Harman.The Third Table.pdf

April 24, 2018 | Author: Christoph Cox | Category: Metaphysics, Philosophical Theories, Contemporary Philosophy, Truth, Western Philosophy
Share Embed Donate


Short Description

Download Harman.The Third Table.pdf...

Description

Graham Haan Te tJd ble   recent years I  have been ed wi a pilo

sphcal ovemt caled secave raism.· But my own variant of specave reaism, kown as object-oriented plosophy, a aly dates to e lat 1990s Te princles of objct-orented pilosophy can be smmarzed  a fw sentences First, pilosophy mst dea  w   very pe of object raer t  redc  ng a objes obje s  to one privleged pe: zebras,  ng  lepchans, and aies a  jst as wory wor y of  piosophcal disssion as toms and brains. Second, obje a deper an eir appe anc to e hman ind bt aso deeper t  �ir relans to one anoer, so ¢at  con t  between objec mst be  or vicari os. rd, obec are poarized   two ways wa ys ere s a dsncon been obje and eir qaes, and a dsncon beween re objects  wdrawn  wdra wn om a access and sensal obje  at exst oly ol y for some observer, observ er, wheer whe er h ! or hman Fnay, e basic problems f onoogy mst be reformlated   terms of e foold sct at reslts m ese o  olarizaons   e core of objes obj es  a bref 4

I  N - Tugh  Noe -10 e

arle e s one, tre  no way to dea  equaely  l of ese problems. ste,  fos on c e natre of wat  have calle real objec by way of a cal eae of e mous e of Edgton's to tabl. Sir  Stley EdngO was a Bri  is aspyscst best kown for h observa  ons of a  epse in 199,wc coed nsteins generl eory f v Rsed as a Qer e aso ad a bref issdent cer as a conscieous objer  Brs parpaon  Wod ar 1 Egons py   os opy, oweve, s s we-ko pable of   to bes  e ocon t  9 Gord Les  Enb, e desces e sta-· on as folows:   ave seted don to e  of ng ese lectres and ave drawn up y cas  m  to tables.To bles Yes;  are dupicats of every object about to bles, o ca to ps."!  e rder may gess, e t bles n eson  e  e of everyday fe an e sae ble as dese  pycs.We ve lo been a    Snws conct of e o ctes,"2 is g so-ed iterary ntes m naral sensts. Edingons sypies  sly   on oupe second Bu e ait at e t canot be eaced

1 I A  

 N f  P W  Yor c 99 [ig. 1928]), p ix 2 I C  w   u (Camb UK.: Cmbri Univesi Ps 1993 [oig 1959)

     you t mod physi hs by

    emoses  

G H

lc ss e

E  6

t my scond scc ble  e Qy one  which is ey eewherev "thee my be. On e oer nd I need not t you  mod e pysi w never succd  exorcisg t t bge compod of t   r n, men imagy d neted prejudic  whc   vsibe  my   and gbe  my aspWe must bid good-bye to t for e psen   t  for we a  abot   om e  wod  to e scc world veaed by pcs   is or i tended  b  woy   word'

Agains s atude, e humanes mit be  empted to reverse  Eddngton's conclusions and ca hat e ble of everyday fe is jus as real or even more rel,  e scenc tble.  e s table and s re would ereby  be opposed o e second, and e r eslt would  be he usual ench war beteen scence and e humanies My conry ew is a both groups re equaly wrong about e tale, and for precsely e same reason Wen weigng e rspecve mer i of e everyday and scienc bles, we shall d a bo are equal unr snce bo aon smply o opposie forms of reduonism e scens reduces e table donwrd o  ny prcles insile  o e eye; e h reduces i  upward o a series of ees on people nd oher ngs To pu i bluny, bo of Eddingons bles e u  er shas at cose e able w its nte and exe enviroments, respevely he real able is n fact a rd ale lyng beeen 6

I 00 Not -100 Tug 100 Ne -100 G

3  Ed,  Nae o Phs Wl (ee note 1), p. x.

 ese o oers. And  Eddngon's o ables  provided e moral suppor for Snows o cl res of scis and humaiss, o id able w probably reque a d clre compleely dierent o ese o. Ths  no o sa a  e rd clre is a comleely  one: per  haps  is e cle of e a  which do no sem o reduce ables eiher  quark and elec  ons or  bleeecs on hans Wha we  e rd able cano b reduced downwad o e sec one.  dngon de scribes i, "[e] sciec ble  osy ep ness Sparsely scaed n e pess  nu  meus elecc chages sg abou wi ea seed; bu er combined b aoun   less  a bonh of e b of e able if4   is way, e f household ble is ssolved  ino rusg eleic chages and oer  ele en. Bu wle e naral scences mus be amed for having iscoverd  ese mnus ce enes  does no follow a e everyday ble can be aed ouigh and replaced  by ese parcles Frs, ne a e able as a  whole has feares a i various coponen  parcles do o have in isolaon These are f  en called eergen propees, and ee need no be anng yscal abou em. The pon  is no ha he passage om q ad elec  ons o ables is aclous (quanm eoy can explain such anos faly we)  simply a e able has a auonomos al N86 I Gr 

4  i p x

E I 7

over and above its causal omponents, just as  indiidual huns annot e issolved ak  into eir arents.No at we an le or out remove a  number of e table's omonents wiout desoy e bleI am  inned to agre at l enes are omosite,  made of smaler ings aer a beig simle and indible, but in no way does is rove  at oy e t  are r  ou is  rjud�e goes bak to e days of re-So  ilosoy Ev  every ysial ig is made of atoms, every basketball ge is also made of  individual laysyet objets are not just sets of atoms any more an a game s just a set of  lays or a naon just a set of individuals.The dea of a Egyan in ombat on Moamed Mamoud Seet s agi, yet it does not mean  te ea o Egyt; indeed, qite the onary Haing dended the estene of bles against er s dissoluon, it migt  be assumed at we are defenng e rits of Eddingn' st table, e one of everyday  use. e desibes s everyday ble, "[it] as been f to me om my eariest years It  a omonlae objet of at eniron  ment at  al e od.t as extension   is omaravely ermanent; it is oloured;  it is above  b We ire for now  e word "sbstanal, w Eddingto uses  i a sg and hilosoialy imreise y.at is imornt for e momt is at 8

I  N  Th  N  e

51Iid,l

 table number one is idene wi e table of everyday use: e one we see, the one at which  w sit, e one we poun or lovngy. soke Yet is rst able is sl not, e one at we ar seeng Surprisngly enou, e peson  who tels us why is  Heidegger, even  ough he is oen viewed as a champion of everyday uensis aganst a science at "does not "6 The phenomenology of Edmund usser asks us to avoid al scienc eories about reay not irecy seen; we ae equested  to shun Eddngton's favored second able an smpy escribe what appeas to consciousness eidegger counters at most of our dea ng  wi ings are not a mate of conscious experience at al Blood crclates ee, and  veh and oors non smooy   ese malcon and s gan ou noce? Rested n tes of Eddngtons exampe, e able I see is deivave of e able at  invis ibly used as  go about y da busness But ven s folaon does not go deep enou Aer  even e able encountered n P  e do not exhaust e bles ai  one moment it reiaby supports papeei and our iday mea; in e ne it colapses to  e ground, shate eve s ows  at just as e be ould not be idened  wi e one we  it was also not e same as e one we ed e real able is a genune  reai deeper an any eorecal or pracal   Gm 

6 I  H,

   ? s

J Glen Gay (New Yok: H, 1976 [oig 151/52]; p. 8  I  Hg,

B  T  Joh Macuaie  E b (NYok He, 208 [oig. 1927])

E  9

encouner w . An beyond s,   ocks o oer weighs sla no e able ey fa to ex  haus is er eps as well Te able is some  ing eeper an any relaons i which i igh  becoe nvolve wheer wi huans or in aae enes.  shor Engn's every ay able nb one is no beer an his scienc able nuber wo Jus as e cano  reuce e able ownwar o elecic charges  rushng o ep space we also cano  reuce   upwar o is eorecal praccal or· causal ees on huans or on anyng else We have now isolae e locaon of e  r able-e oly  rea one. Eingons rs  able rns ables by g e ino noing  bu r yay eecs on us or on soeone else Eingon's secon ble rns bles by isine e ino nong bu ny elec  ic caes or fan aeral ickerngs. Ye  e r able lies y beeen ese er  o neier of which   realy a able. O  r  able g as soeng  o is own coponen an also wtrOs  behn all is exal ee.  ble is an eeiae  beng foun neier n subaoc physics nor n  han psychology bu  a peanen auono ous zone where objec  sply eselves An n y view   is e genune eang of  e wor "subsance which Engon uses  oo loosy o refer o able nuber one   fun n huan eerience   e Arisoeian 10  100 N -100 Tgh 100 N 100 

 adion, e te "subsance (hyokmnon)  refs to e atonomos  of individua ings. Ue in Plao, for who ere is one  tabe-fDrI in wich coness abs "pci  ae, for Ariso each a i its own for: a subsni fo, raer an  for exisng oy ro is reaon to a eceiver or soe o ig   ight see sage to wave e ag of Aristoe, since he is widy viewed as a  borg, iddeaged reaconar whose di eva enforcers were overrow n iberang  revouon by escart ad o od But  what   ost fascinang about Arisoe's con ce of subsance  how ch it has in coon i our ird abe, rovided Aristoe is given a roey weird inerretaon Fo on e oe  hand, Aristoe does no reduce idiidua tigs  downward o ny coonent ices And on he oer hnd, conay to oular belief, he does no reduce subsances uward t what huans can gras of e usig reason er   ings  aways individuals, bu koedge  ony of  universas (green, eavy, square), and univ�as  bong o any ings8 Tis eans at even for Aristoe, e reaity o ings ies ouide e gras of huan owedge. By ocang e ird abe (and to reeat,  tis   e only  rea tabe) in a sce beween e "abe as arcles and e "tabe n its ees on huans, we have aaren found a tabe  at can be veried in no way a   whether   Gr 

8 I to Me pJ Joe S (S Fe, N M

 Lon s, 1999)p45

E  11

 by science or by tangble eec   e human sphere. Yes-and at is precisely e poit. Any philosophy is uwory of e ne   it atemps to conver objecs into te condions  by whch y can be own or vered Te  te phs possibly coined by Pag oras, famously means not "wsdom but "e of wisdom. e real s someng at can not be own, oly loved Ts does not mean  tat access to e ble  mpossble, oy at  it must be indrt Just as eroc spech works  when composed of   allusion, and nuendo er an of declarave satemes and clearly arclated proposions, and ut as okes or magic cks are easly rned when each of eir steps  explaied, g  not g   less t reales   i approach to obje ca oly be obqe We cannot be downwd scen c reducers, nor  we be upwrd hisc  recers We  oly be un of oects, and must even be nonle hter, snce oecs  never be caught e world s lled priar ly not wi elcons or hman praxis but wi osy obects wdwg om al hman and ihman access, accessible oly by allusion d seducng us by meas of u. Whatever  we cap, whatever table e  at or desoy,  is not e real table But  e rst and second ables  bo u  ral, en re is a sense in which e o cl  tres of C. P Snow are bo falres W hatever 12

I 00 Not - 00 Tgh f 00 Noe 00 ae

 e pracal sucesses in er own domans of scinc relis and social consuon is, ey are bo failes as philosophy. s  was vviy noted o decades ago  Brno Lar, in his faous polc aginst e od e divde eteen nare and ctre9 How ever, ere is a ense n hich Latour retans Edington's rst able (e everyday one),  erey expandng i scpe so at lelecons, cartoon characts, and real and conal tables e placed on  se foo The reason for    at an objet (or "actor) for Lator   to be dened oly by how it ansfors, odi es, perrbs, or creates soe oer acto   phlosophy, noing is hdden n e deps, sinc evryng is ly deployed in duels and negoaons wi oer  By conast, e  Philosophy of e rd Tale at I advocate is coied to tables at do exist at a deper  level an l possible ansforaons, odi caons, perrbaons, r creaons. I  have aso suggested   passng at a rd cu correspondng to   ird able ight not need to be eate o scac Nor is it scent (o it ay be interes!ng) to awd e rd-tre e to naral scss  who happen to brush up aganst phiosophi cal probles, erey  e worlds of Eddingons o tables Jo Brockan reec  is preudice when he ss, in his oerse  fascinang anolgy; at "th rd re

9 I Bo Lou,

H(N Be Mod t.

Ca Pe (Cambg M: Hd Unv  1993 [ o r.1991})

E'  3

consiss of hose sciens ad oer kers  in e emprica word who, ou er work and exposiory ing, are ang e place of  he aioa neea n renderng visbe  he deeper meags of ou ves, rede  who d wha we a."lO Far om caing or a ue rd ce, Broca is merey ca ng for a ot vcory of e second, scenc one, ough in somewha seer d ess  isc form. A bes, e auors n  coeco are ng o make Eddingon's o abes com municae, o hg e eusive abe num-·  ber ree eeng om i componens whe  wrag om a drec access. Bu as saed earier, i may be arss (n a geres) who bes mee is escrpon For on e one had ar does no ncon by issovg whi whaes, mansions, ra, appes, girs, and ms  io er subaoc underpigs Quie obvi ouy; arss do no prode a eory of physi ca reaiy, and ddngons second abe is e  as g ey se Bu on e oer hand  hey aso do no se e :rs abe, as i    merey repcaed he objes of everyday  e or sough o creae eec on us. Isead,  ere is e aemp o esbish obcs deper  an e feares rough which ey a an nouced, or aude o obe ha cao que  be made presen. For enies, phosophy has aspre o e condios of a rigorous sci ence, ng isef a vaous mes wih ma 14 I 100 N 100  100 Not 100 Q -

1 I Sh

Boc ed. 

rd Ce:  y  S Ru (Yk Tchsne 1996)

  � s lt i e bks e of c i e spirt  a chap

.

ecs o descipve psycology. Ye w  e cOUepoec of e ne fou cenies  wee o   pilosopy ino n ? We wold  ve "Pilosopy s Vigoous A"  e n Husses "Plosopy s Rigoous Science.   beng nsfoed o  science no n ,  posopy gins is oigin cce s Eos.  soe wys is eo� ode is e b sic spion of objecoine piosopy: e ony wy in e pesen pilosopic cle  o do jusce o e  of wisdo  m no  o be n c wisdo G  (b 1968  Pfsor o Phsop at te Ac U  .

 I Gr H

E  5

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF