HARMONIC TREATMENT IN INDUSTRIAL POWER .ppt
Short Description
Download HARMONIC TREATMENT IN INDUSTRIAL POWER .ppt...
Description
HARMONIC TREATMENT IN INDUSTRIAL POWER SYSTEMS
Presented by Stefanos Manias
CONTACT CONTA CT IN INORMAT ORMATION ION
Stefanos N! Manias Nationa" Te#$ni#a" Uni%ersity of At$ens P$one& '()1)*++,(-)( A.& '()1)*++,(-/( E*0ai"& 0anias#entra"!nt2a!3r Mai"in3 Address Nationa" Te#$ni#a" Uni%ersity of At$ens De4art0ent of E"e#tri#a" and Co042ter En3ineerin3 /5 Iroon Po"yte#$nio2 Str5 1-++( 6o3rafo2 At$ens5 7ree#e
PLAN O PRESE PRESENTA NTAT TION
1!
DEINITIONS
,!
CATE7ORIES O POWER 8UALITY 9A 9ARIATIONS RIATIONS
(!
HARMONIC DISTORTION SOURCES IN INDUSTRIAL POWER SYSTEMS
:!
EECTS O HARMONICS ON ELECTRICAL E8UIPMENT
-!
HARMONIC MEASUREMENTS IN INDUSTRIAL POWER SYSTEMS
;!
HARMONIC STA STANDARDS NDARDS
+!
HARMONIC MITI7ATIN7 TECHNI8UES
or f2se fai"2res in t$e #a4a#itor or ot$er e"e#tri#a" e2i40ent!
a"se tri44in3 of #ir#2it brea@ers ad 4rote#ti%e re"ays!
HARMONIC SOURCES a C2rrent So2r#e non"inear "oad
T$yristor re#tifier for d# dri%es5 $eater dri%es5 et#!
Per*4$ase e2i%a"ent #ir#2it of t$yristor re#tifier
b 9o"ta3e so2r#e non"inear "oad
Diode re#tifier for a# dri%es5 e"e#troni# e2i40ent5 et#
Per*4$ase e2i%a"ent #ir#2it of diode re#tifier
INPUT CURRENT O DIERENT NOLINEAR LOADS
TYPE O NONLINEAR LOAD
TYPICAL WAREORM
THD
1.0
1*F Un#ontro""ed Re#tifier
armonic Emissions standards were first pu+lished as IEC ,,-2 %/2 and applied onl4 to household appliances It was re*ised and reissued in %/$ and %//, with the applica+ilit4 e7panded to include all euipment with input current ≤ %'5 per phase >owe*er# until Januar4 %st# 200% a transition period is in effect for all euipment not co*ered +4 the standard prior to %/$ - The o+?ecti*e of EN '%000-.-2 !harmonics) is to test the euipment under the conditions that will produce the ma7imum harmonic amplitudes under normal operatin conditions for each harmonic component To esta+lish limits for similar t4pes of harmonics current distortion# euipment under test must +e cateori1ed in one of the followin four classes
CLASS*A& =alanced three-phase euipment and all other euipment e7cept that stated in one of the remainin three classes CLASS*G& Porta+le electrical tools# which are hand held durin normal operation and used for a short time onl4 !few minutes) CLASS*C& @ihtin euipment includin dimmin de*ices CLASS*D& Euipment ha*in an input current with special wa*e shape ! eeuipment with off-line capacitor-rectifier 5C input circuitr4 and switch Aode power Supplies) and an acti*e input power '00B
* 5dditional harmonic current testin# measurement techniues and instrumentation uidelines for these standards are co*ered in IEC %000-"-$
IEEE -1/*1//, United States Standards on $ar0oni# "i0its
-
IEEE limits ser*ice entrance harmonics
-
Bith this approach the costumerDs current distortion is limited +ased on relati*e si1e of the load and the power supplierDs *oltae distortion +ased on the *oltae le*el
The IEEE standard ,%/-%//2 limits the le*el of harmonics at the customer ser*ice entrance or Point of Common Couplin !PCC)
IEEE ,%/ and IEC %000-.-2 appl4 different philosophies# which effecti*el4 limit harmonics at different locations IEEE ,%/ limits harmonics primaril4 at the ser*ice entrance while IEC %000-.-2 is applied at the terminals of end-user euipment Therefore# Therefore# IEC limits will tend to reduce harmonic-related losses in an industrial plant wirin# while IEEE harmonic limits are desined to pre*ent interactions +etween neih+ors and the power s4stem
POWER 8UALITY STANDARDS IEEE -1/*1//, STANDARDS TAGLE I CURRENT DISTORTION LIMITS OR 7ENERAL DISTRIGUTION SYSTEMS B1,)*;/))) 9
Is# >IL
11
11$1+
1+$,( ,($(-
(-$
TDD
,)
:!)
,!)
1!-
) !;
) !(
-!)
,)-)
+!)
(!-
,!-
1 !)
) !-
t!t ) ⋅ ( − D #C) ? t!t
#! > t!t
=
+ D#>t!t − D
1 #! C
' !
=
1
B:(
#C
1
B::
2#!
T$e e2ation for in#an be 2sed to deter0ine t$e e2i%a"ent syste0 i04edan#e for different fre2en#ies! T$e $ar0oni# 4rod2#in3 "oads #an resonate B4ara""e" resonan#e5 t$e abo%e e2i%a"ent #ir#2it! Desi3natin3 t$e 4ara""e" resonant fre2en#y by #Brad>se# or BH6 ' ! and e2atin3 t$e ! ind2#ti%e and #a4a#iti%e rea#tan#es!
-
>armonic current components that are close to the parallel resonant freuenc4 are amplified >iher order harmonic currents at the PCC are reduced +ecause the capacitors are low impedance at these freuencies The fiure +elow shows the effect of addin capacitors on the "0 Holts +us for power factor correction
This fiure shows that +4 addin some t4pical si1es of power factor correction capacitors will result in the manification of the ,th and $th harmonic components# which in turns ma3es it e*en more difficult to meet the IEEE ,%/-%//2 harmonic current standards - Power factor correction capacitors should not +e used without turnin reactors in case the ad?usta+le speed dri*es are K%0L of the plant load
E.AMPLE @et us e7amine an industrial plant with the followin data6 -
Aedium *oltae 9 20H @@
-
@ow *oltae 9 0" H@@
-
Utilit4 three phase short circuit power 9 2,0 AH5
-
For as4mmetrical current# the
@
?
ratio of s4stem impedance
= 2.4
The Transformer is rated6 1))) J9A5 ,) J9*:)) Y>,() 9 R42 K 15
.42 K +
- The s4stem freuenc4 is6 f s4s 9 ,0 >M - For power factor correction capacitors the followin cases are e7amined6 a!
,)) J9AR
b!
:)) J9AR
#!
;)) J9AR
d!
t!t
=
0.011791 2 ⋅ ⋅ 50
= 37.55 ⋅10−6 +
Case a&
@$
=
C ' !
=
=
1000 ⋅ ( 0.4)
2
= 0.8 J
200 1
2 ⋅ 50 ⋅ 0.8
= 3.98 ⋅10−3 1
2 ⋅
37.50 ⋅10
−6 ⋅ 3.98 ⋅10−3
= 412.18+
or ,)) J9AR5 t$e $ar0oni# order at ?$i#$ 4ara""e" resonan#e o##2rs is&
= 412.18 50 = 8.24
Case b&
@$
=
1000 ⋅ ( 0.4) 400
C = 7.96 ⋅10 ' !
2
= 0.4 J
−3
= 291.45+
= 5.83 Case #&
@$
=
1000 ⋅ ( 0.4) 600
C = 11.94 ⋅10
−3
= 237.97+ = 4.76
' !
2
= 0.267 J
Case d&
@$
=
1000 ⋅ ( 0.4)
2
800
= 0.2 J
− C = 15.92 ⋅10 3 ' !
= 206.08+
= 4.12 It is #"ear for t$e abo%e syste0 t$at in t$e ;)) J9AR #ase5 t$ere eists a 4ara""e" resonant fre2en#y ' !#"ose to t$e - t$ $ar0oni#!
POWER ACTOR CORRECTION AND HARMONIC TREATMENT USIN7 TUNED ILTERS -
=asic confiuration of a tuned .- capacitor +an3 for power factor correction and harmonic treatment
Simple and cheap filter
Pre*ents of current harmonic manification
-
IN OE TO 5HOI >5AONIC A5QNIFIC5TION BE C>OOSE 5 TUNE FE8UENCR FIT> >5AONIC !ie "$)
-
The freuenc4 characteristic of the tuned filter at "$ is shown +elow
5s it can +e seen from the a+o*e fiure sinificant reduction of the ,th harmonic is achie*ed Aoreo*er# there is some reduction for all the other harmonic components
The sinle phase eui*alent circuit of the power distri+ution s4stem with the tuned filter is shown +elow
Usin the a+o*e circuit the followin euations hold6
' !%
=
1 1
2 ( >' ⋅ C ) 2 1
> ' =
C ⋅ ( 2 ' !% ) 2
K Resonant fre2en#y of t$e series fi"ter B:-
=
2 ' ⋅ @ $
( 2 ' !% ) 2
=
' ⋅1000 ( /$;: ) 2 2 ⋅ ( ' !% ) 2 ⋅ /? $;:
B:;
T$e ne? 4ara""e" #o0bination is $a%in3 resonant fre2en#y ?$en
# ! > t!t ' !
=
+ # ! > ' −
1 #!C
=0
B4ara""e" resonan#e
1 2 [ ( > t!t
+ >' ) ⋅ C]
1
2
K resonan#e fre2en#y of t$e B:+ e2i%a"ent distrib2tion #ir#2it
A"so
+ D#> t!t I ' = I ⋅ ? t!t + D[ #> t!t + #> ' − 1 #C] ? t!t
B: ' − 1 #C )
? t!t
+ D [ #> t!t + #>' − 1 #C]
= I% ⋅ ( ? t!t + D#> t!t )
=
B-)
( ? t!t + D#> t!t ) ⋅ D#>' − D
? t!t + D#> t!t + D#>' − D
( ? t!t + D#> t!t ) ⋅ D#>' − D
B:/
#C = 1
1
#C
# C = 1 ? t!t + D #> t!t + #> ' − # C 1
B-1
As it ?as dis#2ssed before Se"e#tin3 ' ! Wit$
> ' =
J9#a4K )!: 5
50 ⋅1000 ⋅ ( 0.4 )
2
2 ⋅ ⋅ ( 235) 2 ⋅ 600
= 235+
or :!+ t$ $ar0oni#
J9AR#a4K ;))
= 68.45 ⋅10−6 + = 38.45K+
T$e ne? 4ara""e" #o0bination is $a%in3 resonant fre2en#y&
' ! ?it$
' ! =
=
1 2⋅⋅
[ ( > t!t + >' ) ⋅ C]
= 37.55 ⋅10−6 + > ' = 38.45 ⋅10 −6 + C = 11.94 ⋅10−3 > t!t
1 2 ⋅ ⋅ 76 ⋅10 −6 ⋅11.94 ⋅10 −3
= 167.16 50 = 3.43
?e $a%e
= 167.16+
B?it$o2t Lf ?as :!+;
T$e fo""o?in3 tab"e s$o?s t$e %ariation of Para""e" resonant fre2en#y Wit$ and ?it$o2t resonant ind2#tor
Para""e" Resonant f ) J9AR
CB0
Wit$o2t Lf
,))
(!/<
SIMULINJ
SIMULINJ RESULTS
SIMULINJ RESULTS
ACTI9E ILTERIN7
Para""e" ty4e
Series ty4e
RESULTS O ACTI9E ILTERIN7 2,00
.0
%,00
I 5U
2,
,00
% I
20 %,
L T
-,00
%0
-%,00
,
-2,00
0
0
,
%0
%,
20
2,
.0
.,
2
"0
,
-
%%
%"
%$
20
2.
>armonics
Time msU
In42t #2rrent of a ;*42"se Re#tifier dri%in3 a DC 0a#$ine ?it$o2t any in42t fi"terin3 ,000
.,L .0L
T 2,00 p m o c 0 a n 4 I -2,00
2,L
20L % I L T %,L %0L ,L
-,000
0L
0
%0
20
.0
Time msU
In42t #2rrent ?it$ A#ti%e i"terin3
"0
2
,
-
%%
%"
>armonics
%$
20
2.
%000
%" %2
,00 H T U
%0
% U ' L T
0
"
-,00
2
-%000
0
0
,
%0
%,
20
2,
.0
.,
"0
2
,
-
%%
Time msU
%"
%$
20
2.
>armonics
Ty4i#a" ;*42"se dri%e %o"ta3e ?a%efor0 %000
%" %2
,00 H T U
%0 U L T '
0
"
-,00
2 -%000
0 0
,
%0
%, 20 2, Time msU
.0
.,
"0
2
,
9o"ta3e so2r#e i04ro%e0ent ?it$ a#ti%e fi"terin3
%%
%" %$ >armonics
20
2.
SHUNT ACTI9E ILTERS =4 insertin a parallel acti*e filter in a non-linear load location we can in?ect a harmonic current component with the same amplitude as that of the load in to the 5C s4stem
LF
C
Eui*alent circuit
AD9ANTA7ES O THE SHUNT OR PARALLEL ACTI9E ILTER
@ow implementation cost
o not create displacement power factor pro+lems and utilit4 loadin
Suppl4 inductance @ S# does not affect the harmonic compensation of parallel acti*e filter s4stem
Simple control circuit
Can damp harmonic propaation in a distri+ution feeder or +etween two distri+ution feeders
Eas4 to connect in parallel a num+er of acti*e filter modules in order to achie*e hiher power reuirements
Eas4 protection and ine7pensi*e isolation switchear
Eas4 to +e installed
Pro*ides immunit4 from am+ient harmonic loads
WA9EORMS O THE PARALLEL ACTI9E ILTER
So2r#e %o"ta3e
Load #2rrent
So2r#e #2rrent
A! ! o2t42t #2rrent
PARALLEL ACTI9E ILTER E8UATIONS
IC
IS
L1
=0
=
> >
S
+
= LI > L
1− L
=1
⋅ I >+ +
B-,
S >
S
+
1
⋅
B-(
1− L
> I>
1− L >
=
S +
1− L
1− L
>
If
⋅ I>+ +
1− L
>>
S
S
S >
+
B-:
1− L
B--
Then the a+o*e euations +ecome
IC IS
≈
=
B-;
I >
(1 − L ) I >+
+
(1 − L )
-S >
≈
0
B-+
I >
=
I >+
+
-S
B-
E2ation B-- is t$e re2ired #ondition for t$e 4ara""e" A!! to #an#e" t$e "oad $ar0oni# #2rrent! On"y 7 #an be 4redesi3n by t$e A!! ?$i"e 6s and 6L are deter0ined by t$e syste0!
or 42re #2rrent so2r#e ty4e of $ar0oni# so2r#e >
>>
S
and #onse2ent"y e2ations B-( and B-- be#o0e
IS
=
(1 − L )
1− L
+
B-/
1
S
K So2r#e i04edan#e
I >+
K Is t$e e2i%a"ent $ar0oni# #2rrent so2r#e
B;)
> K E2i%a"ent "oad i04edan#e L K e2i%a"ent transfer f2n#tion of t$e a#ti%e fi"ter E2ation B-/ s$o?s t$at t$e #o04ensation #$ara#teristi#s of t$e A!! are not inf"2en#ed by t$e so2r#e i04edan#e5 6 s! T$is is a 0aor ad%anta3e of t$e A!! ?it$ res4e#t to t$e 4assi%e ones!
&C C
The C +us nominal *oltae# -&C# must +e reater than or eual to line *oltae pea3 in order to acti*el4 control i C . The selection of the interface inductance of the acti*e filter is +ased on the compromise of 3eepin the output current ripple of the in*erter low and the same time to +e a+le to trac3 the desired source current The reuired capacitor *alue is dictated +4 the ma7imum accepta+le *oltae ripple 5 ood initial uess of C is6
m;M C≥
2
t
∫ 0 iC&t
5lso
>
NCm;M
n 9 pea3 line-neutral *oltae &C 9 C *oltae of the C +us of the in*erter i> 9 @ine phase current NCm;M
9 ma7imum accepta+le *oltae ripple#
iC 9 Phase current of the in*erter
≥
3
&C − n
m;M
&i> &t
P*8 THEORY For identif4in the harmonic currents in eneral the method of computin instantaneous acti*e and reacti*e power is used Transformation of the three-phase *oltaes u and and the threephase load currents i > i >u and i > into V-W orthoonal coordinate
H = O
i >H i = >O
2 3
2 3
1 − 1 2 0 32
u − 1 2 − 3 2
1 − 1 2 0 32
i >u − 1 2 i > − 3 2 i >
Then accordin to : - theor4# the instantaneous real power : > and the instantaneous imainar4 !reacti*e) power > are calculated
:> H = − > O
O i >H
H i >O
where
: >
= :> + : > + :> =
DC ' "o? fre2en#y #o04! ' $i3$ fre! #o04!
>
= > + > + > =
DC ' "o? fre2en#y #o04! ' $i3$ fre! #o04!
The con*entional acti*e power is correspondin to :># the con*entional reacti*e power to > and the neati*e seuence to the 2 f components of : > and > The commands of the three-phase compensatin currents in?ected +4 the ∗ and ∗ are i*en +46 shunt acti*e conditioner# i∗ # i i C Cu C
i∗Cu ∗ iC = i∗C
2 3
1 − 1 2 − 1 2 −
H 32 - O 3 2 0
:∗ 9 Instantaneous real power command ∗
9 Instantaneous reacti*e power command
−1
:∗ H ∗ O
S2bstit2tin3 ∗
:
∗
= : > ⇒ = >
C2rrent Har0oni#s #o04ensation is a#$ie%ed
∗
= : ⇒ > ∗ = > + >
:
C2rrent Har0oni#s and "o? fre2en#y %ariation Co04onents of rea#ti%e 4o?er #o04ensation
= : > + : > C2rrent Har0oni#s and "o? fre2en#y %ariation ⇒ Co04onents of a#ti%e and rea#ti%e 4o?er #o04ensation ∗ = > + > ∗
:
HARMONIC DETECTION METHODS
i
Load #2rrent dete#tion i AK iL$ It is s2itab"e for s$2nt a#ti%e fi"ters ?$i#$ are insta""ed near one or 0ore non*"inear "oads!
ii
S244"y #2rrent dete#tion i AK JS iS$ Is t$e 0ost basi# $ar0oni# dete#tion 0et$od for series a#ti%e fi"ters a#tin3 as a %o"ta3e so2r#e % A!
iii 9o"ta3e dete#tion It is s2itab"e for s$2nt a#ti%e fi"ters ?$i#$ are 2sed as Unified Po?er 82a"ity Conditioners! T$is ty4e of A#ti%e i"ter is insta""ed in 4ri0ary 4o?er distrib2tion syste0s! T$e Unified Po?er 82a"ity Conditioner #onsists of a series and a s$2nt a#ti%e fi"ter!
SHUNT ACTI9E ILTER CONTROL
a S$2nt a#ti%e fi"ter #ontro" based on %o"ta3e dete#tion
Usin3 t$is te#$ni2e t$e t$ree*4$ase %o"ta3es5 ?$i#$ are dete#ted at t$e 4oint of insta""ation5 are transfor0ed to & and on t$e d #oordinates! T$en t?o first order $i3$*4ass fi"ters of -H6 in order to etra#t t$e a# #o04onents & and ! Net t$e a# #o04onents are a44"ied to t$e in%erse d fro0 & and transfor0ation #ir#2it5 so t$at t$e #ontro" #ir#2it to 4ro%ide t$e t$ree*4$ase $ar0oni# %o"ta3es at t$e 4oint of insta""ation! ina""y5 a04"ifyin3 ea#$ $ar0oni# %o"ta3e by a 3ain J% 4rod2#es ea#$ 4$ase #2rrent referen#e!
∗
i (
= Q ⋅
T$e a#ti%e fi"ter be$a%es "i@e a resistor 1>J9 o$0s to t$e eterna" #ir#2it for $ar0oni# fre2en#ies ?it$o2t a"terin3 t$e f2nda0enta" #o04onents! ∗ T$e #2rrent #ontro" #ir#2it #o04ares t$e referen#e #2rrent i (?it$ t$e a#t2a" #2rrent of t$e a#ti%e fi"ter i ( and a04"ifies t$e error by a 3ain JI ! Ea#$ 4$ase %o"ta3e dete#ted at t$e 4oint of insta""ation5 % is added to ea#$ 0a3nified error si3na"5 t$2s #onstit2tin3 a feed for?ard #o04ensation in order to i04ro%e #2rrent #ontro""abi"ity! As a res2"t5 t$e #2rrent #ontro""er yie"ds t$ree*4$ase %o"ta3e ∗ referen#es! T$en5 ea#$ referen#e %o"ta3e i is #o04ared ?it$ a $i3$ fre2en#y trian32"ar ?a%efor0 to 3enerate t$e 3ate si3na"s for t$e 4o?er se0i#ond2#tor de%i#es!
b Referen#e #2rrent #a"#2"ation s#$e0e 2sin3 so2r#e #2rrents Bi s5 "oad #2rrents Bi L and %o"ta3es at t$e 4oint of insta""ation B% S!
(*F HYGRID ACTI9E*PASSI9E ILTER Co04ensation of #2rrent $ar0oni#s and dis4"a#e0ent 4o?er fa#tor #an be a#$ie%ed si02"taneo2s"y!
In t$e #2rrent $ar0oni# #o04ensation 0ode5 t$e a#ti%e fi"ter i04ro%es t$e fi"terin3 #$ara#teristi# of t$e 4assi%e fi"ter by i04osin3 a %o"ta3e $ar0oni# ?a%efor0 at its ter0ina"s ?it$ an a04"it2de
C
= QIS
If t$e AC 0ains %o"ta3e is 42re sin2soida"5 t$en
IS I>
=
Q +
+ S
T+,i
=
∑ I> Q + + S =2 IS1
THDi de#reases if J in#reases! T$e "ar3er t$e %o"ta3e $ar0oni#s 3enerated by t$e a#ti%e fi"ter a better fi"ter #o04ensation is obtained! A $i3$ %a"2e of t$e 2a"ity fa#tor defines a "ar3e band ?idt$ of t$e 4assi%e fi"ter5 i04ro%in3 t$e #o04ensation #$ara#teristi#s of t$e $ybrid to4o"o3y! A "o? %a"2e of t$e 2a"ity fa#tor and>or a "ar3e %a"2e in t$e t2ned fa#tor in#reases t$e re2ired %o"ta3e 3enerated by t$e a#ti%e fi"ter ne#essary to @ee4 t$e sa0e #o04ensation effe#ti%eness5 ?$i#$ in#reases t$e a#ti%e fi"ter rated 4o?er!
Dis4"a#e0ent 4o?er fa#tor #orre#tion is a#$ie%ed by #ontro""in3 t$e %o"ta3e dro4 a#ross t$e 4assi%e fi"ter #a4a#itor!
C
= OT
Dis4"a#e0ent 4o?er fa#tor #ontro" #an be a#$ie%ed sin#e at f2nda0enta" fre2en#y t$e 4assi%e fi"ter e2i%a"ent i04edan#e is #a4a#iti%e!
HYGRID ACTI9E*PASSI9E ILTER
Sin3"e*4$ase e2i%a"ent #ir#2it
Sin3"e*4$ase e2i%a"ent #ir#2it for -t$ Har0oni#
T$is a#ti%e fi"ter dete#ts t$e - t$ $ar0oni# #2rrent #o04onent t$at f"o?s into t$e 4assi%e fi"ter and a04"ifies it by a 3ain J in order to deter0ine its %o"ta3e referen#e ?$i#$ is 3i%en by
∗
= Q ⋅ i 5
As a res2"t5 t$e a#ti%e fi"ter a#ts as a 42re resistor of J o$0s for t$e - t$ $ar0oni# %o"ta3e and #2rrent! T$e i04edan#e of t$e $ybrid fi"ter at t$e - t$ $ar0oni# fre2en#y5 6- is 3i%en by
5
Q < 0
= D5#> +
1 D5#C
+ r ' + Q
T$e a#ti%e fi"ter 4resents a ne3ati%e resistan#e to t$e eterna" Cir#2it5 t$2s i04ro%in3 t$e 8 of t$e fi"ter!
Q = −r
US5
= 0
IS5
=
1 D5#> T
S5
CONTROL CIRCUIT T$e #ontro" #ir#2it #onsists of t?o 4arts a #ir#2it for etra#tin3 t$e -t$ #2rrent $ar0oni# #o04onent fro0 t$e 4assi%e fi"ter i and a #ir#2it t$at ad2sts a2to0ati#a""y t$e 3ain J! T$e referen#e %o"ta3e for t$e a#ti%e fi"ter ∗
= Q ⋅ i 5
HARMONIC*E.TRACTIN7 CIRCUIT T$e etra#tin3 #ir#2it dete#ts t$e t$ree*4$ase #2rrents t$at f"o? into t$e 4assi%e fi"ter 2sin3 t$e AC #2rrent transfor0ers and t$en t$e * #oordinates are transfor0ed to t$ose on t$e d*3 #oordinates by 2sin3 a 2nit %e#tor B#os-t5 sin-t ?it$ a rotatin3 fre2en#y of fi%e ti0es as $i3$ as t$e "ine fre2en#y!
SERIES ACTI9E ILTERS =4 insertin a series 5cti*e Filter +etween the 5C source and the load where the harmonic source is e7istin we can force the source current to +ecome sinusoidal The techniue is +ased on a principle of harmonic isolation +4 controllin the output *oltae of the series acti*e filter
Eui*alent Circuit
- The series acti*e filter e7hi+its hih impedance to harmonic current and conseuentl4 +loc3s harmonic current flow from the load to the source
C
IS
= Rut:ut !
View more...
Comments