Heberth Pena Proyecto Final Metrologia

October 19, 2017 | Author: Heberth Peña Morales | Category: Calibration, Scientific Observation, Nature
Share Embed Donate


Short Description

Descripción: Proyecto final ramo Metrología - IACC...

Description

PROYECTO FINAL Heberth Andrés Peña Morales Metrología Instituto IACC 21.10.2016

Desarrollo 1. Proceso productivo de la producción de la botella de vidrio.Para la fabricación de una botella de vidrio primero se debe obtener la materia prima que es el vidrio y para esto se necesitan varios ingredientes naturales los principales son arena de sílice en un 45%, carbonato sódico en un 15% y piedra caliza en un 10% este último hace que el vidrio ya terminado sea más duradero, estos ingredientes se mezclan con vidrio reciclado, y esto hace que este materia sea mucho más conveniente de utilizar porque supone un reciclaje y una reutilización. En este caso la fábrica utiliza máquinas las cuales ingresan los materiales en cantidades exactos a unos hornos durante 24 horas a una temperatura de 1500 °C, esto hace que se produzca una mezcla pegajosa similar a la consistencia de la miel de abeja. Una vez que salen de los hornos, unas cuchillas cortan la mezcla en intervalos con medidas precisas para producir algo llamado globos cilíndricos, y cada globo tiene la cantidad exacta de mezcla para realizar una botella o tarro de vidrio. Los globos cilíndricos caen en una cubeta que los llevará por unos canales a las máquinas donde se producirán loas tarros y/o las botellas. Los globos con material fundido son vertidos en unos moldes donde se crean las preformas que son más o menos como unas botellas en miniatura este proceso dura solo unos segundos. Cada preforma entre en un molde de soplado cuyo molde tiene la forma de la botella final, la máquina sopla aire comprimido a la preforma estirándola hasta las paredes interiores del molde, este proceso crea la forma final de la botella y ahueca su interior. Para darle color a las botellas se les añade distintos ingredientes dependiendo del color que se le quiera dar a la botella final algunos de los ingredientes son hierro, azufre y carbono. Para la fabricación de botellas y como todos conocemos casi todas las botellas tienen distinta forma y color en general es el mismo proceso de fabricación, solo que cambia la cantidad de mezcla necesaria, esto dependerá de que tipo de botella se requiera, puede ser una de cerveza, vino o whisky, además en cada caso cambiará el molde dependiendo el tipo de botella que se quiera fabricar.

Una vez que las botellas salen de los moldes pasan por una línea donde son calentadas por fuego para que no se rompan por el cambio de temperatura. Una cargadora empuja una cierta cantidad de botellas y las coloca en un túnel de recocido donde son enfriadas a un ritmo controlado esto elimina gradualmente la tensión del vidrio. A medida que salen las botellas son rociadas con un lubricante para facilitar su desplazamiento en la línea de inspección y embalaje. Luego las botellas son alineadas en una sola fila para pasar por la zona de inspección automática, donde cámaras y sondas a través de cámaras de video especiales buscan imperfecciones y grietas. Además son medidos los diámetros de la parte superior para verificar que la rosca se haya hecho correctamente para que la tapa entre fácilmente. Luego de la inspección automatizada todas las botellas son llevadas a la línea de inspección visual. Un punto importante de este producto es su capacidad de reciclaje que puede llegar a un 90% de una botella. El vidrio reciclado se funde a una temperatura más baja así que por cada 10% reciclado de la botella la fábrica gasta un 2,5% menos de energía para producir el vidrio. 2. Identificar variables de longitud, masa y superficie presentes en el proceso. Unidad de medida Gramo Centímetro cúbico

Tipo de unidad

Proceso

Masa

asociada Pesaje de

granos

Volumen

Hierro Cuchillas

cortan

mezcla globos Grados Celsius Mega pascal

y/o

actividad

para

de la

formar

cilíndricos

de

Temperatura

mezcla. El vidrio es fundido en

Presión

los hornos por 24 horas Aire comprimido es inyectado para inflar la preforma en el interior

Mililitro

del molde Moldeado

Volumen

de

verificando total Milímetros

y

final

botella

capacidad de

una

botella o tarro de vidrio. Inspección de diámetro

Longitud

de roscas, botella en el Metros cuadrados

caso que sea cilíndrica. La materia prima es

Superficie

almacenada

en

bodega. 3. Tabla de especificaciones de procesos. 4. Tabla de detalles infraestructura empresa. 5. Conversión de unidades. Unidad

de

origen °C cm Mpa ml kw g min km/h m2

Unidad

de

transformación °F pulg bar gal hp lb s pie/s pulg2

a) Conversión de temperatura (°C a °F): Proceso

Temperat

Temperatura

de

calentamiento

de

vidrio Temperatura

de

enfriamiento Temperatura ambiente

Conversión

° F=( ° C∗1,8 ) +32

ura 1500°C

° F=( 1500∗1,8 ) +32

12°C

° F=( 12∗1,8 ) +32

° F=53,6.−¿

27°C

° F=( 27∗1,8 ) +32

° F=80,6.−¿

° F=2732.−¿

una

b) Conversión de longitud (cm a pulg) Proceso

Longitud

Conversión

1 cm=10 mm Altura de la Preforma

15 cm

1 pulg=2,54 cm

1 cm ¿ 0,393701 pulg 15 cm ¿ x x=

15 cm∗0,393701 pulg 1 cm

29 ∈¿ 32 1 cm ¿ 0,393701 pulg 1,3 cm ¿ x x=5,91 pulg→ 5

Diámetro

de

la

1,3 cm

preforma

x=

1,3 cm∗0,393701 pulg 1 cm

33 ∈¿ 64 1 cm ¿ 0,393701 pulg 1,5 cm ¿ x x=0,512 pulg →

Diámetro de la rosca

15 mm

de botella de cerveza

1,5 cm

x=

1,5 cm∗0,393701 pulg 1 cm

19 in 32 1 cm ¿ 0,393701 pulg 1,1 cm ¿ x x=0,5906 pulg→

Diámetro de la rosca

11 mm

de botella de vino

1,1 cm

x=

1,1cm∗0,393701 pulg 1 cm

x=0,433 pulg →

7 ∈¿ 16

c) Conversión unidad de presión (Mpa a bar) Proceso Presión de soplado

Presión 8*10

-2

Conversión

1 MPa=10 ¯ ¿ 1 MPa ¿ 10 ¯¿ 0,08 MPa ¿ x

Mpa Equivale a

0,08 MPa∗10

0,08 Mpa

¯¿ 1 MPa

x=0,8 ¯¿

x=¿

d) Conversión unidad de volumen (Ml a gal) Proceso

Longitud

Conversión

1 mL=2,642∗10−4 gal Capacidad de botella

300 mL

de cerveza

1 mL ¿ 2,642∗10−4 gal 300 mL ¿ x x=

Capacidad de botella

750 mL

de cerveza

x=7,925∗10−2 gal 1 mL ¿ 2,642∗10−4 gal 750 mL ¿ x x=

Capacidad de botella de vino

375 mL

300 mL∗2,642∗10−4 gal 1 mL

750mL∗2,642∗10−4 gal 1 mL

x=1,981∗10−1 gal 1 mL ¿ 2,642∗10−4 gal 375 mL ¿ x −4

x=

375 mL∗2,642∗10 gal 1 mL

x=9,91∗10−2 gal

e) Conversión de potencia (Kw a Hp) Proceso Potencia

Potencia del

compresor

1850000*10

-5

KW Equivalente a 18,5 KW

Conversión

1 KW 18,5 KW x=

1 KW =1,34102 Hp ¿ 1,34102 Hp ¿ x

18,5 KW ∗1,34102 Hp 1 KW

x=24,81 Hp f) Conversión de masa (g a Lb) Proceso

Masa

Conversión

1 g=2,205∗10−3 Lb Masa de Hierro

15 g

1 g ¿ 2,205∗10−3 Lb 15 g ¿ x −3

x=

Masa de azufre

12,5 g

x=3,31∗10−2 Lb 1g ¿ 2,205∗10−3 Lb 12,5 g ¿ x x=

Masa de carbono

32 g

15 g∗2,205∗10 Lb 1g

12,5 g∗2,205∗10−3 Lb 1g

x=2,756∗10−2 Lb 1 g ¿ 2,205∗10−3 Lb 32 g ¿ x

x=

32 g∗2,205∗10−3 Lb 1g

x=7,055∗10−2 Lb

g) Conversión de tiempo (min a seg) Proceso

Tiempo

Conversión

1 min=60 s Tiempo

de

fabricación

de

8 min

una botella

1 min ¿ 60 s 8 min ¿ x

x=

8 min ¿60 s 1 min

x=480 s

h) Conversión de velocidad (km/h a pie/s) Proceso Velocidad de la

Velocidad 10 km/h

cinta transportadora

Conversión

1 km/h=0,9113 pie/ s 1 km/h ¿ 0,9113 pie/s 10 km/h ¿ x x=

10 km/h∗0,9113 pie/ s 1 km/h

x=9,113 pie/s i) Conversión de superficie (m2 a pulg2) Proceso

Masa

Conversión

1 m2=1550 pul g 2 Superficie

18*10 2 m2

fabrica

Equivalente a

2

1m ¿ 1550 pul g 2 1800 m ¿ x

1800 m2

x=

2

1800m2∗1550 pul g 2 1 m2 6

x=2,79∗10 pul g

2

Bodega

de

150 m2

1 m2 ¿ 1550 pul g2 2 150 m ¿ x

almacenaje

x=

150m2∗1550 pul g 2 1 m2

x=2,33∗105 pul g 2

6.

Según tabla 3 y 4 indicar los nombres de las magnitudes.

Presión

de

4

−2

8∗10 MPa

8∗10 Pa

soplado Potencia compresor Superficie

−5

1850000∗10 KW

– Pascales

0,789539 atm – Atmosferas 24,8089 Hp – Horsepower 18500 V – Vatios

2

18∗10 m

2

19375,04 yar d 2



yardas

cuadradas

2790006 pul g2 -

pulgadas

cuadradas

0,0018 k m2 - kilómetros cuadrados Altura de galpón

5000∗10−3 m

500 cm – centímetros 5000 mm – milímetros

5∗10 6 μm−micrómetro 7.

A simple vista se puede apreciar que el proceso de medición no es exacto, ya

que se ve claramente que hay demasiada diferencia entre las mediciones tomadas. Una posibilidad es que el instrumento haya estado mal calibrado o haya ocurrido un error de paralaje realizado por el ojo humano. Esto se puede apreciar debido a que la altura de la preforma es estándar y ya está definida a 15 cm de altura.

8.

Errores

relativos

y

20,10

absolutos.

cm 20,30 cm 15,0 15,02 14,99 15,01

Para obtener el valor del error absoluto es necesario obtener el valor del error específico. El error absoluto es la diferencia entre el valor que se obtiene al medir y el valor supuestamente exacto. Ve=

20,10+ 20,30,+15,0+15,02+14,99+15,01 =16,73 cm 6

La media entre las mediciones es de 16,73 cm. Al obtener el valor específico podemos obtener el valor del error absoluto dado por la siguiente fórmula.

Va=Valor exacto−Valor medido 1) 2) 3) 4) 5) 6)

Va=20,10 cm−16,73 cm=3,37 cm Va=20,30 cm−16,73 cm=3,57 cm Va=15,0 cm−16,73cm=−1,73 c m Va=15,02 cm−16,73 cm=−1,713 cm Va=14,99 cm−16,73 cm=−1,74 cm Va=15,01 cm−16,73 cm=−1,72 cm

Podemos deducir que el error absoluto existe en todas las mediciones y que ninguna medición realizada está correctamente hecha debido a una mala calibración del instrumento o un error humano.

Ahora ya podemos obtener el error porcentual de las mediciones tomadas. Para obtener el error porcentual o relativo debemos aplicar la siguiente fórmula:

Er=

Ea ∗100 Valor especific ado

Aplicando esta fórmula a las mediciones dadas en la tabla podemos obtener lo siguiente: 1)

Er=

3,37 cm ∗100 =20,14 16,73 cm

2)

Er=

3,57 cm ∗100 =21,33 16,73 cm

3)

Er=

−1,73 cm ∗100 =−10,34 16,73 cm

4)

Er=

−1,713 cm ∗100 =−10,24 16,73 cm

5)

Er=

−1,74 cm ∗100 =−10,40 16,73 cm

6)

Er=

−1,72cm ∗100 =−10,28 16,73mm

Se puede observar que el porcentaje de error entre las medidas es muy alto por lo que se puede deducir que las mediciones están mal realizadas o el instrumento estaba mal calibrado.

9. Procesos

Error de cero Es el error que se genera por la mala operación del instrumento por parte del operador. En simples palabras error humano.

Error de paralaje Es el error que se genera por la mala o nula calibración de un instrumento

Vertido de materiales a hornos de cocción a 1500°C.

Equivocación por parte del operador al momento de verter los materiales en los almacenes de acopio de materiales, por lo que generaría un porcentaje erróneo en las cantidades exactas que se necesitan.

Cortado de mezcla a través de cuchillas en forma de cilindros llamados preformas.

La mala utilización de los equipos utilizados para realizar la mantención de los equipos podría generar una mala

La mezcla se vería afectada si la el equipo fuera mal calibrado ya que se necesitan las cantidades exactas para una buena mezcla por ende una buena botella duradera y sin imperfecciones. La mala calibración de las cuchillas haría que la preforma no fuera la indicada para generar una botella.

calibración cuchillas. Máquina de aire comprimido

de

las

Si el operador se equivoca en la medición o inspección de las mangueras utilizadas en las máquinas de aire comprimido puede generar una mala operación de la máquina.

Una mala calibración podría generar dos casos, uno que no tenga la suficiente presión para inflar la preforma o en otro caso podría generar mucho aire comprimido haciendo que explotara por el exceso de presión.

10. Comencemos por los instrumentos analógicos. VENTAJAS: - Tienen muy bajo costo y son más sencillos de mantener. - En algunos casos estos no requieren de energía para funcionar. - Es muy sencillo adecuarlos a diferentes tipos de escalas no lineales. - Presentan fácilmente las variaciones cualitativas de los parámetros para visualizar rápidamente si el valor aumenta o disminuye. DESVENTAJAS: - Tienen poca resolución, generalmente no proporcionan más de tres cifras. - El error de paralaje de estos instrumentos limitan la exactitud de ± 0,5 - Las lecturas se presentan como errores graves cuando el instrumento tiene varias escalas. - La rapidez de la lectura es baja generalmente es de 1 lectura por segundo. - No pueden emplearse como parte de un sistema de procesamiento de datos digitales. Instrumentos digitales. VENTAJAS: - Tienen una alta resolución, en algunos casos marca hasta 9 cifras en lecturas y es más exacto teniendo una exactitud de ± 0,002 en medidas de voltaje. - No tienen error de paralaje.

-

Es posible eliminar la posibilidad de errores por confusión de escalas. Tienen una rapidez de lectura que puede llegar a más de 1.000 lecturas por segundo. Puede entregar información digital para procesamiento inmediato en computadora.

DESVENTAJAS: - Tiene un costo elevado. - Tienen un proceso de fabricación complejo. - Las escalas no lineales son difíciles de introducir. - En todos los casos los instrumentos requieren de una fuente de alimentación.

11.

Sistema de Gestión Metrológico.

Hacer:

FABRICA DE BOTELLAS DE VIDRIO Planear: Departamento de planificación.

Departamento de operaciones. Encargados de ejecutar las mejoras investigadas y realizadas por el departamento de planificación.

Encargado de planificar y programar mantenciones cada cierto tiempo para mantener los equipos y Departamento de confiabilidad. maquinarias en buen estado y calibración. Realizar la trazabilidad y medir el rendimiento de las mejoras realizadas. Hacer: Realizar informes semanales con Departamento datos referentes al rendimiento de de ingeniería. las mejoras implementadas. Encargado de realizar investigaciones y ejecutar ingeniería para realizar mejoras al sistema con el objetivo de mejorar lo que Departamento de calidad. actualmente se realiza, siempre con el objetivo de mejorar la operación Estos son responsables de los de la planta. laboratorios, control de calidad, Verificar:

personal encargado del control de los equipos de medición, calibración

Bibliografía 1. Contenido de la semana 1 – 8 2. Contenidos adicionales 3. www.wikipedia.com

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF