HARMONIC TREATMENT IN INDUSTRIAL POWER .ppt

March 12, 2019 | Author: Rajendra Prasad Shukla | Category: Rectifier, Electronic Filter, Capacitor, Electrical Impedance, Ac Power
Share Embed Donate


Short Description

Download HARMONIC TREATMENT IN INDUSTRIAL POWER .ppt...

Description

HARMONIC TREATMENT IN INDUSTRIAL POWER SYSTEMS

Presented by Stefanos Manias

CONTACT CONTA CT IN INORMAT ORMATION ION

Stefanos N! Manias Nationa" Te#$ni#a" Uni%ersity of At$ens P$one& '()1)*++,(-)( A.& '()1)*++,(-/( E*0ai"& 0anias#entra"!nt2a!3r  Mai"in3 Address Nationa" Te#$ni#a" Uni%ersity of At$ens De4art0ent of E"e#tri#a" and Co042ter En3ineerin3 /5 Iroon Po"yte#$nio2 Str5 1-++( 6o3rafo2 At$ens5 7ree#e

PLAN O PRESE PRESENTA NTAT TION

1!

DEINITIONS

,!

CATE7ORIES O POWER 8UALITY 9A 9ARIATIONS RIATIONS

(!

HARMONIC DISTORTION SOURCES IN INDUSTRIAL POWER SYSTEMS

:!

EECTS O HARMONICS ON ELECTRICAL E8UIPMENT

-!

HARMONIC MEASUREMENTS IN INDUSTRIAL POWER SYSTEMS

;!

HARMONIC STA STANDARDS NDARDS

+!

HARMONIC MITI7ATIN7 TECHNI8UES

or f2se fai"2res in t$e #a4a#itor or ot$er e"e#tri#a" e2i40ent!



a"se tri44in3 of #ir#2it brea@ers ad 4rote#ti%e re"ays!

HARMONIC SOURCES a C2rrent So2r#e non"inear "oad

T$yristor re#tifier for d# dri%es5 $eater dri%es5 et#!

Per*4$ase e2i%a"ent #ir#2it of t$yristor re#tifier 

b 9o"ta3e so2r#e non"inear "oad

Diode re#tifier for a# dri%es5 e"e#troni# e2i40ent5 et#

Per*4$ase e2i%a"ent #ir#2it of diode re#tifier 

INPUT CURRENT O DIERENT NOLINEAR LOADS

TYPE O NONLINEAR LOAD

TYPICAL WAREORM

THD

1.0

1*F Un#ontro""ed Re#tifier 

armonic Emissions standards were first pu+lished as IEC ,,-2 %/2 and applied onl4 to household appliances It was re*ised and reissued in %/$ and %//, with the applica+ilit4 e7panded to include all euipment with input current ≤ %'5 per phase >owe*er# until Januar4 %st# 200% a transition period is in effect for all euipment not co*ered +4 the standard prior to %/$ - The o+?ecti*e of EN '%000-.-2 !harmonics) is to test the euipment under the conditions that will produce the ma7imum harmonic amplitudes under normal operatin conditions for each harmonic component To esta+lish limits for similar t4pes of harmonics current distortion# euipment under test must +e cateori1ed in one of the followin four classes

CLASS*A& =alanced three-phase euipment and all other euipment e7cept that stated in one of the remainin three classes CLASS*G& Porta+le electrical tools# which are hand held durin normal operation and used for a short time onl4 !few minutes)   CLASS*C& @ihtin euipment includin dimmin de*ices CLASS*D& Euipment ha*in an input current with special wa*e shape ! eeuipment with off-line capacitor-rectifier 5C input circuitr4 and switch Aode power Supplies) and an acti*e input power '00B

*  5dditional harmonic current testin# measurement techniues and instrumentation uidelines for these standards are co*ered in IEC %000-"-$



IEEE -1/*1//, United States Standards on $ar0oni# "i0its

-

IEEE limits ser*ice entrance harmonics

-

Bith this approach the costumerDs current distortion is limited +ased on relati*e si1e of the load and the power supplierDs *oltae distortion +ased on the *oltae le*el

The IEEE standard ,%/-%//2 limits the le*el of harmonics at the customer ser*ice entrance or Point of Common Couplin !PCC)

IEEE ,%/ and IEC %000-.-2 appl4 different philosophies# which effecti*el4 limit harmonics at different locations IEEE ,%/ limits harmonics primaril4 at the ser*ice entrance while IEC %000-.-2 is applied at the terminals of end-user euipment Therefore# Therefore# IEC limits will tend to reduce harmonic-related losses in an industrial plant wirin# while IEEE harmonic limits are desined to pre*ent interactions +etween neih+ors and the power s4stem

POWER 8UALITY STANDARDS   IEEE -1/*1//, STANDARDS TAGLE I CURRENT DISTORTION LIMITS OR 7ENERAL DISTRIGUTION SYSTEMS B1,)*;/))) 9

Is# >IL

11

11$1+

1+$,( ,($(-

(-$

TDD

,)

:!)

,!)

1!-

) !;

) !(

-!)

,)-)

+!)

(!-

,!-

1 !)

) !-

t!t ) ⋅ ( − D  #C) ? t!t

#! > t!t

=

+ D#>t!t − D

1 #! C



' !

=

1

B:(

#C

1

B::

2#!

T$e e2ation for in#an be 2sed to deter0ine t$e e2i%a"ent syste0 i04edan#e for different fre2en#ies! T$e $ar0oni# 4rod2#in3 "oads #an resonate B4ara""e" resonan#e5 t$e abo%e e2i%a"ent #ir#2it! Desi3natin3 t$e 4ara""e" resonant fre2en#y by #Brad>se# or BH6 ' ! and e2atin3 t$e ! ind2#ti%e and #a4a#iti%e rea#tan#es!

-

>armonic current components that are close to the parallel resonant freuenc4 are amplified >iher order harmonic currents at the PCC are reduced +ecause the capacitors are low impedance at these freuencies The fiure +elow shows the effect of addin capacitors on the "0 Holts +us for power factor correction

This fiure shows that +4 addin some t4pical si1es of power factor correction capacitors will result in the manification of the ,th  and $th  harmonic components# which in turns ma3es it e*en more difficult to meet the IEEE ,%/-%//2 harmonic current standards  - Power factor correction capacitors should not +e used without turnin reactors in case the ad?usta+le speed dri*es are K%0L of the plant load

E.AMPLE @et us e7amine an industrial plant with the followin data6 -

Aedium *oltae 9 20H @@

-

@ow *oltae 9 0" H@@

-

Utilit4 three phase short circuit power 9 2,0 AH5

-

For as4mmetrical current# the

@



ratio of s4stem impedance

= 2.4

The Transformer is rated6 1))) J9A5 ,) J9*:)) Y>,() 9 R42 K 15

.42 K +

- The s4stem freuenc4 is6 f s4s 9 ,0 >M - For power factor correction capacitors the followin cases are e7amined6 a!

,)) J9AR

b!

:)) J9AR

#!

;)) J9AR

d!

t!t

=

0.011791 2 ⋅  ⋅ 50

= 37.55 ⋅10−6 +

Case a&

@$

=

C ' !

=

=

1000 ⋅ ( 0.4)

2

= 0.8 J

200 1

2 ⋅ 50 ⋅ 0.8

= 3.98 ⋅10−3  1

2 ⋅

37.50 ⋅10

−6 ⋅ 3.98 ⋅10−3

= 412.18+

or ,)) J9AR5 t$e $ar0oni# order at ?$i#$ 4ara""e" resonan#e o##2rs is&



= 412.18 50 = 8.24

Case b&

@$

=

1000 ⋅ ( 0.4) 400

C = 7.96 ⋅10 ' !

2

= 0.4 J

−3 

= 291.45+

 = 5.83 Case #&

@$

=

1000 ⋅ ( 0.4) 600

C = 11.94 ⋅10

−3 

= 237.97+  = 4.76

' !

2

= 0.267 J

Case d&

@$

=

1000 ⋅ ( 0.4)

2

800

= 0.2 J

− C = 15.92 ⋅10 3  ' !

= 206.08+

 = 4.12 It is #"ear for t$e abo%e syste0 t$at in t$e ;)) J9AR #ase5 t$ere eists a 4ara""e" resonant fre2en#y ' !#"ose to t$e - t$ $ar0oni#!

POWER ACTOR CORRECTION AND HARMONIC TREATMENT USIN7 TUNED ILTERS -

=asic confiuration of a tuned .- capacitor +an3 for power factor correction and harmonic treatment

 Simple and cheap filter 



 Pre*ents of current harmonic manification



-

  IN OE TO 5HOI >5AONIC A5QNIFIC5TION BE C>OOSE 5 TUNE FE8UENCR  FIT> >5AONIC !ie "$)

-

The freuenc4 characteristic of the tuned filter at "$ is shown +elow

 5s it can +e seen from the a+o*e fiure sinificant reduction of the ,th harmonic is achie*ed Aoreo*er# there is some reduction for all the other harmonic components

The sinle phase eui*alent circuit of the power distri+ution s4stem with the tuned filter is shown +elow

Usin the a+o*e circuit the followin euations hold6

' !%

=

1 1

2  ( >'  ⋅ C ) 2 1

> '  =

C ⋅ ( 2 ' !% ) 2

K Resonant fre2en#y of t$e series fi"ter  B:-

=

2 '  ⋅ @ $

( 2 ' !% ) 2

=

'  ⋅1000 ( /$;: ) 2 2  ⋅ ( ' !% ) 2 ⋅ /? $;:

B:;

T$e ne? 4ara""e" #o0bination is $a%in3 resonant fre2en#y ?$en

# ! > t!t ' !

=

+ # ! > '  −

1 #!C

=0

B4ara""e" resonan#e

1 2 [ ( > t!t

+ >'  ) ⋅ C]

1

2

K resonan#e fre2en#y of t$e B:+ e2i%a"ent distrib2tion #ir#2it

A"so

+ D#> t!t I '  = I  ⋅ ? t!t + D[ #> t!t + #> '  − 1 #C] ? t!t

 B: '  − 1  #C )

? t!t

+ D [ #> t!t + #>'  − 1 #C]

= I% ⋅ ( ? t!t + D#> t!t )

=

B-)

( ? t!t + D#> t!t ) ⋅    D#>'  − D

  ? t!t + D#> t!t + D#>'  − D

( ? t!t + D#> t!t ) ⋅    D#>'  − D

B:/

    #C   = 1

1

#C

    # C     = 1     ? t!t + D  #> t!t + #> '  −   # C     1

B-1

As it ?as dis#2ssed before Se"e#tin3 ' ! Wit$

> '  =

J9#a4K )!: 5

50 ⋅1000 ⋅ ( 0.4 )

2

2 ⋅  ⋅ ( 235) 2 ⋅ 600

= 235+

or :!+ t$ $ar0oni#

J9AR#a4K ;))

= 68.45 ⋅10−6 + = 38.45K+

 T$e ne? 4ara""e" #o0bination is $a%in3 resonant fre2en#y&

' ! ?it$

' ! = 

=

1 2⋅⋅

[ ( > t!t + >'  ) ⋅ C]

= 37.55 ⋅10−6 + > '  = 38.45 ⋅10 −6 + C = 11.94 ⋅10−3  > t!t

1 2 ⋅  ⋅ 76 ⋅10 −6 ⋅11.94 ⋅10 −3

= 167.16  50 = 3.43

?e $a%e

= 167.16+

B?it$o2t Lf  ?as :!+;

T$e fo""o?in3 tab"e s$o?s t$e %ariation of Para""e" resonant fre2en#y Wit$ and ?it$o2t resonant ind2#tor 

Para""e" Resonant f ) J9AR

CB0

Wit$o2t Lf 

,))

(!/<

SIMULINJ

SIMULINJ RESULTS

SIMULINJ RESULTS

ACTI9E ILTERIN7

Para""e" ty4e

Series ty4e

RESULTS O ACTI9E ILTERIN7 2,00

.0

%,00

I 5U

2,

,00

       %    I

20 %,

   L    T

-,00

%0

-%,00

,

-2,00

0

0

,

%0

%,

20

2,

.0

.,

2

"0

,

-

%%

%"

%$

20

2.

>armonics

Time msU

In42t #2rrent of a ;*42"se Re#tifier dri%in3 a DC 0a#$ine ?it$o2t any in42t fi"terin3 ,000

.,L .0L

   T 2,00    p    m    o    c 0    a    n   4        I -2,00

2,L

    20L    %    I    L    T %,L %0L ,L

-,000

0L

0

%0

20

.0

Time msU

In42t #2rrent ?it$ A#ti%e i"terin3

"0

2

,

-

%%

%"

>armonics

%$

20

2.

%000

%" %2

,00        H    T    U

%0

       %    U '    L    T

0

"

-,00

2

-%000

0

0

,

%0

%,

20

2,

.0

.,

"0

2

,

-

%%

Time msU

%"

%$

20

2.

>armonics

Ty4i#a" ;*42"se dri%e %o"ta3e ?a%efor0 %000

%" %2

,00    H    T    U

%0         U    L    T '

0

"

-,00

2 -%000

0 0

,

%0

%, 20 2, Time msU

.0

.,

"0

2

,

9o"ta3e so2r#e i04ro%e0ent ?it$ a#ti%e fi"terin3



%%

%" %$ >armonics

20

2.

SHUNT ACTI9E ILTERS =4 insertin a parallel acti*e filter in a non-linear load location we can in?ect a harmonic current component with the same amplitude as that of the load in to the 5C s4stem

 LF 

C

Eui*alent circuit

AD9ANTA7ES O THE SHUNT OR PARALLEL ACTI9E ILTER



 @ow implementation cost



 o not create displacement power factor pro+lems and utilit4 loadin



  Suppl4 inductance @ S# does not affect the harmonic compensation of parallel acti*e filter s4stem



 Simple control circuit



  Can damp harmonic propaation in a distri+ution feeder or +etween two distri+ution feeders



 Eas4 to connect in parallel a num+er of acti*e filter modules in order to achie*e hiher power reuirements



 Eas4 protection and ine7pensi*e isolation switchear



 Eas4 to +e installed



 Pro*ides immunit4 from am+ient harmonic loads

WA9EORMS O THE PARALLEL ACTI9E ILTER

So2r#e %o"ta3e

Load #2rrent

So2r#e #2rrent

A! ! o2t42t #2rrent

PARALLEL ACTI9E ILTER E8UATIONS

IC

IS

L1

=0

=

> >

S

+

= LI > L

1− L

=1



⋅ I >+ +

B-,

S >

S

+

1



B-(

1− L

> I>

1− L >

=

S +

1− L

1− L

>

If 

⋅ I>+ +

1− L 

>>

S

S

S >

+

B-:

1− L

B--



Then the a+o*e euations +ecome

IC IS



=

B-;

I >

(1 − L ) I >+

+

(1 − L )

-S >



0

B-+

I >

=

I >+

+

-S

B-

E2ation B-- is t$e re2ired #ondition for t$e 4ara""e" A!! to #an#e" t$e "oad $ar0oni# #2rrent! On"y 7 #an be 4redesi3n by t$e A!! ?$i"e 6s and 6L are deter0ined by t$e syste0!

or 42re #2rrent so2r#e ty4e of $ar0oni# so2r#e  >

>>

S

and #onse2ent"y e2ations B-( and B-- be#o0e

IS

=

(1 − L )

1− L

+



B-/

1

S

K So2r#e i04edan#e

I >+

K Is t$e e2i%a"ent $ar0oni# #2rrent so2r#e

B;)

 > K E2i%a"ent "oad i04edan#e L K e2i%a"ent transfer f2n#tion of t$e a#ti%e fi"ter  E2ation B-/ s$o?s t$at t$e #o04ensation #$ara#teristi#s of t$e A!! are not inf"2en#ed by t$e so2r#e i04edan#e5 6 s! T$is is a 0aor ad%anta3e of t$e A!! ?it$ res4e#t to t$e 4assi%e ones!

&C C

 The C +us nominal *oltae# -&C# must +e reater than or eual to line *oltae pea3 in order to acti*el4 control i C .  The selection of the interface inductance of the acti*e filter is +ased on the compromise of 3eepin the output current ripple of the in*erter low and the same time to +e a+le to trac3 the desired source current  The reuired capacitor *alue is dictated +4 the ma7imum accepta+le *oltae ripple 5 ood initial uess of C is6 

m;M C≥

2

t

∫ 0 iC&t

 5lso

>

NCm;M

n 9 pea3 line-neutral *oltae &C 9 C *oltae of the C +us of the in*erter  i> 9 @ine phase current NCm;M

9 ma7imum accepta+le *oltae ripple#

iC 9 Phase current of the in*erter 



3

&C − n

m;M

&i> &t

P*8 THEORY For identif4in the harmonic currents in eneral the method of computin instantaneous acti*e and reacti*e power is used Transformation of the three-phase *oltaes  u    and   and the threephase load currents i >  i >u and i > into V-W orthoonal coordinate

 H    =  O

i >H  i  =  >O 

2 3

2 3

1 − 1  2 0 32 

u   − 1 2        − 3  2   

1 − 1 2 0 32 

 i >u  − 1 2      i >  − 3  2 i > 

Then accordin to  : -  theor4# the instantaneous real power : > and the instantaneous imainar4 !reacti*e) power  > are calculated

 :>   H   = −   >  O

O  i >H 





H  i >O 

where

 : >

= :> + : > +  :> =

DC ' "o? fre2en#y #o04! ' $i3$ fre! #o04!

>

= > +  > +  > =

DC ' "o? fre2en#y #o04! ' $i3$ fre! #o04!



The con*entional acti*e power is correspondin to :># the con*entional reacti*e  power to > and the neati*e seuence to the 2 f components of  : > and  > The commands of the three-phase compensatin currents in?ected +4 the ∗ and ∗ are i*en +46 shunt acti*e conditioner# i∗ # i i C Cu C

 i∗Cu  ∗   iC  = i∗C   

2 3

 1 − 1  2  − 1  2 −

  H  32   - O 3  2  0

 :∗ 9 Instantaneous real power command ∗

 9 Instantaneous reacti*e power command

−1

 :∗     H  ∗  O 

S2bstit2tin3 ∗

 : 



  = : > ⇒  = >  

C2rrent Har0oni#s #o04ensation is a#$ie%ed



  = : ⇒ >   ∗   =  > + >  

 :

C2rrent Har0oni#s and "o? fre2en#y %ariation Co04onents of rea#ti%e 4o?er #o04ensation

  = : > + : > C2rrent Har0oni#s and "o? fre2en#y %ariation ⇒   Co04onents of a#ti%e and rea#ti%e 4o?er #o04ensation ∗  = > +  >   ∗

 :

HARMONIC DETECTION METHODS

i

Load #2rrent dete#tion i AK iL$ It is s2itab"e for s$2nt a#ti%e fi"ters ?$i#$ are insta""ed near one or 0ore non*"inear "oads!

ii

S244"y #2rrent dete#tion i AK JS iS$ Is t$e 0ost basi# $ar0oni# dete#tion 0et$od for series a#ti%e fi"ters a#tin3 as a %o"ta3e so2r#e % A!

iii 9o"ta3e dete#tion It is s2itab"e for s$2nt a#ti%e fi"ters ?$i#$ are 2sed as Unified Po?er 82a"ity Conditioners! T$is ty4e of A#ti%e i"ter is insta""ed in 4ri0ary 4o?er distrib2tion syste0s! T$e Unified Po?er 82a"ity Conditioner #onsists of a series and a s$2nt a#ti%e fi"ter!

SHUNT ACTI9E ILTER CONTROL

a S$2nt a#ti%e fi"ter #ontro" based on %o"ta3e dete#tion

Usin3 t$is te#$ni2e t$e t$ree*4$ase %o"ta3es5 ?$i#$ are dete#ted at t$e 4oint of insta""ation5 are transfor0ed to & and  on t$e d #oordinates! T$en t?o first   order $i3$*4ass fi"ters of -H6 in order to etra#t t$e a# #o04onents & and   ! Net t$e a# #o04onents are a44"ied to t$e in%erse d fro0 & and transfor0ation #ir#2it5 so t$at t$e #ontro" #ir#2it to 4ro%ide t$e t$ree*4$ase $ar0oni# %o"ta3es at t$e 4oint of insta""ation! ina""y5 a04"ifyin3 ea#$ $ar0oni# %o"ta3e by a 3ain J% 4rod2#es ea#$ 4$ase #2rrent referen#e!



i (

= Q  ⋅ 

T$e a#ti%e fi"ter be$a%es "i@e a resistor 1>J9  o$0s to t$e eterna" #ir#2it for $ar0oni# fre2en#ies ?it$o2t a"terin3 t$e f2nda0enta" #o04onents! ∗ T$e #2rrent #ontro" #ir#2it #o04ares t$e referen#e #2rrent i (?it$ t$e a#t2a" #2rrent of t$e a#ti%e fi"ter i ( and a04"ifies t$e error by a 3ain JI ! Ea#$ 4$ase %o"ta3e dete#ted at t$e 4oint of insta""ation5 % is added to ea#$ 0a3nified error si3na"5 t$2s #onstit2tin3 a feed for?ard #o04ensation in order to i04ro%e #2rrent #ontro""abi"ity! As a res2"t5 t$e #2rrent #ontro""er yie"ds t$ree*4$ase %o"ta3e ∗ referen#es! T$en5 ea#$ referen#e %o"ta3e i is #o04ared ?it$ a $i3$ fre2en#y trian32"ar ?a%efor0 to 3enerate t$e 3ate si3na"s for t$e 4o?er se0i#ond2#tor de%i#es!

b Referen#e #2rrent #a"#2"ation s#$e0e 2sin3 so2r#e #2rrents Bi s5 "oad #2rrents Bi L and %o"ta3es at t$e 4oint of insta""ation B% S!

(*F HYGRID ACTI9E*PASSI9E ILTER Co04ensation of #2rrent $ar0oni#s and dis4"a#e0ent 4o?er fa#tor #an be a#$ie%ed si02"taneo2s"y!

In t$e #2rrent $ar0oni# #o04ensation 0ode5 t$e a#ti%e fi"ter i04ro%es t$e fi"terin3 #$ara#teristi# of t$e 4assi%e fi"ter by i04osin3 a %o"ta3e $ar0oni# ?a%efor0 at its ter0ina"s ?it$ an a04"it2de

C

= QIS

If t$e AC 0ains %o"ta3e is 42re sin2soida"5 t$en

IS I>

=

 Q + 

+ S

T+,i

=

      ∑ I> Q +  + S      =2 IS1

 THDi de#reases if J in#reases!  T$e "ar3er t$e %o"ta3e $ar0oni#s 3enerated by t$e a#ti%e fi"ter a better fi"ter #o04ensation is obtained!  A $i3$ %a"2e of t$e 2a"ity fa#tor defines a "ar3e band ?idt$ of t$e 4assi%e fi"ter5 i04ro%in3 t$e #o04ensation #$ara#teristi#s of t$e $ybrid to4o"o3y!  A "o? %a"2e of t$e 2a"ity fa#tor and>or a "ar3e %a"2e in t$e t2ned fa#tor in#reases t$e re2ired %o"ta3e 3enerated by t$e a#ti%e fi"ter ne#essary to @ee4 t$e sa0e #o04ensation effe#ti%eness5 ?$i#$ in#reases t$e a#ti%e fi"ter rated 4o?er!

Dis4"a#e0ent 4o?er fa#tor #orre#tion is a#$ie%ed by #ontro""in3 t$e %o"ta3e dro4 a#ross t$e 4assi%e fi"ter #a4a#itor!

C

= OT

Dis4"a#e0ent 4o?er fa#tor #ontro" #an be a#$ie%ed sin#e at f2nda0enta" fre2en#y t$e 4assi%e fi"ter e2i%a"ent i04edan#e is #a4a#iti%e!

HYGRID ACTI9E*PASSI9E ILTER

Sin3"e*4$ase e2i%a"ent #ir#2it

Sin3"e*4$ase e2i%a"ent #ir#2it for -t$ Har0oni#

T$is a#ti%e fi"ter dete#ts t$e - t$ $ar0oni# #2rrent #o04onent t$at f"o?s into t$e 4assi%e fi"ter and a04"ifies it by a 3ain J in order to deter0ine its %o"ta3e referen#e ?$i#$ is 3i%en by

∗

= Q ⋅ i 5

As a res2"t5 t$e a#ti%e fi"ter a#ts as a 42re resistor of J o$0s for t$e - t$ $ar0oni# %o"ta3e and #2rrent! T$e i04edan#e of t$e $ybrid fi"ter at t$e - t$ $ar0oni# fre2en#y5 6- is 3i%en by

5

Q  < 0

=  D5#>  +

1  D5#C 

+ r '  + Q 

T$e a#ti%e fi"ter 4resents a ne3ati%e resistan#e to t$e eterna" Cir#2it5 t$2s i04ro%in3 t$e 8 of t$e fi"ter!

Q  = −r 

US5

= 0

IS5

=

1  D5#> T

S5

CONTROL CIRCUIT T$e #ontro" #ir#2it #onsists of t?o 4arts a #ir#2it for etra#tin3 t$e -t$ #2rrent $ar0oni# #o04onent fro0 t$e 4assi%e fi"ter i  and a #ir#2it t$at ad2sts a2to0ati#a""y t$e 3ain J! T$e referen#e %o"ta3e for t$e a#ti%e fi"ter ∗

 

= Q ⋅ i 5

HARMONIC*E.TRACTIN7 CIRCUIT T$e etra#tin3 #ir#2it dete#ts t$e t$ree*4$ase #2rrents t$at f"o? into t$e 4assi%e fi"ter 2sin3 t$e AC #2rrent transfor0ers and t$en t$e * #oordinates are transfor0ed to t$ose on t$e d*3 #oordinates by 2sin3 a 2nit %e#tor B#os-t5 sin-t ?it$ a rotatin3 fre2en#y of fi%e ti0es as $i3$ as t$e "ine fre2en#y!

SERIES ACTI9E ILTERS =4 insertin a series 5cti*e Filter +etween the 5C source and the load where the harmonic source is e7istin we can force the source current to +ecome sinusoidal The techniue is +ased on a principle of harmonic isolation +4 controllin the output *oltae of the series acti*e filter

Eui*alent Circuit

- The series acti*e filter e7hi+its hih impedance to harmonic current and conseuentl4 +loc3s harmonic current flow from the load to the source

C

IS

= Rut:ut !
View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF