# Hematra Crystallization Final

January 11, 2018 | Author: Timothy Jones | Category: Solution, Crystallization, Solubility, Properties Of Water, Materials

#### Short Description

Hematra Crystallization Final...

#### Description

Arellano, Hannalissajous Cruz, Tiffay Grace Tan, Rose Marie

Hematra (Crystallization Homework)

1. A crystallizer is charged with 7500 kg of an aqueous solution at 104 degrees Celsius, 28.5% by weight which is anhydrous sodium sulphate. The solution is cooled. During cooling operation 5% of water originally present was last. As a result, the crystals of Na2SO4-10H2O crystalline out. The mother liquor is found to contain 18.2% by weight of anhydrous salt. Calculate the yield of crystals and quantity of mother liquor. Solution: Basis: 7500 kg of fed

Water present in the feed solution = 7500 x 0.715 = 5362.5 kg Amount of water lost during cooling (V) = 5362.5 x 0.05 = 268.13 kg Overall material balance: F=V+L+C 7500 = 268.13 + L + C L + C = 7500 - 278.13 L + C = 7231.87 (i) Balance for Na2SO4: F(xF) = V(xV) + L(xL) + C(xC) 7500 x 0.285 = 0 + L x 0.182 + C x 0.441 2137.5 = 0.182L + 0.441C 0.182L + 0.441C = 2137.5 (ii) Solving Eqs. (i) and (ii), we get C = 3171.43 kg L = 4059.70 kg The yield of crystals (C) = 3171.43 kg The quantity of mother liquor (L) = 4059.70 kg 2. A solution of NaNO3 in water at 40 degrees Celsius contains 48% NaNO3 by weight. Calculate the percentage saturation of this solution. Calculate the weight of NaNO3 that may be crystallised from 1000 kg of this solution by reducing the temperature to 10 degrees Celsius. Calculate the percentage yield.

Solubility of NaNO3 at 40 degrees Celsius is 51.4% by weight Solubility of NaNO3 at 10 degrees Celsius is 44.5% by weight Solution: Basis: 1000 kg of feed

Percentage saturation of NaNO3 solution = (48/51.4) x 100 = 93.38 Overall material balance: F = L + C 1000 = L + C L + C = 1000 (i) Material balance for NaNO3: 1000 x 0.48 = L x 0.445L + C 480 = 0.445L + C 480 = 0.445L + C (ii) Solving Eqs. (i) and (ii), we get C = 63.06 kg L = 936.94 kg Therefore, percentage yield of NaNO3 = (63.06/480) x 100 = 13.14 The percentage yield of NaNO3 crystals is 13.14. 3. A solution of NaCl in water is saturated at 15 degrees Celsius. Calculate the amount of NaCl that  can be dissolved by 200 kg of this solution if heated to a temperature of 65 degrees Celsius. Data:       Solubility of NaCl at 15 degrees Celsius = (385 kg of NaCl / 1000 kg of water)       Solubility of NaCl at 65 degrees Celsius = (372.65 kg of NaCl / 1000 kg of water) Solution: Basis: 200 kg of solution

Overall material balance: F=L+C Material Balance for NaCl: F(xF) = L(xL) + C(xC)

200 x 0.278 = (F-C) x 0.2715 + C x 1 55.6 = (200-C) x 0.2715 + C 55.6 = 54.3 - 0.2715C + C 55.6 = 54.3 + 0.7285C 0.7285C = 55.6 - 54.3 0.7285C = 1.3 Therefore, C= 1.784 kg. The amount of NaCl that can be dissolved if the solution is heated to a temperature of 65 degrees Celsius is 1.784 kg. 4. A solution of CaCl2 in water contains 62 kg of CaCl2 per 100 kg of water. Calculate the weight of this solution necessary to dissolve 300 kg of CaCl2 - 16H2O at 25 degrees Celsius. Solubility of CaCl2 at 25 degrees Celsius = (7.38 kgmol CaCl2 / 1000 kg of H2O) Molecular weight of CaCl2 = 111 Molecular weight of CaCl2 - 16H2O = 219 Solution: Basis: 300 kg

Overall material balance: F = L + C Material balance for CaCl2: F(xF) = L(xL) + C(xC) 300 x 0.3827 = L x 0.45 + (F­L) x 0.5068 114.81 = 0.45L + (300­L) x 0.5068 114.81 = 0.45L + 152.04 ­ 0.5068L 114.81 = 152.04 ­ 0.0568L 0.0568L = 152.04 ­ 114.81 0.0568L = 37.23 L = 655.46 kg.

5.A tank holds 10,000 kg of a saturated solution of Na2CO3 at 30°C. You want to crystallize from  this solution 3000 kg of Na2CO310H2O without any accompanying water. To what temperature  must the solution be cooled? Solution:

Na2CO3

Na2CO3

Saturated Solution 30 degrees Celsius

H2O

Saturated Solution T=?

H2O

10,000 kg initial state

Final State Na2CO3-10H2O 3000 kg 30 Crystals Removed

Solubility data for Na2CO3 as a function of the temperature: Temperature (degrees Celsius)

Solubility (g Na2CO3 / 100g H2O)

0

7

10

12.5

20

21.5

30

38.8

Because the initial solution is saturated at 30°C, you can calculate the composition of the initial solution: ( 38.8 g Na2CO3 / (38.8 g Na2CO3 + 100 g H2O) ) = 0.280 mass fraction Na2CO3 Calculate the Composition of the crystals: Comp. Na2CO3

Mol. 1

H2O

10

Mol.Wt. 106 18

Total Basis: 10,000 kg of saturated solution at 30 degrees Celsius

Mass 106

Mass. fr 0.371

180

0.629

286

1.00

F = ? kg

10,000 kg Na2CO3 H2O 0.720

Na2CO3 H2O

0.280

mNa2CO3 mH2O

Final Initia l 3000 kg Na2CO3 H2O

0.371 0.629

Crystals Removed

Basis: I = 10,000 kg Accumulation in Tank Final                                                         Initial                            Transport Out Na2CO3      mFNa2CO3      ­      10,000(0.280)       =               ­3000(0.371) H2O             mFH2O            ­      10,000(0.720)       =             ­3000(0.629) Total                F                   ­       10,000                  =               ­3000 Component                           kg mFNa2CO3                          1687 mFH2O                                5313 F (total)                                7000 To find the temperature of the final solution, calculate the composition of the final solution in terms  of grams of Na2CO3/100 grams of H2O ( 1,687 kg Na2CO3 / 5,313 kg H2O) = (31.8 g Na2CO3 / 100g H2O)

Thus, the temperature to which the solution must be cooled lies between 20°C and 30°C. By linear  interpolation

30 degrees Celsius ­ {[ (38.8­31.8) / (38.8­21.5) ] x 10 degrees celsius } = 26 degrees Celsius