
study
their general form, b u t w e c a n e x a m i n e w h a t is inside t h e m . S i n c e e a c h p r o t o z o a n is a s i n g l e livi n g cell, i t p o s s e s s e s s o m e o f t h e c h a r a c t e r i s t i c s of
a l l l i v i n g c e l l s . I t is
sur-
r o u n d e d b y a m e m b r a n e t h a t h o l d s it together.
The
living m a t e r i a l
that
w i t h i n t h e cell m e m b r a n e is c a l l e d plasm.
If y o u e x a m i n e t h e
carefully,
you
will
see
is
cyto-
cytoplasm
that
it
looks
g r a i n y , a s if it w e r e m a d e u p of g r a i n s of c o l o r l e s s s a n d . I t i s t h i s g r a i n i n e s s that
enables
the
cytoplasm
in
the
a m o e b a t o s t r e a m i n t o its false
feet,
just as s a n d in a sack c a n b e m a d e t o flow a r o u n d b y m o v i n g t h e s a c k . W i t h i n t h e c y t o p l a s m is a l a r g e d a r k d o t . T h i s i s t h e c e l l ' s nucleus.
All the
m o v e m e n t s a n d a c t i v i t i e s of t h e p r o t o z o a n a r e d i r e c t e d b y it. I t is s o m e w h a t as t h o u g h the nucleus w e r e the
cell's
brain. Somewhere
in
the
cytoplasm
of
an
a m o e b a or a ParaHow do protozoa collect wastes and water?
mecium, you
will
see o n e o r t w o ( o r m o r e ) large
clear
circles. I n t h e p a r a m e c i u m , y o u
may
Peranema changes shape by contracting, expanding.
29
see a clear, s t a r - s h a p e d spot. T h e s e a r e
m e m b r a n e b e t w e e n t h e m dissolves, a n d
contractile
t h e f o o d p a r t i c l e is i n s i d e t h e a m o e b a .
vacuoles.
They move about
within the cytoplasm collecting
waste
materials a n d excess water. W h e n they
A p a r a m e c i u m h a s a t o u g h e r cell m e m -
r e a c h t h e m e m b r a n e of t h e p r o t o z o a n ,
very
brane, and cannot, therefore, p u t out pseu, , , d o pr o d s t o s u r r o u n d a . b i t of f o o d . I n s t e a d , t h e
small, b u t as it m o v e s a b o u t p i c k i n g u p
P a r a m e c i u m h a s a m o u t h a n d a gullet
waste materials
i n t o w h i c h n o u r i s h m e n t is t a k e n . If y o u
they suddenly contract a n d expel their b u r d e n o u t s i d e t h e cell wall. A f t e r this happens,
the
vacuole and
becomes water,
it
grows
larger.
How does a paramecium » •» t M g e t its food?
l o o k closely a t a p a r a m e c i u m , y o u will see a g r o o v e a l o n g o n e side, n e a r t h e
Also
within
the cytoplasm,
How does the amoeba eat?
you
p r o b a b l y see
will small
d a r k dots with lighter circles a r o u n d
them.
T h e s e a r e b i t s of f o o d t h a t t h e p r o t o -
f r o n t e n d . T h i s is t h e oral groove.
Focus
very carefully, a n d y o u m a y be able to s e e t h a t t h e o r a l g r o o v e is l i n e d w i t h cilia. W h e n a p a r a m e c i u m c o m e s u p o n food
particles,
usually
bacteria,
the
b e a t i n g of t h e c i l i a s h o v e t h e p a r t i c l e s CYTOPLASM SSSSSk/ * f t / ^W PSEUDOPOD
k
J
NUCLEUS / k
CELL
£
'~*'•••'irk
along the oral groove to a point near
MEMBRANE r
t h e m i d d l e of t h e b o d y w h e r e t h e r e is a t u b e . T h e o p e n i n g of t h i s t u b e is t h e
/
' " " - ^
mouth,
a n d t h e t u b e , i t s e l f , is t h e
gullet.
When
food particles reach the
lower
e n d of t h e g u l l e t , t h e y c o l l e c t i n t o a ball, a n d this ball, a l o n g w i t h a little
4
water, : %
VP
floats
into the cytoplasm.
You
see t h e f o o d as a d a r k d o t , a n d t h e w a t e r M \
i
i i FOOD PARTICLE
-
^
as the light circle a r o u n d the dot. T o g e t h e r , t h e y m a k e u p a food
vacuole.
S i n c e t h e f e e d i n g a c t i o n s of
protozoa
CONTRACTILE VACUOLE
The amoeba is a microscopic, single-celled animal. Its name comes from the Greek word for change.
H o w can you feed protozoa?
are so you
interesting,
may
want
to
p r o v i d e f o o d in orz o a n h a s t a k e n i n t o itself, a n d i t is i n t e r -
d e r t o w a t c h t h e m t a k e it i n t o t h e i r b o d -
e s t i n g t o w a t c h h o w t h i s is d o n e . W h e n
ies. P i c k off f r o m a c a k e of y e a s t a p i e c e
a n a m o e b a c o m e s u p o n a b i t of f o o d ,
a b o u t t h e size of t h e e y e of a n e e d l e .
it r e a c h e s o u t t w o p s e u d o p o d s t o sur-
M a s h t h e s p e c k of y e a s t i n a d r o p of
r o u n d the food particle. W h e n the pseu-
w a t e r . P l a c e a l i t t l e of t h i s m i x t u r e i n
dopods have curved completely around
t h e c e n t e r of a d r o p of w a t e r t h a t c o n -
t h e p i e c e of f o o d , t h e y m e e t . T h e n t h e
t a i n s p r o t o z o a . P l a c e a c o v e r slip o n t h e
30
The illustrations show how the pseudopods of an amoeba engulf a particle of food, until the food is completely inside the protozoan.
w a t e r . D i p t h e e n d of a t o o t h p i c k i n t o
fore it e n c o u n t e r e d u n f a v o r a b l e
r e d i n k a n d t r a n s f e r a s m a l l d r o p of i n k
tions.
condi-
t o t h e e d g e of t h e c o v e r g l a s s . T h e r e d d y e in t h e i n k will m a k e it easier for
Since t h e grass y o u used for m a k i n g a hay
y o u t o see t h e f o o d - t a k i n g a c t i v i t i e s . W h e n bacteria or protozoa
find
them-
selves in c o n d i t i o n s H o W
d0
baCteria
i and protozoa suspend life?
t h a t
they
a r e
° dl7, temporarily
Where do hayinfusion bacteria and protozoa come from?
processes, without actually dying. a c c o m p l i s h this, they s u r r o u n d
To
them-
dry, you m a y wonder
where
living
water-
creatures and
p r o t o z o a c a m e from after the grass h a d soaked for a few days. Bacteria
and
p r o t o z o a t h a t h a d been living o n
the
h a y - i n f u s i o n g r a s s b e f o r e it d r i e d f o r m e d
selves w i t h a v e r y t o u g h c o v e r i n g t h a t
spores and
protects them from completely
place. W h e n
drying
was
like bacteria
t o
suspend their living
infusion
cysts w h e n
drying
took
y o u p l a c e d t h e g r a s s in
out, a n d also from s u d d e n c h a n g e s in
w a t e r , t h e w a l l s of t h e s p o r e s a n d c y s t s
t e m p e r a t u r e . A b a c t e r i a in this condi-
dissolved.
t i o n is c a l l e d a spore, is a cyst.
and a protozoan
Spores a n d cysts are very light
A few days after you p u t the dry grass into the water,
a n d c a n b e easily c a r r i e d b y even t h e lightest breezes. W h e n a spore or cyst a g a i n h a p p e n s upon wet conditions, the thick covering
How do trie number of bacteria and protozoa increase?
a
scum
u p of
made
bacteria
appeared
in
dissolves a n d the b a c t e r i u m or the pro-
y o u r h a y infusion. F o r a few days, the
t o z o a n g o e s o n l i v i n g j u s t a s it d i d b e -
a m o u n t of s c u m i n c r e a s e d ,
thereby
31
I
The common bread mold, Rhizopus nigricans, irequently grows on old bread, and is magnified above
Molds,
Mildew,
S p r i n k l e w a t e r o n f o u r o r five s l i c e s of How can you grow plants on a slice of bread?
Yeast
B u d d i n g
terial p e p p e r e d with black dots.
This
bread. Wipe the d a m p
m a t e r i a l is t h e t h i c k g r o w t h of a p l a n t
side
c a l l e d common
of
these
across the
slices
floor,
tak-
bread
mold.
T o e x a m i n e this m o l d , place a small
ing care not to crum-
p i e c e of b r e a d o n t h e s t a g e of
ble the bread. P u t the
m i c r o s c o p e . Shine a bright light d o w n
b r e a d into a closet o r s o m e o t h e r w a r m ,
o n the m o l d . B e sure t h a t the light does
dark place. T w o days later,
n o t a l s o s h i n e in, y o u r e y e s a n d h i n d e r
t h e slices. Y o u w i l l p r o b a b l y
examine find
on
t h e m p a t c h e s of a w h i t e c o t t o n y m a 34
your
y o u r viewing. U s e the low-power objective to e x a m i n e the b r e a d m o l d .
N o t e t h a t t h e w h i t e c o t t o n y m a t e r i a l is What do molds look like?
a
tangled
mass
the
of
b r e a d b y m e a n s of t h e l o w - p o w e r o b -
is
jective, e x a m i n e it in a different
filaments.
This
called
mycelium.
a
Having examined the mold on
way.
S c r a p e s o m e m o l d off t h e b r e a d
and
T h e t h r e a d l i k e g r o w t h s a r e m a d e of liv-
p l a c e i t o n a g l a s s s l i d e . A d d a d r o p of
i n g m a t t e r . T r a c e o n e of t h e
filaments.
w a t e r a n d a d r o p of a l c o h o l . T h e n c o v e r
horizontally
it w i t h a c o v e r glass. L i g h t t h e slide in
f o r a s h o r t d i s t a n c e , t h e n it b r a n c h e s
t h e u s u a l w a y ; t h a t is, b y m e a n s of l i g h t
into several vertical filaments. O n
reflected u p w a r d from the
Y o u will see t h a t it r u n s
the
microscope
t o p of e a c h of t h e s e v e r t i c a l g r o w t h s is
mirror. First examine the mold with the
a b l a c k k n o b . T h e s e a r e sporangia,
or
low-power objective. T h e n use the high-
W i t h i n e a c h o n e of t h e s e
p o w e r objective. Y o u will see t h a t e a c h
spore
cases.
cases are a large n u m b e r
of
spores.
m o l d p l a n t is m a d e of m a n y cells. Y o u
burst
m i g h t e v e n b e a b l e t o see a n u c l e u s in
S o o n e r o r later, t h e k n o b s will
o p e n . T h e spores a r e so light t h a t t h e y w i l l e a s i l y float a w a y i n t h e a i r . W h e n a spore alights on some material the m o l d c a n use for food, t h e
that spore
o n e of t h e s e cells. I t i s p o s s i b l e t h a t a l o n g w i t h , o r ins t e a d of, c o m m o n b r e a d m o l d , y o u will find
an orange, black, green, or
pink
will g r o w i n t o a w h o l e n e w m o l d p l a n t .
mold
It was spores wiped u p from the
c o l o r r e p r e s e n t s a d i f f e r e n t s p e c i e s of
floor
that grew into mold on your bread. Directly
beneath
the
vertical
filaments
fila-
nourishment the mold plant needs
in
o r d e r to live a n d g r o w . Most molds are harmless to man, though few
may
diseases.
cause
One
d i s e a s e is
Each a
c o m p a r i s o n of t h e s h a p e s a n d c o l o r s of t h e d i f f e r e n t p a r t s of e a c h m o l d . H a v e you ever seen a whitish, p o w d e r y What is mildew?
material on shoes or leather j a c k e t s t h a t w e r e s t o r e d in a
a
your bread.
act like
roots by obtaining from the bread the
How are molds useful to man?
on
mold. Examine each one and make
ments are others that branch downward into the bread. These
growing
such
"athlete's
damp
place?
Or,
per-
haps, during a d a m p summer, you have seen the
s a m e k i n d of w h i t i s h
on curtains or fabric furniture ings.
Or,
you
may
have
spots cover-
seen
black
foot." S o m e m o l d s a r e useful, such as
streaks on sheets or pillow cases that
the ones which give
y o u r m o t h e r s t o r e d w h i l e t h e y w e r e still
flavor
to
certain
k i n d s of c h e e s e . B y f a r t h e m o s t
im-
damp.
B o t h the white spots a n d
the
p o r t a n t u s e of m o l d s is t o p r o v i d e t h e
black streaks were caused by
mildew,
basis for the d r u g s called
antibiotics.
w h i c h is t h e g e n e r a l n a m e f o r a g r o u p
These drugs have helped to
conquer
of p l a n t s v e r y m u c h l i k e t r u e
molds.
c e r t a i n d i s e a s e s t h a t t o o k t h o u s a n d s of
Mildews have a mycelium and sporan-
lives b e f o r e a n t i b i o t i c s w e r e d i s c o v e r e d .
gia. M i l d e w s not
S o m e antibiotics are penicillin, strepto-
leather a n d cloth, b u t they also destroy
mycin, and aureomycin.
m a n y useful plants, a m o n g t h e m roses,
only
stain
and
rot
35
SPORE CASE OF BREAD MOLD
Rotifers are tiny, multi-celled marine animals, and abound in fresh-water ponds that have become stagnant.
>
OOLINA
GLOBIGERINA
Radiolaria are marine protozoa noted for threadlike pseudopods. The related Foraminifera have pseudopods which protrude through holes in their shells.
lilacs a n d
willow,
plum,
cherry
p e a c h trees. T h e m i l d e w covers these plants with a mycelium through which it d r a w s n o u r i s h m e n t f r o m t h e p l a n t ' s cells.
This
destroys
these
RAGWEED A POLLEN A *Z
and
cells,
and
SPORES OF SCOURING RUSH Pollen are the tiny spores, or microspores, in seed plants. They are usually tiny specks of yellow dust.
t h e r e f o r e , kills t h e p l a n t . O b s e r v e m i l d e w p l a n t s in t h e
same
m a y have noticed that the yeast
h a d m a n y curious shapes. L e t us again
way that you observed molds.
observe yeast. A s before, mix a W h e n you were feeding protozoa, you made . L JJ. i yeast budding?
Jyeast
cells tiny
s p e c k of y e a s t i n a d r o p of w a t e r . P l a c e
of
a cover glass on the mixture. M a n i p u -
and water. A l -
l a t e t h e m i r r o r of y o u r m i c r o s c o p e s o
a mixture
t h o u g h y o u w e r e primarily interested in the p r o t o z o a ,
you
as to cut d o w n t h e light, a n d focus carefully o n t h e
yeast. 37
Y e a s t is a p l a n t . T h e r o u n d ,
or
A n o t h e r w a y i n w h i c h t h e b u d d i n g of
n e a r l y - r o u n d , cells t h a t y o u see a r e e a c h a separate yeast plant. T w o things that will p r o b a b l y c a t c h y o u r a t t e n t i o n imm e d i a t e l y a r e t h a t s o m e yeast cells seem
yeast How else does yeast budding differ from cell division?
t o h a v e l u m p s s t i c k i n g o u t of t h e m , a n d
cells
differs
f r o m m o s t cell divis i o n is i n t h e that
the
fact
new
cell
which grows
from
t h a t y e a s t cells a r e seen in c h a i n s . T h e s e
the b u d does not necessarily
t w o facts a r e closely related.
f r o m t h e p a r e n t cell. A l t h o u g h t h e p a r -
separate
e n t cell a n d t h e b u d d e d cell l i v e a s s e p a rate plants, they m a y remain
attached
t o e a c h o t h e r . A s b o t h t h e s e cells b u d in t u r n , a n d t h e b u d s g r o w t o full size, a chain
of f o u r
longer
chains
cells is f o r m e d . of y e a s t
Even
cells m a y
be
formed. However, the connection
be-
t w e e n t h e c e l l s is n o t v e r y s t r o n g , a n d , eventually, the chain breaks. If y o u s e a r c h a b o u t a m o n g t h e y e a s t c e l l s o n y o u r s l i d e , y o u m a y find c e l l s that have more than one bud. Yeast cells reproduce by a division called "budding."
When
t h i s k i n d of b u d d i n g t a k e s p l a c e ,
Y-
shaped chains m a y be formed. L i k e o t h e r cells, y e a s t p l a n t s r e p r o d u c e b y cell division. B u t i n s t e a d
of
dividing in t w o in the middle, a yeast cell g r o w s a b u d . T h i s b u d i s t h e l u m p
T h e r e a r e t h o u s a n d s of d i f f e r e n t k i n d s How are yeasts , , . _ useful to man?
t h a t y o u c a n s e e a t t a c h e d t o s o m e cells.
of yeasts. C e r t a i n , . , kinds are v e r y use;L ful t o m a n . T h e s e
J u s t a s i n o t h e r k i n d s of cell d i v i s i o n ,
a r e t h e o n e s u s e d i n t h e p r o c e s s of
t h e n u c l e u s s p l i t s i n t w o . O n e p a r t of
mentation.
the nucleus moves into the bud, and the
on sugar. A s they obtain their nourish-
other p a r t remains in the p a r e n t
cell.
m e n t f r o m s u g a r , t h e y c h a n g e it i n t o
T h e b u d is s m a l l a t first, b u t s o o n g r o w s
a l c o h o l a n d c a r b o n d i o x i d e g a s . T h i s is
t o b e t h e s a m e size a s t h e cell
from
t h e p r o c e s s c a l l e d fermentation.
w h i c h it b u d d e d . A s y o u w i l l r e m e m b e r ,
h o l is a v e r y u s e f u l c h e m i c a l .
t h i s is q u i t e d i f f e r e n t f r o m t h e t y p e of
When
M o s t yeasts live a n d
y e a s t is m i x e d
with
fer-
grow
Alcobaking
cell d i v i s i o n y o u h a v e o b s e r v e d . T h e r e ,
dough, the yeast plants grow on
t h e cell p i n c h e d i n t w o , f o r m i n g
two
s u g a r i n t h e d o u g h . T h a t is, t h e y e a s t
c e l l s e a c h h a l f t h e s i z e of t h e c e l l t h a t
ferments the sugar in the d o u g h to form
d i v i d e d . E a c h of t h e t w o n e w c e l l s t h e n
alcohol a n d carbon dioxide. This gas
g r e w t o t h e size of t h e cell f r o m w h i c h
forms b u b b l e s in t h e d o u g h , a n d
the
they came.
d o u g h swells. W h e n this h a p p e n s
we
38
the
say t h a t the d o u g h "rises." D o u g h t h a t
C a t c h a fly in y o u r h a n d . W h e n y o u
r i s e s b e c o m e s l i g h t a n d fluffy. W h e n t h e
s e e a fly r e s t i n g o n s o m e o b j e c t , s l o w l y
b r e a d is b a k e d , t h e h e a t d r i v e s off b o t h
m o v e y o u r c u p p e d h a n d close to
the carbon dioxide and the alcohol. All
insect. T h e n , with a sudden quick move-
t h e h o l e s a n d i n d e n t a t i o n s i n a slice of
m e n t , g r a b t h e fly. Y o u w i l l p r o b a b l y
b r e a d a r e t h e r e m a i n s of b u b b l e s of c a r -
h a v e to try this m o r e t h a n once. H o l d
bon dioxide.
t h e fly g e n t l y i n y o u r h a n d , a n d
then
p o p it i n t o t h e c o l l e c t i n g b o t t l e .
After
D i s s o l v e a t e a s p o o n f u l of s u g a r i n h a l f a How can you see , J „ fermentation?
tumbler of •» , , water. M a k e u p a r
fresh
t h e fly is d e a d , u s e y o u r t w e e z e r s
of
y e a s t a n d w a t e r . P l a c e a d r o p of
the
to
r e m o v e it f r o m t h e b o t t l e . P l a c e it o n a g l a s s s l i d e a n d m a n i p u l a t e it w i t h y o u r p r o b e so t h a t y o u c a n o b t a i n a
mixture
the
good
v i e w of o n e of i t s e y e s b e n e a t h t h e l o w p o w e r o b j e c t i v e of y o u r m i c r o s c o p e .
mixture on a cover glass a n d a d d a d r o p of s u g a r - w a t e r . M a k e a
hanging-drop
D o y o u s e e t h a t t h e w h o l e s u r f a c e of
p r e p a r a t i o n of t h e c o v e r g l a s s a n d i t s mixture. Leave the hanging-drop
t h e e y e is What does a fly's eye look like?
slide
in a w a r m place. A n h o u r later, p l a c e t h e slide u n d e r y o u r m i c r o s c o p e . y o u s e e t h e m a n y b u b b l e s of
Do
carbon
of
tiny
hexagonal
(six-sided) These
c a l l e d facets.
composed spaces?
spaces
are
E a c h o n e g i v e s t h e fly a
dioxide formed by the yeast's ferment-
s e p a r a t e i m p r e s s i o n of l i g h t a n d c o l o r .
ing action on the sugar?
In
other
words,
each
facet
acts
as
t h o u g h it w e r e a s e p a r a t e e y e . A n e y e m a d e u p of f a c e t s is c a l l e d a c o m p o u n d
Insects
eye. M a n y insects h a v e such eyes.
Obtain a small wide-mouth bottle with a lid. C o v e r t h e '.*
Where can you keep insects?
bottom
with
inside
blotting
paper, paper towels absorbent cotton.
or
Then
wet the material with household ammonia. ( D o not hold y o u r face close to the bottle when you are pouring ammonia, for it will c a u s e y o u r eyes a n d n o s e t o smart painfully.)
C a p the wide-mouth
bottle. N o w y o u h a v e a n insect collect o r ' s b o t t l e . If y o u p l a c e a n i n s e c t i n it, t h e a m m o n i a will q u i c k l y kill t h e specim e n w i t h o u t d a m a g i n g it a s might do.
swatting Insect eggs come in many different shapes and sizes.
39
, w
N o t e h o w the
fly's
eye bulges
out-
w a r d o n a l l s i d e s of t h e h e a d . I n f a c t t h e e y e s m a k e u p t h e l a r g e s t p a r t of t h e h e a d . B e c a u s e t h e eyes b u l g e o u t so far, t h e y e n a b l e t h e fly t o s e e i n a l l d i r e c t i o n s a t o n c e . T h i s is w h y it is s o h a r d
to
c a t c h a fly, f o r it c a n s e e a s w e l l b e h i n d a s i n f r o n t of i t s e l f . L o o k a t t h e fly's f o o t . N o t e t h e h a i r y How can a fly walk upside down?
pads
between
two
curving
claws.
Orion acrylic fiber, as seen under a microscope.
The
p a d s secrete a sticky s u b s t a n c e t h a t ena b l e t h e fly t o c l i n g t o s m o o t h s u r f a c e s . T h i s is w h y a fly c a n w a l k u p s i d e d o w n o n t h e c e i l i n g . L o o k a t t h e w i n g s of a fly. T h e " v e i n s " i n t h e w i n g a r e r e a l l y dried-up air tubes that connect with the fly's
breathing
organs.
T h e r e a r e m o r e k i n d s of i n s e c t s t h a n a n y o t h e r k i n d of a n i m a l . A s
insects
h a v e a n a l m o s t i n f i n i t e v a r i e t y of f o r m s and oddly-shaped organs, a
collection
of s e v e r a l d i f f e r e n t k i n d s w i l l p r o v i d e you
with enough
material
for
many
h o u r s of i n t e r e s t i n g m i c r o s c o p i c examiA filament of rayon yarn as seen under a microscope.
nation.
Fabrics You
may
already
H o w is cotton . . _ thread m a d e r
know
cotton
t h r e a d is m a d e f r o m ., .. , rp, the cotton plant. T h e fruit
p l a n t is a w h i t e
that
fluffy
of
the
cotton
material
much
l i k e a b s o r b e n t c o t t o n . T h i s is c l e a n e d and
spun into thread. B u t just
goes on in the spinning process? Nylon stocking weave as seen under microscope. 40
what You
c a n find t h i s o u t b y e x a m i n i n g a p i e c e
HOUSEFLY
, COMPOUND EYE
View more...
Comments