HEI 3087-11 Standards For Air Cooled Condensers 1st Ed

February 7, 2023 | Author: Anonymous | Category: N/A
Share Embed Donate


Short Description

Download HEI 3087-11 Standards For Air Cooled Condensers 1st Ed...

Description

 

STANDS

R COOLE CONENSERS

FIRST EDITION

 

Heat Exchange Institute, Inc. PULICATION LIST TITLE

Standards r Steam Surface Condensers, 10th Editon 2006

Standards for Direct Contact Barometric and Low Level Condensers, 8 Edon 2010

Standards r Steam Jet Vacuum Systems, 6 Edon 2007

Standards r Closed Feedwater Heaters, 8 Ediion 2009

Standards and Typical Specications for Tray Type Deaerators, 8 Edon 2008

Performance Standard for Liquid Ring Vacuum Pumps,

4 Ediion 2011

Standards r Shell and Tube Heat Exchangers, 4 Ediion 2004

1300 Sumner Avenue Cleveland, Ohio 445-285 2162417333 Fax: 26-24-5 www

email:.heatexchange.g hei@heatexchangeog

 

STADS for AR COOLED CONDENSERS

FIRST EDI Copyright 2011 Heat Exchange Institute, Inc. 1300 Sumner Avenue Cleveland, Ohio 4415-2851 Reproducon of any porton of hs standard whou wrtten permsson of the Heat Exchange Insiute is stricly rbdden.

 

HEAT EXCGE INSTIUE, IN. AR COOLED CONDENSERS Btc Intntin Malto, NJ GEA P g c. Lewod, CO SX g Tchgs c Overlad ak K

ii

 

CONTENTS

Page

. . . .... ... .  .  FOEORD .. .. . ... .    . .    . . .   . ..   SCOPE ND PURPOSE  .    . . . .  .. . ... . ... .. .  . 1.0 DEFINTOS         . . . .  .    . .. .. ... .       .    2.0 SBOS & UNTS  .  . ..  . .   ..        . .      30

v 1 1  3

 400  4

GEEA OVERVIE / DESCRIPTIO DESCRIPTIO  OF O F AN ACC SYSTEM ... ... :  ... ... Denton Den ton ofan of an ACC .............. ..............   4  42 Major Components of an ACC System ..... ........ ... 

 4  4  4

 50

DESIG COSDETONS ....... ......... ..  Desgn Pressure and Temperature. Temperature........ .......... ....... ...... ..  5 1  Corroson Allowance .......... ..........  52  53  ArMoving Equipment Seecion Guidelnes Guidelnes..... .....  54  Air Flow Consderations ............... ................ .. ...  55 Fn Tube Cleaning Systems ............. .............

 5  5  6  6  7  7

6.0

 AR COOLED CODESER PERFORMCE OPERATON....... ........ . .  61 General Considerations.. Considerations.. . ...... . . .     . .... . . .. . .  .     .  6.2 Thermal Therm al Perrmanc ... : ................. ................... ..  Deaeration and Dissolved Oxygen . .. .     .  . . .. . . . . .                 .       . ..   6.3      . .. ..  . . . .. .... .... Condensate Suboolng   64  6.5 Cleanlness Facos, Foulng Factors, Factors, ad Perrmance Perrmance Margns  ... .      Hdraulics aulics      . ..     . ..  ... . .. . Steam-side Hdr  6.6 Pressure ure osses . .  . . . . .   . . .  .. .  . .        Arside Press  67  68  Ar nlet Temperature .. . . . .. . . .  . .. . . .... . .. .          . .. . .. .      ..   Auxilary Power Consumpton   6.9  610 Cod Weather Weather Perormace... Perormace .... . . . .   .    . .... ... o ad Operation . . . . . . . . . . . . ..... . . ..... .. ..     611 ow oad . ..  . . . . .  .   . .  . . . . .     612 Perrmance Cures . ......... .  ..      .   613 Perrmance Testing ........  614  6 14 Eects ofWind of Wind on ACC Permance. Permance. . .  ... .. . . . .. . . . . .  Eecs o Solar Solar Radiation  . .. . . .... .. .. . .        .     615  6 15

 8  8  8 ·  9 10 10 11 11 12 13 13 14 14 14 14 15

 70

 STRUMETA STRUMETATION TION AND COTRO COTRO. ....... .............. ........ Recommended nstrumentaton nstrumentaton.. ... ..... .......... ......  7 71  ACC Contro and  72 an d Freeze Protecton Considerations ..... ...... . . .  .     . . ... Selection ofNumer ofsolato Valves  ... .   73

1 5  

 7 4  7  75

Drain Pot Capacty . . . . ... ..  .      . ... .. . .. . .. .. ...  Condensae Tank Capacity   .      .. ...... . . . . . ... .

17

COECTIONS TIONS ... ........ ............ ........ . SERVCE COEC General Consideratons .......... ..........   81 . .......... ......... ... .....  822  8 Flow Data  Connecton ocatons ocatons .... ...... ... .  3    8 . 3 .... .. Connection Design Guidelnes ...  8 . 4   Turbine E Exhaus xhaus nterce  ....  ....  ...... .. .... . Steam    8 . 5   ............ ............... ... Steam Turbine Bypass Gudeines   8 86 6 .. ... .  Feedwaer Heater Consderaions    8 . 7  

1 7

 80

ii

15 16 16 1 7  

1 7   1 7  

1 7  

18 19  200  2  22

 

CONTENTS 

NTIG QPMT CPACITIS  .... .  . .... ..... .... ...... .... .... . Venting Reureme Reurements... nts........ .  .. .. ..  .... ..   ...  9.1  9 .1   Desgn Suction Pressure . ..... ..  . .... .... ..... ....  92 Design Suction Temperature  . ..... .... . ...... ............. ...  9.  9 . 3  3    9. Calculaton ofWater ofWater Vapor Load Component... Component....... ..... ... .........  Mnimum Recommended Capacities   . .... . .... .. .. ......  9.  9 . 5   Rapid vacua vacuaton ton (Hoggng) quipment . . . ..   . ..    . .  9.66  9.

 23

1 0. 0.00

 ATMOSPHRIC RIF DVCES.. DVCES.. ..  ...  . ... ... . . .... .... Genera 1 0 011 .. . ...  .  .... ... ...... ..... ...... 102 Vacum Breaker Vaves .. Device e.. .         .  .......  1 03 Rupture Devic

 29  29  29  29

1.0

INS PCTION, QULITY ND FID INSTAATION ........... INSPCTION, ............ . 111 Leaage Testing... Testing......... ....... . : ....  ...... 112 Inspection and Quality Quality of o fWelding .............. ........ ...... 1133 Surce Preparaton Reurements .. 11 ........... .......... . 114 11 4 Panting Coatng an Panting and d Corroson Prot Proteection ction· ................ ..................... .....  115 11 5 Quality Assur Assurance ance ........... .................. ....... rction Advisor Duties Duties ........... .................. ........ . 116 117 rection Cleanliness  ....  .  .   .  ...... .. . . Posrection Walkdown... Walkdown...    .. .  . .  . .....  118

 90

 20

COMMISSIONNG. . .    COMMISSIONNG.   .  . .... ...  .. .. ...   ... .. . 1 2.1 Cold Comissioning .  .. ... ..         . . .......... .. .. ..... 1 22 Hot Commissioning .. .. .. ..... .. ........ .  1 2.3 Duties o a Commissioning Commissioning Advisor ....... .. ... ......... .. .. .  

 2 3  3  

 23  2 3

 23  23  2 5  

 3 0  3 0

 3 0  3  0    3 0    31   31  3 2    2    3 2  3 2

 32  33  33  3 3  3  

 3   3 4  

APPENICES

 Apendx A  Appendix B  Appendx 

HI ACC Data Seets ...................... ...................... Conversion Factors .................................... .................................... .  ACC Troubeshootin Troubeshootingg Gudelines ..................... .......................

 35  37  38

Table 1 Table 2

Typcal Corrosion Aowance Values .............. ............... .. Ratio o o  the Actual Non-Condensable Non-Condensable Load Remoed From the System

6

Table Tabl Table Table Table Table Table

to Design Capacity................... Capacity Prerred Locatons......................... ofConnections sually Instaled on te ACC System ...... ...... .... Typcal Alowabe ozzle ozz le oads ..................... ................. ....... .... .. One L Exhaust Casng ................. ..................... ..... Two LP xaust Casngs ................... ...................  Tree P Exhaust Casngs .......................... ........................... Vacuum Breaker Size r ACCs ................... .................... Recommended Acceptable Acceptable Preparatons of Components and Assembles Built n Manuctures Faclites .......................... .............................. ......

18  22

TALES

9

3  5 6 7 8 9

 2 5

 27  28  29  311  3

FGURES

Fgure 1 Figur 2

 AFram Air Cooled Condnser Condnser .................... ......................... ......  Ar Cooed Condenser Bundles Bundles .................. ..................... ....

iv

4 

 

gure 3 gure 4 gure 5 igure 6

 Air net Bockage Consierations ..... ...... .    ACC Operating Operating Characterstic ........ . ......... ... .  Recmmended Vacuum Steam Velocity Limts (Impeial Unts)    . Recommended Vacuum Steam Velocity Lmts (SI Unts . .. . .

igure 7 igure 8

 ACC with Recircuation Recircuation... ... .  ACC with net A Fow Reductio Reductio  ........ ........  ... ...  

u

7 8 11 11 14 15

 

FOREWORD

The rst diton Standards fr Air Cooled Condnsers has been developed by te Ar Cooled Condenser Section o the Heat Exchange Insttute Inc. he technica inormation in these standards combnes present industry standards typical Purcaser requiremens, and Manuact Manuacturer urers s experience.In experience.In additon, te standards outlne the important desgn critera r air cooled condensers These standards provde practical nrmation on nomencature, dimensons, testng, and perrmce. Use o te standard will ensure a minimum o misunderstanding between Manucturer and Purchaser, and wil assist in the proper selecton o equipment best suited to the requirements o te appcation The publicaton o the rst edition o Standards r Air Coold Codensers represents another step in the Heat xchange Institute's Institute's continu continuing ing program to provide standa standards rds which refect the latest techno techno logical advancement in thefeld o heat exchange equipment. he Standards r Air Cooled Condensers are continally reviewed reviewed by the ecnical Commttee at a t scheduled meeting under the directon o the r Cooled Condenser Section Suggestions r mprovement o this standard are welcom and should be sent to the Heat Excange nstitute, nstitute, Inc Inc,  30 3000 Sumner Avenue, Aven ue, Cleveland, Cleveland, Ohio Ohio 4 4 5 , or va teleph telephone one the HEI at he@eatexchange.org Addtional 21 62 4 1 7 333, 333 , v va a  ax ax at 21 6-24  -0 10 5, or email ema il at nfrmation, such as tech sheets, member company proles, membershp inormaton, and a complete isting o al HE Standards, can be und at wwwheatexcange.org

ui

 

1.0 SCOPE AND PURPOSE

Tis tandard covers te specication and design considerations along wit te perrmance nd opeationa issues ssociated wit Air Cooed Condensers ACC) r power pant applications. In addition genral eld installation and commission ing practices will also be discussed

conditions suc as terma perrmance eects in te summer deadzone rmation and eezing in te winter

Tis tandard wi address cmmon operational problems experienced during extreme ambient

twostage steam condensers predominanty utilized in vacuum power plant appications

Tere are many ierent types of ACCs designed r varios seices Tis tandard appies only to

20 DEFITNS

29 B F  The are esured at te ce side of a budle The len of te bundle is equal to te length of the tubes excluding the ube seets Te with correspods to te width of te oral air ow plane on a per bunde basis

21 F art of the steel structure above te n deck i te shape of te letter A tat ay support te heat exchager bundles Atoug tis is te most coon couratio alternative bunde arraeents re feasible (ie horizotal vetcal, Vae etc

210  allest subdivisio i  ACC, soeties rerred to as odule which ca nctio as an

22 t P The pressure measured o absolute absolute zero  ic gA  br. 23 R R  St  syste to reove o-condesable gases ad maitai the capbiliy of the ACC The airrmoval syste ay contain additioal componets to support the opertio of a vacuu daerator

independent unit wth regrd by to air andexterior steam ow; it is unded eerally either walls or patition patitio n wlls Each cell may ave oe or ore as although typicl the uber of ans per cell is ite ited d to oe 211 t   ollects the condenste o the ed tube budles and conveys the uncodensed steam om the rst stge to te scod stge budles

24    C A eat echger usg abiet air as te heat sink to bsorb het directly o sea at vcuum codtios codensin te stem ad recoveg the condese as would be typiclly usd in an electric powergeneratig sttion.

212 t /R A vessel t approiately the same pressure as the ACC that collects condesate retug o the eat trasr suraces system dras and akeup water t is equivalent to the hot well of a ste suface codeser

25    Ht 'e eiht om gade level to the a inlet o bottom of the a rings

213  P P  The absolute static pressure of te condensing stea at a dened location. 214  St t t The saturatio teperature coresponding to te absolute static pressure of te condensig stea at  dened location

26   t t  Te dry bulb teperature of the ar enteri the ACC includig the eect of rcirculation n/ or added et sources 27 2 7 B P Te absolute value of the static pressure t the prescribed locatio ypically at or ear e stem turbie ehaust ange at a t which desig and guaranteed perorace are to be achieved

215 Dt A ass transr device tht reoves reo ves dissolved dissolved nocondesbles o te condensate and/or keup wter

28 B  et ecager element eleme nt composed of a set of ned ubes hrin coon tube sheets

1

 

227 Ra A condtion in whch a porton of the ACC's wa dschage a eentes the a net aong wth esh ambent ai ts eect is an eevation of the aveage a inet tepeatue compaed wth the ambent dy bub tempeatue 228 R CC R) Goup of ces served by a common stea heade t s aso eed to as a "steet 229 S Sa C ACC ce wth the steam and condnsate owng n counte-ow; the second stage c coects the non-condensabes and s connected wth the aeova syste at the top and the condensate heade at the boom  s aso efeed to as a ephegato o eu ce. 230 S R A mechanca device incopoated beween the drve and the n, desgned to educe the speed of the drve to an optu speed  the an A speed edu�er c be eithe a geabo o a Vbet. 231 Sea D D Se Conveys the ow of sta om the ow pessue

216 Da P A vsse that is an intega pat of the steam duct ocated at the owest point and coects the condensate o steam duct Atenativey, a sepate coecton vesse can be uted wth a gavty dain connection at the ow pont of the stea duct 217 Ea Sa  Ra Tota mass ow rate of the steam etng the ow pessue stea tubine ehaust 218 E  a The aveage dy bub temeatue of the ai eaving the heat ehange bundes 29 a  e e  The aveage air net veocity noma to the bunde ce 220 a D oizonta pane ocated at the top of the ACC AC C sbstctue with access to the ns 221 F F  Sae Ce CC ce wth the stea and condensate owing down concuenty the st stage bundes ae connected wth the steam heade at the top and the condensate heade at the botto It s aso efered to as a Ko Condense ce 222 H Se The poton of the a-emova system used duig statup to emove ar om the ACC bee admttng stea 223 H Se The potion ofte of te a emova syste dedcated to contnuous emova of noncondensabe gases o the top of the second stage bundes 224 I eea eeae e D OD The dence between the condensing steam tepeatue at the ACC iet and the ai inet teperatu. 225 L a  ae ae De LD) nce the condensng pocess n an ACC s not sothema because of the sigicat steasde pessue dop nvoved, a epesentative vaue  the MT can be dened as the tota heat duty of condensaton dvided by the puct o the ovea heat tansfe coecent utiped by the tota aisde heat tasr suce aea 226 P e/S The aea between a pimay ACC suppot coumns pected at grade eve

steam tubne eaust eaust to the bundes. The duct may incude epanson joints byass spages, dain pot, bach syses (ises) and isoaton vaves. 232 Sa Ha Conveys the steam o the ises to the net of a st stage bundes n an ACC ow 233 Sa Qa The mass action of dy ad satuated stea in a satuated wate/stea mtue. A stea quaity of zeo ndcates % condensate, whie a stea quaity of  indcates % dy ad satuated seam 23   Ha  S a The tota aea of the outsde heat tans suce posed to ai. 235  Ea The d nteace betwen ow pesse steam tubine the ACC steathe duct. 23  Ea e ee back pessue. 23 Wa The vetica peimete wals above the an deck, whch tycay extend to the top of the tube bundes to minmize potntia ecicuation and shed the heat tans suce om wind eects

2

 

3.0 SYMBOLS & UNITS

Abreviato

Name

Typcal Uns

FV

Fu Vauum

Hg, (a (a) )

Prt,ins

P

Iaed Moo Powe Fa Sha Powe

h (kW) h, (kW)

. c� c�i i 

Deg A e emeaue Mmum A Ie emeaue

"F, ( °C)

AIH

A Ie egh

 (m)

Q

Hea Loa� Oea ea afe Coee See

Bu/h (W)

Uve

A M E

F (C)

A-e ea afe Sufae Aea

Bu/2 h °F, (/ (/m m K)     (m )

ogahm Mea emeaue Deee

F (C)

2

ea Exhage Efeee Ma Fow Rae A

/e, (kg/e)

C,a

S ea A

Bu/ F (J/kg K)

I

I a emeaue Deee Ie Seam emeaue

F (C) F (C) F, c·>

m a'

Tslam,i Trn1t Tr fT.1, m"

h;  ot

h m vn vnll

h_ DO   w

MW P P A w.

K PA

Ie A emeaue Chage  emeae of he A Ie Ma Fow Rae Ie Ehay

F (C) /e (kg/e) Bu/ (kJ/kg) /e, (kg/e) Bu/ (kJ/kg) /e (kg/e)

Oue Ma Fow Rae hay Coeae Ma Fow Ve Ehay Ve Doe Oyge Foug Fao Oea ea afe Coee New a Cea Wae Vao oa Moeua Wegh, NoCoeae Sauao Peue of Seam a Mxue emeaue oa Peue of Mxue Mmum Reque Fow Aea

Bu/ (k/kg)  h  F/B (mK Bu/ h F, (W/m K) / (kg/kg) g/mo a (aa) a (aa) ( ) (/h)

Dhage Fow Rae Fow Coee Coee Reeg Peue

a

3

 

4.0 GENERAL OVERVEW / DESCRIPTO DESCRIPTON N OF AN A R COOLED CONDENSER (ACC) (ACC) SYSTE SYSTEM M 4 1 De Den nt tn n of an ACC

An ACC is a system that conveys exhaust stea to an array of heat the exchangers condense th steam by rejecting heat to that abient air. The mthod o cooling is direct heat exchange because the heat is transrred o the primary source (exhaust stea) directy to th� utmate cooing meda (ambient air) The ACC cn use natura dra or mechanical dra (rced or induced) to drive ambient air across the heat xchange surce (tube bundes). Te most comon design is the A-Frame rced dra dra arrangement arrangement as seen in igure No. 1.

----• ) cn cnde dens nsabl ables es o ott nndensabes out

Fgre 2 AR A R COOED CONDENSER BU NDES

Vndwal

esee bundes 422.1 First Stage Stage Bundle  es are connected connected to the steam header hea der at the top and condensate e!der at te_bQtom. The steam ows concurrenty through th tubes o the rst stage bundes, bunde s, where steam and

A Moving System

Fan ec

condensate ow in th are sae drection By design, steam veocities maintain maintained ed high enough to continuay sweep nonondens abe gases into the second stage bunde via the condensate header. Condensate s aso coleced within the condensate hedr and drained. The rst stage bundes typcay condense 6090% o the tota stea through the ACC

Supp Sture Mi t D

Figre 1 A - FRAME AIR AIR COOLED COOLED CONDENSER

42 Ma Majr jr Cpnents C pnents  an ACC Syst System: em: 4222 Secnd Stage Stage Bunde  he second second

 A typica typica rce rcedd dra airmoving system system consists o the owing owin g coponents: • Fan  Ax Axia ia ns push push ambien ambientt coolng coolng air across the extended surce o the n tube bunde to transer the heat om the condnsing steam within the tubes

stage bundles condense the rmaining stea and coect noncondensabe gases at the top o the bunde. These bundles are attached to the condensate header at the bottom and have ar remova headers at the top r noncondensabe extraction by the air remova sysem. Ste ows countercuently through the tubes o the second stage bundles, where the steam and noncondensabes trave up and condensate ows down down into the condensate header.

421 AirAir-Mving Mving Syst System em

Mtr  Eect • Eectric Eectric ric motors motors drive drive the n • Speed Reducer  The gearbox or V bet reduces the rotationa speed o the n and provides the n with th required torue and sped. • RTh RThe enrin nringisa gisacyindr cyindricastruc icastructure ture that surounds the n in order to optimize n perrance. It s typcally constructed o steel, berglass or poypropyene.

 The support structure s typcaly an arrangement o coumns and bracng that uppots the ACC coponents at the proper eevaton abov gade

4.27 4.2 7

Supprt Sup prt Structure

ower n 42.8 Fan Deck  The n deck s the ower

422 Bundes  A

bunde conssts o multipe nned tubes weded into int o the tubesheets at ethe etherr end. There are two types types o bundles rst and second stag stag condensing condensin g bundles

penum boundary r the airoving system

4

 

S   Dtt St St  The stea steam m 29 S distributon system consists of the llowing primary components: D   The man man steam duct • M St D interces with the steam turbne and serves to convey all eaust steam to the steam distribution network The main steam duct is

bundles. The nction of the windwal is to reduce te negative wind eects on the an air ow and unirm heat transr, as well as to mnimze potental r warm air recirculation.

also dsigned to provide connection ponts r steam turbine bypass mscllaneous vents, drains, low point drain pot, etc  S D M  The steam dstrbution manild s _used to dstribute steam between te main steam duct and the steam headers Ts manild includes vertical ducts rerred to as risers The risers wll generally ave expansion joints to accommodate te thermal xpansion.  St H  The steam steam ader sees to convey stea between te manilds and the rst stage bundles of an ACC row. Expansion onts may also be required in te steam header to accommodate termal expansion.

s rmed within the ACC ran pipng is routed om the condensate eaders to the tank Typcally, the condensate tank s located beneat the ACC and supported at ade level.

2           Te condensate tank serves to collect te condensate that

212   St St  The prma prmary ry purpose ofthe ofthe ar removal system is to extract any non-condensable gases that accumulate at te top of te second stage condensing bundles Air removal systems are typcally either a twostage steam et air eector eector (JAE) ( JAE) or luid l uid ring vacuum pump (LRV) system Alternatively, ybrid systems may also be employ employed ed Typcally, te air removal system also contains a hogging system to rapidly evacuate the ACC volume r startup

420   Wndwals are generally installed around the perimeter of the ACC and extend om te an dec to the top of the tube

5. 0 ESI ESIGN GN CONSDERATIONS

At certain locatons of the steam duct, te local temperature may exceed the maximum design temperature (at te bypass connections, r example), and the supplier typcally imposes a lmit on the enthalpy of the bypass bypass steam steam entering the duct A maximu maximum m value value of  7 Btu/lb (7 kJ/k kJ /kgg  is typical. typical. Te value of  7 Btu/b (7 J/kg) may result in a steam temperature >  F (   C. C . owe owever, ver, experen experence ce has has proven proven that

 D D  P P  t t 511 The maximum desig design n pressue is te maximum pressure specied by t ACC supplier as a crterion r ACC design The mamum design pressure is not the same as orating pressure; it is somewhat ger than te operating pressure r all operating conditions. Althoug te maximum and mnimum design temperature and pressure could also be specied by the purcaser, the maximum limits are typically determined by the ACC tub technology For sngle row tube technologes, the mamum desg pressure of the ACC is typically set at  psig (. barg.

this is a in good practical upper limit andwen typically results acceptable temperatures te ACC is operated undr vacuum conditions. Te desgn temperature s primarly used r selectng materal suitability and thermal expansion calculations

e minimum desgn pressure r ACCs operatng below atmospheric pressure s ll vacuum (FV.

The desi pressure is used r te design of steam ducting tanks and, ruptur discs, among other equipm equipment. ent.

The desig temperatu temperature re is typica typically lly  °F    ·)

5

 

motors normally hae a seice sei ce ctor cto r of 11 5  Classinsulatio Class insulationn with a Cla ClassB ssB temperature rise

Corrosion rosion Allowance 5.2 Cor

Corrosion allowance is the incremental material thickness aboe what is required to meet th structural anor process requirements A corrosion allowance is recommended r all surces exposed

or stan standar dardd nois noisee applica applicatio tions, ns, 1 8 0 0 rpm, sinle (with th or without without VDs) or two speed sinle speed (wi windi wi ndin n mot motor orss (1 8 0 0/9 0 0 rpm) rpm) can can be used used

to the process uid as per Table 1

Control of turbine back ressure and and/or /or eeze protection wll determine whether sinle speed, two-speed motors or VDs ar required in order to proide a sucient number of control steps

Table 1

TYPICAL CORROSION ALOWANCE VALUES

ACC Equipment Dg b �p k

cal Corros I Typ Allowance Valeson 1 mm 0m 3m 3m

n the eent VFDs ar used, the motor should be suitable r such application Horizontal motors mounted ertically are typically used r ACCs desined in accordance with NEMA NEMA B

53 5 3 Air-ovng Eqpment electio election n Guidenes

rated ed motor power powe r shall be eater tan t an the h rat equired motor output power at the desin point n accordance with th lowi equation:

The air-moin equipment of an ACC consists of ofa

 0.. 9 7 ) X ( 27  3  3 + Tdesi )/( 27 3  T i  i  mot,slsl . (f,sh /  0 Pmot,

an, speed reducer and motor 531 Fan Selecton  irst, the n n is selected; axial ow ns ar used r ACC applications The duty point of the n is detemned by the required air ow rate and correspond n n static pressure in order to meet the thermal capacity of the ACC or lare siz ns (dameter .  28 , a mnimum of e an blades is recommended with a maximum tip spe tha thatt should should not exceed 6 0 ms ( 1 2, 0 0 0 m m The an an sha power p ower serves as the basis r r determinin determin in the th e motor rat ratin inThe n rotati rotation on speed is used in combination with the motor speed to determine th sed reduction ratio

and T i n  C  wih T Where T is the mnimum inlet ar temperature r which one ofthe motos is expected to be at ll speed  this alue alue is typica typically lly 5  C or an aessie motor selection and hiher desin bient tempera temperatures tures T may be increased up to 10 C Athouh the drien load may exceed the nameplate alue at temperatures below this point this is normally acceptable to the motor suppliers due to the additional coolin aailable. Conrmation should be obtained om the motor supplier this applies only to rced dra con rations with the motor installed in the cold ambient air stream

deag 

 

° m 

m



°

 ypi ypical call l the speed reducers are helical, multi-reduction paralel sha earboxes.Vbelts earboxes.Vbelts can also also be used on smaller installations The sece ctor r speed reducers (eabox or belt shoul shouldd be   2  2.0 .0 based on the motor nameplate power r sinle and multised motors and  17 5 r ariable applicationsThe thermal ratin equency drie applicationsThe of the earbox should be 10 at the maxmum air temperature based on the motor nameplate powr Possible accessories r eboxes are listed below • Backstops  Oil pumps (sha drien or electrical • Oil pressure/ow switches • Oil heater & themostat • Input couplin 5 33 pee peed d Rucer eecto eecton n

Aditionall fa selection parameters: Aditiona

•  Air ow marin • ressure margin • an coerae • an blade tip clearance • Operatin and natural equency of an blade • an blade loadin • Low ambient temperature hardware • Viration imits • Stati Staticc eciency ecien cy • Wind eect on the n capacity • an ocation with respect to obstacles • ose limitations

,

Motor election  yp ypica ically lly 4 6 0V 0V// 3 phase/6 0 Hz, NMA, TEC motors are used r phase/6  ACCapplications up to and includin 25 0 hp hpuch 5.32

6

 

Equpment pacement and obstaces undeneath and besdes the ACC sha be coodnated wth the manuctue manuctue  • Eectca o othe budns • Condensate tank and vacuum deaeato • A emova equipment • Condensate extacton pumps

54 Ar Flow Consideration 54.1 Coon a fows nto the ACC ns va the

a net net n most cases some o the a net n et aea w be bocked by obstaces e the steam duct, othe equpment o o  bu b udngs dngs ven i obstaces obstaces ae not ocated unde the ACC o at the a net, these can st be consdeed bockae

•• Cabe Othe tays heat exchanes • Othe obstaces

 As a ue o thumb obstaces that that  beow a 4 5 degee ne onatn at a pont equa to 1 a net heht AH) away om_ om_ the ACC w have negigbee eects on negigb o n the a a  w to the ACC ACCAny obstace that extends above ths ne sha be consdeed n the manuctue's desin

55 Fin Tube Cean ng Sysem 55 The purpose o a n Tube Ceann System CS) s to cean the outside heat tans sufce n such a way that the thema capacity o the ACC s estoed cose to the ona capacy Extena ung o the heat tans sufce by abone patcuates can signicanty educe  educe the pemanc o the the ACC. ACC. Because the extent o extena ung s hghy hgh y dependent on oca envonmenta condtons the equency o ceanng w vay with the envonmenta condtons. At a mnmum, the  ACC shoud be cea ceaned ned once pe yea typca typcay y bee the wam season stats

Fige 3 AR NLET BCKAGE CNSIDERAT CNSIDERATION IONS S

542 To mnimze warm a eccuaton t s

552 The n tube bundes ae ceaned usng

ecommended that the aveage a veocty at the ACC the  ACC outet be equa to o eate than the t he aveage a veocty veoc ty at the ACC net, wth both the aveage a net and a outet veoctes based on ee ow aea

hh pessue wate; an opeatn pessue o at east ea st 7 5 0 ps s ecommended Hi Hihe he pessues pessues can esut n a moe eectve ceann and educe cean tme and wate consumpton. The quaty qua ty o the wate  the n tube ceann system shoud be spece sp ecedd by the ACC manuc manuc tue to avod cooson and scang o the outsde outs de heat exchange exchan ge suce

In addton t s ecommnded to mt the aveage a net n et veocty ve octy to 5 ms ms based on the ee ow aea) and shou s houdd be seected to to pomote unm a dstbuton to a fns

553 Deent n tube tub e ceanin ce anin systms ae on

the maet and can be cateozed by the eve o automaton automaton o th thee ceann c eann devce

543 The tota n statc pessue sha

consde the own osses: a cceeaton aton and tunn • A net accee

553 Manua fn tube canin systems

bockae • Fan uad net be shape • Fan bdge bocae • Penum dschae • Bunde • Dectona chanes • Dschage oss • Natua daf coecton • A net ne t and ai oute outett ouvers  appcab appcabe) e) • A net ad a outet nose sences ( appcabe)

consst oon one o sevea spay heades mounted a suppot that uns alon both sdes o the A-ame Because thee ae no motoed parts, the spay headers must be moved manua y. 5532 Sem automatc n tube ceann systems have a educed numbe o spay nozzes mounted on an automated spay caae that taveses the bundes Some degee o manua oeaton s  s equed wth ths system

t is ecommended that every ce sha be patton ed on the pattoned th e an dschae dscha e sd s de

7

 

CONDENSER SER PERF ORMA NCE / OPE OPERA RATION TION 6.0 AR COO LED CONDEN

6. 1 Genera Generall Consideatons Consideatons

The genera heat transfer equaton are

The errmance of an ACC cannot be exactly redicted under all ossble oerating conditions. Consequently or aroximate tabulations excet of ACC errmance datacures are only r one secic condition termed the Desgn Pont" Perrmance chcks should be mad only when the system has been stablized and eroducble vaues are attain attainabe. abe.

Q = 1 1 LM Q

UA

= E  ;, ;,cp cpI ITD TD wi  with th   i   1 - e" "r' r' and

JTD  =  T,1 miinn - Tai l  a lt 

· OU hcond  m· wt h Q� � m i hl.  m

vent

Commercia oeratng conditions are recognized as nvolving uncontrollable variations in ar eakage nto the ACC and ts reated system under vacuum. These varations whie neggble under some conditions, render te exact redcton of the ACC rrmance imractical r ar/non-condensable ilet rates exceeding 50% of the values secied in section 9

should be noted that the term   h is qute sma and is generaly considered negigible; therere, there re, r the urose of the thrmal thrmal errmance caculatons the above equaton can b rduced to: I

Q=� · u, hcd � m•  hin - mo mou

ACC errmance nrmation is based on venting

The overal serice heat transr coecent (U)

equiment havng a caacity secied n Section 9. Due to the eect on ACC errmance the ocaton o edwater heaters and/or extraction iing and b-ass sargers or related equment shoud be subject to the ACC manucturer's aroval aer th turbine ow disrbution dagram (veocity (veocity ma) ha been made availabe availabe

combnes the ofconvective transrthrough coecient at the insde th tube heat conduction th tube wall and ns, and the convective heat transr coecint at the outside of the ns. The governing resistance resistan ce r heat transfer transfer is the air-side resistance whch s deendent on the tube and n geometry Therere  s a function of the tube character istics and will vary r each manucturer

It

houd be recognized that the ACC errmance becomes unredictable at reduced heat duty ambent tmeratures below eezng and ow turbine back ressures

The steam temerature is related to the steam ressur res suree whch is a known reationshi r saturated steam conditions. Therere r a given ITD, the back back ressure wil vary wth the the ar net temerat temerature. ure.

62     reations reationsh h between between trbne back ressure stam ow T• altitude and n ower.

From the equations above it can be demonstratd that f the load () is increased, then the ITD wll incease roortonally, ignorng th eect of the steamsde ressure losses. losses.

arc

The desig of angases ACC that mustare consider of non-condensable rsentthein eects the ACC and ressure dro of the steam as it ows through the duct du ct syst system em and through thro ugh the tubes of both stages stages of the ACC The heat transr coecent of a typica commercial oeratng ACC is ess than that attainable n aboratory tests The sce heat transr cocent coared wth a new and clean heat transr surce area shoud be taken into account in the design of the the ACC Figre 4 ACC OPERATING CHARACTERSTC CHARACTERSTC

8

 

6 2 62 Oher  ors ors inening he ACC perrmane are ised beow 62 Fae a ety  Te e air veloy is diretly proportonal to te air mass ow rae hrough the ea exhangr and has a signiant impat on he overall hea ransfr oeient or a given

e ACC perrmane owever, under eezing ambien ondiions, aumua ion of nonondensaes (dead zones) may aso resut in damage to the hea ransr sura de o eeing of e ondensae side he ubes

ACC, iger e heat ar veoty resls n an inreased overal ransr oien, abei agains inreased an power

626 62 6sally oiseave ACCsower desiged r low oise leves e veoities and owerr speed ns Conseque owe Consequenly, nly, these ACCs A CCs ypay ave greaer sure area and are more sensive to wind ees

62 2  esy  Th Thee air ma mass ss o ow w rate is proporonal  he ar density, and has an impat on e overal eat transr oeen as we. T air densty is a ntion of e dry bb emperatre, atmosper pressre, and o a muh lesser exten, of the the relaive midity ne e impa of he relaiv midity on he herma perrmane of  ACC is rater sma i is suay omied in the ermal aulaions

62 7     Re Re rr o eti etion on  628 Pea  repitation may have a beneia ee on he herma perrmane as a onseqene onseqen e of evaporaive evaporaive oolng However, in some ass te preipi aion an inreas he airside rsisanes eading o a redution in perrmane 62 9 S 629 Sa a aa  Rer o etion 

62  3 F  Ref Refer er to e eon on   624 Sea ees  sualy, he steam leavig he seam rbne ehast s sauraed sauraed wh a steam quaiy geaer a 8% nder bypass or sartup onditions, sperhaed seam may ener he ACC. ACC manuar ers usuay impose limiaons on he ntapy nta py of he seam seam entering the ACC AC C tha are lower tan hose r steam srae ondensers This s reated to he reativey on ong g rav rav dis disanes anes of te seam s eam por t o reahng he eat e at ransr sraces and he assoiaed arge ermal epansion of he steam dting A yia maximum seam enhapy entering t du is  0 B Bu/ u/b b (0 kJ/kg) kJ/kg)

63 eaea eaea  a sse ye Under pratia operang ondiions, withou a deaeraor a reasonably deaeraor reasonably airtgh ACC AC C an be exptd to prode ondensae wih a dissoled oxygen (DO onen no exeedng 0 ppb Rer o Table  elow Wit erain onditions of sable opeaion and stable onsruion, an oxygen onent no exeeding 0 ppb may be obtained as lows: 63 6 3 Th Thee rato of h hee aa aall nonondensable load removed om he sysem o te desgn apay of te arremoval eqipment shoud e no greaer an the vaes in te table beow Tabl Ta ble e2

621 esaes  Nonondensaes mus e removed om he ACC o avoid aumul au mula aion, ion, whih wi resu  redued ACC apabity There are two major ees of nonondens abes a redution in avaae ea transr area (when nonondensabs are aumuating o rm a dead zone or air pok) and a redion in overal eat ransfer oeien (redued ondensa ion rae) espeialy in he seond sage, where he onentration of non-ondens aes ecomes sigian ng warm weaher operation, aumuaion o f non-ondensabes would primay aet

RATIO OF THE THE ACTUAL NON-CONDEN SABLE LOAD REMOVED FROM THE SYSTEM

I

TO DESI GN CAPACTY

V        '   50 0  0 M M 5

9

b

0 0 M M

50 5

> 0 M

ee oe 



E     50  0  50  0  ee oe 

 

Wheer or no a vacuum deaeraor is uilized, e above O leves canno be acieved during saup condiions low load operaion (less an 25% 25% or in eeze proecion conrol mode.

Noes: aTe des design ign capaciy of e air-remova equipmen sould be in accordance wi Secon 9 .T Tes esee raios ra ios are r airremov ai rremova a equipme eq uipmen n raed a 1 inc HgA. For airremova equipmen wi design capacy capac y exceeding 0 SCFM, e non-condens non-condens abess removed soud no excee abe exceedd 20 SCFM r 5 0 ppb and  0 SCFM SCFM r 20 ppb. ppb.

634.2

6.4 Condensate C ondensate Subcoo Subcoolng lng

Condensae subcoo Condensae subcooling ling is casualy dened s e dierence beween e sauraion emperaure of e seam a e seam ubine exaus and e emperaure of e condensae a e oue ofe ofe condensae ank is is no o be consed wi e convenional subcooling deniion, wic is e local emperaure dierence di erence a a  a given locaion loc aion beween e seam nd e condensae 6.4.1

6.3.2 Tere soud be zeroair eaage drecly ino e condensae below e condensae evel in e condensae ank e arrangemen and ocaion of o f all ingress poins ino e condenser r waer vapor or oer gases sould be subjec o e approva of e manucurer Examples ofe poenial sources ofair ae as llow llows s • P seam urbine casing ad inerace wi e ACC  eakage into e vacuum side of e sysem roug leaks in welds packing gands, gauge glass; insrumenaon eads loop seals seam raps ec

ue o e sigican seamside pressure losses, condensae subcooling will be muc reaer an e values obseed in a seam surce condenserValu condenserValues es up o  5  F are possible wi ACC uness a vacuum deaeraor deaeraor is used o reea e condensae coming om e ACC A

6.42

°

• vens, Low pressure eaerwen condensae drainsbeow and paricularly operaing amosperc pressur pressure e • Me-up waer wic is usually sauraed wi oxygen • Condensae surge ank wen uilized in closed cyces.

vacuum deaeraor sould bee abe o reea e ondensae o wiin o 4  F ofe of sauraed seam emperaure a e seam urbine exaus xra consideraion sould be gven o e seam-sde pressure drop beween e seam urbine exaus and e vacuum deaerao 

65 Ceaness Factors Factors,, Foing Factors Factors and Perfrmance Margns

Were condensae om om processing sysems anor cogeneraion sysems is nroduced o e ACC i sal be assured a e oxygen conen ofe ofe reurned condensae condensae s no n o eaer an a specied r e dissolved oxygen guaanee Iis Iis is no e case special inernal inernal deaeraing provisions may be required and/or reurns sa e deaeraed exernally prior o beng reurnd o e ACC Te specic oxygen evel (ppb n reuing condensae and e 63.3

 A cleaniness c cor or is e raio of e acual ea  ea ransfer coecien coecien  o e clean ea ransr coecien coeci en Aoug a cleanliness cleanlin ess cor is used wi waercled condensers, i is no applicable o ACCs since e seice value e overal ea rsfe coecien (U) is ofe of provded by e manucurer

651

quaniy or f condensae being reurned reur ned mus mus  be specied of e manu manuc curer's urer's consideraon

 A ui uing ng co cor (F iserused o relae e "seice overa ea rransfer ransf cecien o e "clean overall ea ransr coecien, and is dened by e lowng equaion 652

For all unspecied drains i is e purcase's responsibiliy o limi e DO level r all exernal sreams o a value below e uaranee 634

1

Usrvic

 Aloug ACC sysems a ave viruly no air leakage may yield ower  leves, r design purposes vacuum deaeraors sould be uilized o oban leves om  20 ppb ppb down o 7 ppb.

=

1 +F

ucle

6341

 A ypica value r F is 0 000 00 3 r  Fu or 00005 m based on e oa airside suce area wic accouns r bo e seam-side and unrecoverabe airside uling Addiional airsde uling 652.1 2

10

 

67. The lowing arside pressure osses shall be accounted r 67.  Ar in inle let t  Ths is the prssure oss associated with drawing the ar i om the ambient environment through the air inlet beneath the ACC along with the urning loss om a horizontal ow stream to a vertica ow stream The ar nlet height should be sucient to provide unirm distribution of coolin coolingg ar to al al  ans ans  This is typically deterined by establishing a air inlet velocity such that the horizontal velocity pressure is scenty ower tha the static pressure developed by the an  A typica typicall mai maimum mum vaue r the ar inlet velocity is 5 ms.

6 Bunde  This is the the pressure pressure loss loss 6.76 6.7

associated with the airow through the heat exchanger bundles This loss incudes the entrace loss to the heat exchang surce oss through the heat exchange surce and the bundle outlet dumping loss. This is highy dependent on n tube desgn and varies between manucturers manucturers  This is aso the predominant pressure drop within the syst sy stem em and and typicaly typicaly represe represents nts 5 0  7 0% of the tota air side pressure drop 6 7.. 7 Bun Bund de e out outetet- Th is the pressur

loss associated with air ow turning om the heat exchager bundle exit to the discharge ofthe ACC.

6.7.2 Fan a and fan iet be 

6.7.1. 6.7 .1. 8 Natura Natura drat corre correction ction  This

The n ard is typicaly typi caly a rm of screen g auge material to that can vary om a lght gauge prevent immediate access and sow ling debris to a heavier gauge materal tha can also serve as a working platrm. The air-side pressure loss associated with the

is the buoyancy contribution that the hot discharge air contributes to the air-side pressure losses This will be reported as a negative pressure oss and is a nction of the windwal/dra height and the dierence in the air density between the ambient and

n gard of depends upon the The location and geomety this component an inlet bell sees to create an ecient arow guide into the n The inlet prole and overall geometry overa geom etry of the an bel will aect the pressure loss Fan vendor equipment rating programs progr ams utilized utili zed withn the industry typicaly consider these ctors ctors

the ACC discharge air 6. 7 .9 Air net net and air outet outet lover lover  if

appicable)  Etreme ambien ambienoperat operationa iona considerations may necessitate air inlet or outlet louvers to enhance airow contro. This feature can generate gener ate signicant sig nicant additional additio nal airside ai rside pressu pressure re losses. 6.7..0  nlet and air outlet noie lencer if appicab appicable) le)  Ext Extreme reme nois nois

6.7 .1 3 Penu Penum m dic dicarge arge o   As the

air is discharged om the n ring to the plenum there is a sudden enlargement of the air ow path This causes an expansion loss that th at is a ncton of the geomet and airside properties (i.e., veocity and densit)  ACC manuc manucturrs turrs should consider this loss and other losses associated with the nonunrm airow conditions that exist at

rstrictions may require air inlet or outlet siencers to reduce the noise emitted by the  ACC This ature can generate signic signicant ant additiona air-side pressure losses

68 Ar Inlet eperat eperature ure

the discha d ischarge rge ofthe n 67 . 4

68. The perrmance of an ACC is dependent

Fan Fa n bridge  The n bridge is

upon the dry bub temperature of the cooling c ooling air stream It is important to note that the air tmprature may vary aound the power pant and not be consistent or representative of the air temperature entering the hat exchanger bundles The tempera temperature ture of the air a ir entering the ACC may b negatively aected by the lowing: • Warm air recirculatio recirculation n • Discharge air om other heat exchangers • Other sources of thermal nergy

the structura support of the airmoving system syste m i  iee an, motor mo tor and a nd gearbox). ge arbox). Fan bridge designs vary and are manucturer depndent The ar ow obstruction type and dstance om the n aect ths oss 6 1 B B    This is th thee pres pressure sure oss assoiated with air ow turning om the n discharge into the heat exchanger bundles

12

 

6.82 The plant desgne should take nto consid eation the pacement of addtonal souces of themal enegy with espect to the locaton of the A CC aong with with th e pevaling pevaling summe wnd condtions.

pemance unde vaious opeating conditions Ths typcally involves • Singe-speed motos  Swtchng ns on/o • Tos Tospeed peed motos motos  witc witcng ng betwee between n  l sped/patial spee/o • Vaiablespeed moto motoss  ncemental adjustment

6.9 Auxiiay Powe Powerr Consumptio 6.91 Typicaly, when evaluating ACC designs,

The vaous contol scenaos wl povde very dieent auxiliary powe consumption poles when evauated on an annual basis and shoud be consideed withn the ACC speccation.

the ACC n dve motos ae the ony loads to be consideed 6.92 In additon to the A an moto powe,

the llo win wing g additional system loads may exst: • Geabox ol pumps and heates • Vacuum pumps • Dan pot pumps • Condensate wadng pumps • Conde nsate ank heates • Moto opeated valves • nstumentation • Space heaters • Heat tacing • Lighting • Cabe osses, vaiable equency dives etc.

61 0 Cold Weahe Pe Pefformance 60 As the a tempeatue deceases, the

capability of the ACC nceases based on a constant condensing pessue Howeve, it is qute common to allow the steam tubine back pessue to uctuate wth the ai tempeatue within ceain lmtations • ACC manuctue ow pessue lmit • St eam tubn e manuctue ow pessue lmit • Min Minimum imum opeating pessue pessue of the aiemoval system • Steam Velocities

69.3 The auxilay powe consumption should

be evaluated at the an moto nput temnals consideng consid eng speed educe eciency eciency (96 to 98%) and moto ecency (91 o 95%) This can cause the electical powe consumption to exceed the n sha powe by geate than 10% ote that smalle moto motos s (< 50 hp) and V-belt V-belt dves dves may have lowe ecencis

6102 Once one of the low pessue li mitatons

has been acheved, uthe a tempeatue eductions must be accomodated with a contol step Typcally this is achieved by educing an an speeds If the ai tmatue contnues to decease so that al  ns ae o, the the contol steps wll w ll be equed to educe ai ow ow (inle t o ext louves) o emove heat exchange suce om opeation (sectonazing valves) Highe powe density designs (highe an pow e unitt of heat tansfe uni tansfe suce aea) wl incease the ambent ar tempeatue ange that an

603 694 The auxil a ay y powe consumption wl vay

cons ideabl conside ably y due to the eect eectss of mpatue on a densty. As the ai tempeatue inceases, auxiliay powe will decease, and as the a mpeatuee deceases, the auxilary powe will mpeatu incease ased on constant n speed I is consideed pudent to have a powe magn (5 to 10%)condition. o the instaed moto at the sign Howeve, it iscapabilty not necessary design de avala ble ove the to spec that this margin be avalable entie ange of ambient condtions. Since most ced da ACC desigs place the moto in the dischage steam of the n, the electic moto w ll benet om om a cooe opeating envionment as the air tempeatue deceases. t s not unusual to obtan an ambient ar tempeatue coection cto om the moto manuctues that will povde nameplate powe correctons based on coole opeating opeating envionments

speed contol can acommodae It is vey impotant to ensue that theACC has the capabl ity to opeate eliably and sa sae ey y thoughout the ange of specied tempeatues and  in paticula, tempeatues below below eezing conto phi losophes va vay y between the Although manuctues, it is impotant to ensue that steps ae taken to avoid the mation of dead zones (noncondensable accumulaton) Dead zone maton duing eezng conditions will esult n depessed condensae tempeatues If ths condton is not coected coected eezing of the condensate withn the tubes and manent damage of th ACC may esult.

60.

695 The ACC contol logc adusts n thema a speed(s) in ode to achieve the desied them 13

 

Operation tion 6.1 1 Low Load Opera

6 132 f specid by the purchaser the ACC manufcturer shall includ the necessary provisions within the ACC supply so that test instrumentation can be installed on the ACC to conduct the spcied perrmance tst

6111 Low load operation is dened as a conditon in which the ACC is operated at less than the design steam load I is important that the low load and the corrsponding minium air temperature are clearly identied r the

614 E Eects of Win on ACC errmance errmanc e

approval appro val of the the ACC manucturer.

6.141 There are 2 primay eects that wind can have on the perrmance perrmance of an ACC

6112 Low load operation presents similar challenges as the low temerature operation described in 6.10. The rsulting situation is that more hea heatt transr · surce is avail available able than what is required At air inle t te mper mperatur atures es abov zing abov zing this is not a signic s ignicant ant conce. Dead zone rmation rmation under these conditions wil only aect the ACC operating eciency along with an increas in DO potential

6.14.1.1 (Warm air) recir recirculati culation on - Wil occur if th wind sped and direction are such that the ACC discharge air stream is brought within cose proximity of the air inlet whereby the two air streams mx. This wil cause an increase in the air inlet temperature and a rduction in the peromance of the ACC. The level of permance degradation will be nction of the quantity and temperature of the recrclated air stream Recirculatng air can also cause an imbalance in condensing load om one section to another within the

61 13 Low load operation with air inlet temperatures temperatu res below belo w eezing wll have he same concerns conce rns as described in 61 0 However the low load opration w ill cause the conces to develop more quckly or at higher temperatures.

ACC Windwalls reduce this phenomenon by separating the discharge air stream of the inlet air stream Also design practices such as keeping the ar inlet velocity lower than the discharge velocity are oen employed to mitigate the potential r recirculation The placement of the ACC relative to other large structures or ow disturbances should be evaluated in order to understand their inuence on the potential r recirculation

611.4 The duration of the low load operation is important. What should be evaluated is the minimum load uner sustained operation (greater (gre ater than than 4 to 6 hours) at the minimu mi nimu m air inlet temperature ACC sectionalizing louvers or enhanced contro algrithms may be required in order to provide sa nd reliable reli able operation 6.12 Performance Curves 612.1 Pe Peormance ormance cures shal b e provided by the ACC manucturer in accordance with the specied perrmance test code

AC with Recrulao.

6.122 errmance cues shall be generated with all ns running at the design an speed. Supplemental curves may be generated r partial n speed operation; however such curves are generally not guaranted

6123 errmance cues cues shall s hall clearly identi the minimum operating pressure of the ACC and shall identi i denti  when the cuves are subject subject to eeze protection control austments.

Figre 7  IH RIRUIN

6.1412 Dynamic eects on the air ow  Elevated wind speeds can disturb the ar ow of the ACC inlet ans and ACC outlet • ACC air inlet and outlet  High wind speeds around the ACC structure and other plant structures or obstacles can cause localized vortices and ow distur bances that can reduce the air ow

6.13 erormance Testing 6131 For contractual compliance, th ACC should b tested in i n accordance accordance with a specied i ndustryrecognized perrmance test code such as ASME ASME PTC PTC 30.1 or VGB VGB 13 1Me

14

 

through portios of the heat exchager budes This wil cause a reductio i perrmace perr mace of the the ACC Reduced Reduced air ow through the s ca aso cause a imbalace  codesig oad om o secto to aother withi the ACC Depedig o the svrity of the ow

geer a rue, the higher the absoute 6.14.2 As a geera vu e of vue o f the pressure marg of a , the ess susceptbe to wid eects the ACC w e.This is why ower oise ACCs with slow turig ow pressure s) are geeray more sestive to wid eects

disturbace, ths may cause uexpectd spikes i back pressure that coud resut  steam turbie back pressure alams or trips speeds wll cause cause a • Fans  High wid speeds icrease icrea se i the veoc v eocty ty pressure press ure of o f the et air stream of the ACC. This wil crease the static pressure loadig o the  causg the s duty pot to shi shi The resut wi be a higher high er operatg statc pressure at a reduced ar ow rate, reducig reduc ig the perormace p erormace of the ACC Typicay the s that are subectd to the greaest degadatio i perrmace are those o the eadig ce (upwid) of th ACC Widscrees or other devices may be empoyed to mitgate these eects ACC w Inlt Air Fo Reduc

6 5 Eec Eecs s of Slar Radiatin Radiatin

The amout of soar radatio icidet o a ACC is detemied by the maximum solar ux r a give give  ocatio A vaue o the order of 0 0 0 W/m2 W/m2 is typica typica r areas areas ofcocer ofcocer which are coser to the equator or i a desert cmate Ts soar ux s appied to the pot aea ofthe of the ACC, ot the heat trasfer surc surcee area. f a ACC wer to absorb 100% of the soa eergy eerg y cidet upo its pot area it woud equate to less tha 15% of the ACC's heat rjecto capacityAthough capacity Athough the mssvity ofthe ofthe tub ad  materias varies betwee AC manucturers, whe it is cosidered, the maximum impact due to soar radtio habe caculated to be ess tha 05% o a istata istataeous eous basis If Ifths ths eect is itegated over the dayight hours, the pact s cosidered egigibe. 6 5  



'







Operators of ACC ACCss have obsered back pressure reductios as age couds bock so radiatio It is beieved that ths has more to do with the reductio i air iet temperature rather than the temporary bockage of soar radiatio o the ACC heat trasr suace 652

\ I\ I \ I

Figre 8 ACC WTH INLET AR FLOW REDUCTIO

7.0 INS INSTRUM TRUM ENT ENTA ATON AND CONTROL CONTROL 7  1  1   Back pressure ad correspodig steam temperature: At east oe pressure trasmiter ad oe temperature eemet should be istaled ear the steam turbe exhaust terce or other prscrbed ocatio

7. Recomnded Instumenn 7. The ACC shal be equipped wth suce sucett istrumetatio to motor the process coditios Both oca strumetatio ad trasmitters, swithes, ad other devices sha be icuded Some of the istrumetatio wil be ivoved i the cotrol ad protectio of the ACC over the th e speced rage of operatig coditos The owg process coditios shal be moitored as a miimum

..2 Codesate temperature i the codesate tak At east oe temperature elemet shoud be istalled beow the owest operatig codesate eve

15

 

of air ow cotrol steps avalable is oly a ctio of the umbe um be ACC as as ad the type o motor cotrol (sgle, two speed or variable spee) • For exaple, exaple, a 100-cll ACC with sigle speed s ca provide up to 00 airow cotrol steps, which, i may cases cases will be sucet sucet

Codesate temperature i the coesate heaers At least oe temperature eemet should be istalle  each coesate heaer. It is importat that these thermowells are istalle properly such that the temperature of the codesate owig i the bottom of the heaer is measure ad ot the steam space temperature Where ezig coitios exist temperature elemets may be istalled to measure temperature o both sides of the codesate header drai pipe 7113

r proper ACC operatio However a 4cell ACC may require VFDs i order to provide suciet air ow cotrol • The rage of steam ow rate a ilet ar tmperatures will determie th quatity ad magntude o cotro cotro steps required r equired

Temperature of the ocodes ables At least oe temperature elemet shoud be istalled i each air removal lie per row 7114

722 72 2 ACC Freeze Protec Protection tion Considerations

t is very importat to esure that the ACC has the capability to operate reliably ad saly throughout the rage of specied temera tures a, i partcuar, temratures below eezig Although cotrol a eeze protectio philosophis vary g maucturers, it is importat to esure that steps are take to

Ilet air temperature: At east o temperature elemet should be istalled i the air ilet stream stream othe o the ACC ad shielde om solar radatio. 7115

7116

Level of coesate i the tak:

At least i oe trsmitter istalled thelevel code codesate sate tak should be

reduce the riskrofeezig low coesate temperatures ad potetial • Ehaced moitorig of process coditios a cotrol • Modie air ow cotrol (an spee louvers cotrolled recirculatio, etc.) • Reuce heat trasr area (use of sectioal izig valves)

Leve of codesate i the rai pot: At least oe level trasmitter shoul be istalled i the dra pot. 7117

Gearbox ol pressure or ow: Oe pressure or ow switch per gearbox is the staard. 7118

7.3 See Seectio ction n o Numb Number er of Iso lati lation on Valves

Fa speed: Fa motor speed status shall be moitore r each idividual  via fedback fedback om the Motor Cotrol Ceter Ceter 

731 I the ACC must be operate at low stam ow rates at air ilet temperatures below eezig a the suctio pressure at the vacuum equipmet is too low whe all  cotrol steps are exhausted, the heat trasr area of the ACC must be reduce This ca be achieved by rmovig heat transr surce om operatio sig sectioalizig valves

7119

71110 Valve positios ofautomatd ofautomatd valves The vave positio of each automated valve withi the ACC should be moitord moitord via the

lilimit mit switches or valve ositioers Vibratio of airmovig equipmet: At least oe vibratio switch or trasducer should be istalld r each  rive assembly.

7 32 The umber of sectioaizig valves is etermie by th amout of heat trasfer surce that must be isolated i order to maitai a sucietly high suctio pressure at the air-removal ski at the miimum sustaid steam ow rat a coiciet miimum design air ilet temperatur The miimum sustaie steam ow rate ad coicidet mimum desig air ilet temperature shall be specied by the purchaser.

71111

72 ACC Control and Freeze Protect Protection ion onsiderations 721 72 1 General conrol concepts

 The back pressure ca be cotrolled cotr olled by modifyig the air ow rate of the ACC achieved by austig a speeds uless air ileoutlet louvers are supplie. he umber 16

 

75 Condensate Tank Capacit

74 Drain Pot Capacity

o f the drai pot  s a fu fuctio ctio  741 The capacty of o the quaity o the steam steam eterg the ACC the umberr ofdrais umbe ofdrais eterig the dra pot ad the stea duct codesig capacity The dra pot capacity shal be szed r at least ve miutes

751 The codesate tak is typcay a horzo ho rzotal tal cyldrical tak tak sied usg us g the design steam turbie exhaust steam ow rate, uless secied othese by the purchaser Typical codesate co desate tak capacty is the volum volumee sucet sucet

betwee the ow ad hgh opeatig level usig the maximum cotuous codesate ow rate eterg e terg the drai pot pot f the codesate c odesate colected i the steam duct is is draied draie d by gravy to the codesate retu sysem, a drai pot s ot requred

to cota a of the codesate codesate produced   the  ACC  a period o ve miutes betwee ormal operatig leve ad low operatig level at the design steam turbie exhaust steam ow rate Norma opeatg level is Norma is typcally 5 0% of o f the tak diameter.

8.0 SERV SERVICE ICE CONECTIONS

o the acceptable locato ad orietatio of co ecto ectos s co correct rrect or icomplete irmato cn result  mproper locatio, locatio, orietatio ad possible operatioal issu esSimilarly codtio co dtioss o serce se rce (e.g, start-up coti c otiuous uous)) shall be specied because probems may occur if i f actual servce diers om that orgially specied.

81 Genera Consideations 81.1 Ths sectio sees as a guide to provde rmatio o the locatio ad dsig of the variouss types of coectios o a ACC to variou permit the dispersio of uid eergies eergi es at a t seady state operatio without causig detrimetal eects o the teas, steam duct, dra pot ad codesate tak.

822  All thermal ad hydraui hydrauicc des desg g coditos o the coectios provided to the mnucturer shall be at the coectio o the  ACC (ot upstrea ofcotrol of cotrol valve, etc.)

8.12 Specic recommedatos are provided, sce each coecto w have dieret ows ad uid eergies  ord order er to acheve the most eectve e ectve dspersio dspersio  Required coec to seice seic e wll rage om higheergy arge volume steam dumps (i some cases requirig multistage breakdows ad desuperheatg) to relativey ow ow ad low eer level coectos

8 Conection Locations 831 Lcatig coectios o the steam duct, drai pot codesate tank, ad/or ash tak must be give high priorty ad be itegrated to the plat ayout durg preparatio o the speccatios to avod compromisig ACC perrmace. t s recommeded that hgh eergy e ergy or ashig drais be routed to a separate separate ash tak as to coditio the uds to an ash 

813  A AC ACC C is sigicantly di d ieret eret om a steam surce codeser ad requires uiqu design cosdeatios Coectos o the ACC ae typically at a signicat dstace om

the heat exchage surac Due to omial steam duct system expaso desgn provsos, the design temp temperature erature of the AC C system is typca typcaly ly 25 0 F 121 C) The ethapies of the varous ilet coectio ows, particuarly steam turbe bypass ow shall be lmited to approxi ap proximate matey y ,  7 0 Btu Btu/lb /lb  27 20 kJ/ kJ/kg) kg)

acceptable ethapy Thespace ash ad takdraed sha be veted to the ACC steam to the ACC codesate code sate retur system.

°

832  order o esure that all coectos o the ACC are located so that the itegrity ad operato of the ACC is ot  ot compromsed ad a d to esure that requred deaeratio s obtaied, the lowg requremets o the placemet of co ectios ad accepabe accepabe coditios o fows  the co c oectios ectios shall be provided prov ided  The lowg tabe idicates the prerred locatos r some categor ies ies of coectios usually istad o  the ACC system Numbers dica the order of pref pre fere erece ce 

82 Flow Daa

manucturer 821 It is imperative that the ACC manucturer is ushed with reiabe ow data requred r desgig the coectios ad iterals The er eves ad ows wll have a bearig 

 

Table 3 PRR RD LOCATIONS LOCATIONS OF CONNCONS USUALY INSAL INSAL D ON THE ACC SYSM

I Steam Duct o  s R o

No Ro

o  s No R o M os  Ro  o  Ro o    Es G      s         s   ss s oos     s Msos s  s

I Drain Pot I Condensate Tak I Oeaeato I F Tank NR

NR

1

NR

2

2

1

NR

2

3

3

2

1

NR NR

NR



NR NR NR NR

(NR NR))

NR 1 NR NR  NR NR NR NR 2 NR NR N R 2 NR NR 2 NR NR NR 1 NR NR NR NR 2 NR NR  oo s o s o o

1 1 1

NR 1

'1 = Bst choi, 2  God, 3 = Aceptbl

846 t is rcommdd that dras rqurg

darato dar ato hav prssur ofat lastprssur. ofat 5 ps (034 bar) gatr thaath ACC opratig

84 Connect Connection ion Design Design Guidelines 8.41 Complt dsign coditos (prssur tmpratur thalpy ad ow) ow ) must b prodd at ach co ct ctio ioI addito sic codtos shal b suppld (i, cotiuous itrmittt startu star tup p tc). tc).

84  Dsign o ACC coctos coct os ad/or latos should b such that th stam rlas volums om th additioal stam loadig wll ot rsult  steam vlocts i xss ofthos ofthos idicatd  Sctio 66.

842 Lmt th thalpy of trg stam to  1 1 7 0 Btu/ Btu/lb lb ( 27 20 kJ/ kJ/kg). kg). Accptac of ows wth thalpy thalpy grat gratrr tha   7 0 Btu/ Btu/lb lb ( 27 20 kJ/g) may b cosdrd ddg o spcc coditios o src

848 Thrma sl should b provdd o procss coctos dsgd r tempraturs (232C) C)  xcss of 450 F (232 °

849 Udr o crcumstcs should stam ashg dras b admittd to th ACC ulss coolg air ow s stablshd ad o-cods abl gas rmoval qupmt s i opratio

8.43 Lmt coctio prssurs to a maximum of 50 psa (3.44 bara) Prssurs should b lor lo r whr possbl spcaly r liqud owsSpcal owsSpcal cosidratos r hghr prssurs should b

rvwd wth dvdual maucturrs

8410 Coectos as dcatd  th abov tabl shoud ot b locatd blow th watr vl ar ld wld lis itral brcg corrs or ar ay xpaso jots ruptur dscs strumts or tral apparatus.

844 Vtlator val (and othr hgh rgy short durato sourcs) dschargs should b to th atmosphr; howvr f thy ar drctd to th ACC lmtato as dscribd abo wil apply.

841 D o ot loca locat t a sr srs s o f coc cocto tos s xcpt gaug ad cotrol,  clos proxmty so that high ow coctratos aor itrr cs om dischargs disch args om all o th cocto co ctoss wll rsut Hgh rgy drai dra i ut u t ls must b kpt away om lqud rtur ls to prt droplt trasport ad assocatd rosio

845 Wr coditios xcd th abo rqurmts xtral dsuprhatg must b prodd by th purchasr r all coctos that ar i oprato wh xhaust stam ow s abst. Dsup Dsuprhat rhatg g shall b accomplshd  a mr such that th abov thalpy imts ar ot xcdd 8

 

2 I ucient ow re  not vlbe 8.4.2 8.4. wtn te te duct r te introducton o tem turbine byp prger(), ntegrl bel oung() locted on te tem duct ould be condered 84.3

o te tem turbne exut nterce to te ACC T nvolve degnng te te turbne undton urrounding equpent nd tructure to ccopi tee requr ent.

Te ue o extern  tnk 

8.5.2 Conectio Types

recoended r g temperture g preure drn ow pror to beng dmtted to te ACC T would uuly pply to yte were  lrge number o l connecton wt g energ eve ext. Minor tem dn or vent my exceed peced condton n prgrp prg rp 84.2 nd 8 8 3, 3, prov provded ded ow om the in tem turbine turbine ext nd te octon re cceptble o te mnucturer

8521 The two (2) mn type o tem turbine nterce connecton re welded nd bolted. Te purcer purce r  l l provde ucent detl depctng te interce o tt te ACC mnucturer cn develop nd ngneer nterce connecton detl. 852.2 A weded connecton  prrred over  bolted connecton to mtgte r ekg nto te ACC. A lndng br weded connecton  recommended,  t low r djutment durng ntton to conte r nucturng nd ntll ton tolernce t olernce Weldng etod, et od, cce,  cce, nd · detl  be condered wen deveopng te equpent rrngeent

8.4.14 Ppng uptre oll owng connecton connecton hl be propery prope ry trpped nd drned to prevnt dgng wter lugs beng ntroduced nto connectons 845 Te externl locton l be uc tt reroutng o nternl ppng  not requred, nce ntel ppng y nteere nteere wt norl tem ow wtn te ACC

8.52.3 Bolted nge connecton l be o the O-rng or gket type T connecton l be properly ntled nd mntned to provid e  lek-ee el. el. Appropr Approprte te tolernce toler nce in ti connecton c onnecton l be pecfd pecfd Metltometa nterce ll be voded • Flnged te turbne connecton l be ced nd drlled per te te turbine uppler gudelne • Expected nge ce c e ne ll be indcted. • Ct ron nge connecton ll be t ced • Gener geo etr etrcc dimenionng nd toernce ould be reonble nd tte te ncton requreent. • Crel degn nd plnnng re eenti

5 S Sea ea  Turbi Turbie e Exhaus Exhaus Ierface 8.5 1 Oienaion, Loca Locaion ion ad Diesios 8.5. Te purcer l lll provde ucent detl depctng te over te turbne rrngeent, pticurly te orentton nd locton o te te turbne nterce reltve to te ACC Addtonlly interce denon nd hpe det ll be provded o tt te ACC nucturer cn deveop nd engneer nterce connecton detl 85.2 Typicl turbne exut orentton ncludete bottom exut, xl exut, lter/ide exut nd top exut Mutple exut openng my ext

nd cutoer peccton ut clrly outne l expected dmenion, tol ernce, tolernce, nd fne 8.5.3 is islacemes lacemes a Selemen Selemen

Stem turbne exut inerce dplce ent nd derentl ettement between te te turbne nterce, te te duct upport, nd te ACC tructur uppot due to y ctor h be pecfed by te purc pur cer er nd l be le tn 0 012 5 nc ( m), une oterwe cceptble by the ACC nucturer

8.5.13 Locton nd orentton o te te turbne nterce() ut be gven hg pro p rort rt y nd be ntegrted into te pnt yout durng preprton o te pecic ton to vod comprong te mn tem tem duct degn nd perrnce o the ACC Te locton nd oienttion l ciltte the ecent nterconnecton, ntllton, upport nd routng o te n te duct 19

 

specied, then atrnate expansion joint types, materials and arrangements may be considered I this event it is incumbent upon te purchaser to advise the ACC manucturer so tat alternate desgn considerations can be explored

is imperative tat te purcaser cooperates wit the ACC manucturer to ensure tat all conditions ae examined prior to the ACC initial design Care design and planning are essentia, and customer specications must cearly outline all expected settlement and displacements It

856 St St  E D D

85 It F  Mt

85 61 Te main steam duct is a thin-waled 8561 externaly pressurized vesse Accordingy externa and/or interna stieners are required to provide te necessary structural integrity Te purchasers design o its turbine support structure internal piping and components shall consider the ACC manucturer' manuc turer'ss stiening sti ening requirement requir ement

8541 Considera Consideration tion o the interaction interaction o rces and moments at the stam turbine exaust interce are o paramount importance Te purcaser must speciy reasonabe allowabe external rces and moments at te interce location 8542 In no case shal the t he ACC AC C steam duct be required to support te steam turbine

8562 Unless specied otherwise, support support o the purchasers components (edwaer heaters, pping spargers, patrms, etc) is not consideed consideed Isupport I support osuch osuch components is required then it is incumbent incu mbent upon te purcaser to advise te ACC manucturer o suc details tat may be required r te ACC manucturer to consider in i n it desi

853 It is imperativ imperativee tat the purchase purchaserr cooperates wit te ACC manucturer to assure all conditions ae examined prior to the ACC initial design Car design and planning are essential and cusomer speci cations must cearly outline all expected rces and moments

857 S S   E S  P

854  Unless specied otherwise, te 854 purchaser understands that te steam turbine is capabe o accepting te internal vacuum rces associated with te incorpo ration of an unrestrained expansion joint near the steam turbine interce Te intenal vacuum rce is in i n addition o those rces and moments specied under 1 Te purcasers seam turbine undation design shall consider te resutant vacuum rces and moments n te event tat the steam turbine is not abe to accept vacuum rces it is incumbent upon te purcaser to advise the ACC manucturer so that alternate design considerations should be explored

nless scied otheise it is assumed tat the steam ow velocity, pressure and density prole exiting the steam turbine ae unirm in nature Tis assumption shall be considered by te ACC manucturer in its structural ydrauic designs 86 S S   B B  G 861 G 861.1 Comple Complee e evauation o t tee design parameters r main steam bypass ines is important  te sa operation o te ACC Operating requirements and speca customer requirements could aect the ACC desig t is imperative that te purcaser cooperates with the ACC manucturer to assure al conditions ae examined prior to the a design

855 Se  E E  E E  Jt Jt 855 1 In order to accommod 8551 accommodate ate te alowable external rces and moments loads) and displacements at te steam turbine interce an expansion joint is routnely required Usu Usuay ay an a n unrestrained expansion expansio n oint is i s utiized

861 2 8612 Operation o steam turbine bypass sould occur wit all ACC systems capable to operate at ll capacity or startup conditions, to acieve maxmum condensing capacity a non-condensable

855 2 I unusua 8552 unusuall design temperature temperature,, displacement or load conditions are 20

 

ust be extracted om te ACC system. Durng sustaned steam turbine bypass operation noncondnsabe xtraction sall be mantained at the requred holding rate. Carel design and pannng are essential and customer speccatons must clearly outlne al expected operational modes.

I i s mprative that the purchaser cooperates wt t ACC manucturer to assure all condtons are examined prior to te ACC nta design. Carel design and planning are essentia, and customer speccatons must cearly outlne all expected rces and moments.

The total amount o condtoned bypass steam admtted to the ACC can vary over a wde range. ACC manucturers do not guarant guarantee ee perormance r steam turne bypass srvce ut rather make accommodatons accommodat ons r te condensaton o the bypass steam ow.

If unusual desgn temperature dispace ment, or oad conditons are speced, then aternate connecton types materals and arrangements may be consdered. n ths event t is incumbent upon te purcaser to advse th ACC manucturer so that aternate desgn consderatons can be expored

86.13

Noise abatement measures such as the use o specal nose attenuatng valves spargers or nose attenuatng nsulaton, should be consdered by plant degners n accordance wth spced noise requre ments. ACC manucturers shal not be required to provide noise guaran guarantees tees dung steam turbne bypass operatons. 8614

62 6 2 Bypa Bypass ss S Seam eam Condt Condtionng ionng

ACC bypass steam nlet enthalpy values shal not eced values eced 11 1 1 70 Btu/lb Btu/lb  27 20 kJ/kg) kJ /kg) and 5 0 psa ( 34 444 ara) to ensure the the dscarge des not exceed the ACC den temperature. External desuperheating devces tat reduce enthalpy to 1,170 Bt/ lb ( 27 20 kJ/ kJ/kg) kg) must be located sucenty suce nty upstream o te ACC to ensure adequate mxng and evaporaton o te attempera ton ud 862.

86 86  5 Bpass Connect Connecton on Alowable Loads:

Location and orientaton o the steam turbne bypass nterce(s) must be gven hg prority and be ntegrated nto the plant layout durng preparation o te speccatons to avoid compromisng th main steam duct desig and perrmance o te ACC. The locaton and orentaton shall clitate the ecent nterconnecton installation support, ad routng o the man steam duct om the steam turbne east inteace to te ACC. ACC. Ts nvolves desgnng te steam turbne bass surroundng equpment and structures to accomplis tese requrements.

8622 e steam turbine manucturers may set specic gudelnes r maxmum temperature at te nterce o te steam turbne wit the ACC. Man steam turbine exaust expanson jont supplers aso have temperature mts that need to be consdered When such lmitatons are encountred a coong water spray curtan may be required near the steam tubne exhaust duct transiton area to reduce local temperature excursons. Te purcaser sall design and supply the spray curtain

components whcturbne shall exaust be ntegrated within te steam duct. Water loading pressure connecton sze and components shal be speced by the purcasr. purcas r. Carel dsgn d sgn and planning are essentiall and must essentia mus t b coordinated coordinated wt te ACC manuactuer. In no event sall te ACC manucturer be requred to provde garantees wit regard to te spray curtain perrmance.

Consderaton on the interacton o rces and moments at the steam turbine exaust duct nterces are o paramount mportance. Te purcaser must specy the external rces and moments at te nterce location. he rces and moments sal be reasonable, consdering te arrangement to the steam turbne exaust duct.

21

 

Table 4

TYPICAL ALLOWABLE NOZZLE LOADS

Momets (Wm

Forces (N)

SIZE NPS

ON

FX

FY

FZ

MX

MY

MZ

2

50

800

800

800

160

160

160

3

80

1 800

1800

1 800

540

540

540

4

100

3200

3200

3200

180

180

180

6

150

72

700

7200

430

430

430

8

200

1800. 1800

1 2800

10240

1 04 040 0

10240

10

0

14000

14000

14000

1 1000

1 1 00 000 0

1 100 1000 0

12 ad over

3

14000

14000

14000

1 100 1000 0

11000

1 000

SZE

M omens (f*b

Forces (lbf

NPS

ON

FX

FY

FZ

MX

MY

MZ



50

180

180

180

10

120

120

3

80

405

405

405

4

4

400

4

1 00

720

70

720

945

945 

945

6

150

1620

1620

1 62 620 0

3185

3185

3185

8

00

2880

2880

880

7550

7550

7550

10

50

3145

3145

3145

8110

8110

8110

1 ad oer

300

3145

3145

3145

8110

8110

8110

87 8 7 F F  H     8711 Th nstallaio 87 nstallaion n of edwate edwate heae heaer(s) r(s) wthin the ACC steam duct wi aect the perormance of the ACC. As such, the incusion of feedwatr heater(s) requres the purchaser to speci the location, orientation, dmensions, pipe routing, and quanti quan ti  If all of th above inrmation is not provided, the guaranteed back prssure shall be measured downsteam of the feedwater heaters) 872 Addit Additiona iona thermal thermal loads if any are not considered by the ACC manucurer uness specied otherwise by the purchase

22

 

9. 0 VENTING EQU IPM ENT CAPACITIES

9. Pmps compressors, and a nd other mechanical mechanical drives  The venting venting equipment design design sction sction pressure is that r whch the ACC is desgned minus 10 inch Hg or the lowest reqired sction pressure. Minimm shall be .0 inch HgA

9.  Vent Ventng ng eq eq reme remens ns

Venting equipment mst be capable of removing all noncondensables and associated water vapor om the ACC to produce the minimum steam condensing pressure consistent with physical dimensions and heat transr The sources of the noncondensables to be removed include bt are not limited to . • Low pressure steam turbine·casng, seals and associated drains components • Air leakage nto all system components oprating oprat ing at sbatmospheric pressre. • Gases released om om edwater drans and and vents admitted to the ACC • Gases released om makeup admitted to the  ACC. Conddensate surge and ash tans when • Con vented or drained to the ACC edwatr watr nto oxygen, • Disassocation of ed hydrogen and other noncondensables in 9.1.1

9.3 Desgn Sucion Temperare

The temperature ofthe ofthe gas vapor mixtre shall be considerd as 7.5  F below the steam saturation temperate at the eective sucton pressure. 9.3

°

The 75  F temperature dierential is a design vale tlized to physically size the ventng qipment The actua temperatre of the vapor at the vent otlet dring operation is inuenced by the operating characteristics the noncondensable load, and the capacity charac teristcs of the ventng quipm quipmnt nt nd may may not necessarily be equal equal to the 75  F ierential 932



°

certain tyes ofnuclear ofnuclear eed cycles. Unless specied by the purchaser and accepted by the ACC manucturer the ACC manctrer shal no be responsible r the eect that additiona sources of noncondens ables have on ACC perormane.

9.4 Caclaio Cacl aion n of Waer Waer Vapor Load Componen

92

The amount of water vapor to satrat the non-condensables can be caculated om the llowing rmla

n addition to non-condensables, non-condensab les, a qantity of associated water vapor will also be vented. This qantity wll e a unction ofthe ofthe qantity, temperature, and pressure pr essure of the noncondens noncondens able ow. 9.1.3

Wen the non-conden non-condensable sable s dry ar (MWNC= 29), the weight of the water vapor can be obtaned om the above eqaton PW is the satration pressure of steam at the mixture tmperature and PT is the total pressure of the mixture.

92 es esgn gn Sc Scon on Pressre

n orer ore r to coordinate coo rdinate the perrmance of the venting equipment to be installed with an ACC seing a trbine,beitinis accordance recommended design sction prssure withtat thethe llowing:

9.5 Mni Mnimm mm Recom Recommended mended Capac Ca paci ies es

t is recommnd recommnded ed that the capacity capaci ty of th thee venting equipment not be less than the values shown in Tables 5 thr 7 at the design sucton pressure to insure adeqate removal capacity nder commercial operating conditons

Eecric generaing service  The venting eqipment design sucton presse is .0 nch HgA or the mnmum sction pressure (as measured at the inlet to the air removal equipment) based on the specied range of operating conditions c onditions r the ACC Fnal selection should consider compatible operaton ofthe ofthe ACC and its vntng equipment over th ll range of anticipated operating pressures and loads In addition, the physical location of the eqipment shoul be considered when the design sction pressure is selected 9.2.1

95 9 511 Pocedre r S Sz zng ng Venng Eqpmen 95. Determine the total steam ow of the unt by adding the main trbine exhast ow and any auxiliary trbine exhast ows entering all main ducts ofthe ACC.

23

 

ofLP LP 1 Determine the tota number of trbne exhaust openings Do not ncde axilary trbine exhaust openings

Entr Table 5 and a nd se the row listed r the Eective Steam Fow Each LP Exhast Openng of1,5 of 1,5 0 0, 0 01 to 2, 0 0 0, 0 0 0 lb/hr

obtained ned n 95 1 11 1  13 ivide ow obtai 13 by exhast openng nmber obtaned  n 95 51 12 2  Th Thee resultant nmber s the

The total nmber of exhaust openings openi ngs s one  This This is determned by the sum of the tota (1) (1) nmber main exaust openngs and axiiry

eectve steam ow r each Ip trbine exhaust opening opening 

trbne openings The ntersecton ofths ofths column and row reslts in a venti ve nting ng capacity capac ity of 225 SCFM

1 Enter the the appropriat appropriatee secton of of Tabe 5 and ocate the ow obtaind n Step 9513

Example o. 2: The cond condense enserr design parameters are the owing • One L P Exhaust Casing Casing • Total steam ows om LP turbne exhasts   9 5 0 0 0 0 lb/h lb/hrr • Total steam ows o om m auxl a uxlary ary turbne exhau exh aust stss = 20 0, 0 0 0 lb lb/h /hrr • umbr ofLP ofLP trbn trbn exhaust exhaust openings = Four

   Determin Determinee total total number number ofexhaust ofexhaust openings by adding the toal number of LP turbine exhaust openings to the total nmber of auxliay turbines exhasting into the ACC.  Determine the recommended capacty by sing the number obaned in  95  9 51 15



(4)

mber of axiliary trbine exhast openngs  Two (2)

 If the ACC is separated nto indivdua block s or split congurat blocks co ngurations ions (i.e (i.e parael para el condensers) so that the sction pressres at ll perormance can be derent, then the venting system capacty of each block shall be per Table 5

The tota stea steam m ow of the nt is the sm of the main turbine exhast and axiliary exhausts Th T hss va vae e s 115 0, 0 0 0 lb/ lb/rr]

The llowing s  s an example of o f sizi sizing ng the ventng eqipment:

Dvidee 1,15 0 0 0 0 b/ Dvid b/rr by r (4) The rest rest is  28 7 5 0 0 b b/hr /hr which is the eect eective ive steam ow r each man exhaust opening

The number ofLP main trbne t rbne openings s ur  ur (4).

Example o 1: The condenser desgn paameters are the llowing • One LP Exhast Casing • Tota stea o ows ws om LP trbine exhasts  1 1 6 0 0, 0 0 0 lb lbr • Total steam ste am ows om axiliary axiliar y turbine exhausts = 0 lb/ lb/hr hr • umber of LP turbne exhaust openngs =

Enter Table 5 and se the row lsted r the eective e ective steam ow r each LP exhast openng open ng o 25 25 0, 0 01 to 5 0 0, 0 0 0 lb/r The tota tota number of exhast openings s six ( 6 ) This is determined by t he sm of the total number LP exhast openings and auxiary

(1) • One Number Num ber of axiliar trbine exhaust openings  Zero Zero ( 0)

turbine openngs The intersection ofthis ofthis colmn and row resuts in a ventng capacity of 25 SCFM SCFM. .

The total steam ow of the nt is the sm of the LP trbine exhast and axliay exhasts [This [T his val valee is 1 6 0 0 0 0 0 lb/ lb/hr

3   (B)  t t  When sustaned steam dmp operation is requred ventng equpment must also be suitable to handl the desgn quanttes ofnon-con non-condensable densabless satraed at a temperature 7.5  F beow that corresponding to the satraton steam pressures at the highest condensing pressure liely to occur ith ll steam dmp load with all or a partial nmber of ns orating at the maximum nlet air dry bb temperature

The number ofLP ofLP turbine openngs is one (1)

°

Dvid D videe 1 6 0 0 0 0 0 lb/ lb/hr hr by one one (1) (1) Th Thee resut resut is 1 6 0 0, 0 0 0 lb/h lb/hr r whch whch s the the e eect ective ive stea steam m ow r each L P exhast openng openng

24

 

wel as the time desired r such reduction. Where specc vaues are not listed the industy standard has een estabished at O"HgA (0338 ara) in 30 minutes based on a xed voume Depending on overa plant design, bypass stea ow rates may require moduation in order to pevnt pressure spikes that may burst rupture discs Therere owe evacuation pressures or longe evacuation perids may b dsired.

Evacaton (Hoggg) Equipment 9.6 Rapd Evacaton

When staring the steam turbine it is desirable to reduce te ACC pressure om atmospheric to some lower value. This can be done by means o snge stage ejector or mchanical vacuum pump The capacity of the device is dependent on the eectiveness o the turbine gland seals, the voue of the ACC turbine casings and associated ducting as

Table 5 ONE LP EXHAUST CASING Eecve Seam Fow Each Ma has Openg bshr

·SCFM

Up o 250

Toal Nmber of xas Opes 

3

2 30

4 5

4.0

5

6

5

7. 5

8

7 7.5

7. 5  



Dr Ar bs

13.5

18

22

22

33.8

33.8

338

45.0 

Waer Vapo bs

297

396

49  5

49

74.3

743

.3   74.3 74

99

Toal Mixte bs

432

76

720

72

8.0

080

080

1 44 44 0

40

50

7.5  

00

10.

100

25

Dr Ai bs

18

225

338

338

40

4

40

63

Wa Vapo, bs/

39.6

49.5

74.3

74.3

99.0

99.0

99

1238

Toa Mix bs/r FM

76 .

720

108.0 00

8 1

1440 25

1 44 44 0 125

1440 15

18 175

Dr Ai bsh

225

338

45

45

563

563

67

788

Wae Vapo lbs

495

.3   7 4.3

990

990

1 23.8

238

1485

1733

Toa Mre lbsh

720

08.0

1440

1440

1800

80

260

220

75

12.5

25

0

17

200

200

20

Dr A, bsr

338

63

56.3 56 .3  

675

788

900

9.0

112

Waer Vapo bsh

74..3 74

1238

1238

48

733

1980

980

2475

Toal Mx bshr

18

1800

80

216

2520

2880

288.

3600

10.

.

17.5

20

2.0

2.

30.0

300

Dr A, bs/

45.0

67.5

788



25

1 2.5

30

1350

Waer Vapo, Vapo, b

99

1485

733

198.

2475

2475

2970

2970

oal Mixte, b

144.0

216.0

2520

288

36.0

360.0

432.0

432

125

20

20.0

2

3.0

30

350

400

21 o 00

0 o 1000

I

•CFM

FM

1000 o 20

*SCFM

20 o 500,

SCM

0 o 750,0

7 .5  

7.5 

Dr Air bsr

56.3

90.0

9

2.

13.0

35.0

157

1800

Wa Vapor, bs/r

23.8

98.0

198

247

297.0

297.

346.

3960

Toal Mxue, bs/r

80.0

2880

288

3600

432.0

432.0

04.

5760

50

22.5

22.5

27.

32

35

4

45.0 .0  

Dr Ar bs

675

03

101.3

238

146.3

575

8.

225

Wae Vapor lbsh

485

2228

2228

272.3

3218

3465

396

44 4   

Toal Mi lbs

26.0

3240

324

396.

4680

040

76

6480

7.

20

27

32.

37. 7. 

400

45

00

Dr Ar lbsr

788

112

1238

1463

1625

8.

225

220

Wae Vapor lbsh

173.3

2475

2723

328

375

396

44.5

490

Toa Mxe lbsh

252

36

3

468

20

576

648

720

200

275

30

35

40

40

45

00

Dr Ar lbsh

90

23.8

13.0

575

800

225

225

225.0

Wae Vapor lbsh

198

2723

297

3465

396

445

4455

49

Toa Mix lbshr

288

3960

432

540

76

648

648

72.

7000 o 1 0,0

*SCFM

100,001 o 1,2500 SCFM

1,2,01 o 150000 ·FM

25

 

Efectve Stem Fow Each an Ehaus Openg bh

I

Tota Nube of Exas Oes 225

300

350

450

500

500

550

Dy A lbs/hr

0.3

1350

575

1625

2025

2250

2250

2475

Water Vapo lbs/hr Tota Mite lbs/hr

2228 324.0

2970 4320

346.5 5040

3575 5200

445. 45.5 5 

495. 0 

6480

720.0 .0  

4950 720.0

545 7920

25.0

325

400

50.0

55.0

Dry Air bs/hr

125

1463

1625

800

225.0

247.5

2475

2700

Water Vapo /r

247.5

32.8

35 7.5  

3960

4950

544 44..5

4.5 5  544. 54

5940

Tota Mte bs/hr

3600

4680

5200

5760

7200

7920

7920

8640

27.5

35.0

550

600

65.0

D  bs/hr

238

1575

800

2025

2250

247  5

2700

292.5

Water Vapor, bs/hr

2723

3465

3960

4455

4950

54.5

594.0

635

Tota Mixre lbsr

396.0

5040

576.0

6 4 8 0  

720.0

792.0

860

9360

1 500001 to 2,000000 •FM •FM

2,00000 to 2500000 *SCFM

2500001 to 3,000,000 SCFM

3 7.5  

40 0  

37.5   37.5

450

50 .0  

300

400

45.0

500

550

Dy Ai lbs/h

350

180.0

2025

2250

Wate Vapo bs/h

2970

396.0

445.5   445.5

Tota Mixr e bs/h

4320

5760

 68 '

4950

325

450

Dy ir lbs/hr Wate Vapor lbs/hr

146.3 328

ota Miue lbs/hr

4680

3,000001 to 3 5000 500000 00 SCFM

3500001 to 4000000 SCFM

.0   55.0 55

600

600

650

700

2475

2 7 0 .0  

2925

35.0

54.5 54 .5  

5940

3.5   643.5 64

6930

7200

7920

860

936.0 

008.0

500

55.0

600

65.0

700

75.0

2025 4455

2250 495.0

2475 5445

270.0 5940

292.5 6435

3150 6930

3375 7425

6480

720.0

792.0

864.0

9360

10080

080.0

•14_7 psia at 70F Noe:: These tls Noe tls r ba d o  kge ony ad  r vapor mxur   c HgA ad .5  °

26

 

Table 6

TWO LP EXHAUST CASINGS Efectve Stea low Each Man Exhast Openng bsh

I

Tota Nmbe of haust Openngs 3

2

4

5

6

7

8

150

200

20

225

250

275

300

Dr Ar lbsr

675

90

90

103

1125

1238

350

Wate Vapo bs/hr

 48  5

198

1980

2228

2475

2723

2970

otal Mixture, bs/hr

26.0

2880

288

3240

3600

3960

4320

200

225

250

30.0

325

375

400

90.0

1013

125

1350

46.3

1625

800

Waer Vapor Vapor lbs/h

1980

2228

2475

2970

328

3575

396.0

Total Mxte lbsh

2880

3240

360

4320

468.0

5200

5760

250

275

32.5

375

40.0

45  0

500

Dr Ar, bs/h

1125

238

463

1625

1800

2025

2250

Water Vapor bs/h

247  5

2723

3218

3575

3960

445 44 5 5

4950

otal Mte bs/h

3600

30

4680

5200

5760

648.0

7200

275

30.0

350

400

450

500

550

Dr Air lbsh

23.8

135.0

1575

180.0

2025

225.0

2475

Water Vapo, lbs/h

272.3

2970

365

30

4455

4950

5445

Tota Mxture, lbsh

3960

4320

500

5760

6480

7200

792.0

325

350

40

450

500

550

600

Dr Ai, lbs/h

1463

1575

180

2025

2250

2475

2700

Water Vapor bs/h

32.8

3465

30

45.5

4950

5445

5940

Total Mixte bs/hr

4680

5040

5760

6480

720.0

7920

860

450

500

55.0

600

650

2700

2925

10000 to 250,000

•CFM

25001 to 5000

SCM Dr A A bs/hr

500001 to 750000

SCFM

750,0 to 1 000,0 000,000 00

SCFM

1 0000 to  250000 0 00 'SCFM

 2500 to 1 500,000 *SCFM

350

3 7 .5  

Dr A lbs/hr

1575

625

2025

225.0

2475

Wate Vapo lbs/hr

3465

3575

4455

4950

54 4 5

594.0

643.5

Total Mxte lbs/hr

5040

5200

6480

7200

7920

8640

9360

37.5

400

5.0

550

600

65.0

700

Dr Ar lbs/hr

1625

1800

2250

2475

2700

2925

315.0

Waer Vapor lbs/hr

357.5

3960

4950

544 44 5

5940

6435

6930

Tota Mxte lbsh

5200

5760

7200

7920

8640

9360

008 0 008

400

450

550

60

65.0

700

750

Dr Ar lbs/h lbs/hrr

800

2025

247.5

270.0

2925

350

3375

Wate Vapor bs/hr

3960

5.5   445.5

5445

5940

643.5

6930

742.5

ota Mixture bshr 2,50000 to 3000,000 SCFM

5760 450

648.0 50.0

7920 550

8640 650

936.0 70.0

0080 750

1800 800

 500 500  to 2,000 SCFM

2,00000 to 2,500000 FM

Dr Ai bshr

2025

2250

2475

292.5

350

7.5   337.5 33

00

Wate Vapo bshr

4455

4950

5445

643.5

6930

7425

7920

oal Mxture bshr

6480

7200

792.0

936.0

10080

0800

152.0

500

55.0

60

700

750

800

85.0

Dr Air bs/hr

2250

2475

270

350

3375

3600

3825

Water Vapor bsh

495:0

445

590

693.0

7425

7920

845

Total Mixture bs/h

7200

792.0

860

10080

080

 152 1520 0

224.0

550

600

65.0

700

800

850

900

Dr Ai bs/h

2475

2700

2925

350

3600

3825

4050

Water Vapo bs/hr

544.5 544.5

5940

643.5

6930

7920

845

8910

ota Mxte, lbs/h

7920

8640

9360

10080

152

12240

20

3,0001 to 3,500000 ·FM

3500,0 to 4,00000

SCFM

"14.7 psia t 0•F No oe e: Ths ables r bsed on ai akag y a d h  vao mxtur t 1 ich HgA a  F °

27

 

Table 7

THREE LP EXHAUST CASINGS ectve Steam Fow Each Ma Exaust Openg lbs/hr

I

Total Nmber of xhaust Oe 4

3

5

7

6

8

30.0

325

375

40.0

450

50.0

D A, lbsh Wae Vapo lbs

350 2970

463 32.8

625 3575

800 396.0

2025 4455

2250 4950

Tota Mxt ue lbsr Tota

4320

4680

5200

5760

648.0

7200

450

500

550

600

·FM

25000 to 500000

·FM

500001 to 750000

325

75   375

D  lbs

1463

625

202.5

225.0

2475

2700

Wate Vapor, lbs

321 .8

3575

4455

495 95.. 0

5445

594.0

Total Mxte bs

468.0

5200

80

7200

792.0

8640

375

450

500

550

65.0

700

Dy Ai, lbs/r

1625

202.5

2250

2475

2925

3150

Water Vapor, lbs lbs

3575

445.5

4950

544.5

6435

6930

Total Mxtue bs

5200

6480

7200

7920

9360

0080

400

500

550

650

700

750

750001 75 0001 to  000000

•SCFM

1 ,000,00 to 1 250000 CF CFM M D Air, bs/

1800

225.0

2475

2925

350

3375

Water Vapor lbs/ lbs/rr

30

4950

5445

6435

6930

7425

Total Mxture lbr

5760

7200

7920

936.0

008.. 0 008

10800

1 25000 to  ,500000 *SCF *SCFM M D Air, bs

45.0 2025

55.0 2475

600 2700

700 350

750 3375

800 0.0

Wate Vapor b 

445.5 

54 4 . 5 

5940

6930

7425

7920

Total Mxe bs

680

7920

8640

1008.0

 080 0800 0

1520

500

60.0

650

80.0

90.0

D Air bs bsh h

225.0

2700

2925

7.5   337.5 33

60.0

405.0

Wae Vapor bsh

4950

5940

643.5

7425

792.0

890

Total Mxue lbshr

7200

864.0

936.0 936. 0

 080 0800 0

  520

20

55.0

65.0

700

800

85.0

950

2475

292.5

3150

3600

3825

4275

Wate Vapo bs

5 4 .5 

.5   43.5 643

6930

792.0

8415

9405

Tota Mxure bsh

792.0

936.0

0080

520

2240

3680

60.0

700

75.0

850

900

1000

Dy A lbsr

270.0

315.0

3375

382.5

4050

450.0

Wate Vapo lbs

594.0

6930

7425

8415

890

9900

Tota Mxue bshr

8640

10080

0800

12240

2960

1440.0

900

950

1050

1 500,00 to 2000000 2000000 FM FM

2,00000 t o 2,5000 FM Dy Ai bs

2500,00 to 3,000000 FM

75.0

65.0

750

800

Dry A bshr

2925

3375

3600

4050

427.5

4725

Water Vapo bs/h

6435

742.5

7920

89.0

940.5

1039.5

Total Mxre bs/h

9360

080.0

 52 520 0

296.0

13680

1520

700

800

850

95.0

1000

00

Dry A b bhr hr

35.0

360.0

3825

4275

4500

4950

Water Vapor lbs/r

6930

7920

8415

940.5

990.0

0890

Total Mixtue br

10080

1520

12240

13680

1 44 4400 00

5840

300000 to 3500,000 FM

3500001 to 4000000 FM

"14.7 psia at 0F Ne: Ths abls abl s a s on ar akg  ad a d  a vapo mxur a  c HgA ad    5  °

28

 

1 0.0 ATM ATMOSPHER OSPHER C RELIEF DEVCE DEVCES S

 the the syst syst volu volue e excee exceedsds  4 5 000000  then ultple devices oo  the the sae sae size si ze sho should uld b used used

0.1 Gneal

3

,

The size o atospheric relie devices conditions dependenttsizeisupon operating ust ois sucient tounderstood passtheall specied othatthe they stea whichbe can be aditted to the ACC except o the lines that are alre already ady protected by relie devices set to open at pressures not eceeding the ACC relie pressre Typically th! axiu stea ow rate is dened by a stea turbine bypass condition 0..2 The size siz e and location o at atospheic ospheic relie devices should be based on th llowing criteria: • elie device size and associated piping should e selected to prevent pressure in ACC o eceeding the ACC design pressure • elie should rbe inspection located andandinstaled so theydevices are accessible repair The protective devices need not be directly installed the onturbine the exhaust but ay hoodbeprovided installedtheyon are stea properly sizedACC • Exhaust o al reliedeices ustbe properly vented by the purchaser to avoid injuy to personnel or daage to eipent 0.

10 3 Rupt ure Device

A rupture disc is a non-reclosing non-reclosing pressure relie diaphrag actuated by static pressure dierential and designed to nction by the burstin burs tingg o a pressurecontaining pressurecontaining nonagent ing disc Every ruptre disc shall have its burst pressre tagged in accordance with the design reqireents reqi reents The The selected brst b rst pressure shall take into account anufcturing tolerances Underr no circustances Unde circustances shall the burst pressure plus all associated tolerances xceed the ACC design pressure Thee total installed ptue disc capacity Th shal be sucient to reieve the axiu axiu ACC stea owTheatllowing or belowequation the ACC ACC design ay bepressure used to estiate the size o the rupture disc based on dr and saturated stem 0.3

032

03.3

0.3.4

0 .2 Vacuum Breake Breaker r Valves

designed r llovacuu seiceValves A watershallsealbeay be required aple depth around the valve disc to ensure proper sealing o the seat with provision r adequate ll and dranage lowing the suggestedThe vacuu breaertable sizes rprsents r ACCs This 10.2.1

Where, A  Miniu required ow rea in W = Discharge Di scharge ow rate lb/hr K  Flow coecient use value valu e o 0 06 6 2  = Reievin Re ievingg pressure psi a I the required rupture disc diaeter sizsize exceds e shall30"be then utilied. ultiple ruptre discs o eqal upture discs are usually located on the ACC ain duct or distibution header Location r ease o replaceent as well as personnel protection and the avoidanc o accidental dsc daage should be considered considered Rupture discsandshall designed opeate satisfctorily withoutbeleaage leaa ge underto ll vacuu 2

5

4

A

1022

0.3.5

ethodolog atospheric at ospheric pressure considers 0shallbaraconr toll1.0vacuu 1scope 3 aa) aa)andtoin six inuts Purchaser(0( 0breaing sizing criteria cr iteria

1036

Tb 8

VACUUM B REAKER SIZE FOR ACCS

o oeSe-S ' e   Bee Se   o    o     o 9 8 9 o    o 88 88 o 8  8  o   

037

4

10

14

29

 

INSPECT PECTION, ION, QU ALT ALTY Y AND FIEL FIELD D INSTALLATIN INSTALLATIN  1. 0 INS 1121 Suppemental nondestructive xamination (ie, dyepenetrant, magnetic partice testing radiography, etc is typically not required

1 1 1 Lea Leakag kage e Testin Testing g 11.11 A pneumatic leak test is perormed to veri the th e leak tightness o the n tube bundes,

steam distrbution headers and miscelaneous pipin gTypicaly testing o the main main steam duct is optional r muti-row ACCs hn the main steam duct is tested, the main steam duct and the tube bundle drain nozzes must be banked an engineered blankin plate must be used to blank the main steam duct  the main steam duct is aso tested, the duct blanking plate is instaled as close as possible to the steam turbine exhaust interfce.

1122 The welding shal be perrmed using welders and writtn wed procedures, which have been quaied in a manner comparable to that dened in Section X o the ASM Unred Unred Pressure Vessel Code

shall ll be examin examined ed in the "as " as 1123  All wl ds sha welded condition preceded ony by normal ceaning 1124 Weld inspection methods and equipment • Personnel perrming visual inspections shall be qualied to eye examinations in accordance with SME or AWS. AWS. • Al measuring equipment shall be maintained maintained and calibrated i n accordance wth the manufc turer's approved quality contro manuals and prcdures

1112  An ar compessor is used to put the system under pressure; a typica testing pressure is 435 psig ( 0.3 barg The acceptance criterion r the pressure test is to imit the air leakage expressed in lbr (khr ) to 2 % o the holding capacity o the airremoval system associated with the tested section Th pressure and the temperature o o  the air inside in side the ACC should be montord on an houry basis The duration o the test should shoul d be up to 24 hours hours or as as required to demonstrate leak tightness

Thee lo lowi wing ng 1 125 Wed Cae Caeores ores  Th categories are estabished considering the seice requirements o specic typs o welds These criteria appy to shop welds and to eld wlds in the apparatus except r pipe welds made to connection stubs • Category  includes pressure bounda welds: Those welds which provide a separation o atmospheric pressure and ACC internal pressure • Category  includes structural welds Those welds which are associated with the primary support structure o th ACC platrms, staiays ducting, vesses and piping

devicee 1113  A temporary pressurerelie devic should be installed to prevent overpressur ization o the ACC The capacity o the relie device shall be at least equal to th capacity o the compressor utiized r the pressure test During the pressure test it is recommended to blank o the rupture disc to prevent accidental activation 1 1 14  ACC structures are not designed o withstand withsta nd the oads associated with a hydrostatic hydrostatic test aer installation Terere, hydrostatic

testingg shal n ot be prrm testin prrmed ed 

• Category  incudes other weds vortex hose welds associated withalldirt collars, breakers inteal in teal shielding, lagging, personnl grating, ladder rungs, grab bars instrument/ accessory support, temporary erection and shipping members nameplatesrackets etc

1 1 2 Inspe Inspecion cion and and Quay of Weldin

Tis section estabishes minimum standards r visual inspection o ACC weds perrmed in the shop and eld The visual acceptance criteria are devloped using recognized codes and standards such as ASM codes ANS standards, A A A and AWS as a guide More stringent requirements may be specied by the purchaser and wil take precedence

1 126 Accep Accepance ance evels  Acceptance eves typ es o weds in Categories  II, and r various types  are to be identid identi d by the equipment suppier with SME used as a guide r Cat�gory  and  AWS  A WS r Category .

30

 

surces need no be rmoved. Pre-cleaned material such as prbasted plates ma b painted pror to brcaton. Al accessbl pan scars and blemshes shall be rouced pror to shipment I must b recognzed tha some toucup wll be requred aer unloading or nstaaion

 1 .3 Sfa Sface ce Preparation Rqirements Geeral euiemets  Su Sur rce cess 1 1 .3 1 shal be prepar b  the manucurer to assre that e equpment wl be accepable om te lowing lowin g aspec s: 3.. Surces o be coaed (paned or gavanzed) wl be sutaby ee om deleterous materials that ma aec e adeson of e coatngs.

  32 Gee Geea a Reireme Reiremets ts .32 Table 9 contans te recommended accepable preparatons r varous areas and components of he ACC Eac area s evaluated on te bass of preparaton requred r coangs as wel as e ulmate desinaton of he contaned conta ned uds and any partices ta ma be carred wi te ow

1312 n any case te suce preparaton sall mee te requiremens of e coaing ssem to e utzed. .33 Loose scale wed spaer or oher materals sall be removed by sutabe meods.

1322 The requiremnts as wrten appy o th preparaton prepar aton of componens ad assembis as bult n the manucturer's clites clit es Fna assembl o f te apparatus y the ercton contractor sould met te applicabe sectons of Table 9

34 Surces wll have a workmanke appearance and eedom om scars and protrusons that could cause bl njury 113.5 Thebe preparatons b hs perred requred a any i in scton ma te manuctu man ucturng rng cycl cycle eRust ta develo develops ps durng manucure sall be removed pror to pantg f t would be detrimenta to te pant applcaton. us on nonpaned

 132. 132.3 3 The purchaser should assure tha parts of te componens compo nens suppled suppl ed b oter tan te condenser manucturer but wch are conneced to or nsaled in the condensr, are prepare n smlar son Table 9

R ECOMMENDED ACCEPTABLE PREPARATONS OF COMPONENTS AND ASSEMBES BUILT IN IN MANU FACTURER'S FACLITIES

Chaacteistic

I Bundles

 Ducng

I Tanks

 P1png

 Axliay Equpment

Wed Suraces

Per Manufactes sandad

Pe te te appca ble weldng pode

Pe Manuaces sandad

General Sace Condton

Per Manuactu Manuactues es sandad

Ineal suace per SSPCSP2 o better tena sa pe SSPC-SP6

Pe Manactes standard

Indenatons

Mno  ue ndentatons ndentatons and n deomaton s aeptale. be ndentons sold not compromse te pesse bonda

Dep to be e smalle o 02*ckness o /8" (3mm)

Per Manacues standard

Resda Wed Metal and Protsons

Per Manuacurers sandad

egt =  8 8 (3mm; (3mm; Dess Dess as nessa to assure good pant coveage

Pe Mauacures sandad

Arc Srkes

Remove al Ac Stkes

Wed Spater

Remove spatte pe SSPCSP2 o beter

Pe Man uacter uacter's 's sandard

Ml Sle

Remove spatte pe SSPC-SP2 o bete

Pe Manuacters sandad

Genea Condon o Compone ts or Sb-Assembles

Loose d, paces ecessv ecessve e ust, os and genera contamnans sal be emoved emoved b bsng bsng ar blowng and o wae wae o poduce a wokmanke wokmanke appearan (pe SSPC2

Max.

31

 

1  .3.3 Specal Requr Requremen ements ts The require mnts o this section represent good practices recommnde by the ACC manufcturer, the paincoating manucturers appicators and in general mt the intent o specications by engneering frms owners and prchasers o this equpment However there may be

 .5 Quaty Assur Assurance ance

The manucturer shal have a Qualty Assurance program r ACCs This program prog ram shal be outlned n a Quaty Assurance manual which wl be available to the purchaser and hs representatves upon request. The system shall provide fr control

xceptions requiring special preparation There are two basic groups o special requirements

o both the manucturers plantFeld and thatquaity o anyinsubcontractor fbrcatng parts Qualty Assurance is the responsbilty o the purchaser anor installing contractor The party responsible r the fd instalation should have a quality assurance program comparabe to that o the ACC manufcturer Review o this quaity assurance program shall be the responsibilty o the purchaser

.3.3 Purchaserspecied requiremnts   the the purcha p urchaer er or his agent desire desire any preparation more stringnt (ie abrasive blastng) than this Standard it must be clearly stated n the procurement documents.  .3.3 .3.3.2 .2 anucturerspecfed requre mens  The manuctur mens manucturer er may may at any time prepare the equipment n a manner superior to the requirements o Table 9 Ths improvemet is discretonary and could be done to suit the manucturer's economic evaluation and and/or /or his processing equipment and schedules. As a minimum the manufcturer is required to provide preparation as dicated by the require ments o o  the painting or coating process process

The Quality Assurance progam shall provide r assurance o compliance with but not limited to the manucturers and HE Standards which provide as a mnimum • Proj Projct ct contro c ontros s (i (iee engi engineer neer procurement instalation • Materal controls • Fabrication controls • Quality control • Document control • System r audit o contro o procedures  .6 Ere Erecto cton n Advsor Advsor Dutes

1  .4 Pat ng, Coatng ad Corosio Protection

The manuc manucturer turer may provide the servces servces o an erection advisor to counsel the purchaser n the proper installation o the ACC and accessories n accordance with the erection drawings and nstal atin procedures.

.4. External surfces o carbon steel ACC components (steel structure ducting piping ad vessels are to be cleaned and either hot dip galvanzed or painted with one coat o prmer Touchup o the prmer and applicaton o the nish paint pain t are ar e perfrmed aer aer fnal fnal eld installation by the purchaser 1.4.2

n the event o any conct between the manuc turer's requirements and site practice the erection advisor wil bring such confcts to the attenton o the purchasers designated representative representative

Inteal ACC suraces do not rquire

prmer rust inhibitors shipmentpaint, and orstorage Oxidationronormal these suces suc es s acceptable and is to be epe epected cted Any internal surce preparaton activties should use frrous materials that are slica ee ee

The erection advisor shal not be responsibe r the lowing: • The supeision o the erecton crew • Fitup and weld quality • Lifing and riggng plans • The heath and sa saety ety o o  the the erection erectio n crew • The schedule o erecton and work progress

.43 echaical eupment shal be provided with the manuct man ucturers urers standard ctory fnish fnish

 7 Er Erect ecton on Cleanlnes s

These Standards do not cover the application o any coatings. All such appica tions shal be done to the requirements o the appicable process pr ocess 1.4.4

Due to the reativey large intenal voume and confned spaces within an ACC t is mportant that the erection contractor exercises a heghtened evel o housekeeping eort s ACC row sections are completed 11.7.1

32

 

the erection contractor shall inspect the upper stea headers and reove al constructon debris (i.e, tools, weld ods, sag too boxes, lights, etc) so that it does not enter the n tubes or other areas.

This is not detrimen detrimenta ta to the perra perrance nce o the ACC and s removed durng the hot comission ing phas   75 xterna xternall debris and and construction construction ateia ateials ls must be removed om al suraces o the ACC

11 72 The erection contractor shal sequn 1172 sequnce ce the installation o the ACC to provide opportu nities to remove any debris prior to closure A practical approach to clean the interior o the ACC A CC om the top to the bottom shall be llowed In particuar, the conensate headers shal remain open r cleanout·until the stea headers are copletely instaled and cleaned.

prior to This the includes start o but the iscold procss not coissioning liited to the llowing • Heat transr surce surcess • Walkways and platrms • echanical equipent (ns, otors, etc) • Fan guards and cabe trays 18 1 8 Pt-Et al

173 Other AC C co coponen ponents ts (stea ducting, drain pot, condensate tank, and piping systes) shal be cleared o debris and broo cleaned as each coponent is instaled or prior to nal closure

Upon completion o the eection activities, it is recommended that a representative o the ACC anucturer anuct urer and the purchaser (or (o r purchasers purchasers agent) perr a posterection wakdown The llowing activities shall be perrmed: • Visually inspec all instaled ACC coponents • Review inspection and testing records associated wih the erection activities

117 4 Appropriate clean 1174 cleanout outss or ea eans ns o collecting debris within the condensate drain syste shall be provided r during the hot commissioning by thetocoissioning contractor. t is phase very coon have surce rust r on the internal surces o the carbon stee aterials (ie ducting, piping, tubes, etc)

• Review and modi punch list items as required

1 2.0 COMMISSIONNG

21  

• eri proper lubrica lubrication tion o al rotating equipent • Caibrate instruents and perr nctional check • Megger all motors • Remove blanking pate(s) and install rupture rupt ure disks) disk s) • Remove shipping braces o all expansion joints

Typical cold comissioning or "dry run" activities are completed aer construction. Noral prerequi sites incude that the ed pressure test is complete and success, punch list items are satised, all electrical and instrumentation connections are copleted and pow power er is availa available ble to an an otors an and d other electrical components 211 Typical prestart inspections include but but are not liited to the lowing: 12  1 Conr tha thatt the erec erection tion cleanliness requirents as described in secton   are met

2 1  21 3 3 rceed with the cold coission activities pe the ACC anucturers O&M manua, which include but ay not be limited to • Bup B up motors and chec k an an • err n run test and adust vibration switches and gearbox ow/pressure switches, as necessary • Adjust an blade pitch as necessary • Note any unusu unusual al vibrations vib rations  record i necessary) and noises om rotating equipent

12 2 Conr Con r that preoperational checks of all echanical equipment have been perred in accordance with the ACC anucturer's O&M anual which include but may not be liited to: • Conr Conr  gearbox oi type and level • nstal gearbox breathers

3

 

• Test valve ncton (stroke valve and set or adjust limit swtches as necessary • Per Perrm rm vacuum equipment nctiona nctiona  test • Commissioning of CC Eectrcal System • Commissioning of CC Instrumentation and Control systems

Once seam cleaning has been competed the CC is ready r norma operaton and the llowing hot commissioning activites should be conducted: • Veri pressure contro at CS and tun tun a s necessary verify vave control. • Veri ar remova system operation.

•• eat Tracing Functional Checkheck Groundig System Functional

• Verify eeze protection nctions subject subject t o ambient temperature contions). • Check and record the noncondensable gas temperatures, condensate temperatures and n tube bunde temperatures. • Perrm a vacuum decay test of the system and check r CC system leaks as necessary

122 H       221 2 21 ot commis commisoning oning actvit actvities ies can commence once steam becomes avaabl. It is recommended that all cold commssioning activities be successlly compleed

23 D      A A  231 The manu manuctur cturer er may provde the services of a commssonng advisor to counsel the purchaser n the proper commissonng and ntal operation of the CC and accessories n accordance with the CC manucturers O&M anual

222 2 22 The CC manuctu manucturer's rer's O&M Manua Manuall shall be used in conunction with the llowing chckst r reference 22 3 Commissonin Commissoningg activite activitess r equi equipment pment · suppled by others are not the responsbility of the CC manucturer Some typcal hot commissioning actvities include • Conduct ineal steam cleaning of the CC until the purchaser's water chemistry requirements are met. The purchaser shall provide and install teporary provisions to collect condition or dispose of the initial condensate • urng the stea cleaning, inspect steam duct hat exchanger, and piping movements to conrm ee expansion

1232 n the vent of any conict between the manucturers requirements and site practic the commissoning advisor will bring such conicts to th attention of th purchasers desigated representatve 2 33 The commissionin 233 commissioningg advsor advsor shal shal not be responsible r the owing: • Te supesion of the commissionng crew or plant orators • nstallaton or removal of temporary componens requred during the cold o hot commissioning • Th schedule of commis commissoning soning and work progress.

34

 

APPENDX A HE A R COOLED COOLED STEAM STEAM CONDENSER CONDENSER DATASH EE EET T - M PERIAL UNTS

 2 3

Maufaer: Cstome I Projec Name Loction

4

Cstome RefRef Maufacrer

5

6  8 9 10 1 12 13 14 

15 16 17 18 9 20

•   "' "'

2221 23 24 25 26 27 28 29 30 31 

, .-

Steam-side

Steam ow ae Non-codesable ow ate be exhast esse le ehapy Seam quali emerate  / o ea ase Daa Heat trase ate: Heat dut Bde ace area nde Desg Dt Design pessure est  essue: essue:

.

Po areahegh W x : Oveal Ce arranet Nmber of ls Ce size, W x  Man d length Man d diameer dia meer Dt cooson aowa Disrbto Disrb to header head er diamete d iamete Bdes per cel Tbes pe bnde:

oal air mass fow Temperate n / o dle ce veoc Fa sac essure Alow per an otal motor nu owe owe aometric pressure:

" HQ(A)

Btu/b F

B/h'F MMBtu/hr f'  

ps(g) ps(g) ft X  rows x (cells/ (cells/ow ow 1"2 stage x  ft n n n

hp 

Redo ratio:

44

Condensate Tank

45 Wa thckness: 46 Normal eve 4 Max evel 48 Dienss dmeer x ength 49 sellaneu sellaneus s Equipen 50 Vacuum ssem te: 5 Holdi capaty 52 og time to 1 0 HgA 53 Moive steam esse /  54 Wei hts s  eig ght 55 Emt weight

c W ·s(a)

Desg temeratre:

F

Diamete Nm o bades Nm lade materia SPL@3

I RPM

"H,O 

 F

Nmbe Nmbe  obe ubeleh rows: frst stae secod stae tbe ength: be dsions be ch be wal hckess be mateial Fn mateal Fi dnsons Fi thickne thi ckness ss / fp fp

"

Ibs F /s

xeded sufa MTD are tbe surface: I

f'

 

 x n  n n x in in /  

dBA

Nm  e Nm e : nclosee te nclos te Vots / Phase / Cce

 RPM

h

Nm er Nm er l:

Typ: 

43

56 

r-sde

b/hr b/hr



32 Fans 33 Fas pe  Speed 34 35   Hb maeral: 35 36 Fan shaft power 37 o 38 Type: 39   Seed 39 40 Moto ratig 4 Seed Redcers 42

Dae eson:

AGMA sei facto

n n   SCFM mn ps) / F lbs

Voume Normalal leve Norm l eve ca caac act t Max eve eve caact caact Corrosion aow aowa a

al 

oldinQ steam se oging steam se ubin u binee expansio expansi o oit t te te

b/h b/h

 erag wegh

Noes:

35

3





bs

 

APPENDIX A H EI AIR AIR COOLED SEAM SEAM CONDENS CONDENSER ER DAT DATAS ASHEE HEE - MERIC UN IS 1 2 3 4 5

1· 6

7 8

9 10 1 12

Manufacer Custome / ojec ojec Name Loton Custome Ref Manufacte Ref:

Date Revison

e1n, •r •ra

teamde Steam ow ate Noncondesable ow rate Tubine exaust pessure Inlet enthap Steam qual Tem Te merate erate  n / out 

Ade Total a mass ow Tem Tem eatu eatuee in / ot Bunde ace veocit veocit: Fan static presure Airfow e fan Total motor inut powe Baotric ressue

.

T/h T/hr barA) kJ/k C

13 14 15 16 17 18

19 20



eat ae Daa Heat ansfe ate Heat d u u:: Bundle fa aea Bde De Daa Desgn rese Test pee

W/m2 C

m' C m

bar(g)  bar() 

Degn temeratue

C

M2

' "•

ot area W x L:

mxm

Num o tube ows

22 23 

m rows x (cell/ow 1"/ 2 stae mxm m mm mm mm

st stae tube length condd stae con stae tbe length length ube dimenson ube ptch ube wal thcnes: ube mateia Fn mateal al Fn dinsons Fn thicnes / m

37 

Oveal heght Cel aranement Num of lls: Cel sze,  X L  Man duct enth Man dct damete Duct rosion aowance: Distrbuion Distrbu ion heade dameter Bndes pe l Tbes er bundle: Fa Fans er l Sed: Hb mateal Fan sha sha  owe owe oo

38

Type:

39

Speed Moto ratin

25 26 27 28 29 30 31 32 33 3 35 36

40

C s a m3/s kW baa)

Extended sa LMTD Bae tube srface

MW

2

24

kg/s 

"

Date Nm of bades Bade mateal SL@  m

RPM kW

m m m m x mm mm mm

mm x mm mm// mm m

dBA

Nm per l Encosue pe Vots / Pha / Cce

RPM kW

41 42 

ed T ype:  Redce

43 

Reducton atio ond enae a Wa thnes Normal eve Max evel Dmensions diamete x lenth ceaneo Ement Vacum sstem tvo e:  voe Hodn caacit: Ho tme to 0.34 barA Motve steam st eam resse resse / T eg Emty Em ty weht Note

44   44

45 46  47  

48

49 

0 51 52 53 54  55 

5

Nume  l Nume AGMA sei faor mm mm mm m m/ mn barg / C bar T

36

Volume Noal No al leve caa caaty: ty: Max eve ac Coosion alowance:

m m m mm

Hodn steam se Hn steam e: Tbne expansion ont type

kg/ hr kg/ /hrr kg/h kg

Oatng O atng wet wet 

T

 

APPENDIX B CONVERSON FACTORS

Area

 m'

=



5500 i

ea ansfer rae

1W

=

07639  342 3 Bu/ Bu/

Hea x

 W/2



0317 Bu/h•'

Hea ansfe ecet

 W/m•K



 76  /• /• FF

Enapy

 kJg



042995 Btu/b

Leg

 m

=

39.3701 .



32808 

Mass

1 kg



22046 lb

Mass densiy

1 kg/

=

0062428 b3

Mass flow ae

1 kg/s

=

79366 lb,/

Pressue an sress

1 Pa



1033 1

X

X

10 Pa

5

1 0 Pa



1 45 45   10  bi bi 0197  10· aa

=

0197  10 g/c'



405  10-  wate



953 X 0- n Hg



1 sanar amospee



1 bar

Specic ea

1 kJ/kg•K



023886 Bub•F

Teperaure

 K



5/9)R

 (5/ (5/9•(+45967 9•(+45967 = C2735 Tepeaure ere

 K

 1C = (9/5•R = (9/5)•

Vome

 m

 35.34   264 7 gal

Vume ow ae



1  /s

 21 1 89  1 0  m m    5850  10 gami

Veocity

1 ms

  96.85 mi mi

Power

 W

 341 p



Fouling faco

1 m K

Norma  amospeic pressue pressue

101 ,325 Pa Pa

37

= 5678 hf/B

 

APPENDIX C ACC TROUBLESHTNG GUDENES

Ths troubleshooting gude has been prepared to assst  perators of ar cooled condensers. Th gude pro provdes vdes genea gudance, and opeators re advsed to consult wth the manucturer hen necessary r specc nstuctons regadng Many of the tems belo are not by n opeatos the scope of the condenser mnucturer; hoeverther theseequpment tems do aect a ect operaton an lsted must be consdered

Condee Chemsty (Hgh Conduct1vty) Fae nstrument Readg

I I

Expansion jont ailue

Repace Repa ce o r eai expason joint

LP Turbne

Chec all LP tbne seas

Weld aure

ocate wed faue and epair

ube eak

octe ad repa

eaks eak s rom vet or drai conecion conecions s

d to vaum Check a potena sources connecte connected space

srumentatio

Check al isumeato coneons to vacum spa

Manhoe or bli d fange gases

Repai gaset seatng sua

Coroson produc Coroson producs s or wed sag i n censer

Check· and clean condesae heaes. deaeato rays and cdesa:e an

Inmg dans

Chec dain sources Chec caibato

I

Instumes ou o cabron Damage instrumens mpror insallation

Repar o epa as nessay Chec manuacues ecommedatons cludng valve maniold and pigtai equrements

Irect age

Che pocess equremens ad rect as requied

Isoaed instrumen conecon

Chec connecto

38

 

APPENDX C ACC TROU TROU B LESHOOTNG GU IDE IDELN LNES ES

Hg Abste Bac pesse

I



A -eakage

Cea ext exteal eal eat transfer s a ace ce Cnst eqpment peas maal n ecmme ec mmeded ded pu gn g actn actnss Csu OEM s upper r ecmmeded ecmmeded sltns f pat secc arangemets Remve Rem ve sield r redre t ar eent away frm te te ACC's ar in et Cnslt OEM sppler f recm recmmende mendedd st is  pant specic c arangemets Cea debs tat may be bstrug cndesate danage (i.e, staners DA spray vaves vaves etc) Reduce set pressre See Fase nstrumeat Readig sect Cnsu O&M mana r OEM suppie See HE Vacuum Eq ipment ublestg Gude See A Ineaage sec

Esse aiside olng Esse Ar baketig wt te  tbe budles Ht a recrcatn Ht air ingestn int ACC a  inet fm tsde sres Hg wnds Cndensate dp wti ACC Ct gic t pessre t t  g ase nstrmet eadgs Air-mvg system fare Vacm eqipment faie g ssved  A I-eakage Cndesate o, Hig disslved 02 n prcess  pant dans Vacm eqpment ilre

I

et steam s s I Cec et

Ai ban ketng wtin te f tbes cas ng cdensate cdensate t sbc ca Overeating

I

w Htwe Tempeatues

I parameters Opeati  design/lw lad  peatin

Tube aes

g V1bran  A1r-Mv1ng System

Opeaig cndtins exedig desgn parameters

Make p t cdensate tak exceedg desgn

I

I

Maitena nce  cnstcn cnstcn damage Fa mbaace

I

Lst fa bade Essve ai-sde lng

39

See HE Vacum Eqpment blestig Gude Csl eqpment peatns manua  ecmmended pging atns Cnsut HE desgn sandards Ceck for pper dsperheatg f dran cnec Re-evauate ntea dsperi desig Ceck ad adJust make  p fw

I Expected at w ad/w back pesse Pssibly



I be inet esn Fze tubes

See ar nl eakage sectn

aevated wit steam spagig 1 n cdesate tank Repacee  epa tb es ad cs Repac csl l OEM fo evsed ev sed pratng cndt s t av d r reeng eeng Cnsl OEM f repar tecqes and apprv apprvdd metds fr sding Repa  replace as equred Ceck a baance  accdance w O&M manua Ceck r brke/cracked blades Ceck f ce   bades Repace accding  O&M manal Cea n tube bndles

 

NOTES

40

 

NOTES

41

 

NOTES

42

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF