Hazop Study
Short Description
Study Node: Oxidation Reactor Process : Oxidation of p-xylene to Terephthalic Acid...
Description
Hazard and Operability Studies (HAZOP) Hazard and operability study is one of method of Process Hazard Analysis (PHA). Process hazard analysis is of the most important pillars in Process Safety Management (PSM). It is critical to understand, integrate, implement and eecute the process hazard analysis for each process plant facilities, in order to identify and mitigate any possible condition that lead to upset and disaster especially on operation. !here are others instance of process hazard analysis instead of hazard and operability studies (HA"#P) $hich are $hat%if analysis, chec&list analysis, $hat%if'chec&list, failure mode and eect analysis (M*A), ault tree analysis and many else. Hazard and operability studies (HA"#P) are tools to identify the potential and plausible hazards and operational problems in term of plant design. !he analysis $ill notice any tendency of de+iation from normal operating condition $hich could initiate any hazardous circumstance. !he outcomes help to enhance comprehensi+eness of hazard control system e+aluation and also generate eecti+e recommendations for any indispensable alteration. HA"#P is commercially used, it is because it is absolutely systematic and through analysis. It e+aluates &ey, safety%related operating procedure, or $here una+ailable and recognize critical operational reuirement. -enerally, HA"#P deals $ith internal hazard of euipment and $ith process related hazard $here it emphasize on the euipment or pipeline or piece of euipment as node.
Hazard and Operability Studies (HAZOP) Methodology irst step is in HA"#P analysis is to do a selection of study nodes. !he nodes must comprise at least one maor euipment, contain highly hazardous materials and critical to process condition. It typically follo$s the molecule, for eample from upstream to do$nstream. Second step is selection of guide $ord. !he eample of guide $ord can be referred to table belo$. !hird step is selection of parameter. ourth step is applied guide $ord to parameter, suggests potential de+iation and problem. ifth step is to list do$n any causes of de+iation $ithin the selected nodes. /et is identi0cation of any possible conseuences of the de+iation. !hen, identify the safeguard. It decides $hether eisting engineering and safety system can
cater $ith the conseuences of de+iation. 1ast step is to pro+ide any recommendations or caution reuires to cater the de+iation that happen.
STUDY TITLE: PARA-XYLENE OXIDATION UNIT DRAWING NO: REV. NO. : TEAM COMPOSITION ANDERSON,SITI NUR FATIHAH, ADULLAH FAHMI, PHUMPHAIRIN PART CONSIDERATION OXIDATION REACTOR DESIGN INTENT MATERIAL: P-!"#$%$, A&$'(& A&(), ACTIVITY: C*+#'2,M%%$$2,*3(%$, A( SOURCE: H$' $!&4%$ E-(# )8$ '* '4*''#$ &*%'*# $%* (%*5$+(#('".
1. P835 ' $+*(#$ %) &*%)$%$ +$?)*9% )8$ *7$4$'(%
1. M?$ +"5 * $&*%)" '$3 >* $)8%)%&"
2. P835 >(#8$ )8$ *7$4$'(% (%&$ (' 8%%(% 9('4*8' >#*9.
lo$ 1*SS
SHEET: DATE: 20/6/2016
1. V#7$ >(# )8$ '*
2. P*(+#$ )%$*8 &*%&$%''(*% (%()$ '4$ $&'* @. N* *5$'(*% %) 5*)8&'(*% ( '##$). 1. C4%$ (% 5*)8&' 8#('" )8$
2. P$7$%'(7$ 3(%'$%%&$ 5$>*3$) $8##" '* $%8$ $8# *5$'(*%
1. M?$ +"5 * $&*%)" '$3 >* $)8%)%&"
'4*''#$ &*%'*# $%* (%*5$+(#('". F#*9
M#5*
M*$ F#*9
2. P835 +$&*3$ (%$>>(&($%' 8%%(% ' %*%-)$(%'$) 7*#83$ &5&('",B..
1. O7$4$'(% *> 5835 +$&8$ *> (%&$$) 5835(% &5&('" 2. V#7$ >(# )8$ '* '4*''#$ &*%'*# $%* (%*5$+(#('"
(%&*%('$%' >$$) 8%'('".
1. C4%$ (% 5*)8&' 8#('" )8$ (%&*%('$%' >$$) 8%'('". 2. T$35$'8$ )$&$$ '* #$ '4% *5'(383 $&'(*% '$35$'8$ @. R($ (% +*''*3 #(8() #$7$#
2.
P$7$%'(7$ 3(%'$%%&$ 5$>*3$) $8##" '* $%8$ $8# *5$'(*%
1. R$8# (%5$&'(*% >* 3%8# *7$()$ 2. I%'## &*%'*# 7#7$ >* '4*''#(% *5$'(*% @. I%'## >#*9 (%)(&'* %) #3 >* $$ *> 3*%('*(%. =. M?$ +"5 >* >$$) $&*7$"
lo$ 5*6*5S *
R$7$$ >#*9
1. H(4 5$8$ (% >$$) 1. O7$5$8$ #$) 85'8$ &% &8$ 5$5'(*% &*#83% &*8#) '*!(& $#$$ %) 5*)8&' #*. #$) '* 85'8$. 2. P*(+#$ )%$*8 &*%&$%''(*% 2. P835 +$?)*9% )8$ '* +$(% >*3$) (% 8%9" $&'(*% 3$&4%(&# >(#8$
1. I%'## &4$&? 7#7$ 2. I%'## FGD F#33+#$ G D$'$&'* >* ()$%'(>"(% 5*(+#$ #$? *> VOC V*#'(#$
O%(& C*35*8%) 5$$%' (% '4$ 5*&$ '4' 3(4' 47$ >*3$) >#33+#$ 3(!'8$.
!emperatur e
1. L$ '$3 >#*9 2. L* *> 4$'(% '$3 #$?$
1. C4%$ (% 5*)8&' 8#('" )8$ (%&*%('$%' $&'(*% '$35$'8$.
@. E!&4%$ '8+$ >(#8$ 1#7
1o$ !emperatur e
=. L*9 '$3 5$8$ %) '$35$'8$ . C*%)$%$ +$?)*9%
2. P$8$ &4%$ 3(4' #$) '* 8%)$($) $&'(*% @. I%$>>$&'(7$ $5'(% 5*&$ *> 5*)8&' '$3.
1. I%'8&' *5$'* *% 5*&$)8$ >* 3%8# *7$()$ 2. U5)$ (*#'(*% >* #*9 '$35$'8$ &*%)('(*% @. A''$%'(*% '* 4$' (%58' %) *8' *> &*%'*# &*%)('(*%.
6. I%$>>$&'(7$ (*#'(*%
HI-H
High !emperatur e
1. M*$ '$3 >#*9(% >*3 1. C4%$ (% 5*)8&' 8#('" )8$ +*(#$ (%&*%('$%' $&'(*% '$35$'8$.
1. I%'## 4(4 '$35$'8$ #3
2. E!&4%$ '8+$ >(#8$ )8$ 85'8$ * &**(*%
2. *(#*7$ (% $&'* %) $+*(#$ 3(4' #$) '* *7$5$8$.
2. I%'8&' *5$'* *% 5*&$)8$ >* 3%8# *7$()$
@. H(4 '$3 5$8$ &8$) +" (%$>>(&($%'
@. P$8$ &4%$ 3(4' #$) '* 8%)$($) $&'(*%.
@. A''$%'(*% '* 4$' (%58'
+*(#$ *5$'(*%. =. C**#(% 9'$ (% &*%)$%$ >(#8$ * #$?(%.
%) *8' *> &*%'*# &*%)('(*%.
. H$'(% 3$)(83 #$? (%'* 5*&$ ()$. 1. I%#$' >#*9 '*5 * +#*&?$
1e+el
2. O8'>#*9 $'$ '4% (%>#*9
HI-H
High liuid le+el
@. C*%'*# "'$3 >(#8$, DCS )*9%'(3$ =. F8#'" #$7$# 3$8$3$%' $%* )8$ $#$&'*%(& >(#8$
8. Pump failure due o+erheating since its running on higher than designated +olume 9o$rate capacity,:.
1. I%'## #$7$# &*%'*##$ >* H(4 L(8() L$7$# 2. I%'## H(4 L(8() #$7$# #3
. L$?(% >*3 $!(' '$3 3?$ (%$>>(&($%' *8'>#*9 1#7
1o$ liuid le+el
1. I%#$' ( #$?(% * +#*&?$)
1. I%&*35#$'$ $&'(*% )8$ '* (%8>>(&($%' >$$)
2. F8#'" #$7$# 3$8$3$%' $%* )8$ $#$&'*%(& 2. P*)8&' 8#('" )*5 )8$ '* >(#8$ (%&*%('$%' >$$) @. I%>#*9 $'$
@. H(4$ (358('($ >*3$) )8$
1. I%'## #$7$# &*%'*##$ >* L*9 L(8() L$7$# 2. I%'## LO9 L(8() #$7$# #3
'4% *8'>#*9
8%9%'$) $&'(*% '?(% 5#&$ (38#'%$*8#"
View more...
Comments