Guide_EC8-2_2012-02-28_SETRA
Short Description
Download Guide_EC8-2_2012-02-28_SETRA...
Description
² F é vr i er 20 1 2
Guide méthodologique
Ponts en zone sismique Conception et dimensionnement selon l’Eurocode 8
Page laissée blanche intentionnellement
Guide méthodologique
Ponts en zone sismique Conception et dimensionnement selon l’Eurocode 8
Collection les outils
Document édité par le Sétra dans la collection « les outils ». Cette collection regroupe les guides, logiciels, supports pédagogique, catalogue, données documentaires et annuaires.
Ponts en zone sismique– Conception et dimensionnement selon l’Eurocode 8– Guide méthodologique
Ce guide a été réalisé par un groupe de travail Sétra/CETE Méditerranée sur la base du précédent Guide Sétra/SNCF « Ponts courants en zone sismique – Guide de conception », publié en janvier 2000 et rédigé par un groupe de travail Sétra/CETEs/SNCF animé par Monsieur Pierre Corfdir, et auquel avaient participé Messieurs Alain Chabert, Alain Conte, Van-Tho Doan, Kian Gavtache, Michel Kahan, Vu Le Khac, Frédéric Légeron, Jacques Resplendino, Rémi Tardy, Pierre Peyrac et Michel Lebas. Les rédacteurs de la présente version du guide sont : Pascal Charles, Sétra puis EDF David Criado, CETE Méditerranée Denis Davi, CETE Méditerranée Aurélie Vivier, Sétra puis Systra Jean-Paul Deveaud, Sétra Anthony Hekimian, CETE Méditerranée La rédaction de ce document a été enrichie des observations et avis de Messieurs : Philippe Bisch (Séchaud et Metz), Benjamin Blasco (Sétra), Emmanuel Bouchon (Sétra), Alain Capra (VINCI Construction), Jean-Christophe Carlès (CETE Méditerranée), Florent Imberty (Razel), Daniel Le Faucheur (Sétra), Serge Montens (Systra), Alain Pecker (Géodynamique et Structure), Jean-François Semblat (LCPC) et des discussions avec Darius Amir-Mazahéri (DAM Design, animateur du groupe reflet national de l’Eurocode 8-2).
– 4 –
février 2012
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Sommaire Notations ...................................................................................... 10 Majuscules latines............................................................................................................................................10 Minuscules latines............................................................................................................................................11 Majuscules grecques ........................................................................................................................................12 Minuscules grecques ........................................................................................................................................12
1
Introduction .......................................................................... 15
1. 1
F in al it é d u g u id e ................................................................................... 15
1. 2
T ext e s co n c e rn an t l a p r o t ect io n p ar a si sm i q u e d es p o n t s ....................... 15
1.2.1
Introduction........................................................................................................................................15
1.2.2
Décrets et arrêtés ...............................................................................................................................16
1.2.3
Normes de calculs : les Eurocodes et leurs annexes nationales ........................................................19
1.2.4
Les guides existants............................................................................................................................20
1. 3
Re sp o n s ab il it é s p art i cu l i èr e s d u ma ît re d ’ o u v r ag e ................................ 20
2
Généralités sur les phénomènes sismiques ........................... 23
2. 1
Ac t io n s i sm iq u e ..................................................................................... 23
2.1.1
Généralités.........................................................................................................................................23
2.1.2
Différentes représentations de l’action sismique en un site donné ....................................................28
2. 2
P rin c ip es d e b a se d u c al cu l d yn a miq u e d e s st ru ct u re s .......................... 35
2.2.1
Introduction........................................................................................................................................35
2.2.2
Quelques rappels de dynamique ........................................................................................................35
2.2.3
Méthodes d’analyse............................................................................................................................36
2.2.4
Généralités sur le comportement sismique des structures de génie civil ...........................................44
3
Conception des ponts en zone sismique ................................ 56
3. 1
G én é ra lit é s su r le co mp o rt e m en t s is miq u e d e s p o n t s ............................ 56
3. 2 8- 2
Déf in it io n d u n iv e au d e p r o t e ct io n – Ex ig e n c es d e b a se s f i x ée s p a r l ’ Eu ro c o d e 58
3. 3
Dif f é re n t e s st r at é g i e s d e c o n c ep t io n p a ra si sm iq u e d e s p o n t s ............... 58
3.3.1
Conception élastique ou à ductilité limitée ........................................................................................59
3.3.2
Conception ductile .............................................................................................................................59
3.3.3
Conception basée sur le principe d’isolation sismique et l’utilisation de dispositifs amortisseurs ...60
3.3.4
Récapitulatif et domaines d’emploi....................................................................................................61
3. 4
P rin c ip es g én ér au x d e co n c ep t io n ......................................................... 62
3.4.1
Implantation de l'ouvrage, reconnaissance des sites .........................................................................62
3.4.2
Répartition des travées / Implantation des appuis .............................................................................64
3.4.3
Appuis ................................................................................................................................................65
3.4.4
Tablier................................................................................................................................................66
3. 5 3.5.1
Ch o i x d e st ru ct u re ................................................................................. 67 Ouvrages de type tablier sur piles .....................................................................................................67
– 5 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
3.5.2 3. 6 3.6.1
Ouvrages monolithiques de type ouvrages enterrés, ponts cadres et portiques (sur semelles superficielles) 68 Ch o i x d u s ys t è m e d ’a p p u i d e l’o u v r ag e ................................................. 68 Introduction........................................................................................................................................68
3.6.2 Comportement d’un tablier de pont reposant sur des appareils d'appui en élastomère fretté sous séisme longitudinal ......................................................................................................................................................71 3.6.3
Comportement d’un tablier de pont reposant sur des appareils d'appui fixes sous séisme longitudinal
3.6.4
Critère de choix entre appareil d'appui fixe / appareil d'appui en élastomère fretté ........................71
3. 7
71
Co n ce p t io n d e s p il e s , d e s cu l é e s et d e s f o n d at io n s ............................... 74
3.7.1
Les piles .............................................................................................................................................74
3.7.2
Les culées ...........................................................................................................................................75
3.7.3
Fondations .........................................................................................................................................76
3. 8
Di sp o sit io n s c o n s t r u ct iv es .................................................................... 76
4
Anal yse sismique .................................................................. 79
4. 1 P ré am b u l e : ch o i x d ’ u n e st r at ég i e d e co n ce p t io n p a r as is mi q u e et m ét h o d e s d ’a n a l ys e a ss o c i ée s ...................................................................................... 79 4.1.1
Comportement élastique ou comportement ductile ............................................................................79
4.1.2
Valeurs du coefficient de comportement et application .....................................................................79
4.1.3
Utilisation de dispositifs amortisseurs ...............................................................................................83
4.1.4
Influence de la prépondérance du 1er mode de vibration sur le choix de la méthode d’analyse........83
4.1.5
Synthèse .............................................................................................................................................84
4. 2
Dét e rm in at io n d e s a c t io n s si s miq u e s .................................................... 85
4.2.1
Zonage réglementaire et accélération de référence agr......................................................................86
4.2.2
Accélération de calcul ag ...................................................................................................................88
4.2.3
Définition des classes de sol ..............................................................................................................89
4.2.4
Coefficient topographique..................................................................................................................93
4.2.5
Définition de l’action sismique de calcul...........................................................................................93
4. 3
Co mb in ai so n s d ' ac t i o n s ...................................................................... 10 4
4.3.1
Directions principales de sollicitations et repère géométrique .......................................................104
4.3.2
Combinaisons des directions............................................................................................................106
4.3.3
Combinaisons des effets des actions sismiques................................................................................107
4.3.4
Variabilité spatiale de l’action sismique..........................................................................................107
4. 4
Co n st ru c t io n d u m o d èl e d e c a lc u l ........................................................ 10 9
4.4.1
Choix du modèle structurel ..............................................................................................................109
4.4.2
Masses..............................................................................................................................................111
4.4.3
Raideurs ...........................................................................................................................................113
4.4.4
Amortissement..................................................................................................................................134
4. 5
M ét h o d e s cl a ss iq u e s d ’ an al ys e ........................................................... 13 5
4.5.1
Principes ..........................................................................................................................................135
4.5.2
Analyse statique simplifiée...............................................................................................................136
4.5.3
Analyses monomodales ....................................................................................................................136
4.5.4
Analyses multimodales.....................................................................................................................147
– 6 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
4.5.5
Calcul des efforts dans les appuis....................................................................................................148
4.5.6
Calcul des efforts dans les fondations profondes.............................................................................150
4.5.7
Prise en compte de l'action dynamique des terres sur les murs : méthode de Mononobe-Okabe....154
4.5.8
Prise en compte d’un comportement inélastique par le biais d’un coefficient de comportement q >1158
4. 6
M ét h o d e s d ’ an a l ys e av an c ée s .............................................................. 15 9
4.6.1
Principes et domaine d’emploi.........................................................................................................159
4.6.2
Prise en compte d’un comportement non-linéaire ...........................................................................160
4.6.3
Analyses en poussée progressive (Push-Over).................................................................................167
4.6.4
Modélisation des dispositifs antisismiques ......................................................................................182
4.6.5
Analyses dynamiques temporelles non-linéaires..............................................................................189
5
Dimensionnement et vérifications de résistance .................. 195
5. 1
Ca lc u l s ju st if i cat if s d e l’ o u v r ag e ......................................................... 19 5
5.1.1
Vérification de la résistance des sections ........................................................................................195
5.1.2
Tablier..............................................................................................................................................209
5.1.3
Appuis ..............................................................................................................................................210
5.1.4
Fondations .......................................................................................................................................215
5. 2
O rg an es d ’a p p u i d e s t ab li er s ............................................................... 21 9
5.2.1
Généralités.......................................................................................................................................219
5.2.2
Appareils d'appui fixes.....................................................................................................................220
5.2.3
Appareils d'appui glissants ..............................................................................................................220
5.2.4
Appareils d'appui en élastomère fretté.............................................................................................220
5.2.5
Repos d’appui ..................................................................................................................................225
5.2.6
Butées...............................................................................................................................................226
5.2.7
Attelages sismiques de travées indépendantes .................................................................................229
5.2.8
Justification des dispositifs antisismiques – Amortisseurs...............................................................229
5. 3
Di sp o sit io n s c o n s t r u ct iv es .................................................................. 23 0
5.3.1
Introduction......................................................................................................................................230
5.3.2
Rôle des dispositions constructives parasismiques ..........................................................................231
5.3.3
Choix des matériaux.........................................................................................................................233
5.3.4
Étendue des zones concernées par les dispositions constructives de l'Eurocode 8-2 ......................233
5.3.5
Recommandations générales vis-à-vis des dispositions constructives .............................................237
5.3.6
Tableau synthétique des dispositions constructives parasismiques .................................................249
5. 4
Éq u ip em en t s ....................................................................................... 25 3
5.4.1
Conceptions des zones d’about / joints de chaussées.......................................................................253
5.4.2
Équipements.....................................................................................................................................260
5.4.3
Drainage ..........................................................................................................................................260
6
Ponts-cadres et portiques ................................................... 262
6. 1
In t ro d u ct io n ........................................................................................ 26 2
6. 2
Dét e rm in at io n d e s p a ra m èt r e s ............................................................. 26 2
6.2.1 6. 3
Coefficients sismiques ......................................................................................................................262 Co mb in ai so n s et v é r i f ic at io n s ............................................................. 26 2
– 7 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
6.3.1
Combinaisons...................................................................................................................................262
6.3.2 Vérifications ..........................................................................................................................................263 6. 4
So ll ic it at io n s d u e s a u s é is me .............................................................. 26 3
6.4.1
Sollicitations verticales dues au séisme ...........................................................................................263
6.4.2
Sollicitations horizontales dues au séisme .......................................................................................263
6. 5
Co n clu s io n .......................................................................................... 26 8
7
Annexes .............................................................................. 270
7. 1
An n ex e 1: Ex e mp l e d e d im en si o n n em en t d 'u n p o n t d a ll e en z o n e si sm iq u e 27 0
7. 2 An n ex e 2 : E x emp le d e d i me n s io n n e men t d 'u n p o n t m ixt e su r n éo p r èn es e n z o n e si sm iq u e ...................................................................................................... 27 0 7. 3
An n ex e 3 : E x emp le d e d i me n s io n n e men t d 'u n p o n t c a is so n B P en z o n e s is mi q u e 27 0
7. 4 An n ex e 4 : Ap p ro ch e s, m ét h o d e s d e ca lc u l et t e ch n o lo g i es in t r o d u it e s o u ère n o r ma li s ée s p o u r l a 1 f o i s d a n s l e c ad r e d e l ’E u r o c o d e 8 ......................... 27 1
– 8 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Avant-propos Le long processus d’écriture et de validation des Eurocodes étant maintenant terminé, les Eurocodes sont entrés dans leur phase opérationnelle. La conception et le dimensionnement des ouvrages d’art sont déterminés par les Eurocodes 0 pour les bases de calcul, 1 pour les charges, 2, 3, 4 et 5 pour les matériaux utilisés habituellement en ouvrages d’art et 7 pour les aspects géotechniques. La grande nouveauté des Eurocodes réside dans l’Eurocode 8, entièrement consacré à la conception parasismique et placé au même niveau que les principaux autres Eurocodes. Les anciennes règles PS 92 et notamment le guide AFPS 92 pour la conception parasismique des ponts sont rendus obsolètes par ces normes. Les différents textes réglementaires (décret de 1991 et arrêté « pont » du 15 septembre 1995) ont été révisés de façon à faire référence à l’Eurocode 8. Le zonage sismique de la France a dans le même temps été revu, d’une part pour être en conformité avec les définitions et catégories de l’Eurocode 8, mais aussi afin de prendre en compte la philosophie plus probabiliste des Eurocodes. Ainsi, au lieu de définir les niveaux de séisme à prendre en compte dans les différentes régions de France sur la base du retour d’expérience et de l’histoire, ceux-ci sont désormais associés à une période de retour de référence, plus ou moins pondérée en fonction de l’importance du pont et de sa durée d’utilisation prévue. De ce fait, le nombre de régions concernées par le séisme a singulièrement augmenté pour couvrir quasiment tout le territoire métropolitain à l’exception du bassin parisien et du bassin aquitain. Les anciennes règles AFPS 92 avaient nécessité la publication d’un guide par le Sétra en 2000 (Ponts courants en zone sismique) dont l’objet était d’expliquer la conception parasismique, et de permettre l’application pratique des règles aux ouvrages d’art. L’utilité de ce guide n’est plus à démontrer, mais sa remise à jour vis-àvis de l’Eurocode 8 et du nouveau zonage sismique est devenue indispensable, tout en conservant les principes de fond établis par un groupe de travail commun Sétra - SNCF. De plus, bon nombre de règles et de dispositions pratiques qu’il contenait pouvaient s’appliquer également aux ouvrages non courants. La remise à jour de l’ancien guide a donc été réalisée d’une part par mise en cohérence avec les prescriptions de l’Eurocode 8 et d’autre part en généralisant l’emploi aux ouvrages non courants. L’Eurocode 8 propose de plus des méthodes plus sophistiquées d’analyse (méthode en poussée progressive, analyse temporelle, utilisation de dispositifs antisismiques…), qui s’appliquent a priori sur des ouvrages à plus fort enjeu ou irréguliers. L’explication de ces méthodes sur des cas concrets est également une avancée du présent guide. Ce guide devrait permettre aux ingénieurs et concepteurs de dimensionner les ouvrages d’art pour le séisme, en appliquant avec discernement les nouveaux textes. Sa remise à jour a été réalisée par un groupe de travail plus restreint que pour le précédent guide. Nous tenons donc à saluer le travail qui avait été fait à l’époque par les différents ingénieurs.
– 9 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Notations La liste suivante n'est pas exhaustive. D'autres notations peuvent être introduites localement dans le texte.
Majuscules latines AEk AEd Ac As Asp Asw At B E Ec Ecm Ed Ei EM Fhc Fhe Fhp Fht FRd Fvc Fve Fvp Fvt Gk Gmax H I Jcr Jeff Jun Keff Keff,u Keq Ki L Lg Lh Li Llim Lp Ls Lv M Ma MEd MEd,i
Valeur caractéristique de l’action sismique pour la période de retour de référence Valeur de calcul de l’action sismique (= γI.AEk) Aire de la section de béton Aire de la section des armatures de béton armé Section transversale de la barre en forme de spirale ou de frette Section transversale totale des frettes ou des bielles/tirants dans la direction transversale unique de confinement Section transversale d'une barre Largeur du tablier Module de young Module de Young du béton Module d'élasticité sécant du béton Effets des actions en situation sismique de calcul, Poussée des terres calculée Sollicitation issue du mode i Module pressiométrique Effort provenant de l’accélération de la culée calculé avec kh Effort provenant de l’accélération de la masse des terres reposant sur la semelle calculé avec kh Effort d’inertie dû à l’accélération de la masse de la pile sous séisme horizontal Effort transmis par le tablier sous séisme horizontal Résistance de calcul Effort provenant de l’accélération de la culée calculé avec kV Effort provenant de l’accélération de la masse des terres reposant sur la semelle calculé avec kv Effort d’inertie dû à l’accélération de la masse de la pile sous séisme vertical Effort transmis par le tablier sous séisme vertical Valeur caractéristique de la charge permanente Module de cisaillement moyen à faibles déformations Hauteur de la pile Inertie Inertie fissurée (« cracked ») Rigidité effective des éléments ductiles en béton armé Inertie brute non fissurée (« uncracked ») Rigidité effective Raideur effective ultime Raideur élastique équivalente Raideur élastique d’une ligne d’appui i Longueur totale du tablier continu Distance au-delà de laquelle les mouvements du sol peuvent être considérés comme entièrement indépendants Longueur de calcul des rotules plastiques Distance projetée sur l’horizontal entre l’appui considéré et un point de référence Longueur de tablier au-delà de laquelle la variabilité de l'action spatiale doit être prise en compte Longueur de rotule plastique Distance entre la rotule plastique et le point de moment nul Distance entre la section de rotule plastique et la section de moment nul Masse totale Masse additionnelle d’eau entraînée Moment de calcul dans la situation sismique de calcul Valeur maximale du moment de calcul dans la situation sismique de calcul à l'emplacement prévu de la rotule plastique de l'élément ductile i – 10 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Mo MRd MRd,i MRd,req MRdb MRdT Mt Mu My NEd NSPT Pk PNCR
Moment de sur-résistance Valeur de calcul de la résistance de la section à la flexion Résistance à la flexion de calcul de la section de la rotule plastique de l'élément ductile i Moment résistant requis final calculé Moment plastique du pied de pile Moment plastique de la tête de pile Moment de torsion statique Moment ultime Moment à la limite élastique Effort normal de calcul dans la situation sismique de calcul Nombre de coups par essai de pénétration normalisé Valeur caractéristique de précontrainte après toutes pertes Probabilité de référence de dépassement en 50 ans de l’action sismique de référence pour l’exigence de non-effondrement Q Action variable Q1k Valeur caractéristique de la charge due au trafic Q2 Valeur quasi-permanente des actions de longue durée S Paramètre de sol Sd(T) Spectre de calcul (pour l’analyse élastique) SDe(T) Spectre de réponse élastique en déplacement Sdiff Effets des déformations différées (retrait, fluage…) Se(T) Spectre horizontal de réponse élastique à l’accélération au niveau du sol, («spectre de réponse élastique») ST Coefficient d’amplification topographique Effets des actions thermiques caractéristiques Sth Sve(T) Spectre vertical de réponse élastique à l’accélération au niveau du sol T Période de vibration d’un système linéaire à un seul degré de liberté TB Limite inférieure des périodes correspondant au palier d’accélération spectrale constante Limite supérieure des périodes correspondant au palier d’accélération spectrale constante TC Valeur définissant le début de la branche à déplacement spectral constant TD Teff Période effective du système d'isolation Teff,u Période équivalente vie théorique de l'ouvrage TL TNCR Période de retour de référence de l’action sismique de référence pour l’exigence de non-effondrement Période de retour de l'événement TR Période de retour (en construction) TRc VEd Effort tranchant de calcul dans la situation sismique de calcul VRd Valeur de calcul de la résistance de la section à l'effort tranchant Vs,max Vitesse des ondes de cisaillement X Axe longitudinal horizontal du pont Y Axe transversal horizontal du pont Z Axe vertical
Minuscules latines ag agc agR avg b bmin cu d da dbd dbL
Accélération de calcul au niveau d’un sol de classe A Valeur de calcul de l'accélération en phase de construction Accélération maximale de référence au niveau d’un sol de classe A Accélération de calcul du sol suivant la direction verticale Dimension de la section transversale du noyau en béton perpendiculaire à la direction du confinement considérée, mesurée aux nus extérieurs de la frette Plus petite dimension du noyau en béton Résistance au cisaillement du sol non drainé Épaisseur effective de la section. Moyenne des déplacements transversaux de toutes les têtes de piles sous l'effet de l'action sismique transversale, ou sous l'action d'une charge transversale de répartition similaire Déplacement de calcul de l'isolateur correspondant au déplacement de calcul du système d'isolation dcd Diamètre de la barre longitudinale – 11 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
dcd dd ddiff dE dEd deg deq des dg dG dT du dy f fc fck fcm fcm,c ft ftk fy fyk fym fys fyt g h kh kv lm lov p pE pl pT q qc ri rmax rmin s
sL sT tc
Déplacement de calcul du système d'isolation Déplacement atteint pendant le chargement Déplacement dû aux effets différés Déplacement sismique (dû uniquement à l'action sismique de calcul) Déplacement sismique de calcul Déplacement effectif dû à la variation spatiale du déplacement sismique Déplacement global équivalent Déplacement sismique effectif de l'appui dû à la déformation de la structure Déplacement de calcul du sol Déplacement dû aux effets de longue durée des actions permanentes et quasi-permanentes Déplacement dû aux mouvements thermiques Déplacement ultime cible Déplacement à la limite élastique Fréquence propre d’un système linéaire à un seul degré de liberté Résistance en compression du béton Valeur caractéristique de la résistance du béton Valeur moyenne de la résistance en compression du béton Valeur moyenne de la résistance en compression du béton confiné Résistance à la traction Contrainte plastique maximale caractéristique des armatures longitudinales Limite d'élasticité Limite élastique caractéristique des armatures longitudinales Limite d'élasticité probable des armatures de confinement Limite d’élasticité de l'armature longitudinale Limite élastique caractéristique de l'acier des armatures transversales Accélération de la pesanteur Profondeur de la section transversale dans le sens de la flexion de la rotule plastique Coefficient sismique horizontal Coefficient sismique vertical Longueur minimale d'appui assurant la transmission en toute sécurité de la réaction verticale Valeur du repos d’appui minimal Probabilité de dépassement Pourcentage du déplacement sismique de calcul Pression limite Pourcentage du mouvement thermique Coefficient de comportement Paramètre de sol CPT Coefficient de réduction de la force locale requis au droit de l'élément ductile i Valeur maximale de ri Valeur minimale de ri Jeu de l'attelage Espacement (longitudinal) maximal Espacement entre les axes des frettes ou des épingles supplémentaires Durée de construction de l'ouvrage
Majuscules grecques ∆d ΣAL
Différence maximale des déplacements transversaux de toutes les têtes de piles sous l'effet de l'action sismique transversale, ou sous l'action d'une charge transversale de répartition similaire Somme des aires des barres maintenue(s) par chaque brin d'armature transversale
Minuscules grecques α αs γI
Rapport entre l’accélération de calcul du sol et l’accélération de la pesanteur ou Coefficient d’efficacité du confinement Rapport de portée d'effort tranchant de la pile (= Ls/d ) Coefficient d'importance de l'ouvrage
– 12 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
γIS γR γM γc γs γeff γmax,t γ0 γBd1 γR,p δ εsy εcu,c εc1 εcu εsu η θy θp,u θd µd µφ µθ µ ν νs,30 ξ ξeq ρ ρL ρw σe φ ψT ψi ψ2 ψ21 ω ωwd
Coefficient de fiabilité Facteur de réduction des efforts Coefficient partiel des matériaux Coefficient partiel pour le béton Coefficient partiel pour l’acier Amplitudes de déformation de cisaillement effective dans chaque couche de sol Valeur maximale de la déformation de cisaillement dans la couche de sol en champ libre Coefficient de sur-résistance ou surcapacité Coefficient de sécurité complémentaire vis à vis des ruptures fragiles par effort tranchant Coefficient de sécurité pour les rotules plastiques Paramètre dépendant du rapport ft/fy Déformation limite élastique des armatures Déformation relative ultime du béton confiné en compression Déformation relative en compression du béton au pic de contrainte fc Déformation relative ultime du béton en compression Déformation plastique ultime pour l'acier Coefficient de correction d'amortissement Rotation limite élastique Capacité de rotation plastique Rotation atteinte par l'articulation pendant le chargement Coefficient de ductilité global en déplacement Coefficient de ductilité locale (ou demande de ductilité locale) en courbure Coefficient de ductilité en rotation à la corde (rotation de l'articulation) Masse linéique du tablier Coefficient de Poisson Valeur moyenne de la vitesse de propagation des ondes S dans la couche supérieure de 30 m de sol, pour une distorsion inférieure ou égale à 10-5 Pourcentage d'amortissement visqueux Amortissement global équivalent Masse volumique Pourcentage d'armatures longitudinales Pourcentage d'armatures transversales Pression effective de confinement Angle de biais Angle balayé en plan par la tangente à l'axe de l'ouvrage (ouvrage courbe) Angle formé par les tangentes à la ligne moyenne de l'ouvrage aux appuis n° 0 (culée) et i Coefficient de combinaison pour la valeur quasi-permanente de l'action thermique Coefficient de combinaison correspondant aux valeurs quasi permanentes des charges dues au trafic Pulsation propre d’un système linéaire à un seul degré de liberté Rapport mécanique des armatures de confinement
– 13 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Chapitre 1 Introduction
– 14 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
1 Introduction 1.1 Finalité du guide L’objectif de ce guide est de fournir un document de conception et de justification des ouvrages d’art tenant compte des nouveaux textes parus ces dernières années (Eurocode 8, révision des décrets de 1991 et de l’arrêté Pont de 1995, nouveau zonage sismique). Par souci de commodité, l’ensemble des textes relatifs à la protection parasismique des ouvrages est repris dans le guide de manière à en faire un document autonome (à l'exception du zonage complet du territoire). Les règles de justification reposent donc sur les différentes parties de l'Eurocode 8 pour la conception des ouvrages au séisme, adaptées spécifiquement au cas des ouvrages d'art avec de nombreux commentaires explicatifs. Son architecture repose sur la démarche logique du projeteur. Il présente la réglementation (chapitre 1), puis les principes généraux de dynamique des structures et de modélisation de l’action sismique (chapitre 2), développe les principes généraux de la conception parasismique (chapitre 3), les différents types d’analyse possible (chapitre 4), l’ensemble des règles de justification et les dispositions constructives (chapitre 5). Le chapitre n°6, quant à lui, précise le cas particulier des ponts cadres et portique. Enfin, les annexes proposent trois exemples d’application quasiment complets (annexes 7.1, 7.2, 7.3), et un tableau synthétique (annexe 7.4) des principales évolutions apportées par l’Eurocode 8 par rapport aux règles PS92 en lien avec les chapitres du guide concernés. Le présent guide couvre uniquement le champ de la conception des ouvrages neufs. Si certaines approches ou méthodes d’analyses peuvent être déclinées au diagnostic et au renforcement des ponts existants, cette problématique particulière nécessite cependant un ajustement spécifique de nombreux paramètres (tels que la définition de l’aléa de référence, du niveau de performance requis, des états-limites de référence, des coefficients de sécurités matériaux, etc.) sortant du champ couvert par le présent document. Le lecteur pourra trouver des éléments d’appréciation sur les ouvrages existants dans le guide du Sétra « Diagnostic et renforcement sismiques des ponts existants ».
1.2 Textes concernant la protection parasismique des ponts 1.2.1 Introduction La norme NF EN 1998 et NF EN 1998 NA [ 4] [ 5] [ 6] renvoie à chaque État membre de l’union européenne la responsabilité de définir la classification des ouvrages, le zonage et les paramètres qualifiant l'action sismique. En France, cela s’est traduit par la publication à partir de 2010 de deux décrets généraux et de plusieurs arrêtés traitant plus spécifiquement des règles de dimensionnement parasismiques applicables aux différents types de structures de génie civil, notamment les ponts : -
Décret n°2010-1254 du 22 octobre 2010 relatif à la prévention du risque sismique [ 1];
-
Décret n°2010-1255 du 22 octobre 2010 portant délimitation des zones de sismicité du territoire français [ 2] ;
-
Arrêté du 26 octobre 2011 relatif à la classification et aux règles de construction parasismique applicables aux ponts de la catégorie dites "à risque normal" [ 3].
Ce nouveau corpus normatif (Eurocode 8) et législatif (Décrets et Arrêtés) permet d’intégrer les dernières avancées scientifiques et technologiques relatives à la connaissance et à la prise en compte du risque sismique (définition et représentation de l’aléa sismique, comportement dynamique des structures sous sollicitations sismiques, etc.) dans la conception et le dimensionnement des ouvrages d’art.
– 15 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
1.2.2 Décrets et arrêtés 1.2.2.1 Décret n°2010-1254 du 22 octobre 2010 relatif à la prévention du risque sismique
Ce décret fixe le cadre général pour l’application des règles de construction parasismiques en France. Il définit notamment les dénominations relatives aux ouvrages dits "à risque normal" et aux ouvrages dits "à risque spécial". Par rapport aux anciennes pratiques (Décret n°91-461 du 14 mai 1991 et anciennes règles PS92), le décret a remplacé le terme « catégories d’ouvrage à risque normal ou spécial » de la partie réglementaire du Code de l’Environnement par « classes d’ouvrage à risque normal ou spécial », tandis que les « classes d’importances A, B, C et D » sont respectivement remplacées par les « catégories d’importances I, II, III et IV ». Art. 1er. − La partie réglementaire du code de l’environnement est modifiée comme suit : I. – A l’article R. 563-2, le mot : « catégories » est remplacé par le mot : « classes ». II. – L’article R. 563-3 est remplacé par les dispositions suivantes : « Art. R. 563-3. − I. – La classe dite “à risque normal” comprend les bâtiments, équipements et installations pour lesquels les conséquences d’un séisme demeurent circonscrites à leurs occupants et à leur voisinage immédiat. « II. – Ces bâtiments, équipements et installations sont répartis entre les catégories d’importance suivantes : « 1° Catégorie d’importance I : ceux dont la défaillance ne présente qu’un risque minime pour les personnes ou l’activité économique ; « 2° Catégorie d’importance II : ceux dont la défaillance présente un risque moyen pour les personnes ; « 3° Catégorie d’importance III : ceux dont la défaillance présente un risque élevé pour les personnes et ceux présentant le même risque en raison de leur importance socio-économique ; « 4° Catégorie d’importance IV : ceux dont le fonctionnement est primordial pour la sécurité civile, pour la défense ou pour le maintien de l’ordre public. » Commentaires : Le Code de l’Environnement définit les ouvrages « à risque spécial » comme suit : « La classe dite "à risque spécial" comprend les bâtiments, les équipements et les installations pour lesquels les effets sur les personnes, les biens et l'environnement de dommages même mineurs résultant d'un séisme peuvent ne pas être circonscrits au voisinage immédiat desdits bâtiments, équipements et installations.» L’ensemble des ouvrages d’art, hormis les ponts-canaux, relève du risque normal. Attention toutefois, en dehors des ponts-canaux, les ouvrages couvrant ou intégrés dans des structures relevant de classements spéciaux peuvent sortir du domaine normal. Leur classement relève d’une analyse au cas par cas.
Le zonage sismique de la France est désormais défini au niveau communal et non plus cantonal. La dénomination des zones est modifiée (les anciennes dénominations de zones 0, Ia , Ib, II et III sont remplacées par les dénominations de zones 1, 2, 3, 4 et 5) : Art. 1er. III. – L’article R. 563-4 est remplacé par les dispositions suivantes : « Art. R. 563-4. − I. – Pour l’application des mesures de prévention du risque sismique aux bâtiments, équipements et installations de la classe dite “à risque normal”, le territoire national est divisé en cinq zones de sismicité croissante : « 1° Zone de sismicité 1 (très faible) ; « 2° Zone de sismicité 2 (faible) ; « 3° Zone de sismicité 3 (modérée) ; « 4° Zone de sismicité 4 (moyenne) ; « 5° Zone de sismicité 5 (forte). « II. – La répartition des communes entre ces zones est effectuée par décret. » V. – Le I de l’article R. 563-5 est remplacé par les dispositions suivantes : « I. – Des mesures préventives, notamment des règles de construction, d’aménagement et d’exploitation parasismiques, sont appliquées aux bâtiments, aux équipements et aux installations de la classe dite “à risque normal” situés dans les zones de sismicité 2, 3, 4 et 5, respectivement définies aux articles R. 563-3 et R. 563-4. Des mesures préventives spécifiques doivent en outre être appliquées aux bâtiments, équipements et installations de catégorie IV pour garantir la continuité de leur fonctionnement en cas de séisme. »
– 16 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
1.2.2.2 Décret n°2010-1255 du 22 octobre 2010 portant délimitation des zones de sismicité du territoire français
Outre la dénomination des zones, le Décret n°2010-1255 du 22 octobre 2010 portant délimitation des zones de sismicité du territoire français modifie également profondément leur étendue et leur localisation géographique. Le nombre de communes concernées par le risque sismique (zones 2 à 5 selon la nouvelle dénomination) subit ainsi une augmentation significative, puisqu’il passe de 5 000 communes environ en zone sismique en 1991 (soit 17% du territoire) contre plus de 20 000 avec le nouveau zonage (soit 66% du territoire). Ce nouveau zonage est basé non plus sur une approche déterministe mais sur une approche probabiliste, conforme aux règles de calcul de l’Eurocode 8. Art. 1er. − Il est inséré, après l’article R. 563-8 du code de l’environnement, un article D. 563-8-1 ainsi rédigé : « Art. D. 563-8-1. − Les communes sont réparties entre les cinq zones de sismicité définies à l’article R. 563-4 conformément à la liste ci-après, arrêtée par référence aux délimitations administratives, issues du code officiel géographique de l’Institut national de la statistique et des études économiques, en vigueur à la date du 1er janvier 2008. …»
Le zonage détaillé ne peut-être donné de manière exhaustive dans le présent guide, compte-tenu du nombre de communes. Néanmoins la nouvelle carte de l'Aléa sismique de la France est fournie au paragraphe 4.2.1. Comme indiqué précédemment, le nouveau zonage réglementaire définit cinq zones de sismicité croissante basées sur un découpage communal. La zone 5 regroupant les îles antillaises, correspond au niveau d’aléa le plus élevé du territoire national. La métropole et les autres DOM présentent quatre zones sismiques, de la zone 1 de très faible sismicité (bassin aquitain, bassin parisien…) à la zone 4 de sismicité moyenne (fossé rhénan, massifs alpin et pyrénéen). 1.2.2.3 Arrêté du 26 octobre 2011 relatif à la classification et aux règles de construction parasismique applicables aux ponts de la catégorie dites "à risque nor mal" Article 1 II. « Sont visés par le présent arrêté les ponts, incluant les passerelles, nouveaux définitifs » ;
L’Arrêté précise, en la déclinant au cas des ponts, la définition des quatre catégories d’importance des ouvrages de la classe dite "à risque normal" telles que définies par le Décret n°2010-1254 du 22 octobre 2010 relatif à la prévention du risque sismique : Article 2 « Pour l’application du présent arrêté, les ponts de la classe dite « à risque normal » sont classés comme suit : En catégorie d’importance I : les ponts qui n’appartiennent pas au domaine public et ne desservant pas d’établissement recevant du public et ne sont rangés ni en catégorie d’importance III ni en catégorie d’importance IV. En catégorie d’importance II : les ponts qui n’appartiennent pas au domaine public mais qui desservent un établissement recevant du public, ainsi que les ponts qui appartiennent au domaine public et ne sont rangés ni en catégorie d’importance III ni en catégorie d’importance IV. En catégorie d’importance III : - les ponts qui appartiennent au domaine public et qui portent, franchissent ou longent au moins une des voies terrestres ci-après : - autoroutes mentionnées à l’article L. 122-1 du code de la voirie routière ; - routes express mentionnées à l’article L. 151-1 du code de la voirie routière ; - voies à grande circulation définies à l’article L.110-3 du code de la route ; - liaisons ferroviaires à grande vitesse mentionnées au décret du 1er avril 1992 susvisé ; - les pont-canaux qui n’appartiendraient pas à la classe à risque spécial ; - les ponts situés dans les emprises des ports maritimes et fluviaux, à l’exclusion des ports de plaisance ; - les ponts des pistes d’aérodrome et les ponts de voies de circulation d’aéronefs situés aux abords des pistes d’aérodrome qui ne sont pas rangés en catégorie d’importance IV. En catégorie d’importance IV :
– 17 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
- les ponts des pistes d’aérodrome ayant un code lettre C, D, E ou F au sens de l’arrêté du 10 juillet 2006 relatif aux caractéristiques techniques de certains aérodromes terrestres utilisés par les aéronefs à voilure fixe ; - les ponts des voies de circulation d’aéronefs et situés aux abords d’une piste, ayant un code lettre C, D, E ou F au sens de l’arrêté du 10 juillet 2006 cité ci-dessus ; - les ponts dont l’utilisation est primordiale pour les besoins de la sécurité civile, de la défense nationale ainsi que pour le maintien de l’ordre public. Le classement en catégorie d’importance IV est prononcé par le préfet chaque fois que l’ouvrage constitue un point essentiel pour l’organisation des secours. Tout pont nouveau définitif de catégorie d’importance II ou III dont l’endommagement pourrait provoquer des dommages à un bâtiment, un équipement ou une installation de catégorie d’importance IV reçoit le classement de pont de catégorie d’importance IV. »
L’Arrêté fixe également toutes les règles de construction à appliquer, notamment les compléments nécessaires apportés par l’administration française à l’Eurocode 8 et à son annexe nationale (accélérations de référence et de calcul, coefficients d’importance associés aux différentes catégories, paramètres des spectres de réponse…) : Article 3 « Les ponts de catégorie d’importance I ou en zone de sismicité très faible (zone 1) ne sont pas soumis à l’application des règles parasismiques définies à l’article 4 du présent arrêté ». Article 4 I. - Les règles de construction à appliquer aux ponts nouveaux définitifs, mentionnées à l'article 3 du présent arrêté, sont celles de la norme NF EN 1998-2, dites "règles Eurocode 8" accompagnée du document nommé « annexe nationale » s’y rapportant.
Ces règles doivent être appliquées au moyen d’un coefficient d’importance γI (au sens de la norme NF EN 1998-2) attribué à chacune des catégories d’importance de pont. Les valeurs des coefficients d’importance γI sont données par le tableau suivant Catégories d’importance de pont II III IV
Coefficient d’importance γI 1 1,2 1,4
II. – Le mouvement dû au séisme à partir duquel les règles de construction doivent être appliquées, est représenté par un spectre de réponse élastique en accélération, dénommé par la suite « spectre de réponse élastique ». Le spectre de réponse élastique est caractérisé par les paramètres suivants : a) l'accélération maximale de référence au niveau d’un sol de type rocheux (classe A au sens de la norme NF EN 1998-1), dénommée agr, résultant de la situation du pont par rapport à la zone sismique d’implantation, telle que définie par les articles R.563-4 et D.563-8-1 du code de l’environnement. Les valeurs des accélérations agr, exprimées en mètres par seconde au carré, sont données par le tableau suivant : Zones de sismicité
agr
2 (Faible)
0,7
3 (Modérée)
1,1
4 (Moyenne)
1,6
5 (Forte)
3
b)
l’accélération horizontale de calcul au niveau d’un sol de type rocheux (classe A au sens de la norme NF EN 1998-1), ag, est égale à agr multipliée par le coefficient d’importance γI défini au I du présent article soit ag = γI.agr
c)
la nature du sol, en ce qui concerne les composantes horizontales du séisme, par l’intermédiaire du paramètre de sol, S. Les valeurs du paramètre de sol, S, résultant de la classe de sol (au sens de la norme NF EN 1998-1) sous le pont sont données par le tableau suivant :
– 18 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Classes de sol
S (pour les zones de sismicité 2 à 4)
S (pour la zone de sismicité 5)
A B C D
1 1,35 1,5 1,6
1 1,2 1,15 1,35
E
1,8
1,4
Les modalités d’utilisation du paramètre de sol, S, sont définies dans la norme NF EN 1998-1. La nature du sol n’est pas prise en compte pour l’évaluation de la composante verticale de l’action sismique. d)
TB et TC, qui sont respectivement la limite inférieure et supérieure des périodes correspondant au palier d’accélération spectrale constante et TD qui est la valeur définissant le début de la branche à déplacement spectral constant ; Les valeurs de TB, TC et TD, à prendre en compte pour l’évaluation des composantes horizontales du mouvement sismique, exprimées en secondes sont données par le tableau suivant : Pour les zones de sismicité 2 à 4
Classes de sol
e)
Pour la zone de sismicité 5
TB
TC
TD
TB
TC
TD
A
0,03
0,2
2,5
0,15
0,4
2
B
0,05
0,25
2,5
0,15
0,5
2
C
0,06
0,4
2
0,2
0,6
2
D
0,1
0,6
1,5
0,2
0,8
2
E
0,08
0,45
1,25
0,15
0,5
2
les paramètres des spectres de réponse élastiques verticaux à employer pour l’utilisation de la norme NF EN 1998-2 : Zone de sismicité
avg / ag
TB
TC
TD
2 (faible) à 4 (moyenne)
0,9
0,03
0,20
2,5
5 (forte)
0,8
0,15
0,40
2
III. Dans le cadre de l’analyse de la liquéfaction, telle que définie dans l’annexe B de la norme NF EN 1998-5 septembre 2005, par convention, la magnitude à utiliser pour les études est donnée par le tableau suivant : Zones de sismicité
Magnitude conventionnelle
3 (modérée)
5,5
4 (moyenne)
6,0
5 (forte)
7,5
En zones de sismicité 1 et 2 (sismicité très faible et faible), l’analyse de la liquéfaction n’est pas requise. Les modalités pratiques d’utilisation de ces différents paramètres, conformément aux prescriptions de l’Eurocode 8, font l’objet du §4.2 du présent guide.
1.2.3 Normes de calculs : les Eurocodes et leurs annexes nationales Les normes de calcul à utiliser sont les Eurocodes et leurs annexes nationales. L’Eurocode 8 fait en effet référence à tous les Eurocodes matériaux et de charges avec lesquels il est totalement compatible. Il est à noter que l’Eurocode 8 n’est pas un texte unique, mais est composé de 5 textes européens, ayant chacun une annexe nationale. Pour les ponts neufs, seuls les Eurocodes 8 parties 1 [ 4] (chapitres relatifs aux règles générales et actions sismiques), 2 (Ponts) [ 5], et 5 (Fondations, ouvrages de soutènement et aspects géotechniques) [ 6] sont utiles. Mis à part les Eurocodes, d’autres normes sont utiles pour la conception parasismique, notamment pour les appareils d’appui et les dispositifs antisismiques : norme NF EN 15129 "Dispositifs antisismiques" [ 7]. – 19 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
1.2.4 Les guides existants Bien que les règles PS92 ne soient plus utilisables et soient remplacées par l’Eurocode 8, nous rappelons quand même les différents guides traitant de la conception parasismique des ponts (en référence aux anciennes règles PS92), qui peuvent, dans certains cas où l’Eurocode 8 reste muet ou incomplet, s’avérer particulièrement utiles : Guide AFPS 92 pour la protection parasismique des ponts [ 8] ; Guide Sétra/Sncf « Ponts courants en zones sismiques – Guide de conception » de janvier 2000 (obsolète et remplacé par le présent guide) [ 9] . On cite également les différents guides et documents, publiés ou à paraître, compatibles avec l’application de l’Eurocode 8 : Guide AFPS « Dispositions constructives parasismiques des ouvrages en acier, béton, bois et maçonnerie – Nouvelle édition conforme aux Eurocodes » de 2011 [ 10] ; Cahier technique AFPS n°26 « Méthodes en déplacement : Principe – Codification – Application » [ 13] ; Guide AFPS/Sétra « Dispositifs antisismiques pour les ponts», à paraître [ 11]; Guide Sétra « Diagnostic et renforcement sismique des ponts existants », à paraître [ 12].
1.3 Responsabilités particulières du maître d’ouvrage Le Maître d’ouvrage doit assurer l’étude de faisabilité et définir, dans le programme, les objectifs de l’opération et les besoins qu’elle doit satisfaire, ainsi que les contraintes et exigences relatives à la réalisation et à l’utilisation de l’ouvrage. De ce fait, il doit définir les conditions administratives et techniques. Autrement dit, il doit fixer, en liaison avec les autorités compétentes (tant à l’échelon central (ministère) qu’à l’échelon local (préfecture)), la catégorie d’importance des ouvrages à réaliser et par conséquent le niveau d’aléa qu'il faut considérer (associé implicitement à la notion de période de retour). Dans le cas des ouvrages ferroviaires, il doit définir également les dispositions à adopter pour assurer l’exploitation des installations vis-à-vis d’une action sismique minorée (exigences de minimisation de dommages associées à un niveau de séisme « de service »). Il appartient également au Maître d’ouvrage de faire réaliser les investigations sismologiques, géologiques et géotechniques, pour définir les aléas sismiques (détection des zones de failles, micro zonage, caractérisation des sols de fondation et détermination des effets de site, des risques de liquéfaction et autres effets induits…). C’est à lui également de retenir, sur les conseils de son maître d’œuvre, le choix d’un parti architectural et donc de la régularité structurelle de l’ouvrage qui influence de façon très significative son comportement sismique, ainsi que les exigences de comportement (essentiellement élastique, ductilité limitée ou ductile) des éléments structurels. Le Maître d’ouvrage intervient donc à tous les stades de la conception parasismique de l’ouvrage : -
caractérisation de l’aléa sismique (y compris effets de site et effets induits) et définition du niveau de protection requis (cf. §3.2 et 4.2.2) lors de l’élaboration du programme d’ouvrage d’art,
-
choix de la meilleure implantation au regard des différents aléas sismiques (cf. §3.4), parti architectural, géométrie et régularité structurelles (cf. §3.5) lors des phases d’études préliminaires,
-
choix de la stratégie de conception parasismique (cf. §3.3) lors de l’élaboration du projet…
– 20 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
En particulier, en ce qui concerne les premiers points, notons que les niveaux d’aléa et les exigences de base spécifiés dans l’Eurocode 8 correspondent à un minimum réglementaire imposé par la norme. Il appartient au Maître d’ouvrage, s’il le juge nécessaire, de fixer un niveau plus sécuritaire en fonction de l’importance qu’il attribue à son ouvrage et des enjeux associés. De la même façon, il lui appartient d’imposer ou non la justification explicite de minimisation des dommages sous séisme dit « de service » ou encore la prise en compte d’un niveau sismique au cours des phases de construction conformément aux spécifications de l’annexe informative A de l’Eurocode 8-2 (cf. §4.2.1). Enfin, en phase d’exploitation, des campagnes de maintenance, de surveillance et d’entretien des ouvrages doivent être menées régulièrement à l’initiative du maître d’ouvrage. Cette obligation revêt notamment un caractère essentiel dans le cas des ponts équipés de dispositifs antisismiques de type isolateurs ou amortisseurs parasismiques. Enfin, en cas d’évènement sismique majeur, il est encore une fois de la responsabilité du maître d’ouvrage de procéder à l’inspection des dommages éventuels sur l’ouvrage et ses équipements, puis de décider ou non de sa réouverture à la circulation.
– 21 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Chapitre 2 Généralités sur les phénomènes sismiques
– 22 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
2 Généralités sur les phénomènes sismiques 2.1 Action sismique 2.1.1
Généralités
Le calcul sismique a pour objectif de déterminer la réponse d'un ouvrage à un mouvement tellurique transmis par le sol au niveau de ses fondations ; le terme "réponse" signifiant les sollicitations, déplacements, vitesses, accélérations et forces d’inertie résultantes subis par l'ouvrage. Ce calcul, qui relève du domaine de la dynamique des structures, se révèle délicat du fait de l'aspect aléatoire de l'excitation. 2.1.1.1 Origine des séismes
Un séisme est une libération brutale de l'énergie potentielle accumulée dans les roches par le jeu des mouvements relatifs des différentes parties de l'écorce terrestre (les plaques lithosphériques – cf. Figure 1). Lorsque les contraintes dépassent un certain seuil, une rupture d'équilibre se produit et donne naissance aux ondes sismiques qui se propagent et atteignent la surface du sol, mettant ce dernier en vibration.
Figure 1 : Carte des plaques tectoniques
Il existe trois types de mouvements entre les plaques (cf. Figure 2) : o
les zones de divergence : remontée de magma qui durcit et forme alors la croûte océanique. La croûte nouvellement formée s'éloigne de part et d'autre de la dorsale : c'est la divergence.
o
les zones de convergence : c'est la cause majeure des séismes.
o
o
zone de subduction : convergence entre une plaque océanique et une plaque continentale, ou océanique qui conduit à l'enfoncement de la plaque la plus dense sous l’autre.
o
zone de collision : convergence entre deux plaques continentales qui se traduit par le plissage de la plaque la plus faible.
les zones de coulissage : lors des mouvements de divergence et de convergence, les mouvements sont sensiblement perpendiculaires à la frontière des plaques. Lorsque le phénomène devient parallèle à cette frontière, il s'agit de coulissage. Cela se traduit par une forte sismicité.
– 23 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
a) les failles normales (divergence)
b) les failles inverses (convergence)
c) les failles en décrochement (vue de dessus)
Figure 2 : Principes de mouvements des plaques
Nous avons évoqué précédemment les séismes inter-plaques (mouvements entre les plaques tectoniques). De nombreux séismes sont également dus aux mouvements intra-plaques. En effet, même à l'intérieur des plaques tectoniques, des failles peuvent jouer (réajustement des contraintes de la croûte terrestre) et provoquer des séismes. Ils sont généralement moins violents. C'est ce type de séismes que l'on rencontre en France métropolitaine. Les séismes peuvent également être provoqués par l'activité volcanique et l'activité humaine (mise en eau de barrages…). 2.1.1.2 Foyer et épicentre
Le foyer ou hypocentre représente la zone de la faille où s’est produite la rupture et d’où les ondes sismiques commencent à se propager. L'épicentre correspond à la projection de l’hypocentre à la surface du sol. En général, il est associé au mouvement sismique le plus élevé. La détermination de sa position est un problème complexe et donne des résultats plus ou moins précis car la libération d'énergie n'est ni un événement ponctuel, ni instantané.
Figure 3 : Définition du foyer et de l'épicentre
Plusieurs méthodes existent, par exemple la méthode des cercles (report de la distance entre les stations de mesures et l'épicentre).
– 24 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Station 1
Epicentre X Station 3
Station 2
Figure 4 : Principe de la méthode des cercles
2.1.1.3 Ondes sismiques
A partir du foyer, la secousse sismique se propage dans le sol sous forme d'ondes de divers types [ 17] [ 18] . 2.1.1.3.1 Ondes de volume
Il existe deux types d'ondes dites de volume : Ondes longitudinales ou primaires (P) : ces ondes se propagent suivant des cycles de compressiondécompression du sol. Elles se propagent plus rapidement que les autres types d'ondes et sont généralement peu destructrices. Ondes transversales ou secondaires (S) : ces ondes s'accompagnent, sans changement de volume, d'un cisaillement dans le plan perpendiculaire à la direction de propagation. Les ondes S sont plus lentes que les ondes P dans un rapport variant de 1,5 à 2 suivant le coefficient de Poisson.
Figure 5:Schémas de propagation des ondes longitudinales et transversales (réf. [ 18])
2.1.1.3.2 Ondes de surface
Les ondes de volume qui arrivent à la surface de la terre produisent des ondes de surface qui sont de deux types : Ondes de Love (L) : Ce sont des ondes de cisaillement qui se produisent quand le massif comporte dans sa partie superficielle une superposition de couches horizontales de caractéristiques différentes. – 25 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Figure 6 : Schéma de propagation des ondes de Love (réf. [ 18])
Ondes de Rayleigh (R) : Elles se propagent le long de la surface libre limitant un massif semi-infini. Ce sont des ondes pour lesquelles les points du sol décrivent des ellipses dans le plan vertical de propagation.
Figure 7:Schéma de propagation des ondes de Rayleigh (réf. [ 18])
Les ondes de cisaillement (S) et (L) sont plus dangereuses pour les constructions que les ondes P. Les ondes S et P se propagent généralement quasi-verticalement. 2.1.1.4 Données quantifiant le mouve ment sis mique
Les mouvements sismiques qui intéressent l'ingénieur sont ceux qui se produisent à la surface du sol ou à son voisinage immédiat. 2.1.1.4.1 Données relatives aux conséquences et à la représentation de l'effet sismique sur un site
De nombreuses échelles d'intensité ont été proposées pour apprécier l'effet du séisme sur les constructions. Le Tableau 1 présente une description abrégée de l'échelle EMS 98 (European Macroseismic Scale 1998 [ 15]) actuellement utilisée en Europe qui se substitue à l'échelle MSK (Medvedev, Sponheuer et Karnik). L'EMS 98 comporte aussi 12 niveaux et prend en compte une classification plus détaillée des dégâts en fonction de la nature des constructions. Intensité
Définition
Effets
I
Imperceptible
Secousse imperceptible. Sans effet. Aucun dégât.
II
Rarement perceptible
Secousse ressentie uniquement par quelques personnes au repos dans les maisons. Sans effet. Aucun dégât.
III
Faible
Secousse ressentie à l'intérieur des habitations par quelques personnes. Les objets suspendus oscillent légèrement. Aucun dégât.
IV
Largement observé
Secousse ressentie à l'intérieur des habitations par de nombreuses personnes et à l'extérieur par quelques unes. Quelques dormeurs sont réveillés. La porcelaine, les fenêtres, les portes et la vaisselle vibrent. Sans dégâts.
– 26 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
V
Fort
Secousse ressentie à l'intérieur des habitations par la plupart des personnes et à l'extérieur par quelques personnes. Les bâtiments tremblent dans leur ensemble. Les petits objets sont déplacés. Quelques bâtiments fortement et très fortement vulnérables subissent des dégâts légers.
VI
Dégâts légers
Secousse ressentie à l'intérieur et à l'extérieur des habitations par la plupart des personnes. De nombreuses personnes sont effrayées et se précipitent dehors. Bris de vaisselle. De nombreux bâtiments fortement et très fortement vulnérables subissent des dégâts légers.
VII
Dégâts
La plupart des personnes sont effrayées et essaient de se précipiter dehors. Les meubles se déplacent et beaucoup d'objets tombent des étagères. De nombreux bâtiments fortement et très fortement vulnérables subissent des dégâts sensibles à importants et quelques bâtiments moyennement vulnérables subissent des dégâts légers.
VIII
Dégâts importants
La plupart des personnes éprouvent des difficultés à se tenir debout. Les meubles peuvent se renverser. Quelques bâtiments très fortement vulnérables s'effondrent et de nombreux bâtiments moyennement vulnérables subissent des dégâts sensibles à importants.
IX
Destructions
Des personnes peuvent être projetées au sol. De nombreux monuments ou colonnes tombent. De nombreux bâtiments très fortement vulnérables s'effondrent et de nombreux bâtiments moyennement vulnérables subissent des dégâts très importants.
X
Destructions importantes
De nombreux bâtiments fortement vulnérables s'effondrent. De nombreux bâtiments peu vulnérables subissent des dégâts sensibles et modérés.
XI
Catastrophe
De nombreux bâtiments moyennement vulnérables subissent des dégâts très importants et quelques uns s'effondrent. De nombreux bâtiments très peu vulnérables subissent des dégâts sensibles à modérés
XII
Catastrophe généralisée
Pratiquement tous les bâtiments même ceux très peu vulnérables sont détruits. Les effets du tremblement de terre ont atteint le maximum concevable. Tableau 1 : Échelle d'intensité EMS 98
2.1.1.4.2 Données instrumentales : Magnitudes
La magnitude, définie en 1935 par Richter, pour mesurer l'énergie des séismes, est fonction de l'amplitude maximum qu'enregistrerait un sismographe étalon placé à 100 km de l'épicentre. Cette mesure n'est fiable qu'à très courte distance et est maintenant appelée magnitude locale ML. Un séisme émet plusieurs ondes différentes (cf. §2.1.1.3), la magnitude dépend du type d’ondes reçues par le sismographe et lues par le sismologue. Ainsi on définit plusieurs magnitudes : – La magnitude locale ML se calcule à partir de l'amplitude maximale des ondes P. Elle est calculée pour des séismes se produisant à proximité des stations sismologiques c’est à dire à moins de quelques centaines de kilomètres ; – La magnitude des ondes de surface MS se calcule à partir de l'amplitude des ondes de surface. Elle est calculée pour des séismes se produisant à plus de 2000 kilomètres des stations sismologiques ; – La magnitude des ondes de volume MB se calcule à partir de l'amplitude de l'onde P qui arrive au début du sismogramme. Elle est calculée pour des séismes se produisant à plus de 2000 kilomètres des stations sismologiques ; – La magnitude de moment MW ou de Kanamori [ 16] se calcule à partir du moment sismique. Bien que moins immédiate à estimer, cette magnitude est directement reliée à une quantité physique, elle-même, associée à l'énergie émise par le tremblement de terre. Cette échelle de magnitude est la plus employée de nos jours. Les séismes de magnitude inférieure à 3 – 3,5, même proches de la surface donnent rarement, même à l'épicentre, une intensité supérieure à II (cf. §2.1.1.4.1) et ne sont donc pas ressentis par l'homme. En France, on enregistre environ 1500 séismes par an, dont plus d'une dizaine de magnitude supérieure à 4, dont la provenance vient de la France ou de pays limitrophes. 2.1.1.5 Sis mographe
Cet instrument mesure les mouvements du sol lors d'un séisme. Le résultat de l'enregistrement est le sismogramme. Ce dernier est appelé accélérogramme si l'instrument de mesure est un accéléromètre.
– 27 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Les enregistrements donnent pour chacune des trois composantes, l'accélération en fonction du temps soit a(t) ; les vitesses v(t) et les déplacements d(t) s'en déduisent par intégrations successives (Figure 2).
Figure 8 : Enregistrement du séisme de Nice (2001)
Actuellement on utilise surtout des sismomètres électromagnétiques et des accéléromètres. Ils ne mesurent pas le mouvement du sol mais la vitesse de mouvement du sol.
Figure 9 : Exemples de sismomètres
2.1.2 Différentes représentations de l’action sismique en un site donné 2.1.2.1 Évaluation de l’aléa sismique
L'aléa est la probabilité d'atteindre ou de dépasser un certain niveau d'un phénomène naturel au cours d'une période donnée. L'évaluation de l'aléa sismique sur un site donné consiste à déterminer les mouvements sismiques les plus agressifs dont l'occurrence sur le site est considérée comme possible. Cette définition est de nature probabiliste car la notion d'occurrence possible est toujours liée à la fixation d'un seuil de probabilité au-dessous duquel le risque est jugé acceptable. L’ancien zonage, qui datait de 1985, était basé sur une approche de type statistique déterministe : nombre et importance des séismes passés sur une zone définie et données tectoniques. Les données nécessaires pour ces études sont relatives à la sismicité instrumentale pour les périodes très récentes ou relatives à la sismicité
– 28 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
historique d'une région pour des périodes lointaines. Ces dernières sont généralement difficiles à obtenir et souvent peu fiables, particulièrement en ce qui concerne les localisations d'épicentre. Le territoire était divisé selon les limites cantonales. Cinq zones de sismicité étaient définies 0, Ia, Ib, II et III. L’évolution des connaissances scientifiques et de la réglementation parasismique à l’échelle européenne (Eurocode 8) a nécessité une réévaluation du zonage en se basant sur une approche de type probabiliste : prise en compte des périodes de retour des séismes sur la zone ainsi que de la sismicité des zones voisines. De plus, contrairement au précédent zonage qui était basé sur des limites cantonales, ces limites seront désormais communales.
Figure 10 : Ancien et nouveau zonage sismique de la France
2.1.2.2 Zonage sis mi que
L'ensemble du territoire français est réparti en cinq zones de sismicité croissante, définies par le décret n°20101255 du 22 octobre 2010 portant délimitation des zones de sismicité du territoire français : Ces zones sont notées zones 1 à 5 et correspondent respectivement au niveaux d’aléa très faible, faible, modéré, moyen et fort (cf. Figure 10 ci-dessus). A l'échelle locale, le niveau de sismicité à prendre en compte est désormais défini commune par commune. La législation parasismique en vigueur (décrets et arrêtés associés) définit les dispositions permettant de satisfaire aux exigences de comportement représentant le niveau de protection minimal requis par la Puissance Publique. Cette législation définit des valeurs d’accélération dites de "référence", qui traduisent un choix résultant d'un compromis entre l'aléa sismique et le surcoût économique des mesures de protection. L'aléa sismique est la combinaison de l'accélération réglementaire (accélération sur la zone en considérant le sol rigide, agr) avec le coefficient (S) correspondant à la classe de sol, c'est à dire à la qualité du sol, ainsi que le cas échéant avec un coefficient topographique (ST) correspondant aux conditions de relief. Les aspects socioéconomiques, relatifs à l’importance stratégique de l'ouvrage et aux conséquences de son éventuel
– 29 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
effondrement, sont également pris en compte par un coefficient d'importance (γI), qui pondère l'accélération issue de l'aléa. 2.1.2.3 Accélérogrammes
L'action du séisme sur une structure peut être modélisée par des accélérogrammes (enregistrements réels ou accélérogrammes artificiels construits à partir de spectres de réponses par des méthodes statistiques). L'accélérogramme est une représentation de l'accélération du mouvement sismique en fonction du temps. Elle est définie par des courbes qui fluctuent de manière irrégulière autour de la valeur nulle et dont la durée est très variable, de l'ordre de quelques secondes à quelques dizaines de secondes. Les principales caractéristiques d'un accélérogramme sont : - sa durée totale ou plutôt la durée de la plage des mouvements significatifs ; - ses maxima d'accélération, de vitesse et de déplacement (Amax , Vmax, Dmax).
Accélération/g
Accélération 0,10 0,08 0,06 0,04 0,02 0,00 -0,020,00 -0,04 -0,06 -0,08 -0,10
20,00
40,00
60,00
80,00
Temps (s)
Figure 11 : Séisme de Nice 2001 (issu de la station NALS du Réseau Accélérométrique Permanent)
2.1.2.4 Spectres de réponses
Schématiquement, les spectres de réponse sont obtenus de la façon suivante : On considère une collection d'oscillateurs viscoélastiques linéaires dont les périodes propres balaient une plage de valeurs couramment rencontrées dans les structures de génie civil (Figure 13). Chacun des oscillateurs simples est caractérisé par sa masse m, sa raideur k, sa pulsation propre ω (ou sa période propre T ou sa fréquence propre f) et son pourcentage d'amortissement critique ξ tels que : ω=
k , m
T = 2π
m 1 ,f = T k
Chaque oscillateur est soumis à une force p(t), fonction du temps, et l'équation du mouvement s'écrit:
mu&& + 2mξωu& + mω 2 u = p (t ) u(t) désigne l'abscisse de la masse de l'oscillateur relativement à sa base. Dans le cas d'un déplacement d'appui de l'oscillateur par un séisme, la force p(t) est calculée à partir de l'accélération imposée à l'appui γg(t) = üg(t) (Figure 12). p(t) = - m γg(t)
– 30 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
u y
mi Ki, ξ
x ug Figure 12 : Oscillateur simple
La résolution de l'équation différentielle ci-avant, en utilisant l'intégrale de Duhamel, donne le déplacement u(t) et le déplacement maximal Uimax de chaque oscillateur par rapport à un repère lié aux fondations.
u (t ) =
1 mω D
1
∫ p(τ )e
−ξω ( t −τ )
sin (ω D (t − τ ))dτ
(intégrale de Duhamel)
0
avec ω D = ω 1 − ξ 2
U i max = f (ω , ξ )
En faisant varier numériquement de manière régulière la période de l'oscillateur, on trace une courbe donnant les déplacements maximaux, en fonction des périodes propres, appelée spectre de réponse en déplacement (SDe). On définit également les spectres de pseudo-vitesse Sv et de pseudo-accélération Se. Sv (pseudo-vitesse) = ω SDe Se (pseudo-accélération) = ω² SDe Nota : Le terme "pseudo" provient du fait que S e (T ) n'est égal à l'accélération totale (par rapport à un référentiel absolu galiléen) de la masse que si l'amortissement est parfaitement nul (il est en général faible). En faisant varier le taux d'amortissement ξ, un ensemble de spectres de réponse peut être établi.
m ki T1 < T2< T3 < ···
< Ti < ··· < Tn
γg(t) Figure 13 : Oscillateurs de périodes variées et de taux d'amortissement ξ, constant
Pour un oscillateur simple, l'effort maximal vaut alors :
F = kS De = m
k S De = mω 2 S De = mS e m
– 31 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Figure 14 : Allure générale des spectres de réponse élastiques (EC8-1, figure 3.1)
Examinons quelques cas : • Si la structure est infiniment rigide, l'effort dans l'oscillateur est égal à la force d'inertie maximale, soit la masse de la structure m multipliée par l'accélération maximale du sol ( S e (T = 0 ) = a g S ). •
À l'opposé, une structure infiniment souple se déformera sans effort ( S e (T = ∞ ) = 0 ).
• Entre ces cas extrêmes, le spectre en pseudo-accélération S e (T ) mesure l'amplification dynamique de l'oscillateur de période T.
2.1.2.4.1 Spectres construits à partir de plusieurs accélérogrammes
Les spectres de réponse construits à partir des accélérations mesurées au cours de séismes présentent souvent des irrégularités et ne sont pas directement exploitables dans les calculs, comme le montre la figure suivante. Par ailleurs, on ne dispose pas forcément de mesures enregistrées sur le site considéré. Il convient donc de déterminer un spectre de calcul qui sera l'enveloppe d'un ensemble de spectres correspondants à des accélérogrammes enregistrés sur des sites comparables du point de vue de la nature du sol.
– 32 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
accélération (m/s²)
Accélérogramme amax = 3,66 m/s²
amin =- 2,62 m/s² temps (s)
acc (m/s²)
comportement linéaire
différentes fréquences
Se = 2,31 m/s² Se = 7,00 m/s²
Se = 11,33 m/s²
t (s)
Se (m/s²)
t (s)
t (s)
ξ=5%
fréquence (Hz)
Spectre de réponse Figure 15 : Construction d'un spectre de réponse à partir d'un accélérogramme naturel
2.1.2.4.2 Spectres réglementaires
La plupart des règlements parasismiques sont basés sur la définition des spectres de réponse élastiques et des spectres de calcul pour l'analyse élastique. Les spectres de l'Eurocode 8 tiennent compte forfaitairement du comportement non-linéaire des structures étudiées au travers de leur coefficient de comportement. Ces spectres, fonction du type de sol, de l'amortissement de l'ouvrage, de la sismicité du site et du niveau de sécurité acceptable sur le plan du risque sismique (notion de catégorie d'importance) constitue, dans la grande majorité des cas, la donnée de base pour le calcul sismique.
– 33 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Spectres réglementaires EC8-2 8 Zone aléa faible
Se (m/s²)
7
Zone aléa modéré
6
Zone aléa moyen
5
Zone aléa fort
4 3 2 1 0 0
0,5
1
1,5
2
2,5
3
3,5
4
4,5
T (s)
Figure 16 : Spectres réglementaires de réponse élastique horizontale (γI = 1, ξ=5%, sol classe A)
2.1.2.4.3 Influence du site sur le spectre d'un séisme
L'observation montre que l'intensité avec laquelle un séisme est ressenti en un lieu donné dépend, dans une large mesure, de la nature des terrains traversés par les ondes sismiques et des conditions locales. Il est souvent constaté que les ouvrages édifiés sur un sol meuble subissent des dommages plus importants que ceux situés sur un sol rocheux. Ce phénomène peut s'expliquer par le fait que les couches de sols meubles se comportent comme un oscillateur qui amplifie l'excitation appliquée à la base par le rocher. Le premier mode de vibration d'une couche de terrain meuble homogène d'épaisseur h reposant sur un sol rocheux est un quart de sinusoïde dont la période est:
Tl = 4h
ρ G
=
4h Vs
Avec ρ, G et Vs la masse volumique, le module de cisaillement et la vitesse de propagation des ondes transversales de cette couche superficielle d'épaisseur h. La valeur de G est à ajuster en fonction du niveau d'accélération du séisme. Il convient donc d'adapter le spectre de réponse à la nature du sol. Les sols meubles présentent une amplification plus importante des accélérations, du côté des grandes périodes, que les sols durs. (Figure 17).
– 34 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Figure 17 : Prise en compte de l'action sismique sur les sols (V. DAVIDOVICI : Génie Parasismique - EN PC)
2.2 Principes de base du calcul dynamique des structures 2.2.1 Introduction Les séismes provoquent des mouvements du sol qui excitent les ouvrages par déplacement de leurs appuis et donc entraîne la mise en mouvement du tablier (le tablier représentant l'essentiel de la masse de l'ouvrage). Cette mise en mouvement induit des forces inertielles dans la structure auxquelles elle doit être capable de résister. Ces mouvements sont plus ou moins amplifiés dans la structure. Le niveau d'amplification dépend essentiellement des masses et des raideurs des différentes parties de la structure (et donc de la période de la structure) et de la nature du sol.
a) Sollicitation transversale
b) Sollicitation longitudinale
Figure 18 : Actions sismiques sur les ponts
2.2.2 Quelques rappels de dynamique Sous séisme, les structures sont soumises à des déplacements imposés de leurs fondations… L'ouvrage subit une force d'inertie due à l'accélération d'entraînement. L'équation de la dynamique, dans le cadre d'une discrétisation de la structure et dans le cas où l'accélération du sol est uniforme sur toutes les fondations, s'écrit alors sous la forme suivante qui est une déclinaison à l'oscillateur multiple de celle de l'oscillateur simple décrite au §2.1.2.4 :
– 35 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
[M ][u&&(t )] + [C ][u& (t )] + [K ][u (t )] = −[M ][u&&g (t )]
(1)
où : [M] est la matrice de masse de la structure. [C] est la matrice d'amortissement. [K] est la matrice de raideur.
[u(t )], [u& (t )], [u&&(t )]
sont les vecteurs de déplacement, de vitesse et d'accélération de la structure (relatifs par rapport au sol de fondation). Ce sont des fonctions du temps.
[u&& (t )] est l'accélération du sol en fonction du temp : [u&& (t )] = u&& (t )[∆] où [∆] est le vecteur unitaire de la g
g
g
direction étudiée (les composantes ∆i de ce vecteur sont égales à 1 pour les degrés de liberté correspondant à des déplacements dans cette direction) Cette équation peut être obtenue à partir de l'équation générale de la dynamique dans le repère absolu qui s'écrit:
[M ][X&& (t )] + [C ][X& (t ) − u& g (t )] + [K ][X (t ) − u g (t )] = [0] (les efforts internes dans la structure dépendent en effet du déplacement relatif avec les fondations).
[
]
On réalise un changement de variable : [u (t )] = X (t ) − u g (t ) pour aboutir à l'équation (1) Dans le cas d'une accélération du sol uniforme, on a ainsi :
[M ][u&&(t )] + [C ][u& (t )] + [K ][u (t )] = −[M ][∆]u&&g (t )
(2)
La résolution de cette équation différentielle n'est pas aisée. Cependant, il est possible de décomposer les mouvements de la structure dans une base des modes propres d'un système non amorti. Dans cette base, la structure se comporte comme la superposition d'oscillateurs simples indépendants (voir §2.2.3.1.1). Par ailleurs, l'intérêt essentiel porte sur la réponse maximale de la structure en termes d'efforts et de déplacements relatifs. Les spectres de réponse donnent précisément les maxima des réponses des oscillateurs simples (voir §2.2.3.1.2). Les maxima n'étant pas atteints simultanément, il convient de les combiner de manière adéquate pour obtenir la réponse maximale de la structure.
2.2.3 Méthodes d’analyse 2.2.3.1
Analyse modale spectrale
Le problème de dynamique à résoudre fait apparaître une variable temporelle, et des variables spatiales. La résolution d'un tel problème, qui fait intervenir plusieurs degrés de liberté (éventuellement une infinité) spatiaux et une variable de temps, est ainsi complexe. L'analyse sismique des structures complexes se fait généralement par analyse modale spectrale. Cette méthode d'analyse générale permet d'introduire la méthode d'analyse spectrale monomodale, utilisée pour les ouvrages courants. 2.2.3.1.1 Principes de l'analyse modale
L'analyse modale consiste à décomposer les mouvements de la structure non amortie à partir de modes de vibration privilégiée de cette structure afin de réduire le nombre de degrés de liberté. Chacun des modes propres d'une structure est défini par un vecteur [φi ] et d'une pulsation ωi tels que :
– 36 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
− ω i2 [M ][φi ] + [K ][φ i ] = 0 . En effet, on retrouve cette équation si on recherche des solutions particulières de la forme :
[X (t )] = [φi ]cos(ωi t ) .
(3)
Les modes propres sont définis à une constante multiplicative près et sont orthogonaux pour la matrice de masse:
[φi ][M ][φ j ] = 0
si i ≠ j
Toute solution de l'équation de la dynamique est une combinaison linéaire des modes propres. N
[X (t )] = ∑ [φi ]ri (t )
(4)
i =1
En injectant cette combinaison (4) dans l'équation de la dynamique générale, on trouve : N
N
i =1
i =1
∑ [M ][φi ]&r&i (t ) + ∑ [K ][φi ]ri (t ) = [F (t )]
[ ]
En multipliant scalairement, par le mode propre φ j , et en utilisant la propriété d'orthogonalité, il reste :
∀j ,
t
[φ ][M ][φ ]&r& (t )+ [φ ][K ][φ ]r (t )= [φ ][F (t )] t
j
j
j
t
j
j
[ ] [ ]
On peut définir une masse généralisée mgj = φ j [M ] φ j t
j
j
[ ] [ ]
et une raideur généralisée k gj = φ j [K ] φ j . Ces t
deux quantités sont définies à une constante multiplicative près. La pulsation propre s'écrit alors :
ω = 2 j
k gj mgj
t
=
t
[φ ][K ][φ ] [φ ][M ][φ ] j
j
j
j
En supposant la matrice d'amortissement diagonalisable dans la même base que les matrices [M] et [K] (hypothèse classique de simplification mathématique des équations), et définie par les pourcentages d'amortissement critique ξj associés à chaque mode propre de vibration j, l'équation précédente s'écrit :
[ ]
∀j , mgj &r&j (t ) + 2ξ jω j m gj r&j (t ) + k gi r j (t )= φ j [F (t )] t
soit : t
∀j , &r&j (t ) + 2ξ iωi r&j (t ) + ω r (t ) = 2 j j
[φ ][F (t )] j
mgi
(5)
Ceci permet de réduire le problème à la résolution d'un nombre limité de fonctionnelles dépendant du temps.
2.2.3.1.2 Particularités de l'analyse modale en séisme
Dans le cas particulier d'un chargement sismique uniforme, l'équation (5) devient :
– 37 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique t
∀j , &r&j (t ) + 2ξ iωi r&j (t ) + ω 2j r j (t ) = − t
Le facteur
[φ ][M ][∆] u&& (t ) j
g
m gi
(6)
[φ ][M ][∆] = [φ ][M ][∆] est appelé facteur de participation du mode j et se note γ m [φ ][M ][φ ] t
j
j
t
gj
j
j
. Il représente
j
la participation du mode j à la réponse globale sous séisme.
( [φ ][M ][∆]) = ( [φ ][M ][∆]) = 2
t
La quantité m j
2
t
j
t
j
[φ ][M ][φ ] j
m gj
j
= m gj γ 2j est la "masse modale" du mode j, et possède la
propriété intéressante suivante :
∑m
j
= Masse totale structure
j
La proportion de mj par rapport à la masse totale de la structure représente le pourcentage de masse modale. Plus il est élevé, plus le mode participe à la réponse sismique. Cela permet de donner un critère pour restreindre le nombre de modes. Il ne faut pas confondre masse modale et masse généralisée. La masse généralisée est caractéristique du mode et représente en quelque sorte la masse en mouvement dans le mode de vibration. Elle est de plus définie à une constante multiplicative près (comme le mode propre). La masse modale fait elle intervenir un chargement uniforme ( [∆] ) et est donc liée au chargement sismique dans le mode considéré. Ce n'est pas une vraie masse au sens physique du terme bien qu'elle en porte l'unité. Contrairement à la masse généralisée, sa valeur ne dépend pas de la norme des modes.
2.2.3.1.3 Principes de l'analyse spectrale
L'analyse spectrale repose sur la notion de spectre de réponse introduite au §2.1.2.4. La réponse spectrale peut être donnée soit en accélération Se(ωj,ξ), soit en déplacement Sd(ωj,ξ). Ces réponses spectrales en accélération et en déplacement sont liées par la relation :
S d (ω j , ξ ) =
S e (ω j , ξ )
ω 2j
La réponse maximale en déplacement vaut alors :
Max(r (t ) ) = S d (ω j , ξ ) =
S e (ω j , ξ )
ω 2j
Lorsqu'un système à plusieurs degrés de liberté est utilisé et qu'une analyse modale est effectuée, cette réponse est à corriger car chacun des modes subit une accélération u&&g (t ) corrigée d'un facteur multiplicatif issu de la résolution mathématique de l'équation matricielle générale. Ce facteur est le facteur de participation vu au paragraphe précédent. On a donc : t
Max(r j (t )) = r j ,max =
[φ ][M ][∆] S (ω ,ξ ) = γ j
e
m gj
ω
j 2 j
S e (ω j , ξ ) j
ω 2j
(7)
Connaissant la réponse sur chaque mode, on obtient la réponse globale en recombinant les modes : – 38 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
[u(t )] = ∑ [φ j ]r j (t ) N
j =1
L'inconvénient de la méthode spectrale est qu'elle ne donne que la valeur maximale du déplacement généralisé rj(t) et non pas son évolution au cours du temps. En général, les maxima dans chacun des modes ne se cumulent pas car ils n'interviennent pas au même instant. On a donc :
[ ]
Max([u (t )]) ≠ ∑ φ j Max(r j (t ) ) N
j =1
t
t
Pour résoudre ce problème, une approche probabiliste est adoptée. On cherche une valeur "maximale probable", en supposant que l’accélération de la sollicitation sismique est un processus aléatoire stationnaire à moyenne nulle et variance constante. Si on note X(t) une variable d'intérêt représentant un déplacement ou un effort, qui est telle que : N
X (t ) = ∑ r j (t )X j , j =1
alors on peut alors démontrer que : N
N
∑∑ Q
X max, probable ≈
r
r
i , j i ,max j ,max
i =1 j =1
XiX j
avec Qi,j les facteurs de corrélation définis par :
Qi , j =
8ωiω j ξ iξ jωiω j (ξ iωi + ξ jω j )
[(ξ ω + ξ ω ) + (ω ' −ω ' ) ][(ξ ω + ξ ω ) + (ω ' +ω ' ) ] 2
i
i
j
j
2
i
j
2
i
i
j
2
j
i
j
et ω'i et ω'j les pulsations amorties telles que ωi' = ωi 1 − ξ i2 Cette combinaison est la combinaison quadratique complète (CQC). Lorsque les pulsations de deux modes i et j différents sont suffisamment éloignées (en pratique plus de 10% d'écart), on montre que Qi,j devient négligeable. Comme Qi,i = 1, la combinaison se simplifie en :
∑ (r N
X max, probable ≈
j =1
X j)
2
j ,max
Cette combinaison simplifiée est la combinaison quadratique simple (SRSS = Square Root of the Sum of Squares). Elle est plus simple et plus souvent utilisée que la précédente, mais il faut bien garder en tête son domaine d'emploi (cf. EC 8-2 §4.2.1.3). Comme toutes les sollicitations et déplacements dans la structure dépendent des coordonnées généralisées rj(t), il est aisé, à partir de la même combinaison, d'obtenir toutes les grandeurs nécessaires au dimensionnement. Par exemple, si le moment fléchissant en un point x s'écrit dans le mode j : M f , j ( x, t ) = r j (t ) M j (ce qui est aisé à déterminer connaissant la déformée modale), alors le moment fléchissant de dimensionnement total s'écrit :
(M f _ max_ prob ( x)) ≈ ∑ γ j S e (ω2j ,ξ ) M j ωj j =1 N
– 39 –
2
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Le nombre de mode à utiliser est également une donnée importante puisque sur une structure continue, il y a une infinité de modes. En séisme, les modes qui apportent une contribution non négligeable à la structure sont ceux dont le facteur de participation est important. Il est cependant plus facile de parler de masse modale, ce qui revient au même puisque celle-ci dépend du facteur de participation, car on peut la relier à la masse totale de la structure. On considère donc que l'on peut se restreindre à N modes si la somme des masses modales de ces modes est proche de la masse totale de la structure. En pratique, on se fixera un pourcentage minimum par rapport à la masse totale de la structure (90% selon l'Eurocode 8-2 §4.2.1.2).
Nota : La combinaison quadratique doit être réalisée en dernier lieu sur la grandeur représentant l'effet de l'action sismique recherchée (déplacement, moment, effort tranchant…) afin de ne pas propager les incertitudes de calcul. 2.2.3.1.4 Méthode générale de calcul sismique selon la méthode spectrale modale.
Les étapes de calcul sont les suivantes : •
Modéliser la structure (voir chapitre 3) ;
•
Calculer les fréquences propres et les modes propres ;
•
Déterminer le spectre de réponse du site d'implantation de l'ouvrage, fonction de l’accélération de calcul ag, du type de site, du comportement élastique, en ductilité limitée ou ductile de la structure et du coefficient de comportement associé ;
•
Définir le nombre de modes représentatifs à prendre en compte dans l’analyse ;
•
Rechercher la réponse maximale mode par mode, à partir du spectre de réponse et des caractéristiques vibratoires de l'ouvrage (pulsation ωι et amortissement ξi : Se(ωι,ξ ι) ;
•
Cumuler les modes selon la combinaison adéquate et déduire les efforts et déplacements dans la structure.
2.2.3.2
Analyse spectrale mo no modale
Dans de nombreux cas, pour l'étude dans une direction de séisme donnée, le comportement dynamique d'une structure est très bien représenté par son premier mode dans cette direction, dont la déformée est souvent proche de la déformée qu'aurait la structure sous un chargement uniforme statique. La masse modale du premier mode représente dans les cas simples quasiment toute la masse totale de la structure et le système se simplifie, puisqu'il n'y a plus de combinaison à effectuer. Dans tous ces cas, bien définis par les textes réglementaires et l'Eurocode 8, l'analyse sismique sur la base d'un seul mode est suffisante. Dans le cas où le tablier est rigide et la structure "régulière", l'ouvrage peut être modélisé par un oscillateur linéaire à un degré de liberté avec : M sa masse, égale à la masse totale vibrante de la structure, K sa rigidité totale, égale à celle des appuis fixes vis-à-vis du mouvement sismique. La pulsation propre de l'ouvrage est alors donnée par : ω 2 =
M K et sa période propre : T = 2π M K
L'effort sismique exercé sur les appuis est dans ce cas simple à calculer :
– 40 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Fmax = K Max(r j (t ) ) = K
S e (ω , ξ )
ω2
= M S e (ω , ξ )
Dans le cas où le tablier est souple, mais où le premier mode reste prépondérant (ce qui n'est pas toujours le cas), et surtout lorsque l'on a une bonne idée de la déformée modale y(x) de ce premier mode (ce qui n'est pas toujours évident) la structure peut être représentée par un oscillateur linéaire à un degré de liberté avec: Mg sa masse généralisée qui vaut : M g = ρS ( x) [ y ( x)] dx +
∫
2
∑ m [y (x )]
2
i
lorsque l'on a des poutres de
i
i
masse linéique ρS(x) et des masses ponctuelles mi aux points xi. 2
[
]
d 2 y 2 Kg sa raideur généralisée qui vaut : K g = ∫ EI ( x) 2 ( x) dx + ∑ k j y (x j ) lorsque l'on a des poutres de j dx rigidité de flexion ΕΙ(x) et des ressorts ponctuels kj aux points xj. On a de même que précédemment : ω 2 =
Kg Mg
et sa période propre : T = 2π
Mg Kg
Cette méthode est connue sous le nom de méthode de Rayleigh (cf. §4.5.3) La masse modale est donnée par : 2
∫ ρS ( x) [ y ( x)]dx + ∑ mi [ y ( xi )] i , Mm = Mg et le facteur de participation par :
γ=
∫ ρS ( x) [y ( x)]dx + ∑ m [y(x )] i
i
i
Mg
Il est ainsi aisé de contrôler si le premier mode est suffisant. Le déplacement au point x vaut alors :
y max = γ
S e (ω ,ξ )
ω2
y ( x)
L'effort dans le ressort j vaut :
Fmax, j = k j γ
S e (ω , ξ )
ω2
y( x j )
Le moment fléchissant du tablier au point x vaut :
M f max ( x) = γ
S e (ω , ξ )
ω2
EI
d2y ( x) dx 2
Il est à noter que même si la déformée modale y(x) est définie à une constante multiplicative près, ces différents résultats sont uniques.
– 41 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Dans le cas des ponts réguliers, de bons résultats sont obtenus en prenant une déformée modale horizontale (longitudinale ou transversale) égale à la déformée statique sous une accélération uniforme dans la direction considérée, qui correspond à un facteur près au poids propre appliqué selon cette direction. 2.2.3.3 Analyse spectrale mul ti modale
Lorsque la structure est irrégulière, ou lorsque son comportement dynamique ne peut pas être simplement approché par un seul mode, il y a lieu de procéder à une analyse spectrale multimodale. Ces calculs sont souvent plus compliqués que pour l'analyse monomodale, mais il est dans certains cas possibles de se ramener à un problème à un petit nombre de degrés de liberté (2 ou 3) si une combinaison linéaire de 2 ou 3 fonctions suffit raisonnablement à représenter les premiers modes propres. Si les N fonctions représentatives (par exemple déplacements ou déformations selon les différentes directions) sont notées yi(x), alors on forme une matrice de masse et une matrice de raideur suivant le même modèle que pour l'analyse monomodale : Les coefficients de la matrice de masse sont :
M p ,q = ∫ ρS ( x) y p ( x) y q ( x)dx + ∑ mi y p ( xi ) y q ( xi ) i
Les coefficients de la matrice de raideur sont :
K p ,q = ∫ EI ( x)
d 2 yp dx 2
( x)
d 2 yq dx 2
( x)dx + ∑ k j y p (x j )y q (x j ) j
Le problème revient à un problème de recherche de valeurs propres et de vecteurs propres ( φ p (x) , ωi ) tels que:
[ ]
[ ]
− ω p2 [M ] φ p + [K ] φ p = 0 Une fois ce problème résolu, on peut déterminer les autres grandeurs modales caractéristiques :
Les masses généralisées sont données par :
[
]
[
]
m gp = ∫ ρS ( x) φ p ( x) dx + ∑ mi φ p ( xi ) 2
2
i
Les masses modales valent :
[
M mp
]
[
]
[
]
∫ ρS ( x) φ p ( x) dx + ∑ mi φ p ( xi ) i = m gp
2
et les facteurs de participation par :
γp =
∫ ρS ( x) [φ
p
]
( x) dx + ∑ mi φ p ( xi ) i
m gp
On peut vérifier que le nombre de modes pris en compte est suffisant. Si les fréquences des modes sont suffisamment éloignées, on peut calculer toutes les grandeurs utiles à l'aide de la combinaison quadratique simple : – 42 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Le déplacement au point x vaut alors :
S e (ω p , ξ ) = ∑γ p φ ( x) p 2 ωp p =1 N
y max
2
L'effort dans le ressort j vaut :
S e (ω p , ξ ) = ∑γ p k jφ p ( x j ) 2 ωp p =1 N
Fmax, j
2
Le moment fléchissant au point x vaut :
S e (ω p , ξ ) d 2φ p M f max ( x) = ∑ γ p EI ( x ) ω p2 dx 2 p =1 N
2
2.2.3.4 Analyse modale te mporelle Lorsqu'une analyse modale est possible (structure linéaire), mais que l'analyse spectrale n'est pas suffisante (site particulier, connaissance accrue du site), il est possible de déterminer les efforts et déplacements dans la structure à partir d'enregistrements sismiques (accélérogrammes). En utilisant la base des modes propres, on a :
∀j , &r&j (t ) + 2ξ iωi r&j (t ) + ω 2j r j (t ) = −γ j u&&g (t ) Étant donné un accélérogramme u&&g (t ) , la réponse peut être déterminée par évaluation numérique de l'intégrale de Duhamel :
u j (t ) =
1
t
u&& (τ )e ω '∫ g
j
−ξω j ( t −τ )
sin (ω j ' (t − τ ))dτ avec ω j ' = ω j 1 − ξ 2
0
On a donc : N
[X (t )] = −∑ [φi ]γ i ui (t ) i =1
2.2.3.5 Analyse te mporelle par intégration directe
L'application de la méthode modale suppose un comportement linéaire des structures, et repose sur l'hypothèse d'amortissement modal proportionnel. Dans des cas plus exceptionnels, il convient de prendre en compte le comportement non linéaire de la structure ou des modèles d'amortissement qui s'éloignent fortement de l'hypothèse d'amortissement modal. Il n'est plus possible dans ces cas d'utiliser l'analyse modale, et encore moins la méthode spectrale. On procède alors à une analyse temporelle par intégration directe. Cette méthode d'analyse ne s'impose que pour des ouvrages exceptionnels et dans un cadre bien précis, notamment dans le cas particulier de structures équipées de dispositifs antisismiques (amortisseurs visqueux). Elle est basée sur la méthode des différences finies et utilise des schémas de discrétisation dans le temps pour résoudre l'équation de la dynamique. Elle permet de calculer le vecteur déplacement [u] de la structure au temps t + ∆t connaissant ce même vecteur déplacement au temps t - ∆t et t. – 43 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
En effet, on peut par exemple écrire : [u&&(t )] ≈
[u (t + ∆t )] − 2[u(t )] + [u (t − ∆t )] et [u& (t )] ≈ [u (t )] − [u (t − ∆t )] ∆t
∆t 2
et intégrer ces approximations dans l'équation de la dynamique pour obtenir une équation avec la seule inconnue [u (t + ∆t )] . Il existe de nombreux schémas d'intégration plus ou moins complexes convergeant plus ou moins vite en fonction du pas de temps utilisé.
2.2.4 Généralités sur le comportement sismique des structures de génie civil 2.2.4.1 Notion de ductilité et coefficient de co mporte ment 2.2.4.1.1 Comportement élastique / Comportement ductile
Le calcul spectral précédemment décrit, suppose un comportement linéaire et élastique de la structure. Toutefois, dans de nombreux cas et notamment pour des ouvrages comportant une ou plusieurs piles fixes et soumis à des séismes de moyenne ou forte intensité, il n'est pas réaliste de considérer que le comportement de la structure reste dans le domaine élastique. La détermination de la réponse d'un système non linéaire par un calcul pas à pas donne alors une meilleure description du comportement de l'ouvrage mais la complexité d'une telle analyse, par rapport à une analyse spectrale d'un système linéaire, ne se justifie que pour les ouvrages irréguliers ou exceptionnels. Dans les cas où il est admis un comportement inélastique de la structure, il est couramment accepté que les déformations réelles (avec comportement non linéaire) sont sensiblement égales à celles calculées sur un modèle linéaire correspondant à l'état initial. Les efforts réels se trouvent alors écrêtés par la formation de "rotules plastiques" dans la structure. Le calcul dit "pseudo-élastique" est donc mené en supposant la structure élastique, et la prise en compte des zones plastifiées se fait par l'introduction d'un coefficient de comportement venant réduire les efforts calculés. Notons néanmoins que l’Eurocode 8-2 impose dans ce cas de baser l’analyse sur le calcul des raideurs fissurées des sections les plus sollicitées (cf. §4.4.3.2). – Approche introduite pour la 1ère fois dans le cadre de l’Eurocode 8-. La légitimité de cette méthode est issue de bases théoriques et expérimentales trop souvent méconnues. C'est la raison pour laquelle il est rappelé ci-après la démarche qui conduit à l'introduction du coefficient de comportement. 2.2.4.1.2 Méthode du coefficient de comportement 2.2.4.1.2.1
Modèle de fonctionnement non-linéaire d'une pile de pont sous chargement statique
Considérons à titre d'exemple une pile de pont de section constante sur laquelle repose un tablier par l'intermédiaire d'un appareil d'appui fixe ne transmettant pas les moments. Le poids de la pile est supposé négligeable devant celui du tablier. Par suite, les forces d'inertie induites par le poids ne s'appliquent qu'au sommet de la pile (Figure 19). Le moment est maximal en pied de pile; c'est là que se développera une éventuelle rotule plastique. d M(z)=M0(1-z/L)
L M0 Diagramme des moments
– 44 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Figure 19 : Modèle pour une pile de pont sous chargement statique
Afin de comprendre le fonctionnement d'une pile de pont, le comportement local d'une section est étudié en première étape et il en est déduit le comportement global de la pile. 2.2.4.1.2.2
Comportement idéalisé d'une section de pile
La courbe (en trait fin) de la Figure 20 représente la loi moment-courbure d'une section en béton armé qui est utilisée pour caractériser le comportement réel (élastique puis plastique) de la section. Cette loi de comportement peut être simplifiée par la loi élasto-plastique parfaite (courbe en trait foncé), qui est constituée de deux parties: •
la partie élastique linéaire avant la première plastification des aciers,
•
le plateau ayant pour ordonnée le moment ultime de la section.
Nota : Dans cette loi élasto-plastique « parfaite » (bi-linéaire), il n'est pas tenu compte de l’infléchissement de la
courbe lié à la fissuration du béton qui intervient avant la première plastification des aciers. Cette courbe n'est que très relativement représentative car elle a été établie dans le cas d'un chargement horizontal monotone et sous l'effet d'un effort normal constant (par exemple la descente de charge sous charges permanentes, hors séisme). Dans le cas d'un séisme, l'effort normal varie (du fait du séisme vertical, de l'effet portique dans le cas de fûts liés par un chevêtre en tête et une semelle en pied, etc..) et la charge horizontale est cyclique. M (moment) Courbe idéalisée
Mu Première plastification des aciers
Courbe réelle
Fissuration du béton tendu
φy
φd
φu
φ (courbure)
Figure 20 : Comportement en flexion d'une section
A partir de la courbe décrivant la loi de comportement idéalisé d'une section, il est défini l'appel de ductilité locale (ou demande de ductilité locale) en courbure de la section par le ratio:
µφ = φ d / φ y où φd est la courbure atteinte pendant le chargement, φy est la courbure limite élastique du modèle élastoplastique parfait calculée par la formule classique de la Résistance des Matériaux:
φ y = M u / EI Cette ductilité locale en courbure µφ peut se décliner en ductilité globale en déplacement µd= dd/dy ou en rotation à la corde µθ = θ d / θ y où θd est la rotation atteinte par l'articulation pendant le chargement et θy la rotation limite élastique : – 45 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
θ=
L
1 φ .x.dx L ∫0
Figure 21 : Rotation de l'articulation
Certains codes de calcul étrangers précisent que le moment d'inertie I est l'inertie sécante dont la définition n'est pas unique dans la littérature (par exemple conservation des aires). L’approche proposée par l’Eurocode 8-2 (annexe C) consiste à évaluer l’inertie fissurée à l’aide d’une formule simplifiée faisant intervenir le moment résistant ultime MRd des sections ductiles. Cette approche nécessite en pratique de connaître les quantités d’aciers longitudinaux présents dans ces sections et requiert donc quelques itérations en vue de prédimensionner ces aciers – Approche introduite pour la 1ère fois dans le cadre de l’Eurocode 8-. Les calculs relatifs à cette évaluation des inerties fissurées font l’objet du chapitre 4.4.3.2 du présent guide. La capacité de ductilité en courbure d'une section est dictée par les dispositions constructives mises en œuvre : quantité d'aciers longitudinaux, quantité d'aciers transversaux et leur disposition, géométrie de la section, caractéristiques mécaniques des matériaux. La disposition la plus importante pour fournir de la ductilité en courbure est la densité des armatures transversales. En effet, elles confinent le béton, ce qui signifie qu'elles empêchent celui-ci de se désintégrer sous des chargements cycliques alternés et lui donnent une plus grande capacité de déformation. Puis elles se substituent au béton endommagé pour maintenir les armatures longitudinales et prévenir leur flambement. Une capacité de ductilité en courbure maximale µc ne dépend pas, ou tout au moins peu, de l'échelle du problème. En effet, la valeur de µc reste inchangée si la section et les aciers sont multipliés par une même constante. Il s'agit d'un paramètre adimensionnel. Dans la plupart des cas, où la prise en compte des non-linéarités est introduite par le biais d’un coefficient comportement q, l'Eurocode 8-2 ne requiert pas explicitement que l'on vérifie l'adéquation entre l'appel ductilité et la capacité de ductilité. Cela est en fait caché dans une limitation de la réduction des efforts dimensionnement et dans la mise en place de dispositions constructives particulières comme expliqué §2.2.4.1.2.5.
2.2.4.1.2.3
de de de au
Comportement idéalisé de la pile
Il est constaté expérimentalement que les rotules plastiques se développent sur une certaine longueur Lp. Sur cette longueur, la courbure plastique est uniforme et égale à la différence entre φd et φy. Compte tenu du comportement élasto-plastique parfait de la section, le diagramme des courbures dans la pile est le suivant :
– 46 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
+
= φp = φd - φy
φy Courbure élastique
φd
Lp
Courbure totale
Courbure plastique
Figure 22 : Diagramme idéalisé des courbures dans le cas d'une pile de section constante plastifiant en pied
F (force)
Courbe idéalisée (élastoplastique parfait) Fu=Mu/L
dy
Courbe réelle
dd
du
d (déplacement)
Figure 23 : Diagramme Force-déplacement sous chargement monotone
Comme la loi Moment-Courbure, la loi Force-Déplacement peut être représentée par un comportement élastoplastique parfait (Figure 23) et le déplacement en tête peut être séparé en deux termes, un déplacement élastique dy et un déplacement plastique dp :
dd = d y + d p selon le schéma suivant :
dd
dd
dy
=
+
L-Lp/2 Lp
élastique
déformée
plastique
Figure 24 : Déformée de la pile de pont
La courbe Force-Déplacement caractérise le comportement global de la pile. De manière analogue à ce qui a été fait au niveau de la section, l'appel de ductilité globale en déplacement dans la pile se définit à partir de cette courbe et est caractérisé par le ratio :
– 47 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
µd =
dd dy
où dd est le déplacement atteint pendant le chargement dy est le déplacement élastique dont la relation avec la courbure élastique est donnée par la formule :
dy =
φ y L2 3
En supposant l'axe de rotation à mi-hauteur de la rotule, on obtient le déplacement plastique à partir de la rotation plastique θp (calculée en supposant la courbure constante sur toute la longueur de la rotule plastique Lp), de la hauteur de pile L et de la longueur de rotule plastique Lp :
θ p = (φ d − φ y ) L p et
Lp θ p d p = L − 2
d’où
d p = (L −
et
Lp
2
)(φ d − φ y ) L p
dd = d y + d p =
En posant : λ =
φ y L2 3
+ (L −
Lp
2
)(φ d − φ y ) L p
Lp L
Les équations précédentes permettent alors d'obtenir aisément le lien entre ductilité globale et ductilité locale :
λ µ d = 1 + 3λ 1 − (µφ − 1)
2
et
µφ = 1 +
µd −1 λ 3λ 1 −
2
Nota : Il faut garder à l'esprit que cette relation entre les ductilités est valable uniquement sous les hypothèses de pile encastrée en pied et libre en tête, et de masse négligeable. Lorsqu'une partie considérable du déplacement du tablier est due à la déformation d'autres éléments qui restent élastiques (appareils d’appui en élastomère, déformation propre du tablier ou souplesse des fondations par exemple), après formation de la rotule plastique, le coefficient de ductilité en courbure requis est donné par l'expression (Annexe B, EC 8-2) :
µφd = 1 +
d tot (µφ − 1) dp
avec : - dtot : déplacement total du tablier, - dp : déplacement dû à la déformation de la pile seule D'après l'Eurocode 8 partie 2, la valeur du rapport λ =Lp/L est influencée par plusieurs paramètres (l'allongement et le glissement de l'armature dans la zone adjacente, la fissuration inclinée due à l'interaction cisaillement flexion, etc.). Ce rapport est donc affecté d'une grande incertitude.
– 48 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Il apparaît donc que pour pouvoir calculer la ductilité limite ou maximale de la pile à partir de celle de la section, il faut connaître la longueur de la rotule plastique Lp. Cette longueur est celle sur laquelle la courbure φd des sections de la région plastifiée peut être considérée constante et égale à φu :
L p = 0.10 L + 0.015d bL f yk où dbL et fyk sont le diamètre et la limite élastique des armatures longitudinales exprimés respectivement en m et MPa, et L=M/V.
2.2.4.1.2.4
Comportement élasto-plastique " parfait " d'une pile de pont sous chargement sismique
Il a été vu qu'il était possible de modéliser de façon approchée le diagramme force-déplacement d'une pile de pont sous chargement statique par un diagramme élasto-plastique parfait. Malgré la complexité du chargement sismique et la variation de l'effort normal, le comportement d'une pile peut être étudié qualitativement en l'assimilant à un oscillateur simple. L'oscillateur comporte donc une masse en tête et une raideur modélisée par une courbe élasto-plastique parfaite. L'oscillateur élasto-plastique parfait a été étudié sous chargement sismique dans les années 60-70 notamment par Newmark. Ce dernier a pu établir une estimation du déplacement maximal de l'oscillateur inélastique en fonction : -
de sa période d'oscillations libres (oscillateur restant dans le domaine élastique),
-
du déplacement maximal de l'oscillateur indéfiniment élastique de même période.
Les résultats principaux sont les suivants : -
Pour des structures souples (typiquement sur la branche descendante du spectre de réponse élastique en accélération), les déplacements maximaux, dd, des oscillateurs élastique et inélastique sont très voisins. Cette propriété porte le nom d’"iso-déplacement". Elle s'explique physiquement par la plastification de la structure qui assouplit une structure déjà souple, dans une zone où le spectre en déplacement augmente lentement voire pas du tout. Le surcroît de déplacement dû à l'assouplissement est en outre compensé par une diminution de déplacement induite par l'augmentation de l'amortissement hystérétique.
-
Pour des structures un peu moins souples (typiquement au voisinage du plateau du spectre élastique en accélération), l'aire sous la courbe force-déplacement, autrement dit l'énergie de déformation, est identique pour les oscillateurs purement élastiques et élasto-plastiques. Cette propriété est appelée "iso-énergie".
-
Pour des structures très raides, les déformations élastiques sont très faibles et les déformations inélastiques deviennent extrêmement importantes dès que la force d'inertie atteint le palier plastique. En effet, à l'échelle des temps de réponse (très petits) de ces oscillateurs, les impulsions sismiques paraissent très longues. Si lors du séisme, l'oscillateur commence à plastifier, l'incursion sur le palier plastique sera très longue (à l'échelle de la structure) avant que la sollicitation ne s'inverse. La demande de ductilité sera donc très importante, souvent beaucoup plus grande que ce que les structures classiques peuvent supporter. Dans ces cas, on choisit Fy, et Fel sensiblement identiques. L'accélération maximale de l'oscillateur est alors voisine de celle du sol. Ce domaine de fonctionnement porte le nom d’"iso-accélération" et est généralement à éviter. Pour des structures raides, la réponse de l'oscillateur se trouve entre les deux cas précédemment cités et par simplification, ce cas intermédiaire peut être considéré comme une structure très raide.
-
Pour ces trois domaines de fonctionnement, il est possible d'établir des relations entre le ratio Fel/Fy, rapport de la valeur maximale de l'effort Fel de l'oscillateur élastique sur sa limite élastique Fy, et la demande de ductilité en déplacement µd, ainsi qu'entre le ratio dd/dy, rapport de la valeur maximale du déplacement de l'oscillateur élastique sur celui de l'oscillateur élasto-plastique, et µd.
– 49 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
2.2.4.1.2.5
Dimensionnement et coefficient de comportement
Pour limiter les dommages au maximum, il est toujours possible de concevoir la structure de façon " élastique " en dimensionnant les éléments de la structure à l'ELU sismique (cf. Chapitre 5) pour des efforts calculés grâce à un modèle parfaitement élastique. C'est en général le cas pour des ouvrages exceptionnels à très haut risque et pour lesquels aucun endommagement n’est tolérable (centrales nucléaires, barrages…) ou pour des parties d'ouvrage isolées peu sollicitées ou dont on souhaite limiter les déformations (piles avec des appareils d'appui glissants dans la direction du séisme par exemple). Néanmoins, c'est souvent anti-économique (par exemple pour les efforts transmis dans les fondations dans le cas d'appuis bloquant les mouvements sismiques) et surtout cela ne permet pas de bénéficier de la dissipation d’énergie et de la relative maîtrise des efforts internes amenées par la plastification. On opte alors pour un dimensionnement ductile (cf. Chapitre 5). Naturellement la question du comportement de la structure, dimensionnée volontairement pour des efforts inférieurs à ceux trouvés par une analyse purement élastique, se pose. Les paragraphes précédents sur le comportement inélastique donnent des éléments de réponse. Le dimensionnement inélastique à l'aide du coefficient de comportement "q" peut être effectué en suivant la démarche suivante : Effectuer un calcul élastique avec le spectre de calcul qui dépend du coefficient de comportement q : on obtient les efforts de dimensionnement FEd ; Dimensionner alors les zones dissipatives de la structure (rotules plastiques) pour les efforts FEd ; S’assurer de la régularité de la structure vis-à-vis de l’appel en ductilité (ou réduire en conséquence la valeur de q) Dimensionner les zones non-dissipatives de la structure vis-à-vis des effets du dimensionnement en capacité (sur-résistance par rapport aux zones dissipatives) ; Adopter les dispositions constructives permettant d'assurer le comportement ductile escompté de la structure. A noter que dans l’Eurocode 8, la division par le coefficient q se fait lors de la première étape de calcul puisqu’elle est prise en compte directement dans la définition du spectre de calcul, alors que dans les anciennes règles PS92, la division par le coefficient de comportement se faisait dans un deuxième temps sur les efforts calculés sur la base d’un comportement élastique. Cette modification nécessite donc désormais de remultiplier les déplacements calculés par µd (avec µd = q dans le cas de l'hypothèse d'iso-déplacement). Par ailleurs le calcul « élastique » doit tenir compte des inerties fissurées des éléments ductiles. Approche introduite pour la 1ère fois dans le cadre de l’Eurocode 8 Dans le cas d'un ouvrage modélisé par un oscillateur élasto-plastique parfait, l'effort de dimensionnement FEd = Fel /q est la limite élastique Fy du système. Donc :
q=
– 50 –
Fel Fy
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
F
F Fel Fel Fy
Fy
dd dy Iso-déplacement
d
dy
dd
d
Iso-énergie
Figure 25 : Propriétés d'iso-déplacement et d'iso-énergie
D'après l'Eurocode 8-2, §2.3.6.2, on retrouve les trois modes de fonctionnement exposés au §2.2.4.1.2.4 cidessus : T > T0=1,25.TC
Iso-déplacement
0,033s < T < T0=1,25.TC
Iso-énergie
T < 0,033s
Iso-accélération
µd = q µd =
T0 (q − 1) + 1 ≤ 5q − 4 T q=1
Pour une valeur du coefficient de comportement fixée, le tableau ci-dessus donne une estimation de l'appel de ductilité en déplacement µd. Notons que pour des structures très raides (T < 0,033s), il convient d'adopter un dimensionnement élastique. Les valeurs de l'appel de ductilité en courbure µφ peuvent alors être déduites des relations données précédemment. Rappelons que la capacité de ductilité en courbure d'une section est fonction des dispositions constructives, notamment du ferraillage transversal. Un dimensionnement idéal fournirait ces dispositions constructives adéquates à partir de l'appel de ductilité en courbure µφ calculé ci-dessus. Il est à noter que le rappel théorique décrit ci-avant concerne un élément isolé du pont et que la situation se complique lorsque le tablier est fixé sur plusieurs appuis. En effet le coefficient de comportement est une valeur unique et globale pour l'ensemble de la structure, sous l'effet d'un séisme " appliqué " suivant une direction donnée. Il convient alors de considérer la valeur correspondant au type d'appuis contribuant le plus à la résistance au séisme (cf. EC 8-2 §4.1.6(3)P). L'Eurocode 8-2 (cf. EC 8-2 §6.2.1) impose donc une quantité d'armatures transversales minimale destinée à assurer une ductilité en courbure de la section. Cette quantité est soit définie forfaitairement par le biais des dispositions constructives minimales dans le cas de l’utilisation d’un coefficient de comportement, soit établie par le calcul dans le cas des méthodes d’analyse plus sophistiquées (méthode en poussée progressive "pushover", méthode dynamique temporelle non-linéaire) dont l’objectif est de justifier les niveaux de déformation atteints dans la structure. Dans tous les cas, un ferraillage transversal minimal est imposé dans les zones dites « critiques » (ces zones couvrent largement les rotules plastiques potentielles) qui garantissent implicitement une certaine ductilité en courbure et donc une ductilité en déplacement. La borne supérieure du coefficient de comportement q réglementaire (cf. §4.1.2.2) est donc calée de telle sorte que ductilité limite forfaitairement imposée par les dispositions constructives minimales ne soit pas dépassée. Les codes de calcul fournissent une valeur du coefficient q indépendante de la période de la structure. Or, il est démontré ci-avant que la relation entre le coefficient de comportement et la ductilité dépend de manière significative de la période de l'oscillateur. L'Eurocode 8-1 tient compte de cet aspect en modifiant sensiblement le spectre utilisé (ce n'est d'ailleurs pas la seule raison). Le coefficient de comportement est ainsi intégré dans la définition du spectre de réponse de façon à ce qu’il n'affecte pas le spectre aux très basses périodes (il n'y a donc pas de réduction d'effort autorisée dans cette zone) et majore la gamme du spectre correspondant aux grandes
– 51 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
périodes dès que la valeur de q dépasse l'unité. A noter que dans les anciennes règles PS92, le plateau de ce spectre était prolongé jusqu'à T=0, ce qui devait dissuader l'ingénieur de provoquer un comportement fortement non-linéaire pour une structure de faible période propre. En conclusion sur la théorie du coefficient de comportement, rappelons qu'elle a été élaborée initialement pour des structures dont le comportement est voisin de celui d'un oscillateur élasto-plastique parfait. Elle s'applique donc avec précaution (et de manière sécuritaire) aux structures réelles. Ce coefficient réducteur des efforts permet en général de réaliser des économies, d'une part sur les aciers longitudinaux des piles (il faut toutefois augmenter le ferraillage transversal) et d'autre part sur les fondations dont les efforts sont plafonnés par la formation de la rotule plastique dans la pile. Toutefois, il existe un inconvénient. En effet il faudra prévoir des réparations ou un confortement de l'ouvrage après un séisme si l'action sismique réelle atteint ou avoisine la valeur prise en compte dans les calculs de l'ouvrage (plastification des aciers en pied de piles par exemple, éclatement du béton d'enrobage…). Insistons sur le fait que la norme impose en outre de surdimensionner les autres parties de la structures pour des efforts majorés calculés sur la base d’une plastification effective des rotules plastiques (plateau plastique). Cette vérification permet de garantir la protection contre une rupture fragile de zones qui ne font pas l'objet de dispositions constructives particulières (se référer au principe du dimensionnement en capacité et au critère de cohérence au §5.1.1.2). Quel que soit le niveau des calculs effectués, il convient de garder à l’esprit que le bon comportement d'une structure sous séisme dépend essentiellement d'une conception parasismique saine (cf. Chapitre 3) et de bonnes dispositions constructives (cf. Chapitre 5). Les calculs, aussi sophistiqués qu'ils soient, n'apportent qu'une sécurité toute relative et ne sont valables que si la conception associée est respectée. 2.2.4.2 Influence des différents paramètres sur le co mporte ment d'u n pont sous séis me
La réponse d'un ouvrage sous l'effet d'un séisme donné est fonction de sa masse, de sa rigidité et de sa capacité à amortir les déplacements. 2.2.4.2.1 Augmentation de la période
En première approximation, le système tablier-appui peut être considéré comme un oscillateur simple caractérisé par sa masse M, sa rigidité K. On en déduit à partir d'un système à un seul degré de liberté, sa période de vibration T :
T = 2π
M K
Lorsque la réponse du système est régie par la branche hyperbolique du spectre élastique, l'accélération maximale de l'oscillateur y est égale à : γ=
κ × ag T
=
κ × ag 2π
K M
où κ est une constante dépendant du type de site. D'où la force inertielle F induite par le séisme : F = Mγ =
κ × ag 2π
KM
L'effort sismique peut donc être diminué par l'adoption d'un système plus souple (K plus faible) et plus léger (M plus faible). L'augmentation de période s'obtient en diminuant le nombre d'appuis fixes ou en introduisant entre le tablier et ses appuis des appareils d'appui souples (élastomère fretté par exemple) (Figure 26). Ces dispositions permettent – 52 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
d'augmenter la période fondamentale de la structure en la ramenant en dehors de la gamme de la période dominante des mouvements du sol susceptibles de se produire pendant le séisme.
Spectre élastique avec amortissement de 5% 3
Accélération Se (m/s²)
2,5 2 1,5 1 0,5 0 0
0,5
1
1,5
2
2,5
3
Période T (s) Figure 26 : Influence de la souplesse sur la réponse de l'ouvrage (ag=1m/s², sol A)
Cependant cette technique mérite quelques précautions : la réduction des sollicitations est accompagnée d'une augmentation des déplacements "d" qui risque de mettre en péril certains éléments (effets du second ordre sur les piles, zones d'about du tablier,…) et de ne plus satisfaire les critères d'exploitation de l'ouvrage : d=
κ × ag γ γ γT 2 = = = T 2 2 ω ² 2π (2π ) (2π )2 T
l'augmentation de la période pourrait induire des efforts plus défavorables pour un certain nombre de sites où la période dominante du spectre est relativement élevée (site avec des sols de couverture de forte épaisseur et de qualité médiocre).
2.2.4.2.2 Augmentation de l'amortissement
Les problèmes posés par les déplacements horizontaux importants (comme dans le cas précédant de l'augmentation de la période par exemple) peuvent être résolu par l'augmentation de l'amortissement. Toutefois, il est à noter que cette technique peut être onéreuse et nécessite de l'entretien. De plus, elle nécessite souvent des calculs dynamiques temporels complexes. Elle est donc en général à réserver aux ouvrages non-courants de grandes dimensions et/ou situés dans des régions particulièrement exposées.
– 53 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Spectre élastique avec amortissement de 5% et 25% 3
Accélération Se (m/s²)
2,5
5% 25%
2 1,5 1 0,5 0 0
0,5
1
1,5
2
2,5
3
Période T (s) Figure 27 : Influence de l'amortissement sur la réponse de l'ouvrage (ag=1m/s², sol A)
La Figure 27 montre l'influence de l'amortissement sur la réponse de l'ouvrage d'après l'Eurocode 8-1 où il influence directement le spectre de réponse élastique. Ce dernier précise que, pour une oscillation simple à une période donnée, cette réponse, en accélération et en corollaire en déplacement, est réduite, par le facteur η, par rapport à celle d'un oscillateur ayant la même période et un taux d'amortissement réduit de 5 % : η=
10 ≥ 0.55 avec ξ en % 5+ξ
2.2.4.3 Prise en co mpte de l'interaction sol-structure
La réponse d'un ouvrage à un mouvement sismique est gouvernée par la nature de ce mouvement, d'une part, et par les caractéristiques géométriques et mécaniques de la structure et du massif de sol, d'autre part. Lorsque la structure est soumise à un mouvement sismique du sol, elle se déforme et la réaction qu'elle transmet au sol modifie localement ce mouvement (qui diffère donc du mouvement sismique à la surface du sol en champ libre, en l’absence de toute construction). Du fait de l’interaction dynamique « sol-structure » la réponse sismique d’une structure fondée sur appuis flexibles (terrain déformable) diffère sous plusieurs aspects de celle de la même structure fondée sur un terrain rigide (base indéformable) soumise à une sollicitation identique en champ libre.
– 54 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Chapitre 3 Conception des ponts en zone sismique
– 55 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
3 Conception des ponts en zone sismique 3.1 Généralités sur le comportement sismique des ponts Avertissement: Ce chapitre décrit le comportement des ponts sous séisme de manière très générale et théorique. Concernant l'application des règles de conception et de dimensionnement, il y a lieu de se référer aux Chapitres 4 et 5 du présent guide. Contrairement aux bâtiments où la modélisation peut se faire à l'aide d'une console verticale avec des masses concentrées au niveau des planchers, les ponts présentent la particularité d’un tablier reposant sur des appuis multiples, de rigidités différentes, et où le problème relatif aux déplacements est aussi important que celui relatif aux forces sismiques. Les Eurocodes, comme avant eux les guides français spécifiques (guide AFPS92, guide Sétra-Sncf "Ponts courants en zone sismique"), ont bien identifié cette particularité en consacrant l'Eurocode 8-2 au cas spécifique des ponts. En effet, les leçons des séismes anciens ou récents mettent en évidence les principales causes de désordres ou d'effondrement des ponts : •
Les déplacements relatifs des tabliers et des appuis : – déplacement important des appareils d'appui et échappement d'appui,
– déplacement des appuis (piles, culées), – déplacements différentiels non synchrones des têtes de piles. •
Les ruptures fragiles de certains éléments dues au manque de ductilité ou de confinement du béton : – longueurs d'ancrage insuffisantes, – 56 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
– longueurs de recouvrement des aciers insuffisantes – flambement des aciers longitudinaux,
– rupture par manque de confinement – rupture des zones d'encastrement, – rupture par flexion ou par effort tranchant.
•
Les problèmes liés aux sols de fondations ou aux remblais d’accès : – liquéfaction des sols et phénomènes associés (perte de résistance des couches, étalement latéral, tassements post-sismiques, etc.), – augmentation des sollicitations dans les fondations profondes dues à la réduction ou à la perte totale de réaction du sol en cas de liquéfaction, ou à des déformations imposées par le passage des ondes, – tassements excessifs en raison de la densification ou de la dégradation des propriétés cycliques des sols.
•
Effets induits : glissements de terrain, éboulements, rupture de failles sismotectoniques actives.
•
Rupture de réseaux – 57 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
3.2 Définition du niveau de protection – Exigences de bases fixées par l’Eurocode 8-2 L'application des règles du présent guide permet, conformément aux prescriptions de l’Eurocode 8-2, d’éviter l’effondrement de la structure sous l’effet d’une action sismique dont l’intensité avoisine l’action sismique réglementaire. Après l’occurrence d’une telle action sismique, le pont doit maintenir son intégrité structurale et une résistance résiduelle adéquate, de manière à pouvoir utiliser ce dernier dans des conditions de circulation d’urgence et à pouvoir le réparer facilement. Il est donc admis que les structures puissent subir des déformations dans le domaine post-élastique entraînant des détériorations potentiellement importantes (fissurations, plastifications locales...) et que certains équipements de l’ouvrage (joints de chaussées, appareils d'appui, barrières de protection, ...) puissent être endommagés. En pratique, seule la plastification en flexion de sections spécifiques (appelées rotules plastiques) et localisées dans les piles est permise. Le tablier doit quant-à lui être conçu de manière à rester dans le domaine élastique et à éviter tout dommage autre que dans les éléments secondaires. Les exigences de base définies par l’Eurocode 8-2 s’énoncent ainsi selon les termes suivants : « La démarche de dimensionnement est basée, en ce qui concerne la résistance sismique des ponts, sur l’exigence générale d’après laquelle les communications d’urgences doivent être maintenues, avec une fiabilité appropriée, après l’événement sismique de calcul. » Ce principe se traduit par des exigences de non-effondrement, de fonctionnalité d’urgence et de réparabilité visà-vis de l’évènement sismique ultime ("état-limite de dommages significatifs") et par une exigence de minimisation des dommages vis-à-vis d’un évènement sismique de moindre intensité ("état-limite de limitation des dommages" associé à des dommages mineurs limités aux éléments secondaires et aux parties de ponts destinées à contribuer à la dissipation d’énergie, toute autre partie demeurant intacte). En pratique cette deuxième exigence de minimisation des dommages (état-limite de service), introduite pour 1ère fois dans le cadre de l’Eurocode 8, est implicite et supposée couverte par l’exigence de non-effondrement sous séisme ultime. Néanmoins pour certains ouvrages particulièrement stratégiques ou présentant une certaine valeur patrimoniale, le maître d’ouvrage peut souhaiter que ceux-ci demeurent intacts et immédiatement circulables après séisme, ce qui engendre des exigences particulières pour la conception des zones d’about de l’ouvrage. De plus, l’attention est attirée sur le fait que le niveau de service après séisme sera meilleur si l’ouvrage a été calculé dans le domaine élastique. Quatre catégories d’importance des ouvrages (notées catégories I, II, III et IV) sont par ailleurs définies, qui se traduisent par différents coefficients de pondération de l’accélération sismique de référence. Ces coefficients d’importance permettent implicitement en fonction du caractère plus ou moins stratégique de l’ouvrage, d’augmenter ou d’abaisser la période de retour du séisme à prendre en compte dans le dimensionnement de l’ouvrage (cf. §4.2.2.1).
3.3 Différentes stratégies de conception parasismique des ponts Les exigences de base décrites précédemment et relatives au risque sismique apparaissent relativement permissives puisqu’il est explicitement question de non-effondrement, de fonctionnalité d’urgence et de réparabilité. Afin de répondre à ces exigences de base, l’Eurocode 8-2 ouvre la porte à trois types de conceptions qui impliquent des méthodes d’analyse différentes, mais également des conséquences variables en termes de performance et de niveau d’endommagement sismique. Il s’agit respectivement des conceptions dites « élastique », « ductile » ou basée sur les principes d’isolation sismique et d’amortissement. De coûts sensiblement différents, ces trois types de conception conduisent aussi à des comportements sous séisme bien distincts et il appartient donc au maître d'ouvrage, en fonction du contexte (sismicité, valeur attribuée à l’ouvrage, aspects stratégiques, organisation des secours) de se prononcer en faveur de l'une ou l'autre.
– 58 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
3.3.1 Conception élastique ou à ductilité limitée La conception élastique consiste à dimensionner la structure de telle façon que les matériaux constitutifs restent dans leur domaine élastique de comportement. Aucune réparation post-sismique n’est en principe à prévoir. Avantageuse dans les zones peu sismiques, cette première conception s’avère en revanche généralement d’un coût prohibitif dans les régions où le risque sismique est plus élevé. La notion de ductilité limitée élargit cette conception au-delà du comportement idéalement élastique, en autorisant des incursions limitées dans le domaine plastique des matériaux (typiquement, on observe que ces incursions limitées correspondent à peu près aux limites conventionnelles ELU au sens des anciennes règles de calcul de béton armé françaises (BAEL), soit 3,5%0 pour le béton et 10%0 pour l’acier). Approche introduite pour la 1ère fois dans le cadre de l’Eurocode 8.
3.3.2 Conception ductile La conception dite « ductile » consiste au contraire à autoriser des incursions dans le domaine plastique de comportement des matériaux dans certaines parties de l’ouvrage afin de dissiper de l’énergie et diminuer les niveaux d’efforts transmis au reste de la structure. Ces zones dissipatives doivent êtres choisies par le concepteur pour être facilement accessibles et réparables. Dans la plupart des cas, il s’agira de la partie inférieure des piles. Il convient de noter que contrairement à la conception précédente, un certain niveau d’endommagement est ici accepté, voire même recherché, qui optimise la réponse dynamique de la structure, mais peut conduire à des travaux de réparation non négligeables à la suite d’un tremblement de terre majeur. En pratique, le choix d’une conception ductile doit toujours s’accompagner de l’application du principe de dimensionnement en capacité. Ce principe consiste à majorer la résistance vis-à-vis des types ou localisations d’endommagement non prévus par un coefficient dit de sur-résistance ou surcapacité. Dans le cadre de ce dimensionnement, les efforts pris en compte sont imposés par un schéma statique correspondant à une situation où toutes les rotules sont plastifiées et donc où les capacités de résistance maximale effectives des rotules sont supposées atteintes. Ce principe permet d’assurer une hiérarchie appropriée des résistances des divers composants structuraux (principe de zones « fusibles »), de manière à conduire à la configuration voulue des rotules plastiques et pour éviter les modes de rupture fragile. Plus concrètement, il s’agit de surdimensionner la résistance à l’effort tranchant et la résistance en flexion des zones situées en dehors des rotules plastiques prévues, par rapport à un schéma de contrainte dans la structure imposé par la plastification de ces mêmes rotules (capacité résistante maximale des rotules atteintes). Ce concept essentiel associé à la conception ductile est présenté plus en détail au §5.1.1.2.
Figure 28 : Courbes de comportement associées à différents types de conception (idéalement élastique, à ductilité limitée, ductile)
– 59 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Figure 29 : Cycles de dissipation d’énergie par hystérésis dans le cas d’une conception ductile
Figure 30 : Densité de ferraillage et exemple de formation de rotule plastique dans le cas d’une conception ductile
3.3.3 Conception basée sur le principe d’isolation sismique et l’utilisation de dispositifs amortisseurs Le troisième et dernier type de conception décrit dans l’Eurocode 8-2, basé sur le principe d’isolation sismique et l’utilisation de dispositifs amortisseurs, combine les avantages des deux solutions précédentes : la quasitotalité de l'énergie du tremblement de terre est filtrée par les isolateurs ou absorbée dans des appareils mécaniques externes à la structure jouant la fonction d’amortisseurs tandis que les éléments structurels de l'ouvrage ne subissent en théorie aucun dégât et les matériaux restent dans leur domaine élastique de comportement. En cas de séisme majeur, les dispositifs amortisseurs sont facilement inspectés et remplacés si nécessaire. En contrepartie, les calculs de dimensionnement sont très complexes et nécessitent des outils puissants (calculs dynamiques non-linéaires). Enfin, le coût important des dispositifs antisismiques et la difficulté des calculs associés réserve généralement leur utilisation aux zones où l'aléa sismique est très important et/ou aux ouvrages à caractère exceptionnel en termes de dimensions ou d’enjeu socio-économiques. Avant leur installation, la pérennité de leurs caractéristiques mécaniques est garantie par des essais en laboratoire effectués selon les recommandations de la norme NF EN 15129 "Dispositifs antisismiques". Pour assurer leur bon fonctionnement tout au long de la vie de l’ouvrage, il est capital de procéder à des opérations d'inspection et de maintenance périodiques.
– 60 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Figure 31 : Viaduc d'Aiton (autoroute A43) – schéma statique
3.3.4 Récapitulatif et domaines d’emploi Le tableau ci-après récapitule les domaines d’emploi des 3 types de conception parasismique détaillés précédemment. Il évoque également sommairement les méthodes d’analyses et dispositions constructives associées à ces trois conceptions possibles, qui seront précisées plus en détail aux paragraphes 4 et 5.3 respectivement, ainsi que des aspects relatifs aux contraintes de maintenances et comportement en cas de séisme de niveau proche du séisme de calcul : ELASTIQUE (faiblement ductile)
Méthodes d'analyse
Dispositions constructives
Calcul modal puis analyse classique EC2, EC3, et spécificités de l’EC8-2
DUCTILE
AMORTISSEURS
Coeff. de comportement q Poussée progressive
Dynamique non-linéaire*
Dynamique non-linéaire EC8-2 §6 ou présent guide
(le plus souvent) EC2, EC3 + spécificités EC8-2 + NF EN 15129
Conditions de maintenance
Aucune particulière
Aucune particulière
Très variable selon la technologie employée
Comportement sous séisme « de calcul »
Ouvrage intact ou très faiblement endommagé
Ouvrage moyennement à fortement endommagé
Ouvrage intact
Domaine d'application
Ouvrages courants
Sismicité faible Ouvrages à risque spécial
Sismicité moyenne ou forte Ouvrages non-courants
Sismicité élevée Ouvrages non-courants Ouvrages à risque spécial
* L'EC 8-2 propose des méthodes simplifiées associées à un coefficient d'amortissement critique ξ ≤ 30% et qui servent de "garde-fou" pour l'analyse dynamique non-linéaire (cf. §4.6.4.2.1 du présent guide et §7.5.4 et 7.5.5(6) de l'EC 8-2)
– 61 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
3.4 Principes généraux de conception Pour la plupart des ouvrages, la conception générale du tablier sera peu modifiée par la prise en compte du risque sismique sauf en zone de forte sismicité (dans les Antilles). On conserve ainsi, en général, la même implantation, la même travure, et le même choix d’ouvrages. La pérennité d’un tablier de pont est acquise sous séisme, tant que celui-ci ne quitte pas ses bossages d'appui et que les appuis (appareils d'appui + piles) résistent. Hormis les chocs éventuels (entre tabliers ou avec les culées ou pile-culées), la résistance du tablier demeure suffisante. L’objet principal de la conception portera sur les appuis et notamment sur l’interface entre les piles et le tablier. Les efforts mis en jeu pour les piles et culées peuvent être considérables suivant la conception retenue. En particulier, le blocage du tablier sur des appuis rigides (notamment au niveau d’une culée) conduit à des efforts considérables dès que les ouvrages sont assez importants et donc lourds. Les codes de calculs parasismiques (notamment Eurocode 8-2 en Europe) offrent au projeteur trois possibilités majeures de conception pour les appuis, qui peuvent être combinées selon les deux directions de séisme horizontal : • concevoir des appuis dont le comportement sera élastique, • concevoir des appuis dont le comportement sera ductile, • isoler des appuis. La deuxième solution est en théorie à privilégier car elle permet, sous réserve d’une conception détaillée satisfaisante des rotules plastiques : - de limiter l’impact de la prise en compte du séisme sur le dimensionnement des appuis par une réduction des efforts de dimensionnement (divisés par q), - de privilégier un mécanisme d'endommagement plus progressif et moins fragile, - de dissiper d'avantage d'énergie dans la structure par phénomène d'hystérésis. En revanche, les méthodes de calculs à mettre en œuvre sont plus complexes et les dispositions constructives plus contraignantes. Pour les ouvrages courants, la masse du tablier, relativement faible, induit, sous réserve d’un choix judicieux d’appareils d'appui, des efforts sismiques relativement modérés que l’on arrive généralement à maîtriser, y compris dans l'hypothèse d'un comportement élastique ou à ductilité limitée. Pour les ouvrages non courants, il est souvent impossible économiquement, ou pour des raisons de mise en œuvre, de procéder à une conception élastique. On s'oriente donc préférentiellement vers une conception plastique ou vers une isolation des appuis.
3.4.1 Implantation de l'ouvrage, reconnaissance des sites 3.4.1.1 Reconnaissances géotechniques
Les études et reconnaissances géotechniques doivent répondre aux objectifs généraux fixés dans l’Eurocode 7 en situation non sismique et inclure des reconnaissances complémentaires sur les aspects sismiques afin : • de déterminer un profil de sol pour la définition de l’action sismique au travers de la classe de sol et du paramètre de sol S (cf. EC 8-1 §3.1),
– 62 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
• d’évaluer la stabilité des pentes naturelles ou artificielles si ces dernières sont situées dans la zone d’influence de l’ouvrage, • d’évaluer le risque de liquéfaction des sols de fondation et ceux situés à proximité de l’ouvrage (sous les remblais d’accès), •
d’évaluer les propriétés mécaniques des sols dans une large gamme de déformation.
Il conviendra d’inclure, conformément à l’article 4.2.1 de l’Eurocode 8-5, des essais de pénétration au cône, avec de préférence mesure de pression interstitielle, chaque fois que cela est réalisable. 3.4.1.2 Effets induits, variabilité spatiale de l’action sismique
L'Eurocode 8-2 (cf. EC 8-2 §2.4(10) et §3.2.2.3) invite à faire preuve d'une vigilance particulière dans le cas des ouvrages implantés à proximité d’une faille active où les séismes peuvent être particulièrement violents et mal représentés par les spectres réglementaires. En outre, des déplacements rémanents du sol sont possibles. La justification d’un ouvrage correspondant à ce type d’implantation (situé à une distance inférieure à 10 km d'une faille sismotectonique active connue pouvant produire un événement de magnitude de moment supérieure à 6,5) nécessite notamment l’utilisation de spectres spécifiques au site prenant en compte les effets d'une source proche. A noter que l’Eurocode 8-2 définit une faille sismotectonique comme active lorsque le taux de glissement historique moyen est d'au moins 1 mm/an et en cas de preuve topographique d'une activité sismique au cours de l'ère Holocène (c'est-à-dire les 11 000 dernières années écoulées). Selon l'état des connaissances actuelles, la France métropolitaine ne présente aucune « faille sismotectonique active » au sens de la définition proposée dans l’Eurocode 8-2. Certaines ruptures de surface se sont cependant produites dans les 100 000 dernières années. Des failles actives ont en revanche été identifiées dans les Antilles. L’implantation de l’ouvrage sur ou à proximité de pentes naturelles ou artificielles nécessite une vérification de leur stabilité sous séisme à l’aide des méthodes d’analyse décrites au §4.1.3.3. de l’EC 8-5. Il convient le cas échéant de vérifier la compatibilité entre l’apparition de déformations permanentes de couches de sol, et le maintien de son intégrité structurelle et d’une résistance résiduelle adéquate. L’évaluation du risque de liquéfaction doit être effectuée lorsque le sol de fondation comprend des couches étendues ou des lentilles épaisses de sables lâches, avec ou sans fines silteuses ou argileuses, au-dessous du niveau de la nappe et à proximité de la surface. Les critères granulométriques exposés dans les anciennes normes (anciennes règles PS92, NF P 06-013) peuvent servir de guide pour évaluer la susceptibilité des sols à la liquéfaction. Si cette susceptibilité est avérée, les reconnaissances de sol devront comprendre a minima : -
La réalisation in-situ soit d’essais de pénétration standard (SPT), soit d'essais de pénétration statique (CPT), de préférence avec des meures de la pression interstitielle (CPTu), afin de déterminer le risque de liquéfaction en suivant les procédures décrites dans l'annexe B de l’EC8-5 pour l'utilisation du SPT, ou les procédures internationales disponibles dans le cadre de l'utilisation de CPT [ 26] ;
-
La réalisation d'essais d’identification (notamment afin de déterminer la teneur en fines) ;
-
Ainsi que, dans la mesure du possible, la réalisation d'essais de liquéfaction en laboratoire (essais à l'appareil triaxial de révolution sous chargements cycliques) sur des échantillons soigneusement prélevés et acheminés (ces terrains présentent en général des difficultés pour assurer des prélèvements en préservant leurs propriétés mécaniques).
La détection d’un risque de liquéfaction du sol avéré sur des couches étendues du sol de fondation peut remettre en cause la faisabilité technique et donc l’implantation de l’ouvrage. Lorsque l'implantation de l'ouvrage ne peut être modifiée, il est impératif de prévoir un renforcement du sol pour se prémunir contre l’apparition du phénomène. A défaut, on cherchera à fonder l’ouvrage au-delà des couches liquéfiables sur des sols non sensibles. L’ensemble des efforts parasites susceptibles de se développer pendant et après le séisme sur les fondations comme sur les piles devront être alors évalués (cf. § 4.5.6.3).
– 63 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Pour les ouvrages implantés sur une brèche où les caractéristiques mécaniques des sols ou les profils stratigraphiques (classe de sol) varient de façon importante, en l'absence d'études détaillées sur le comportement dynamique de l'ouvrage, il convient d'être sécuritaire par rapport aux hypothèses retenues (choix du spectre le plus pénalisant en terme de catégorie de sol appliqué à l'ensemble de la structure, conformément au §3.3(4) de l’EC8-2). Cette approche peut néanmoins s’avérer trop pénalisante lorsque certains appuis fondés sur des sols de mauvaise qualité ne participent que très peu à la réponse globale de l’ouvrage. Par conséquent, pour les ouvrages réguliers et lorsque les appuis participant effectivement à la reprise des efforts sismiques peuvent être clairement identifiés, on pourra appliquer à l'ensemble de l'ouvrage le spectre de réponse élastique calculé au droit de l'appui fixe, ou à défaut, des appuis reprenant le plus d'efforts horizontaux (en retenant dans ce cas le spectre le plus pénalisant correspondant aux appuis concernés), sous réserve de mener cette analyse direction par direction et d’appliquer un spectre spécifique pour les appuis « isolés » (à appliquer sur les modes propres de pile correspondant). Pour les ponts de grande longueur, l'EC8-2 prévoit de tenir compte de la variabilité spatiale de l'action sismique sur la longueur de l'ouvrage. Cet aspect est traité au §4.3.4 du présent guide.
3.4.2 Répartition des travées / Implantation des appuis L’implantation des appuis ainsi que la répartition des travées s’appuiera d’abord sur une analyse classique de la brèche en prenant en considération les particularités qui suivent : Balancement des travées : Lorsque les travées de rive sont courtes (rapport de la longueur de la travée de rive à la longueur de la travée adjacente compris entre 0,5 et 0,6), des problèmes de soulèvement d’appuis sont possibles sur culée. A défaut d’allonger les travées de rive, il est possible de prévoir un lest au droit des entretoises sur culées ou un dispositif anti-soulèvement. L’allongement des travées de rive devra être systématiquement retenu pour les ouvrages fortement biais (Angle de biais < 78 grades ou 70°). Symétrie de la travure : Les structures qui présentent des symétries quant à leur travure et leur système d’appuis ont un meilleur comportement sous séisme. Dans la mesure du possible, on essaiera de limiter la distance qui sépare le centre de masse du tablier et le centre de raideur élastique des appuis. Pour un pont droit, lorsque cette distance est nulle, le tablier ou les appuis ne subissent pas de rotation d’axe vertical. Biais des tabliers : Les chocs éventuels du tablier sur les culées constituent un risque majeur pour les ponts biais. Par exemple, lors du choc sur l’une des culées, l’action transmise à la structure, perpendiculaire au bord transversal du tablier crée un moment de rotation d'axe vertical dans la structure qui a pour conséquence de pousser le tablier hors de ses appuis.
séisme
ϕ
Des butées parasismiques transversales doivent impérativement sécuriser la structure. Celles-ci pourront être orientées de manière à diriger les forces de contact suivant l'axe longitudinal de l'ouvrage. Le problème des ponts biais est traité plus en détail aux §4.4.1.2.
– 64 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
• Effet du séisme horizontal sur les tabliers biais Lorsque le tablier est peu biais (φ > 78 grades ou 70°), la structure subit des chocs alternés et opposés qui se contrecarrent. Le comportement de la structure sous séisme horizontal est proche de celui d’un pont droit non biais. Si le tablier est fortement biais, un fonctionnement entretenu avec chocs successifs dans les angles est à craindre. Ce type de comportement est à proscrire, car l’ouvrage a tendance à quitter l’assise de la culée : le blocage transversal de la structure sur les culées est alors indispensable. Les tabliers de pont affectés d’un rapport "longueur totale de l’ouvrage / largeur" faible (inférieur à 2) ne bénéficient que d’une faible inertie d’axe vertical, ce qui amplifie leur sensibilité au phénomène. •
Effet du séisme vertical sur les tabliers biais
Pour les ouvrages fortement biais (φ < 78 grades ou 70°) le comportement du tablier, sous séisme vertical, doit faire l’objet d’une étude spécifique à partir d’une modélisation aux éléments finis de la structure permettant de prendre en compte correctement les effets de concentrations des descentes de charges verticales sur les appareils d’appui à proximité des angles obtus. Notons enfin que l'Eurocode 8-2, (cf. EC 8-2 §4.1.5(2)) recommande d'éviter les ponts très biais (φ < 50 grades = 45°) dans les régions à forte sismicité.
3.4.3 Appuis Les appuis (piles et culées) subissent des efforts horizontaux dus aux forces d’inertie provenant de la mise en mouvement du tablier. Elles peuvent être nettement supérieures aux actions horizontales habituelles (vent, freinage, ...). La conception des appuis doit donc faire l’objet d’une étude spécifique vis-à-vis du risque sismique. Les efforts horizontaux mis en jeu dépendent principalement de la masse du tablier, de la souplesse des piles et du type de liaison retenue entre le tablier et les piles et culées. En fonction de la sismicité de la zone, et du type de comportement retenu pour l'ouvrage, le choix de la liaison entre le tablier et les piles et les culées constitue un choix majeur du projeteur. Le comportement ductile optimal est obtenu par la formation presque simultanée de rotules plastiques dans le plus grand nombre possible de piles. Néanmoins, dans la direction longitudinale, il est nécessaire de tenir également compte des déformations imposées telles que les dilatations thermiques, les déformations de retrait, de fluage, etc. (et donc des contraintes induites). Cela conduit en général à réduire le nombre de piles participant à la reprise de l'effort sismique, en utilisant des dispositifs de liaison glissants ou flexibles. Pour les ponts continus, dont les appuis ont des raideurs transversales très différentes (piles de hauteur différente, culées, …), il convient d'isoler les appuis les plus raides avec des appuis glissants ou des appareils d'appui en élastomère pour éviter qu'ils ne reprennent la quasi-totalité de l'action sismique. Dans l'exemple cidessous, les culées sont infiniment rigides et le tablier bloqué transversalement, les petites piles sont très raides par rapport aux grandes piles centrales, elles reprennent donc une grande partie de l'effort sismique. Il convient donc de les isoler afin de répartir l'effort sur les grandes piles plus souples.
– 65 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Figure 32 : Distribution défavorable de l'action sismique transversale (fig. 2.6 de l'EC 8-2)
Le dimensionnement des liaisons tablier-appuis résulte donc d'un compromis entre la réduction des efforts dans les appuis et les déplacements acceptables par l'ouvrage (choc du tablier sur culées, mouvement aux joints de dilatation et sur appuis glissants, etc.).
3.4.4 Tablier Le comportement, sous séisme, des tabliers de ponts ou des ouvrages enterrés demeure généralement dans le domaine élastique (ou quasi-élastique) et ne pose donc pas de problème. La conception des tabliers des ouvrages doit s’accompagner d’un certain nombre de dispositions destinées à assurer un bon fonctionnement mécanique de la structure sous séisme : 1. Il convient de faire preuve d'une vigilance toute particulière dans le cas des tabliers à travées indépendantes, pour se prémunir de tout risque de chocs entre travées et d'échappement d'appui ; soit en prévoyant des repos d'appui et des souffles de joint de chaussée suffisamment confortables au droit des chevêtres, soit en assurant une liaison sous séisme par des dispositifs bloqueurs. 2. Il faut limiter le déplacement du tablier par rapport à ses appuis afin d’éviter que celui-ci ne s’échappe. Ceci conduit à prévoir un repos d’appui suffisant pour le tablier sur les piles et les culées. On prévoira, en outre, comme sécurité ultime dans la direction transversale, des butées parasismiques sur les culées de l’ouvrage sauf si l’ouvrage est bloqué sur celles-ci en service. 3. Il convient d’éviter les chocs du tablier sur les culées et sur les piles, qui sont délicats à modéliser et qui peuvent correspondre à des énergies cinétiques considérables. Lorsqu’ils ne peuvent être évités, au droit d’une culée par exemple, les chocs seront localisés dans une zone spécialement prévue à cet effet. Il pourra s’agir d’une zone fusible afin de ne pas brider le mouvement du tablier sous séisme (par exemple un joint de chaussée), d’une zone d’amortissement du choc avec la mise en place d'un appareil d'appui en élastomère fretté (par exemple pour une butée latérale). Dans le cas d’ouvrages de plus grandes dimensions, les chocs peuvent également être évités ou absorbés par des systèmes amortisseurs destinés à réduire les déplacements et à amortir les vibrations sismiques. Dans tous les cas, on veillera tout particulièrement à ce que les chocs épargnent les parties sensibles (zones d’ancrage des câbles de précontrainte, ou pièces métalliques fines par exemples). 4. Il convient d’éviter la rupture fragile par manque de ductilité ou rupture d'effort tranchant de toute partie de l’ouvrage (notamment les nœuds de la structure tels que la jonction du tablier et des fûts de pile dans le cas d'un encastrement…). On veillera particulièrement à éviter le flambement des
– 66 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
armatures longitudinales comprimées, l’insuffisance d’ancrage des armatures longitudinales et les insuffisances de longueurs de recouvrement. Nota. : Pour les zones de forte sismicité (les Antilles), les tabliers de pont en béton précontraint devront faire l’objet de vérifications complémentaires sous la composante verticale du séisme.
3.5 Choix de structure 3.5.1 Ouvrages de type tablier sur piles Dans les zones de sismicité faible à moyenne (France métropolitaine), le choix du type d'ouvrage sera dans la plupart des cas d'abord dicté par des critères indépendants de l’aspect sismique. La prise en compte du risque sismique pourra néanmoins orienter ce choix de conception générale et surtout impacter certaines dispositions structurelles, notamment sur les points suivants : 3.5.1.1 Légèreté
La recherche de légèreté au niveau des tabliers est pertinente dans le domaine parasismique car elle permet de diminuer les actions sismiques sur les appuis du tablier. Elle n’a pas un grand intérêt lorsque les piles sont peu élevées ( 2 ans) et situés en zones de sismicité moyenne ou forte (zones 4 ou 5). Plus globalement, l’approche probabiliste ouvre la possibilité d’ajuster le niveau de l’accélération de référence en fonction de la durée de vie théorique de l’ouvrage. Par exemple pour des durées de vie théorique de 50 ans et 120 ans, l’application des équations ci-dessus, toujours avec p=0,19 et k=0,35, conduit respectivement aux valeurs de périodes de retour et d’accélérations suivantes : T50ans = 238 ans ;
ag 50ans = 0,79 agr
T120ans = 560 ans ;
ag 120ans = 1,06 agr
Par ailleurs la valeur de l’accélération de référence à prendre en compte vis-à-vis du critère de limitation des dommages (séisme ELS) est laissée à l’appréciation du maître d’ouvrage, cette vérification n’étant pas explicitement requise par l’EC8-2. Une valeur (informative) de 0,4 agr, conforme aux prescriptions de l’arrêté « bâtiments » (Arrêté du 22 octobre 2010 relatif à la classification et aux règles de construction parasismique applicables aux bâtiments de la classe dite « à risque normal ») et au critère de justification des éléments structuraux non critiques tels que les joints de dilatation du tablier et des murs en retour de culées (cf. EC8-2 §2.3.6.3(5)) pourra le cas échéant être adoptée. A noter que toutes ces considérations portant sur l’éventuelle modification de la valeur de l’accélération caractéristique ne dispensent absolument pas des pondérations ultérieures par le coefficient d’importance γI, le coefficient de sol S, l’éventuel coefficient topographique ST et le coefficient de comportement q (cf. paragraphes suivants).
4.2.2 Accélération de calcul a g 4.2.2.1 Catégories et coefficients d’i mportance des ouvrages
L’intensité sismique nominale à considérer dans le dimensionnement des ouvrages doit résulter d’un compromis entre le coût de sa protection, l’intérêt que l’on attache à sa conservation et la probabilité pour qu’il subisse une secousse d’intensité égale ou supérieure à l’intensité envisagée. Le classement des ouvrages en différentes catégories dites d'importance, traduit ces considérations.
– 88 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
La définition des quatre catégories d’importance applicables aux ponts, conformément l’Arrêté du 26 octobre 2011 relatif à la classification et aux règles de construction parasismique applicables aux ponts de la catégorie dites "à risque normal", est détaillée au §1.2.2.3. A noter que selon ce même arrêté, seuls les ponts correspondants aux catégories II, III et IV sont soumis à l’application des règles de construction parasismique. Le coefficient γI traduit donc l'appartenance à une catégorie d'importance, selon le tableau suivant : Catégories d'importance de pont
Coefficient d'importance γI
II
1,0
III
1,2
IV
1,4
4.2.2.2 Accélération de calcul ag
Dans l'Eurocode 8-1 ainsi que dans la législation parasismique française (décrets et arrêtés, cf. §1.2.2), l'accélération horizontale de calcul au rocher, ag, caractérise l'intensité sismique. On peut l'interpréter comme l'accélération maximale au rocher au droit de l'ouvrage. Elle est donc égale à l'accélération maximale de référence, agr, multiplié par le coefficient d'importance γI :
a g = γ I a gr Dans l'Eurocode 8-2, l'action sismique de calcul, AEd, est exprimée en fonction de l'action sismique de référence, AEk, et du coefficient d'importance γI :
AEd = γIAEk Ces notations sont cohérentes et expriment alternativement l’accélération sismique ou action sismique au sens plus large.
4.2.3 Définition des classes de sol Cinq types de classes de sol sont définis par l'EN 1998-1 selon la nature et l'épaisseur des couches de sol sousjacentes. Des bornes inférieures des propriétés mécaniques des sols déduites d’essais in-situ sont données à titre indicatif.
– 89 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Paramètres Classe de sol
Description du profil stratigraphique
NSPT vs,30 (m/s)
(coups/
cu (kPa)
Type de sol
30 cm)
A
Rocher ou autre formation géologique de ce type comportant une couche superficielle d’au plus 5 m de matériau moins résistant.
B
Dépôts raides de sables, de gravier ou d’argile sur-consolidée, d’au moins plusieurs dizaines de mètres d’épaisseur, caractérisés par une augmentation progressive des caractéristiques mécaniques avec la profondeur
C
D
Dépôts profonds de sables de densité moyenne, de gravier ou d’argile moyennement raide, ayant des épaisseurs de quelques dizaines de mètres à plusieurs centaines de mètres.
Dépôts de sols sans cohésion de densité faible à moyenne (avec ou sans couches cohérentes molles) ou comprenant en majorité des sols cohérents mous à fermes.
E
Profil de sol comprenant une couche superficielle d’alluvions avec des valeurs de vs de classe C ou D et une épaisseur comprise entre 5 m environ et 20 m, reposant sur un matériau plus raide avec vs > 800 m/s.
S1
Dépôts composés, ou contenant, une couche d’au moins 10 m d’épaisseur d’argiles molles/vases avec un indice de plasticité élevé (IP>40) et une teneur en eau importante.
S2
Dépôts de sols liquéfiables d’argiles sensibles ou tout autre profil de sol non compris dans les classes A à E ou S1.
180-360
< 180
>50
15-50
< 15
EM (MPa)
>5
> 100
sols granulaires
>2
> 20
> 15
sols cohérents
>2
> 25
> 3,5
sols granulaires
>1
>8
>5
sols cohérents
> 0,5
>5
> 1,5
sols granulaires
0,5) sont particulièrement sensibles à ce phénomène si les souffles disponibles au niveau des culées sont sous-évalués. En effet, dans ce cas l'excentrement des forces d'entrechoquement entre le tablier et les murs garde-grèves conduit à un mouvement de rotation entretenu associé à un risque amplifié d'échappement d'appui.
L B
séisme
ϕ
Notas : (1) L’Eurocode 8-2 (cf. EC 8-2 §4.1.5) limite la prise en compte de la torsion d’axe vertical au pont biais tels que l’angle complémentaire du biais est supérieur à 20° ou dont le rapport B/L est supérieur à 2,0. Cette dernière valeur semble erronée et nous recommandons de la remplacer par 0,5. (2) La notation et l'unité de mesure de l'angle du biais sur la figure ci-dessus sont différentes de celles de la figure 4.1 de l'EC8-2. Elles ont été choisies ici pour être plus conformes aux pratiques françaises usuelles en ouvrages d'art. La valeur limite de 20° indiquée dans l’Eurocode 8-2 est par conséquent remplacée par 78 grades dans le présent guide.
– 110 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
(3) En zones de forte sismicité, il est recommandé d’éviter les ponts très biais (biais ϕ < 50 grades ou complémentaire du biais > 45°, cf. EC8-2 §4.1.5(2)). Lorsque l’utilisation des méthodes monomodales pour l’analyse sismique des ouvrages est permise (cf. conditions d’application définies au §4.5.3.1), l’effet de la rotation d’axe vertical est alors pris en compte de façon forfaitaire à l’aide d’un moment Mt calculé séparément et additionné aux autres effets de l’action sismique, conformément aux prescriptions du §4.5.3.5. Ce moment Mt couvre à la fois les effets de l’excentricité accidentelle de la masse, l’effet dynamique de la vibration simultanée de translation et de rotation et fait l'objet d'une majoration forfaitaire en fonction de la valeur du biais pour tenir compte de l’excentrement transversal des forces de contact dynamiques induites au droit de chaque culée – Approche introduite pour la première fois dans le cadre de l’Eurocode 8-. Lorsque les conditions d’application des méthodes monomodales ne sont pas remplies, une analyse multimodale ou dynamique temporelle doit être employée. Les effets dynamiques de torsion précédemment évoqués sont alors pris en compte : -
soit directement dans le modèle de calcul en déplaçant artificiellement le centre des masses de l’excentricité accidentelle dans la direction et le sens les plus défavorables ;
-
soit en calculant séparément et forfaitairement le moment de torsion statique Mt selon la même méthode que pour les méthodes monomodales et en le rajoutant aux autres effets des actions sismiques calculées.
Notons par ailleurs que les ponts biais répondant aux conditions géométriques telles que définies ci-dessus imposent généralement une modélisation du tablier par éléments surfaciques (plaques) de façon à prendre en compte correctement les effets de concentrations des descentes de charges verticales sur les appareils d’appui à proximité des angles obtus (notamment sous séisme vertical). En particulier, l’Eurocode 8-2 (cf. EC8-2 §4.1.5(2)) préconise lorsque une configuration d’ouvrage très biais en zone de forte sismicité ne peut être évitée, et que l'ouvrage repose sur les culées par l’intermédiaire d’appareils d'appui, d’effectuer une modélisation précise de la raideur horizontale réelle des appareils d'appui, en tenant compte de la concentration des réactions verticales à proximité des angles obtus, ou à défaut de prendre en compte une excentricité accidentelle majorée. 4.4.1.3 Cas particulier des ponts courbes
Comme dans le cas des ponts biais, l’utilisation des méthodes monomodales sur les ponts courbes est soumise à certaines conditions décrites au §4.5.3.1. Si ces conditions ne sont pas remplies une analyse multimodale ou dynamique temporelle doit être menée.
4.4.2 Masses 4.4.2.1 Re marque préli mi naire concernant les unités de masse
Pour le calcul des périodes propres et des efforts, il est prudent et recommandé d'utiliser les unités du système international et en particulier d’exprimer les masses en kilogrammes (ou tonnes) et les efforts en Newton (ou kilo Newton) plutôt qu’en tonnes-forces comme on le fait parfois pour les charges permanentes statiques. En effet, les sollicitations sismiques résultent essentiellement de forces d’inertie, produit des masses par les accélérations sismiques. L’assimilation Forces/Masses, courante en statique (car corrélées par l’accélération de la pesanteur g = 9,81m/s2 ≈ 10m/s2) s’avère en pratique souvent source de confusions et d’erreurs dans les problèmes sismiques où l’accélération n’est pas une grandeur constante mais une variable essentielle du calcul. 4.4.2.2 M asses relatives aux charges permanentes
La masse permanente de l’ouvrage (poids propre de la structure et autres charges permanentes qu’elle supporte) doit être intégrée dans le modèle de calcul avec sa valeur moyenne uniquement (ou valeur caractéristique).
– 111 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Généralement, la modélisation se fait par le biais de masses discrétisées, ponctuelles ou réparties. Dans les modèles aux éléments finis, il convient de s’assurer que les masses sont bien activées selon chacun des degrés de liberté choisis pour l’analyse (directions verticale et horizontales). Dans le cas des modèles de calcul les plus simples (ouvrages courants notamment), pour le calcul des périodes propres, on ne modélisera que les masses mises en mouvement. Ainsi, dans le cas d’un tablier isolé des piles par des appareils glissants ou en élastomère fretté, on négligera la masse des piles (en contrepartie, les modes propres de piles seront calculés indépendamment par la méthode de calcul simplifiée décrite au §4.5.5). Dans le cas contraire (tablier bloqué sur piles), les têtes de piles suivent le mouvement du tablier et on ajoutera la masse de la moitié supérieure de la pile à la masse du tablier. Notons que la masse de la pile (ou plus exactement de la moitié supérieure de celle-ci) peut entrer ou non dans le modèle pour une direction d’excitation et pas pour l’autre. Si, par exemple, le tablier glisse longitudinalement sur une pile et est bloqué transversalement sur celle-ci, la masse correspondant à la mi-hauteur supérieure de la pile ne sera incluse dans le modèle que pour les déplacements transversaux du tablier. 4.4.2.3 Masses relatives aux charges d’exploitation
Dans la très grande majorité des cas (ponts à trafic normal ou passerelles), seules les masses permanentes sont introduites dans le calcul sismique. L’exception à cette règle concerne essentiellement les ponts urbains supportant un trafic intense et les ponts ferroviaires, pour lesquels il convient d’ajouter une fraction des charges d'exploitation soit : o
20% des charges d'exploitation routières uniformes du modèle LM1 définies conformément à la norme NF EN 1991-2 (le pont est alors chargé sur la totalité de sa longueur) ;
o
30% des charges d'exploitation ferroviaires des lignes à fort trafic définies par le livret 2-01 du C.P.C. pour les ponts-rails.
Ces charges d’exploitation ne sont pas à pondérer et sont à considérer avec leurs valeurs caractéristiques. 4.4.2.4 Cas des piles immergées dans l’eau
Lorsque les piles sont immergées dans l’eau, l’effet de l’interaction hydrodynamique horizontale est évalué en prenant en compte une masse additionnelle d’eau entraînée, conformément à l’annexe F informative de l’Eurocode 8-2 – Approche introduite pour la 1ère fois dans le cadre de l’Eurocode 8-. La masse effective totale d’une pile immergée dans la direction horizontale est alors assimilée à la somme de : -
la masse réelle de la pile (sans déduction correspondant à la poussée hydrostatique),
-
la masse de l’eau éventuellement contenue à l’intérieur de la pile,
-
la masse additionnelle Ma de l’eau extérieure entraînée, avec : Ma = ρπR2 Hi
dans le cas d’une pile circulaire de rayon R,
Ma = ρπ (ay2 cos2θ + ax2 sin2θ) Hi dans le cas d’une pile elliptique de rayons ax et ay, et pour une direction de séisme faisant un angle θ avec l’axe x, dans le cas d’une pile rectangulaire de côtés 2ax et 2ay, Ma = kρπ ay2 Hi et pour une direction de séisme parallèle à l’axe x. Dans les équations précédentes, -
ρ est la densité de l’eau,
-
Hi est la hauteur de pile immergée,
-
k dépend de l’élancement de la section et est donné par le tableau ci-dessous :
– 112 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
ay/ax
k
0,1
2,23
0,2
1,98
0,5
1,70
1,0
1,51
2,0
1,36
5,0
1,21
10,0
1,14
∝
1,00
L’influence hydrodynamique selon la direction verticale est négligée.
4.4.3 Raideurs La raideur (ou inversement la souplesse) des appuis provient des trois parties d’ouvrage suivantes : -
les fondations et le sol environnant,
-
les appuis proprement dits (structure pile et culées)
-
les appareils d'appui ou organes d’appui spécifiques de type amortisseurs
Lorsque ces trois éléments sont placés en série, leurs souplesses s'ajoutent pour former la souplesse de l'appui. Dans les cas des tabliers relativement longs et souples pour lesquels le modèle de tablier rigide (cf. §4.5.3.2.1) n’est pas valide, la raideur globale du système (et donc les valeurs des périodes propres de vibration) dépend également de celle du tablier, notamment sa rigidité à la flexion d’axe vertical et à la torsion vis-à-vis du séisme transversal ainsi naturellement que sa rigidité à la flexion d’axe transversal vis-à-vis du séisme vertical. 4.4.3.1 Raideur du tablier 4.4.3.1.1 Rigidité en flexion
Les rigidités en flexion des tabliers en béton précontraint ou armé (flexion transversale ou verticale) sont prises égales aux rigidités des sections brutes non fissurées (sections de coffrage). A noter que vis-à-vis de la flexion transversale, dans le cas des tabliers à ossature mixte (bi-poutres mixtes en particulier), toute la largeur de la dalle est à prendre en compte, contrairement à la flexion verticale où seule la largeur de dalle participante est à considérer. 4.4.3.1.2 Rigidité en torsion
Sous chargement sismique, la rigidité en torsion des tabliers en béton est significativement réduite par rapport à celle du tablier non fissuré, et ce quel que soit le type de comportement visé (comportement ductile ou à ductilité limitée). A défaut d’une évaluation plus précise et conformément aux prescriptions du §2.3.6.1 de l’Eurocode 8-2, on pourra adopter les valeurs suivantes - Approche introduite pour la première fois dans le cadre de l’Eurocode 8- : -
Profils ouverts et dalles : rigidité de torsion supposée nulle;
-
Caissons précontraints : rigidité de torsion prise égale à la moitié de la rigidité de torsion de la section brute non fissurée;
– 113 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
-
Caissons en béton armé : rigidité de torsion prise égale à 30% de la rigidité de torsions de la section brute non fissurée.
4.4.3.2 Raideur des piles 4.4.3.2.1 Raideur élastique
Dans le cas d'un dimensionnement basé sur un comportement idéalement élastique (coefficient de comportement q strictement égal à 1), la fissuration du béton des piles est censée rester relativement limitée, on effectue alors les calculs en prenant en compte les raideurs élastiques avant fissuration (c'est à dire avec les inerties de coffrage). L’Eurocode 8-2 étend l’application de cette méthode aux structures conçues pour adopter sous le séisme de calcul un comportement à ductilité limitée (1
1 2.πδMaxi
γIS ag b
M Gn
M a > 0,178 γ IS a g b n
2/3
M a > 0,225 γ IS a g b n
2/3
Cas des appareils d'appui en élastomère à fort amortissement (ξ ≥ 0,10)
Dans le cas des appareils d'appui à fort amortissement, le fabriquant devra réaliser les essais recommandés dans la norme NF EN 15129 §8.2.4.2.5.2 pour déterminer le module de cisaillement dynamique. Le module de cisaillement de calcul correspond à la déformation de 100% déterminée à 23° par l'essai de type §8.2.2.1.3.2 de cette même norme. 4.4.3.4.2 Cas des appareils d’appui à pot glissants
Dans le cas des analyses dynamiques sismiques, les appareils d’appui à pot glissants ont un comportement supposé parfait. Ceci se traduit par une libération du degré de liberté associé dans la direction concernée. Il convient néanmoins généralement pour les vérifications de résistance des appuis sur lesquels ils sont disposés, de cumuler quadratiquement aux sollicitations issues du mode propre de pile, l’effet des forces de frottement au niveau de l’appareil, évalué en fonction de la descente de charge sous la combinaison sismique la plus défavorable (composante verticale descendante du séisme) et du coefficient de frottement intrinsèque de l'appareil d'appui (généralement de l'ordre de 3,8%). 4.4.3.4.3 Cas d’appareils d’appui associés à des attelages sismiques ou butées de sécurité
Dans le cas d’appareils d’appui souples (de type élastomère fretté ou appareils d’appui à pot glissants par exemples) associés à des attelages sismiques ou des butées de sécurité, il convient de représenter correctement le comportement de la liaison entre le tablier et l’appui considéré avant et après mise en butée ou sollicitation de l’attelage. Ceci se traduit généralement par une courbe bi-linéaire à rigidité croissante telle que définie sur la figure cidessous. Dans le cas d'une analyse modale linéaire, une approximation équivalente basée sur la rigidité sécante (courbe C) peut être utilisée – Approche introduite pour la 1ère fois dans le cadre de l’Eurocode 8-2 (cf. EC 8-2 §6.6.1). Nous préconisons dans ce cas de dimensionner les appareils d'appui vis-à-vis des déplacements sismiques nominaux de calcul dE non majorés par le coefficient de fiabilité γIS (voir §5.2.1) et de ne faire intervenir les butées de sécurité qu'en fin de course de ces appareils (s = dE). Le point de fonctionnement (Fy ; dy+s) correspondant à la raideur globale après mise en butée peut alors être évalué sur la base d'une énergie sismique globale égale à 1,5 fois l'énergie mise en jeu avant butée, ce qui revient à considérer sur la Figure 58 ci-dessous que l’aire du trapèze décrit par la courbe B au-delà de l’abscisse s est égale à la moitié de l’aire du triangle décrit par la courbe A avant cette abscisse : ½.(Fy+Fs).dy = 0,5. ½.Fs.s
– 132 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Fs
Figure 58 : Courbe force-déplacement du système équivalent à la combinaison d’un appareil d’appui en élastomère fretté associé à une butée de sécurité
Sur la figure ci-dessus, les différents paramètres ont la signification suivante : s : jeu de l'attelage ou de la butée pris égal au déplacement nominal de calcul de l'appareil d'appui (s=dE), dy : flèche élastique de l'élément d'appui (pile ou culée) après butée sous l'effet de 1,5 fois l'énergie sismique nominale, Fs : effort correspondant à une déformation s de l'appareil d'appui, Fy : effort transmis à l'élément d'appui (pile ou culée) sous l'effet de 1,5 fois l'énergie sismique nominale, A : rigidité de l'appareil d'appui, B : rigidité de l'élément d'appui (pile ou culée), C : approximation linéaire de la courbe (rigidité sécante équivalente appareil d'appui plus butée). Cette approximation permet d'évaluer les sollicitations de dimensionnement de la butée (F=Fy-Fs) et de l'élément d'appui, pile ou culée (F=Fy ; d=dy).
Nota : Dans le but de ne pas pénaliser de manière rédhibitoire l’emploi des butées de sécurité en zone sismique, jugé comme une bonne disposition conceptuelle héritée des anciennes pratiques et règles de dimensionnement parasismiques françaises [ 8], [ 9], le groupe reflet national de l’EC8-2 a proposé à la Commission de Normalisation Parasismique (CN/PS) une approche plus simple qui consiste : - soit à utiliser un coefficient γIS = 1,5 pour le dimensionnement des appareils d’appui sans butées ; - soit de prendre la valeur γIS =1, sous réserve de disposer d’un système de défense d’ultime secours (butées de sécurité), dimensionné, ainsi que ses attaches et ses fixations, sous 75% de l’effort de l’appareil d’appui en fin de course, dans la situation sismique de calcul . Cette approche, a priori moins scientifique et moins sécuritaire que la précédente mais qui présente l’avantage de la simplicité, a été calibrée de manière à ce que le surplus d’effort amené par la limite de résistance de la butée soit couvert par le coefficient de sécurité complémentaire contre les modes de défaillance fragile de la pile γBd = 1,25. En effet, si on considère que les modes de vibration correspondant aux situations avant et après mise en butées sont indépendants, alors la combinaison quadratique des efforts correspondants est :
12 + 0,75 2 = 1,25 En pratique, le choix de l’une ou l’autre des deux approches (évaluation de la raideur sécante équivalente pour une énergie sismique nominale majorée de 50% ou prise en compte uniquement de la raideur avant butée et dimensionnement forfaitaire des butées de sécurité pour 75% de l’effort sismique nominal) est à effectuer au cas par cas en fonction des enjeux et des typologies d’ouvrage (niveau de sismicité, dimensions et régularité de la structure, capacité plus ou moins grande des appuis -piles, culées et fondations- à supporter des efforts sismiques majorés…).
– 133 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Dans tous les cas, il conviendra impérativement de s’assurer que la pile présente une réserve de capacité suffisante (en particulier à l’effort tranchant) de manière à garantir que l’endommagement de la butée intervient avant le mode de rupture fragile de la pile. 4.4.3.4.4 Cas d’appareils d'appui associés à des butées de blocage
Dans ce cas, on pourra de façon simplificatrice négliger le jeu et ne considérer que la rigidité de l’appui (courbe B de la Figure 58). Cette simplification qui conduit à surévaluer légèrement la raideur de la structure, va dans le sens de la sécurité. L'attelage sismique doit alors être dimensionné pour résister aux actions de calcul résultant du principe de dimensionnement en capacité (efforts résultant de l'atteinte du niveau de plastification dans la pile sous-jacente). 4.4.3.5 M odélisation des dispositifs antisis miques – amortisseurs
L’emploi de dispositifs amortisseurs nécessite généralement des méthodes d’analyse relativement sophistiquées et très spécifiques, qui nécessitent de modéliser l’ensemble de la courbe de comportement du dispositif spécial. Ce type de conception, ainsi que la description des dispositifs les plus couramment utilisés et de leur loi de comportement, font l’objet d’un chapitre particulier (§4.6.4).
4.4.4 Amortissement Les spectres de l'Eurocode8-1 sont donnés pour un taux d’amortissement critique de 5%. Un amortissement ξ différent de 5% conduit à corriger le spectre élastique (conseillé dans le présent guide) ou le spectre de dimensionnement en les multipliant par un facteur η :
η = 10 / (5 + ξ )
où l’amortissement ξ est exprimé en pourcentage de l'amortissement critique.
Pour un ouvrage dont la souplesse provient entièrement des appareils d'appui en élastomère fretté à faible amortissement, on adopte un taux d'amortissement critique de 5%. Lorsque plusieurs matériaux participent à la souplesse des appuis, l'amortissement doit être évalué au prorata des énergies de déformation stockées dans les différents matériaux. Les pourcentages d’amortissement critique à associer aux différents matériaux constitutifs de la structure sont les suivants (cf. EC 8-2 §4.1.3) : -
acier soudé : 2% acier boulonné : 4% béton armé : 5% béton précontraint : 2% élastomère fretté à faible amortissement : 5%
Pour simplifier, on pourra adopter le taux d’amortissement critique le plus faible et dans le cas de piles en béton armé, on pourra appliquer directement les spectres sans correction.
Notas : (1) Dans le cas d’une conception ductile, intervient également l’énergie dissipée par hystérésis (cycles successifs de plastification des matériaux). Cette énergie, correspondant à un amortissement équivalent généralement compris entre 10 et 18%, est soit : - implicitement contenue dans la valeur de q dans le cas de la méthode du coefficient de comportement, - directement intégrée par le modèle de calcul dans le cas d’une analyse dynamique temporelle non-linéaire, – 134 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
- à évaluer à part en fonction du niveau de ductilité appelée (cf. modèle de Takeda décrit au §4.4.3.2.2) dans le cas de la méthode en poussée progressive de type push-over. (2) Dans le cas d’une conception basée sur l’emploi de dispositifs amortisseurs, l’énergie dissipée dans les dispositifs, correspondant à un amortissement équivalent limité dans l'Eurocode 8-2 à 30% dans le cas d’une méthode d’analyse monomodale simplifiée (cf. EC 8-2 §7.5.3), est soit : - directement intégrée par le modèle de calcul dans le cas d’une analyse dynamique temporelle non-linéaire, - à évaluer à partir de l’aire balayée par la courbe de comportement du dispositif dans le cas d’une méthode d’analyse simplifiée linéaire équivalente (cf. §4.6.4.2.1).
4.5 Méthodes classiques d’analyse Les méthodes d'analyse modale (également appelées méthodes en force) sont relativement simples à mener et dans l'esprit des pratiques courantes de conception des ouvrages neufs. Elles ne permettent pas de prendre en compte l’endommagement progressif de la structure ni les éventuelles redistributions des efforts après plastification de certaines sections, de ce fait elles sont donc généralement sécuritaires et sont donc recommandées pour les ouvrages en zone de sismicité faible ou modérée. Pour les structures très régulières, une approche monomodale est souvent suffisante. Pour les structures plus complexes, une analyse multimodale permettant de prendre en compte l’influence de tous les modes propres de vibration est préconisée.
4.5.1 Principes Afin de déterminer les sollicitations, on commence toujours par effectuer un calcul élastique, quelle que soit la méthode de dimensionnement utilisée par la suite. Dans le cas d’un calcul élastique, les efforts ainsi obtenus sont directement utilisés pour dimensionner les sections. Pour certains systèmes d’appui (voir chapitre 3) et sous réserve d’adopter des dispositions constructives particulières (voir chapitre 5), il est possible de procéder à un calcul inélastique qui réduit forfaitairement les efforts (coefficient de comportement). On distingue les trois directions du séisme, longitudinale, transversale et verticale que l'on traite de façon indépendante. Pour les ponts courbes ou biais (cf. §4.3.1), on définit l'axe longitudinal par la corde joignant les appuis extrêmes intervenant dans la reprise des efforts horizontaux. Dans tous les cas, le tablier est dimensionné de façon à rester élastique; de même pour tous les éléments précontraints. 4.5.1.1 Principes du calcul élastique
Le calcul élastique traite les points suivants : o
définition des masses de la structure;
o
définition des raideurs des appuis;
o
évaluation de la période propre de l'ouvrage et de sa déformée sous sollicitation dynamique;
o
évaluation de l'amortissement structurel;
o
évaluation des forces statiques équivalentes grâce au spectre de réponse élastique;
– 135 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
o
détermination des sollicitations élastiques;
4.5.1.2 Principes du calcul inélastique
On admet la formation de rotules plastiques par plastification des aciers longitudinaux pour des efforts inférieurs à ceux qu'une structure parfaitement élastique aurait subis. On applique la démarche du calcul élastique (cf. §4.4.1.1) avec le spectre de calcul, qui tient compte des capacités de ductilité de la structure par le coefficient de comportement, puis on obtient les efforts. Il faut toutefois bien vérifier que, sous les sollicitations réduites obtenues, il y a effectivement formation de rotules plastiques et, qu'en dehors des zones de rotules plastiques, la structure reste bien élastique. La vérification de ce critère de cohérence assure au projeteur que, sous les sollicitations ainsi déterminées, les parties fragiles (i.e. non ductiles) de la structure sont bien protégées par la formation de rotules plastiques ductiles. En somme, on dicte à la structure les seuls endroits où elle peut dissiper de l'énergie par endommagement et plastification des aciers. La démarche modifie et complète le calcul élastique par les points suivants : o
évaluation des forces statiques équivalentes grâce au spectre de calcul;
o
détermination des sollicitations à partir des forces précédentes ;
o
dimensionnement en capacité des zones en dehors des rotules plastiques potentielles, les rotules se forment bien où elles étaient prévues et pas ailleurs ;
o
ferraillage convenable des rotules plastiques de façon à fournir la ductilité demandée et à éliminer le risque de rupture fragile par cisaillement lorsque les rotules plastiques se sont développées.
4.5.2 Analyse statique simplifiée La clause 2.3.7(1)P de l’Annexe nationale de l’Eurocode 8-2 stipule que les ponts de catégories d’importance I, II et III au sens de l’Arrêté du 26 octobre 2011 relatif à la classification et aux règles de construction parasismique applicables aux ponts de la catégorie dites "à risque normal", pour lesquels la surface utile de la brèche (ou surface « structurelle » de tablier) est inférieure à 150 m2 ou pour lesquels la valeur de ag.S n’excède pas 0,15g, peuvent être calculés à l’aide d’une méthode statique équivalente avec une accélération horizontale uniforme égale à ag.S. Elle précise également que dans ce cas, il conviendra d’appliquer les dispositions constructives relatives à la ductilité limitée. Le groupe reflet national de l’EC8-2 a proposé à la Commission de Normalisation Parasismique (CN/PS) que le critère : « 150 m2 ou 0,15g » soit remplacé par « 150 m2 et 0,15g », de façon à couvrir notamment le cas de certains ouvrages ferroviaires de grande longueur mais particulièrement étroits.
4.5.3 Analyses monomodales 4.5.3.1 Do maine d’e mploi
La très grande majorité des ouvrages courants peut être analysée sous séismes grâce à une approche monomodale. Dans ces méthodes simplifiées, on fait l'hypothèse que les mouvements de la structure pour une direction donnée du séisme sont à tout instant proportionnels à une déformée privilégiée, appelée mode fondamental selon cette même direction (hypothèse à vérifier à posteriori). Les méthodes monomodales ne s'appliquent que rarement aux ponts non courants ou exceptionnels : arcs, ponts à béquilles, ponts à câbles (de suspension ou de haubanage), pont cantilever. – 136 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Elles ne s’appliquent qu’aux ponts qui satisfont aux critères suivants : o
le comportement dynamique de la structure peut être défini avec une approximation suffisante par un modèle à un seul degré de liberté dynamique ;
o
la masse mise en mouvement (ou masse modale du mode fondamental) est supérieure à 90% de la masse totale de la structure (masse du tablier et masse des appuis en élévation); il est toutefois possible si on n'arrive pas à mobiliser 90% de la masse totale de se contenter de vérifier que la masse totale mise en mouvement est supérieure à 70% de la masse totale de la structure sous réserve de multiplier les valeurs finales des effets de l'action sismique par M/(ΣMi)c ; Pour le séisme latéral, la condition est vérifiée a posteriori et on suivra la démarche du paragraphe 4.5.3.3. Pour le séisme vertical, cette condition n’a pas vraiment de sens et on appliquera la méthode du paragraphe 4.5.3.4.
o
en direction longitudinale, pour les ponts à peu près rectilignes à tablier continu, lorsque les forces sismiques sont reprises par des piles dont la masse totale est inférieure à 20% de la masse du tablier ;
o
en direction transversale, pour les ponts du cas précédent (direction longitudinale), lorsque le système structurel est à peu près symétrique par rapport au centre du tablier, c'est-à-dire lorsque l'excentricité théorique e0 entre le centre de raideur des éléments porteurs et le centre de masse du tablier ne dépasse pas 5% de la longueur du tablier. Cette clause limite l’apparition d’un mode de rotation d’axe vertical du tablier. Bien évidemment, s’il y a blocage transversal sur culée, cette restriction ne s’applique pas ;
o
dans le cas des piles portant des travées isostatiques, lorsque aucune interaction significative entre les piles n'est attendue, et lorsque la masse totale de chaque pile est inférieure à 20% de la masse de la partie de tablier portée par la pile.
Nota : Rappelons que le centre de raideur se définit comme le barycentre des raideurs Ki des appuis dans la direction considérée des mouvements sismiques. Si les xi sont les abscisses des appuis, l'abscisse du centre de raideur vaut :
xK =
∑x K ∑K i
i
i
x1
x2
xi
xn x
K1
K2
...
Ki
Kn
tablier Figure 59 : Principe de calcul du centre de raideur
Nota : Bien sûr, si l’ouvrage présente une symétrie géométrique et mécanique en coupe longitudinale, l’excentricité vis-à-vis du séisme transversal est nulle. – 137 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Le problème de l'excentricité entre le centre de raideur et le centre de masse se pose également pour le séisme longitudinal et en particulier pour les ponts courbes. Toutefois, on montre que si le rapport de la longueur développée du tablier sur le rayon de courbure est inférieur à 0,6, on peut alors négliger cette excentricité. L’analyse monomodale ne s’applique en théorie qu’aux ouvrages dont le biais et la courbure sont limités. L'Eurocode 8-2 ne fournit pas de valeurs limites d'utilisation de la méthode, mais impose la prise en compte d'un moment de torsion additionnel forfaitaire (cf. §4.5.3.5). Lorsque l’angle de biais est inférieur à une valeur de l’ordre de 78 grades (angle complémentaire supérieur à 20° selon le §4.1.5(1)P de l’EC8-2) ou que l’angle balayé en plan par la tangente à l’axe d'un ouvrage courbe est supérieur à 25° (28 grades), un couplage entre les mouvements longitudinaux et transversaux est susceptible d'intervenir et l’analyse monomodale seule ne donne plus de bons résultats. Il est toutefois possible, par des dispositions constructives, d’empêcher ce couplage. En disposant, par exemple, des butées latérales de blocage sur culées, on interdit l’apparition d’un mode de rotation d’axe vertical du tablier sur les ponts biais courants. Dans ce cas, la méthode monomodale redevient licite. Les conditions d'application de la méthode monomodale portant sur le biais s'explicitent donc comme suit : o
L'angle de biais φ (cf. figure ci-dessous) est supérieur à 78 grades et les raideurs longitudinales et transversales totales des appuis (évaluées en considérant le tablier comme un corps rigide) ne varient pas de plus de 10 % par rapport aux valeurs calculées sans biais. Soient KX et KY, les raideurs totales suivant les axes principaux d'inertie des appuis. La matrice de raideur dans le repère xy lié aux axes longitudinaux et transversaux du tablier est la suivante :
K X sin ²ϕ + K Y cos ²ϕ
(K X
(K X
K X cos ²ϕ + K Y sin ²ϕ
− K Y )sin ϕ cos ϕ
− K Y )sin ϕ cos ϕ
Les conditions sur les raideurs transversales et longitudinales se réduisent à :
K X − KY ≤
0.10 min (K X ; K Y ) cos ²ϕ
La condition est automatiquement vérifiée si le tablier repose entièrement sur des appareils d'appui en élastomère et n'est bloqué dans aucune direction ou s'il est fixé sur des piles indépendantes présentant la même raideur dans toutes les directions (on a alors KX = KY).
Figure 60 : Définition des repères et notations
o
En cas d'ouvrage courbe, l'angle balayé en plan par la tangente à l'axe ψT est inférieur à 25° (28 grades environ) et les raideurs longitudinales et transversales totales des appuis ne varient pas de plus de 10 % par rapport aux valeurs calculées sans courbure.
– 138 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Dans le cas où les axes principaux d'inertie des lignes d'appui sont suivant la tangente (Xi) à la ligne moyenne de l'ouvrage et perpendiculairement à celle-ci (Yi), nous désignons par Kxi et Kyi les raideurs de la ligne d'appui n°i selon ces axes. Soit ψi, l'angle formé par les tangentes à la ligne moyenne de l'ouvrage aux appuis n°0 (culée) et i. Dans le repère associé à la culée 0, la matrice de rigidité de la ligne d'appui n° i s'écrit :
K Xi cos ²ψ i + K Yi sin ²ψ i
(K Yi − K XiY )sinψ i cosψ i
(K Yi − K Xi )sinψ i cosψ i
K Xi sin ²ψ i + K Yi cos ²ψ i
La condition sur les raideurs s'écrit alors :
∑ (K i
Yi
− K Xi sin ²ψ i ) ≤ 0.10 min ∑ (K Xi )∑ (K Yi ) i i
Cette condition est immédiatement remplie si le tablier est posé sur des appareils d'appui en élastomère ou si les appuis résistants présentent la même raideur dans toutes les directions (KXi = KYi).
Figure 61 : Définition des repères et notations
4.5.3.2 Séis me longitudinal 4.5.3.2.1 Modèle à tablier rigide
On pourra considérer que le tablier est un bloc rigide si ses déformations horizontales sont négligeables par rapport à celles des appuis. En longitudinal, cela est généralement valable si le pont est à peu près rectiligne et à tablier continu. Les effets sismiques doivent être déterminés en appliquant au tablier une force horizontale statique équivalente F donnée par l'expression : F = M.Sd(T) où : M est la masse effective totale du tablier augmentée de la moitié supérieure des piles si celles-ci sont liées rigidemment au tablier. Pour un tablier reposant sur des élastomères frettés ou sur des appuis glissants, M est la masse du tablier seul. Sd(T) est l'accélération spectrale du spectre de réponse élastique (cf. §4.2.5.2.1) correspondant à la période fondamentale du pont T ( T = 2π M / K )
– 139 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
K = ΣKi est la raideur du système, égale à la somme des raideurs des éléments résistants En longitudinal, la force F est appliquée uniformément à tout le tablier. 4.5.3.2.2 Exemple
Ce chapitre présente une estimation des efforts dans le cas d'un pont à tablier rigide, continu, droit, sans biais. La raideur longitudinale K de l’ensemble des appuis est égale à la somme des raideurs longitudinales des appuis : K = ∑Ki. La période longitudinale du tablier sur ses appuis vaut :
T = 2π
M K
(avec M en kg et K en N/m)
Le déplacement longitudinal du tablier par rapport aux fondations vaut :
T2 d= S e (T ) 4π 2 L'effort longitudinal global :
F = M ⋅ S d (T ) se répartit sur chaque appui (i) au prorata des raideurs :
Fi =
Ki F K
Nota : Pour un tablier de très grande longueur (L > 100m), bloqué sur une culée reposant sur un massif de fondation très rigide (rocher), l'hypothèse d'indéformabilité du tablier n’est plus valable. La grande longueur du tablier le rend souple pour les déformations longitudinales. L'effort d'ancrage du tablier sous séisme peut alors être évalué par la formule suivante qui tient compte du premier mode de déformation longitudinale du tablier :
8 4L 8S e (T0 ) 1 − π 2 + π 2 avec To = c 2
2
F = M × ag
où L désigne la longueur du tablier et c =
E ρ la célérité des ondes de compression (E est le module
instantané et ρ la masse volumique tenant compte des équipements). À titre d'exemple, pour un tablier en béton,
E ≈ 40GPa , ρ ≈ 2500kg / m 3 , c = E ρ ≈ 4000m / s et T0 =
4L L ≈ . c 1000
Il faut toutefois être prudent dans le cas où la culée et son système de fondation ont une souplesse comparable ou supérieure à la souplesse longitudinale du tablier. La formule ci-dessus devient alors caduque. 4.5.3.3 Séis me transversal
Le modèle de déformation du tablier dépend de sa raideur relative par rapport aux appuis : si le tablier est très raide, il peut être considéré comme un bloc indéformable, auquel cas son déplacement transversal est décrit par un unique degré de liberté (cf. modèle à tablier rigide ci-dessus); si le tablier est un peu plus souple, on devra prendre en compte sa déformée transversale (cf. modèle à tablier flexible, méthode de Rayleigh, ci-dessus). Ces deux modèles sont proposés par l'Eurocode 8.2 pour la protection parasismique des ponts. Le modèle à tablier rigide, plus simple à utiliser, s'applique à la majorité des ouvrages courants.
– 140 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Le modèle de la pile indépendante permet une bonne évaluation du comportement des piles dans le cas de ponts très réguliers. 4.5.3.3.1 Modèle à tablier rigide
On pourra considérer que le tablier est un bloc rigide si ses déformations horizontales sont négligeables par rapport à celles des appuis. En transversal, le tablier est supposé rigide si l'une ou l'autre des conditions suivantes est vérifiées : -
L B ≤ 4 , où L est la longueur totale du tablier et B sa largeur.
-
∆ d d a ≤ 0,20 , où ∆ d et d a sont respectivement la différence maximale et la moyenne des déplacements transversaux du sommet de tous les appuis bloqués transversalement sur le tablier, sous l’action sismique transversale ou sous l’action d’une charge transversale distribuée de manière similaire; dans la pratique on pourra prendre une charge transversale uniformément répartie sur la longueur du tablier.
∆d
d1
d2
d3
d4
d5
d6
chargement uniforme
da =
1 n ∑ di n i =1
∆ d = max d i − d j
Figure 62 : déformée transversale
Pour les ouvrages qui ne sont pas bloqués transversalement sur culées, une condition suffisante (et donc en général un peu pessimiste) pour avoir ∆ d d a ≤ 0,20 est que la raideur des piles ne varie pas trop autour de la valeur moyenne :
∆K pile K pile
2 EI 1 ≤ 0,20⋅1 + 3 ⋅ K pile l
λ
où :
∆K pile est la différence maximale des raideurs d’appui résistant au séisme transversal,
K pile est la raideur moyenne des appuis résistant au séisme transversal, EI est l’inertie transversale du tablier,
l est la longueur d’une travée (prise entre deux files d’appui résistant au séisme transversal) et λ est un paramètre qui dépend essentiellement du nombre de files d’appuis Nombre de files d’appuis résistant au séisme transversal 3:
λ 4
– 141 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
4:
1
5:
0,4
6:
0,2
Les effets sismiques doivent être déterminés en appliquant au tablier une force horizontale statique équivalente F donnée par l'expression : F = M.Se(T) où : M est la masse effective totale de la structure, égale à la masse du tablier, augmentée le cas échéant de la masse de la moitié supérieure des piles si celles-ci sont encastrées, Se(T) est l'accélération spectrale du spectre de dimensionnement (cf. §4.2.5) correspondant à la période fondamentale du pont T ( T = 2π M / K ), K = ΣKi est la raideur du système, égale à la somme des raideurs des éléments résistants. En transversal, la force F peut être distribuée le long du tablier proportionnellement à la distribution des masses effectives.
4.5.3.3.2 Modèle à tablier flexible, méthode de Rayleigh
Pour les ponts réguliers, mais dont le tablier ne peut pas être considéré comme rigide, la méthode de Rayleigh s'applique. L’Eurocode 8-2 propose le calcul de la déformée du mode fondamental de ces ponts "réguliers" (Figure 63).
Figure 63 : Exemple de pont régulier (vue en élévation)
Dans la méthode de Rayleigh, on modélise le tablier par des tronçons de masse Mi. Aux nœuds de jonction du tablier avec les piles bloquées transversalement, on ajoute à la masse afférente au nœud du tablier, la moitié de la masse de la pile. À chacune des masses, on affecte un degré de liberté de déplacement transversal et on évalue (à l'aide d'un programme de calcul de structure) le déplacement di de la masse Mi dans la déformée du tablier lorsque la structure est soumise aux forces g.Mi, agissant à tous les points nodaux dans la direction horizontale considérée. On détermine alors la période de la structure (formule issue du quotient de Rayleigh) :
T = 2π
∑M d g∑ M d
2 i
i
i
i
L’effet du séisme résulte de l’application de forces latérales statique Fi sur chaque masse Mi :
– 142 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Fi =
4π 2 S e (T )d i M i gT 2
T est la période du mode fondamental de vibration pour la direction horizontale considérée, Mi est la masse concentrée au i-ème point, di est le déplacement du i-ème point nodal déterminé approximativement par la forme du premier mode (il peut être pris égal aux valeurs déterminées ci-dessus), Se(T) est l'accélération spectrale du spectre de réponse élastique, g est l'accélération de la gravité. Il est à noter que la demi-masse des appuis bloqués sur le tablier doit être incluse dans la masse globale. Les efforts dans les appuis s'obtiennent par un calcul statique équilibrant ces forces.
élévation m1 m2 m3
mr
mn
f1
fn fr vue en plan Figure 64 : Évaluation du mode de balancement transversal
Critère de validité a posteriori de la méthode de Rayleigh : On donne ici un critère a posteriori pour justifier la méthode monomodale dans le cas du tablier souple. Il s’agit de vérifier que le mode fondamental de la structure décrit bien l’essentiel des mouvements sous séisme (pour la direction d’excitation donnée). On utilise pour ce faire la notion de « masse modale sismique » : Soit di les déplacements des masses pour un mode propre donné (NB : les di calculés au début de ce paragraphe sont une approximation du mode propre fondamental). On rappelle que la masse modale sismique du mode en question s’écrit :
(∑ M d ) = ∑M d
2
M ms
– 143 –
i
i
i
2 i
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
La norme stipule que la somme des masses sismiques des modes retenus dans l’analyse (un seul dans le cas de l’analyse monomodale) doit atteindre au moins 70% de la masse totale de la structure y compris celle des appuis en élévation. Dans le cas de l’analyse monomodale, on doit donc vérifier que :
(∑ M d ) ∑M d
2
i
i
i
2 i
≥ 0,7(Masse du tablier + Masse des piles )
4.5.3.3.3 Modèle de la pile indépendante
Dans certains cas, l'action sismique en direction transversale des ponts est supportée principalement par les piles, et il n'y a pas d'interaction importante entre des piles adjacentes. Dans ces cas, les effets des séismes agissant sur la ième pile peuvent être évalués de manière approximative en considérant l'action d'une force statique équivalente : Fi = Mi.Se(Ti) où : Mi est la masse effective attribuée à la pile i (masse de la moitié supérieure de la pile augmentée de la masse du tablier afférent à la pile).
Ti = 2π Mi / K i est la période fondamentale de la même pile. Cette simplification peut être appliquée comme une approximation satisfaisante, lorsque la condition suivante est satisfaite pour toutes les piles adjacentes i et i+1. 0,90 < Ti / Ti +1 ≤ 1,10 Autrement, une redistribution des masses effectives, conduisant au respect de la condition ci-dessus est exigée. 4.5.3.3.4 Torsion d'axe longitudinal dans le tablier sous séisme transversal
Pour les tabliers d'épaisseur supérieure à un mètre, on tiendra compte, si l'excentricité entre les différents éléments de structure (tablier, appareils d'appui, tête de pile) n'est pas intégrée directement dans le modèle de calcul, d'un moment d'axe longitudinal dû à l'excentricité entre le centre de masse du tablier sur lequel s'exerce la force d'inertie et le centre de raideur des appuis. Ce moment M = Ft × ∆h , peut modifier sensiblement l'effort normal de compression des appareils d'appui.
G Ft ∆h
Figure 65 : Torsion d'axe longitudinal
4.5.3.4 Séis me vertical
Dans les zones à sismicité faible ou modérée, l'effet du séisme vertical sur les piles peut être négligé. Dans les zones à sismicité moyenne à forte, ces effets doivent être pris en compte uniquement si les piles sont soumises à des contraintes de flexion importantes, dues aux actions permanentes verticales du tablier, ou lorsque le pont se
– 144 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
trouve à une distance comprise entre 0 et 5 km d'une faille active (cf. 4.1.7.1 de l'EC8-2). En effet, les sollicitations provoquées par le séisme vertical sont généralement couvertes par les charges d’exploitation à l’E.L.U. On n'en tiendra donc en général pas compte dans la justification du tablier, sauf pour les tabliers en béton précontraint, pour lesquels les effets de la composante de l'action sismique verticale agissant dans la direction ascendante doivent toujours être considérés (cf. 4.1.7(2)P de l'EC8-2). L'estimation des effets de la composante verticale peut être effectuée en utilisant la méthode du mode fondamental et le modèle du tablier flexible si la méthode est applicable. Les effets de la composante de l'action sismique verticale sur les appareils d'appui et les attelages doivent être pris en compte dans tous les cas pour se prémunir contre des risques de soulèvement ou plus couramment contre le risque de cheminement d’un appareil d'appui en élastomère fretté (cf. 4.1.7(3)P de l'EC8-2). Le risque de soulèvement sous sollicitation dynamique est moins grave que sous sollicitation statique. S’il se présente, il convient de guider le tablier de sorte qu’il ne s’échappe pas de ses appuis. Il n’est en général pas nécessaire de prévoir un dispositif lourd anti-soulèvement pour les ouvrages courants. Les vibrations verticales du tablier sont complexes. Lorsqu'il s'agit d'un ouvrage courant, régulier, et que le tablier repose simplement sur ses appuis (pas d'encastrement), les réactions d'appui Ri peuvent être calculées simplement à l'aide de la relation suivante :
Ri = abµ L où L est la longueur de la travée principale, et µ est la masse linéique du tablier comprenant les équipements.
ΨL
L
R1
R2
ΨL R1
R2
R2
R1
ΨL
L
L
R2
ΨL
R1
R3
R1 R2
ΨL
L
L R3
R2 R1
Figure 66 : Réactions d'appui pour différents types de pont
Le paramètre a caractérise l'accélération du sol en fonction de la classe de l'ouvrage et de la zone sismique du projet :
a = avg × 3,0 ×η (plateau du spectre vertical, cf. §4.2.5.2.1.2) avec avg =0,9 ag pour les zones de sismicité faible à moyenne et avg =0,8 ag pour la zone de sismicité forte. Le paramètre b quantifie la réaction d'appui pour un ouvrage « normalisé » : travée centrale, masse linéique et spectre unitaires (L=1, µ=1, Se(T)=1 pour toute période T). Les valeurs obtenues sont présentées dans le tableau 2, pour différents types d'ouvrages.
1 travée 0,41
2 travées Ψ
R1
R2
R3
0,5 0,22 0,57 0,33
– 145 –
≥ 4 travées
3 travées Ψ
R1
R2
0,5 0,22 0,45
Ψ
R1
R2
Ri
0,5 0,19 0,38 0,71
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
0,6 0,24 0,49 0,31
0,6 0,24 0,48
0,6 0,25 0,42 0,62
0,7 0,29 0,52 0,28
0,7 0,26 0,58
0,7 0,29 0,57 0,54
0,8 0,33 0,63 0,25
0,8 0,26 0,69
0,8 0,27 0,70 0,64
0,9 0,34 0,78 0,25
0,9 0,24 0,75
0,9 0,22 0,69 0,82
1,0 0,31 0,89 0,31
1,0 0,25 0,75
1,0 0,24 0,64 0,90
Tableau 6 : Paramètre b
Exemple : Considérons un pont dalle à 3 travées situé en zone de sismicité moyenne et sur un sol de classe A. L'ouvrage est d'importance normale II. Ses caractéristiques géométriques sont reportées à la Figure 67. Le rapport de travée vaut 0,6 et les réactions d'appui dues au séisme vertical valent : R1 = ±01 ,84 × 14 ,24 × 12 ,64 × 34 ,04 × 13 ,0 × 0{ ,24 × 18750 ,17 = ±335kN et R2 = ±4,61× 0,48 × 18750 × 16,17 = ±670kN 123 × 16 { µ a L b
On vérifie les appareils d'appui et les piles en cumulant ces valeurs avec les réactions d'appui sous charges permanentes et en les combinant avec les actions concomitantes du séisme horizontal. Il convient de prendre ces réactions d'appui vers le haut et vers le bas afin de tenir compte aussi bien du séisme vertical ascendant que du séisme vertical descendant.
µ=18750 kg/ml 9,70 m
16,17 m
9,70 m
R1
R1 R2
R2
Figure 67 : Exemple d'ouvrage à 3 travées
4.5.3.5 Prise en co mpte forfaitaire de la rotation d’axe vertical dans le cas des ponts biais ou présentant un excentre ment de la masse
Dans le cas des ponts présentant un excentrement e0 de la masse par rapport au centre de raideur supérieur à 5% de la longueur du tablier, les méthodes monomodales basées sur le mode fondamental restent utilisables sous réserve de prendre en compte les effets de la rotation du pont autour d’un axe vertical par l’intermédiaire d’un moment Mt (moment de torsion statique équivalent agissant autour de l'axe vertical et passant par le centre des masses du tablier) calculé séparément et cumulé aux autres effets des actions sismiques (cf. EC 8-2 §4.2.2.5) :
M t = ±e F avec F : la force horizontale déterminée par l'une des méthodes précédentes et e = eo + ea où eo est l'excentricité théorique entre le centre de masse et le centre de raideur et ea rend compte de l'amplification accidentelle et dynamique :
– 146 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
ea = 0,05L ou 0,05B où L et B sont respectivement la longueur et la largeur de l’ouvrage
L φ B Figure 68 : Notations
Dans le cas des ponts biais sous certaines conditions géométriques telles que définies au §4.4.1.2 (ϕ < 78 grades et rapport B/L > 0,5), l'Eurocode (cf. EC8-2 §4.1.5) définit un troisième terme ed d'excentricité additionnelle qui reflète l'effet dynamique de la vibration simultanée de translation et de rotation en cas d'entrechoquement du tablier sur les culées. Au final, cela revient à considérer une excentricité additionnelle forfaitaire globale de 0,08L ou 0,08B au lieu des 0,05L ou 0,05B précédents. Pour le calcul de ea et ed, la dimension L (longueur de l'ouvrage) ou B (largeur de l'ouvrage) perpendiculaire à la direction de l'excitation doit être utilisée. La force F peut être déterminée par l'un de modèles de tablier. Le moment Mt peut être distribué aux éléments porteurs en utilisant le modèle à tablier rigide. Nous recommandons en outre dans le cas des ponts dont la valeur du biais est inférieure à 78 grades (ou 70°) de majorer les déplacements ainsi calculés de 50% pour le dimensionnement des souffles au droit des culées. Enfin, il est rappelé qu’en zones de forte sismicité, il est recommandé d’éviter les ponts très biais (biais ϕ < 50 grades ou 45°, cf. EC8-2 §4.1.5(2)).
4.5.4 Analyses multimodales 4.5.4.1 Do maine d'e mploi
Lorsque les ouvrages ne répondent pas aux critères de régularité pour l'emploi de la méthode monomodale, ils peuvent être étudiés avec la méthode multimodale. Ces méthodes multimodales consistent à calculer et à combiner quadratiquement, direction par direction, les contributions des différents modes de vibration de la structure. Les sollicitations obtenues dans une direction donnée (efforts, déplacements contraintes…) résultent alors de la combinaison quadratique SRSS (racine carrée des carrés) des contributions de chacun des modes. Elle ne s’applique qu’aux ponts qui satisfont aux critères suivants : -
La masse mise en mouvement est supérieure à 90% de la masse totale de la structure (masse du tablier et masse des appuis en élévation).
-
La masse totale mise en mouvement est supérieure à 70 % de la masse totale de la structure et les valeurs finales des effets de l'action sismique sont multipliées par M/(ΣMi)c
– 147 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
4.5.4.2 Co mbinaison des réponses modales
Dans une direction donnée, les sollicitations, Ei, issues de chacun des modes i (efforts, déplacements contraintes…) sont alors combinées quadratiquement par la méthode SRSS (racine carrée de la somme des carrés).
E=
∑E
2 i
Si deux modes ont des périodes naturelles voisines la méthode SRSS n'est pas sécuritaire Deux périodes Ti, Tj, sont considérées comme voisines si:
0.1 0.1 + ξ i ξ j
≤ ρ ij = Ti / T j ≤ 1 + 10 ξ i ξ j
ξi et ξj sont les amortissements de chacun des modes i et j. Dans ce cas on applique la méthode de Combinaison Quadratique Complète (méthode (CQC) :
E = Σ i Σ j Ei rij E j avec : i = 1 ... n , j = 1 ... n. Qi,j est le facteur de corrélation :
Qi , j =
[(ξ ω i
8ω i ω j ξ i ξ j ω i ω j (ξ i ω i + ξ j ω j )
+ ξ j ω j ) + (ω ' i −ω ' j ) 2
i
2
][(ξ ω i
+ ξ j ω j ) + (ω ' i +ω ' j ) 2
i
2
]
4.5.4.3 Effet maxi mal probable
La prise en compte simultanée des composantes de l'action sismique le long des axes horizontaux X, Y et de l'axe vertical Z pour évaluer l'effet maximal probable de l'action E, peut être calculé par la méthode SRSS à partir des effets maximaux de l'action sismique calculée de façon indépendante le long de chaque axe Ex, Ey et Ez :
E = Ex + E y + Ez 2
2
2
De manière plus simple, l'effet maximal probable de l'action E peut être pris égal à l'effet le plus défavorable parmi les effets calculés par combinaisons sismiques des directions (chapitre 4.3.2). Ces efforts intègrent directement le cas échéant la prise en compte du coefficient de comportement q (intégré dans le spectre de calcul Sd(T)).
4.5.5 Calcul des efforts dans les appuis 4.5.5.1 Bilan des efforts sollicitants
Les actions d’origine sismique supportées par les appuis ont trois origines : o
les efforts provenant de la mise en mouvement du tablier,
o
les efforts provenant de la mise en mouvement de l’appui,
o
les efforts provenant de l’action des terres sur l’appui (hormis l’accélération d’ensemble). – 148 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Les règles de cumul des effets de ces différentes actions sont explicitées au §5.1.3.2. Les actions des terres sont décrites au §04.5.7. Enfin, dans les cas des piles de grande hauteur, il convient également de considérer les effets du second ordre. 4.5.5.2 Prise en compte de la vibration propre de l’appui dans le cadre d’une méthode simplifiée
Lors d'une étude par une analyse multimodale, il suffit d’introduire dans le modèle de calcul la masse et la rigidité des appuis, ainsi que les conditions de liaison de l'appui avec le sol et avec le tablier. Par contre, dans le cas fréquent d’emploi d’une méthode simplifiée, il convient de distinguer les cas suivants. 4.5.5.2.1 Liaison fixe entre l’appui et le tablier
Le terme fixe désigne un système d’appui qui transmet au moins les translations dans la direction considérée. Il peut donc s’agir d’une section de béton rétrécie (articulation Freyssinet par exemple), d’un appareil d’appui à pot de caoutchouc ou d’une liaison monolithique. Dans ce cas, les normes proposent d’intégrer la masse de la moitié supérieure de la pile dans celle du tablier. Les efforts provenant de la mise en mouvement des appuis sont donc inclus dans les efforts transmis par le tablier, et il n’y a pas lieu de les calculer à part. 4.5.5.2.2 Liaison glissante ou souple entre l’appui et le tablier
Lorsque l’appareil d’appui est en caoutchouc fretté ou comporte un dispositif de glissement, les vibrations de l’appui peuvent être considérées comme indépendantes des vibrations du tablier. Dans ce cas, les forces d’inertie provenant du tablier et des appuis se combinent conformément au paragraphe 5.1.3.2. Les efforts sismiques provenant de l’accélération propre de l’appui peuvent être calculés par la méthode admissible ci dessous : • Pour une pile, en utilisant le spectre de réponse défini pour l’ouvrage et en calculant la fréquence propre de la pile comme celle d’une console de caractéristiques géométriques constantes présentant la même rigidité que l’appui vis-à-vis d’un effort horizontal en tête. Le calcul de la période propre s’effectue comme suit :
d
F
F
d
F
ρ : masse volumique du matériau de l’appui (en kg/m3) E : Module d’Young du matériau de l’appui (en Pa) A : section équivalente (en m²) de l’appui pour retrouver la masse totale de l’appui
Console équivalente de caractéristiques constantes
Coffrage de l’appui
I : inertie (en m4) à ajuster pour retrouver la même flèche « d » en tête sous l’action d’une charge 3 « F » : I = F L 3E d L : hauteur de la pile
T = 1.784
ρAL
4
EI
– 149 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Pour le calcul de l’effort sismique dans la pile, on prendra en compte un champ d'accélération uniforme, appliqué à la pile, dont la valeur est issue du spectre de réponse élastique à la période T évaluée cidessus. L’utilisation d’un coefficient de comportement pour la pile seule, isolée du reste de la structure, n’est à priori pas exclue, mais cela sort du cadre normatif et on préférera consulter un spécialiste.
S e (T )
• Pour une culée (voir paragraphe 05.1.3.3) ou tout autre élément enterré, en accélérant les masses par les coefficients sismiques (respectivement horizontal et vertical) :
k h = S .ST .
AEd g
kV = 0,5k h S est le coefficient de sol, ST est le coefficient topographique qui vaut en général 1. L’effort ainsi obtenu sera supposé agir au niveau du centre de gravité de l’appui. 4.5.5.3 Prise en co mpte forfaitaire des effets du second ordre dans le cas des piles de grande hauteur
Dans le cas d’une modélisation complète à l’aide d’un logiciel de calcul dynamique prenant en compte les nonlinéarités géométriques, les effets du second ordre sont pris en compte automatiquement dans le calcul. Dans la plupart des cas, lorsque l’on a recours à une analyse simplifiée et que la hauteur des piles laisse supposer que ces effets ne sont pas négligeables ( ∆M2eme ordre > 5%M1er ordre), alors il convient de les évaluer à part et de les intégrer dans le calcul. Ces effets se traduisent par un moment supplémentaire en tête d’appui, résultant de l’excentrement des charges verticales sous l’effet des déplacements sismiques horizontaux (cf. EC 8-2 §5.4) :
∆M =
1+ q .d Ed .N Ed 2
dEd : déplacement transversal relatif des extrémités de l'élément ductile considéré NEd : effort normal total dans l'appui considéré Ils sont à considérés plus spécifiquement dans le cas d’un comportement ductile où les déplacements sismiques obtenus sont plus importants par rapport à un comportement à ductilité limitée.
4.5.6 Calcul des efforts dans les fondations profondes Les efforts dans les fondations profondes peuvent provenir à la fois des effets inertiels (résultant de la mise en vibration de la structure) et cinématiques (imposés par la déformation du sol autour des fondations) . Les sollicitations qui se développent en raison de l’interaction cinématique doivent être évaluées uniquement si toutes les conditions suivantes sont réunies simultanément :
– 150 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
profil de sol de classe D, E, S1 ou S2, et d'une manière générale tous les profils de sol qui contienne des couches de sol dont la rigidité diffère nettement ; zone de sismicité modérée à forte (agr.S > 0,1 g) ; ouvrages de catégories d’importance III ou IV. Les méthodes d’analyse proposées consistent alors à découpler les sollicitations induites par chacun des deux effets : inertiels et cinématiques. Dans les cas courants, l’enveloppe des sollicitations obtenues sera à considérer dans la vérification des pieux. Cette disposition est valable si la période fondamentale T de la structure (sur base fixe) diffère sensiblement de la période fondamentale Ti du système sol-pieu. Dans le cas contraire (résonance), on procédera au cumul des sollicitations induites par les effets inertiels avec celles induites par les effets cinématiques. En pratique, on pourra considérer qu’un risque de résonance si le rapport T/Ti est compris entre les valeurs de 0,7 et 1,4. Pour évaluer la période fondamentale Ti du système sol-pieu, on pourra procéder de la manière suivante : • Fondations de type souple : Dans le cas des fondations de type souple (pieux de diamètre modéré…), on pourra assimiler la période fondamentale Ti du système sol-pieu à la période Ts de la colonne de sol située au-dessus du substratum en limitant la profondeur Hs de celui-ci à 100 m :
Ti = Ts =
4H s Vs
où Vs = G / ρ est la vitesse des ondes de cisaillement se propageant verticalement dans le sol, G est le module de cisaillement défini au §4.4.3.3.1 et ρ est la masse volumique du sol. • Fondations de type rigide Dans le cas des fondations de type rigide (pieux de forts diamètre, barrettes, puits…), il convient de tenir compte de la contribution de la fondation (pieu, puits, barrette…) à la raideur globale du système sol + fondation. Celle-ci peut être évaluée en se basant sur l’approche décrite dans la note du §9.4.2.2.3 de la norme NF P 06-013 dite « PS92 » :
Ts Ti
2
3 1 EI ρgH² = 0,573.k 4 ( ) 4 G pS
qui après simplification, peut s’écrire :
Ti ² =
M (2π ) 2 K
1
avec K = kG l 0
et l 0 = (
4EI 4 ) kG
où : - Ts est la période propre de la colonne de sol évaluée précédemment ; - M est la masse associée à la descente de charge sur le pieu : M = p.S/g avec p la contrainte verticale statique sur le pieu, S la section du pieu et g l’accélération de la pesanteur ; - EI est la rigidité de flexion du pieu (produit du module d’Young par l’inertie de la section) ; - k.G correspond au coefficient de ballast du sol (raideur par unité de longueur de pieu) avec k coefficient numérique compris généralement entre 2 et 4 et G le module de cisaillement du sol (cf. §4.4.3.3.1).
– 151 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
4.5.6.1 Efforts dans les pieux provenant des actions inertielles de la structure en élévation
La descente de charge sismique peut être appliquée, dans les cas simples, à un modèle discret de pieu (barres) sur appuis élastoplastiques. Les valeurs de raideur des « ressorts » modélisant le sol sont celles données au §4.4.3.3. Les valeurs des paliers plastiques doivent être choisies en tenant compte d’une éventuelle réduction des réactions de sol sous l’effet du chargement cyclique, notamment dans les sols susceptibles de générer une augmentation des pressions interstitielles. En l’absence d’études particulières, les couches superficielles de terrain doivent être négligées sur une hauteur correspondant à la hauteur de la semelle plus 2 diamètres de pieu, en raison des déformations permanentes susceptibles de se produire sous séismes (création d’un espace annulaire). La résistance latérale des couches sensibles au risque de liquéfaction sous le séisme de projet, doit être négligées. Il convient également de prendre en compte « l’effet de groupe dynamique » dont les conséquences sont dans la plupart des cas une réduction des raideurs (diminution de la raideur globale du système de fondation d'un facteur 2 à 5), et des paliers plastiques mobilisables en réaction frontale le long des pieux situés dans un groupe, en comparaison des pieux isolés. 4.5.6.2 Efforts dans les pieux provenant d'un déplace ment i mposé par le sol
L’interaction cinématique peut être évaluée de manière simplifiée dans les cas courants au moyen d'une approche pseudo-statique qui consiste à considérer que le pieu est soumis à la déformée maximale du sol en champ libre (non affectée par la présence de la structure). Dans le cas d’une stratification horizontale, une analyse de propagation verticale d’ondes basée sur une méthode linéaire équivalente est acceptable pour évaluer cette déformation en tenant compte de la dépendance de l’amortissement et du module de cisaillement du sol avec le niveau de déformation. Le calcul est effectué de manière itérative afin qu’à chaque itération, l’analyse linéaire soit basée sur des propriétés du sol ajustées en fonction du niveau de déformation obtenu à l’itération précédente. Les amplitudes de déformation de cisaillement effective dans chaque couche, γeff, qu’il convient d’utiliser pour l’évaluation des modules dynamiques et des amortissements dans les méthodes linéaires équivalentes, peuvent être prises égales à : γeff =0,65 γmax,t où γmax,t est la valeur maximale de la déformation de cisaillement dans la couche de sol en champ libre, au cours de l’action sismique considérée. La déformée maximale considérée est l’enveloppe des déformations maximales du sol obtenues au cours de l’action sismique considérée. Au stade de pré-dimensionnement, dans le cas d'un profil homogène d'épaisseur Hs entre le rocher et la surface, on pourra admettre que la déformée du sol dans le premier mode est un quart de sinusoïde défini par le déplacement maximal à la surface dmax : 2H s d max = a g S πVs
2
avec les notations de la Figure 69. Le déplacement maximal en surface calculé ci-dessus peut être sensiblement différent du déplacement de calcul au niveau du sol dg donné au §3.2.2.4. de l'EC8-1 : dg = 0,0225 ag S TC TD
– 152 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
et qui correspond au spectre de réponse élastique en déplacement pour de longues périodes (supérieures à TF). Il convient dans ce cas, sauf études particulières, de considérer le déplacement de calcul au niveau du sol dg en lieu et place de dmax.
πz
où z est compté vers le bas à partir de la surface du sol. Le déplacement du sol s’écrit : u ( z ) = d max cos 2 H s Le déplacement maximal imposé entre la tête et la base de la fondation profonde de longueur L vaut donc :
πL ∆ = d max 1 − cos 2H s
dmax
0
∆ déformée du pieu L
Sol Vs
Hs couche de sol homogène (Vs) déformée du sol en champ libre
Z
Figure 69: principe de calcul avec déformation de sol imposée au pieu
Dans les cas courants, cette déformation de sol sera imposée à l’extrémité des ressorts d’un modèle de pieu sur appuis élastoplastiques (comme c’est le cas en statique pour la prise en compte des poussées latérales), en choisissant des raideurs de sol compatibles avec le niveau de déformation attendu sous le séisme de projet (cf. 4.4.3.3). Si le pieu est suffisamment souple pour suivre la déformée du sol (ce qui est rarement le cas pour les fondations d’ouvrages d’art en dehors de zones de faible sismicité et de profil de sol rigide), le moment et l’effort tranchant du pieu d’inertie I et de module d’Young E valent alors respectivement : 2
a S π πz πz cos = EI g 2 cos M ( z ) = EI d max VS 2H s 2H s 2H s 3 π ag S π πz πz sin = EI V ( z ) = EI d max cos 2 2 H S VS 2H s 2H s 2H s Remarquons que dans ce cas, sous déplacements imposés, donc sous courbures imposées, les contraintes normales en fibres extrêmes augmentent proportionnellement avec la taille du pieu. 4.5.6.3 Efforts parasites liées à la liquéfaction des sols
Les études du risque de liquéfaction doivent être approfondies sur la base de reconnaissances spécifiques et en nombre suffisant en raison : – 153 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
•
de l’importance et des difficultés techniques d’évaluation des efforts parasites susceptibles d’être générés par la liquéfaction des sols sur les ouvrages ;
•
des difficultés de modélisation de ces phénomènes dans les calculs ;
•
des surcoûts liés au renforcement des fondations vis-à-vis de cet aléa ou au traitement des sols.
En présence de fondations profondes traversant des couches peu épaisses ou des lentilles de sols considérées comme liquéfiables pour le séisme de calcul, il convient en plus de la perte de résistance latérale, de considérer les efforts parasites susceptibles de se produire quelques heures à quelques jours après le séisme et résultant du tassement des couches liquéfiables (avec apparition de frottement négatifs sur les couches situés au-dessus des horizons liquéfiables). Dans le cas de couches sensibles à la liquéfaction étendue, surmontées de terrains non liquéfiables, des phénomènes de déplacement latéral des couches superficielles peuvent induire des efforts parasites très importants sur les pieux et leur semelle de liaison. L’évaluation de ces chargements sort du cadre d’application du présent guide.
4.5.7 Prise en compte de l'action dynamique des terres sur les murs : méthode de Mononobe-Okabe Sous séisme, les forces de poussée ou de butée d'un sol sur un mur ou un écran peuvent être prises en compte sous la forme d'un chargement pseudo-statique en utilisant la méthode dite de Mononobe-Okabe (cf. [ 24] et [ 25]). Cette méthode qui reste limitée aux remblais sans cohésion repose sur la méthode de Coulomb. Les remblais sont soumis à des accélérations sismiques horizontale et verticale qui se cumulent à l’accélération de la pesanteur. On se reportera à l’annexe E de l’EC8-5 pour plus de détails. La poussée dynamique globale sous séisme, comportant à la fois les effets statiques et dynamiques de la poussée active des terres, et les poussées statiques et dynamiques de l’eau présente dans le sol s’exprime sous la forme suivante :
Ed =
1 * γ (1 ± k v ) KH 2 + E ws + E wd 2
avec : H : hauteur du mur ; Ews : poussée statique de l’eau ; Ewd : pression hydrodynamique de l’eau libre de se déplacer ; γ* = poids volumique du sol défini ci-dessous suivant la configuration de la nappe ; kv = coefficient sismique vertical ; K : coefficient de poussée des terres calculé à partir de la formule de Mononobe Okabe : o
états actifs (poussées), si β ≤φd -θ :
K ad =
sin 2 (ψ + φ d − θ ) sin (φd + δ ad )sin ((φd − β − θ )) cosθ sin ψ sin (ψ − θ − δ ad )1 + sin (ψ − θ − δ ad )sin (ψ + β ) 2
– 154 –
2
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
et si β > φd -θ :
K ad = o
sin 2 (ψ + φd − θ ) cosθ sin 2 ψ sin (ψ − θ − δ ad )
pour les états passifs (butée) :
K pd =
sin 2 (ψ + φd − θ ) sin (φ d )sin ((φd + β − θ )) cosθ sin ψ sin (ψ + θ )1 − sin (ψ + θ )sin (ψ + β )
2
2
φd : valeur de calcul de l’angle de frottement du sol, soit φ d = tan −1 (
tan φ
γφ
) = tan −1 (
tan φ ); 1,25
ψ et β sont les angles d’inclinaison de la face arrière du mur et de la surface du remblai par rapport à l’horizontale (cf. Figure 70) δad : valeur de calcul de l’angle de frottement entre le sol et le mur soit δ ad = tan −1 (
tan δ a
γφ
) = tan −1 (
tan δ a ) 1,25
C B
β γ*kh
Prisme de rupture
Mur H
θ W
δad
φd
Ed α
ψ
γ*(1±kv)
R
A Figure 70 : symboles utilisés dans le calcul de Mononobe Okabe
Remarques sur le choix de δ, du point d’application de la poussée et des valeurs des coefficients sismiques : o
La valeur de l'angle δa de frottement terrain-mur est plus faible en régime dynamique qu'en statique. Il conviendra de prendre pour δa des angles inférieurs à 2/3 φ, et δp nuls (non intégré dans les formules de butée). Dans la pratique on adoptera le plus souvent également δa = 0 ;
o
En l’absence d’une étude plus détaillée prenant en compte la rigidité relative du mur, le type de mouvement et la masse relative de l’ouvrage, le point d’application de la « sur-poussée » dynamique des terres (différence entre la poussée dynamique globale et la poussée statique) doit être pris à mi hauteur. Pour les murs qui peuvent tourner librement autour de leur base, le point d’application de la « sur-poussée » dynamique des terres peut être pris égal à celui de la poussée statique des terres ;
– 155 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
o
S r
La valeur du coefficient sismique horizontal kh doit être prise égale à : kh = ST α = ST
ag S où ST est le g r
coefficient d’amplification topographique (cf. §4.2.4), et r est défini dans le tableau ci-dessous. Le coefficient sismique est pris constant sur la hauteur du mur lorsque celle-ci est inférieure à 10 m. Pour des hauteurs plus importantes, il convient d’effectuer une analyse monodimensionnelle de propagation verticale des ondes en champ libre pour obtenir une estimation plus affinée de ag en prenant la valeur moyenne du pic d’accélération horizontale du sol le long de la hauteur du mur.
Type d’ouvrage de soutènement
r
Murs poids libres pouvant accepter un déplacement jusqu’à dr=300.α.S (mm)
2
Murs poids libres pouvant accepter un déplacement jusqu’à dr=200.α.S (mm)
1,5
Murs fléchis en béton armé, murs ancrés ou contreventés, murs en béton renforcés fondés sur des pieux verticaux, murs d’infrastructure encastrées et culées de ponts
1
o
En présence de sols granulaires sous nappe, on limitera r à 1 à condition que le coefficient de sécurité vis-à-vis de la liquéfaction soit supérieur à 2;
o
La valeur du coefficient sismique vertical kv doit être pris égal à kv = ±0,5 kh
Choix des paramètres de calcul en fonction du niveau de nappe : Nappe au-dessous du mur de soutènement : γ*=γ est le poids volumique du sol, tan θ =
kh , et 1 ± kv
Ewd=0 ; Sols imperméables (K1 Lorsque le tablier de l'ouvrage est fixé sur une ou plusieurs piles, on peut admettre un comportement nonlinéaire de celle(s)-ci par plastification alternée des aciers longitudinaux dans les zones de rotules plastiques. On peut ainsi délibérément réduire les efforts obtenus par l'analyse linéaire élastique, ce qui peut être bénéfique en particulier pour le dimensionnement des fondations. Pour réduire les efforts de dimensionnement, la plupart des normes parasismiques (nationales et internationales) utilisent la notion de coefficient de comportement. Dans l’Eurocode 8, le coefficient de comportement est directement intégré dans le spectre de calcul Sd(T) (cf. §4.2.5.2). La division des efforts est donc implicite et automatique. Par contre les déplacements déduits de ces efforts doivent être remultipliés par µd, avec (cf. EC 8-2 §2.3.6.1(8)P) :
µd = q µd =
si T > T0=1,25.TC
T0 (q − 1) + 1 ≤ 5q − 4 T
µd=q=1
si 0,033s < T < T0=1,25.TC si T < 0,033s
Dans tous les cas, les déplacements obtenus restent bornés aux déplacements issus du calcul élastique avec q=1 (cf. EC8-1 §4.3.4). La philosophie qui conduit à l'introduction du coefficient de comportement a été présentée au §2.2.4.1. Les valeurs du coefficient de comportement applicables (cf. §4.1.2.2) dépendent des choix de conception (ductilité limitée ou ductile), de la typologie et de la géométrie des appuis ainsi que du système de liaison retenu entre le tablier et les appuis. 4.5.8.1 Rotules plastiques
Dans la conception inélastique, les moments issus du calcul élastique se trouvent "divisés" par le coefficient de comportement au travers du spectre de calcul. Les rotules plastiques se forment en pied de pile, ou éventuellement en tête (en cas d'encastrement dans le tablier), là où la valeur du moment fléchissant atteint son maximum. La norme prévoit des « zones de rotules plastiques potentielles » qui englobent les zones de rotule plastique théorique et qui s’étendent à partir de l’encastrement sur une longueur Lh qui est la plus grande des deux valeurs (cf. EC 8-2 §6.2.1.5 et §5.3.4 du présent document) : -
la hauteur h de la section du fût dans le plan de la section (perpendiculairement à l’axe de rotation de la rotule)
-
la longueur sur laquelle le moment est compris entre 0,8 Mmax et Mmax.
Des dispositions constructives (voir paragraphe 5.3) concernant notamment le ferraillage transversal assurent un comportement non linéaire convenable de cette zone. L’Eurocode 8-2 requiert dans cette zone de rotule plastique potentielle, que l’on dimensionne le ferraillage longitudinal pour la valeur de Minél et l’effort normal concomitant le plus défavorable (voir également paragraphe 5.1.1.3.2.1). 4.5.8.2 Di men sionne ment en capacité et diagramme des mo ments
Il est important de ne pas surdimensionner le ferraillage longitudinal de façon à ce que la rotule plastique se produise bien dans la zone critique et pas ailleurs.
– 158 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
En dehors de la zone critique, les dispositions constructives sont moins conséquentes et il convient donc de s’assurer qu’aucune rotule plastique ne s’y forme. C’est pourquoi, l'Eurocode 8-2 prévoit d’établir le diagramme des moments en dehors des zones critiques sur la base du moment résistant ultime MRd (ou capacité de flexion) des sections de rotules plastiques multiplié par un coefficient de « surcapacité » γo qui varie en fonction des matériaux constitutifs et reflète leurs propriétés de résistance ainsi que le rapport entre leur résistance à la rupture et leur limite élastique. Cette approche, qui permet d’établir une certaine chronologie dans l’apparition des mécanismes d’endommagement et de définir ainsi des zones « fusibles » dans la structure, porte le nom de « dimensionnement en capacité ». Ce principe de dimensionnement et les vérifications de résistance qui en découlent sont plus largement traités au §5.1.1.2.
4.6 Méthodes d’analyse avancées 4.6.1 Principes et domaine d’emploi Dans le cas d’une conception ductile, lorsque l’appel en ductilité (plastifications successives) dans la structure n’est pas uniforme, la méthode du coefficient de comportement décrite précédemment n’est plus applicable. Dans ce cas, il convient d’appréhender le comportement non-linéaire de l’ouvrage sous l’effet du séisme par le biais de méthodes plus sophistiquées. L’Eurocode 8-2 propose deux méthodes possibles pour ce type d’approche : -
la première méthode est une méthode quasi-statique non-linéaire équivalente dite « en poussée progressive » ou « push-over » qui consiste à appliquer à la structure une force (ou déformation) croissante représentative du chargement sismique et de suivre pas à pas l’apparition des rotules plastiques successives et les redistributions d’efforts correspondantes;
-
La deuxième approche, plus complexe, consiste, à l’aide d’un logiciel ou algorithme spécifique, à mener une analyse dynamique temporelle non-linéaire. Elle nécessite de modéliser la structure dans son ensemble avec toutes ses non-linéarités potentielles et à la soumettre à directement à un jeu d’accélérogrammes. La réponse de la structure est alors recalculée à chaque pas de temps en fonction de son état correspondant à l’instant (ou pas de temps) précédent.
Pour ces deux méthodes, qui s’assimilent plus à des calculs de justification que de dimensionnement, il convient dans un premier temps de prédimensionner le ferraillage des sections de rotules plastiques potentielles. Nous proposons pour ce faire d’utiliser la « méthode en déplacement direct » décrite au §4.4.3.2.2 du présent document pour la détermination du ferraillage longitudinal. Le ferraillage transversal sera alors évalué à partir des dispositions constructives parasismiques forfaitaires décrites au §5.3. La prise en compte du comportement non-linéaire de la structure s’effectue généralement à différentes échelles successives : non-linéarité des matériaux constitutifs intégrant l’effet du confinement du béton par les armatures transversales ; non-linéarité des sections traduite par le tracé d’une loi dite « moment-courbure » ; puis nonlinéarité des éléments structurels (piles ou rotule plastique) résultant de l’intégration de la loi moment courbure sur la hauteur de l’élément considéré et le cas échéant de la prise en compte des non-linéarités géométriques (2nd ordre). L’autre domaine d’emploi des méthodes d’analyses avancées concerne l’utilisation des dispositifs antisismiques (par exemple amortisseurs). Les lois de comportement de ces dispositifs sont généralement complexes et dépendent souvent de la vitesse de sollicitation. Dans ce cas seule une analyse dynamique temporelle nonlinéaire permet de modéliser correctement les phénomènes mis en jeu. Néanmoins l’Eurocode 8-2 propose en prédimensionnement une méthode de calcul simplifiée basée sur des caractéristiques linéaires équivalentes. Cette méthode fait l’objet du §4.6.4.2.1.
– 159 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
4.6.2 Prise en compte d’un comportement non-linéaire 4.6.2.1 Non-linéarité des matériaux 4.6.2.1.1 Béton confiné
La loi de comportement du béton confiné doit être établie, à partir du modèle de la loi de Sargin définie dans l’EC2 1-1, en tenant compte du confinement apporté par les armatures transversales, conformément au modèle défini dans l’annexe E de l’Eurocode 8-2 (cf. Figure 71 ci-dessous).
Figure 71 : Prise en compte du confinement dans la loi du béton (EC 8-2 annexe E)
Les grandeurs caractéristiques de la loi de béton confiné (fcm,c et εcu,c) sont données par les expressions cidessous :
f cm ,c = f cm ⋅ λc et ε cu ,c = 0,004 +
avec
λc = 2,254 1 + 7,94
σe f cm
−
2σ e − 1,254 f cm
1,4 ρ s f ym ε su f cm,c
dans les équations ci-dessus, σ e = 0,5αρ s f ym est la pression effective de confinement où α est le coefficient d’efficacité du confinement établi en fonction de la disposition des armatures transversales, conformément au §5.4.3.2.2 de l’Eurocode 8-1. ρs dépend directement du ratio volumique d’armatures transversales ( ρ w = rectangulaire et ρ w =
4 Asp sLb
Asw dans le cas d’une section sLb
dans le cas d’une section circulaire) et de leur géométrie :
•
ρs = ρw
pour les spires, cerces et frettes circulaires ;
•
ρs = 2 ρw
pour les cadres et frettes orthogonales.
Le lecteur se reportera aux équations (E.1) à (E.13) de l’Annexe E de l’Eurocode 8-2 pour la description complète, point par point, de la loi de béton confiné. Typiquement, les valeurs obtenues dans le cas de l’application des dispositions constructives parasismiques imposées par la norme peuvent atteindre 1,5 à 2 pour λc et 10 à 20%0 pour εcu,c.
– 160 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
4.6.2.1.2 Acier
L’Eurocode 8-2 (cf. EC 8-2 §5.2.1) stipule que dans les zones de rotules plastiques potentielles, les armatures longitudinales doivent être constituées d’un acier de classe C, caractérisé par une limite de déformation plastique ultime εsu = 75%0.
fsy = 500 MPa
εsy = 2,5%0
εsu = 75%0
Figure 72 : Loi de comportement des aciers
4.6.2.2 Non-linéarité des sections
Les lois de comportement des sections de piles dans lesquelles des rotules plastiques sont susceptibles de se former sont définies par des lois moment-courbure, calculées par intégration sur la section des caractéristiques des matériaux déterminées au paragraphe précédent, en tenant compte des coefficients de sécurités partiels des matériaux γc=1,3 et γs=1,0. Ces lois moment-courbure sont obtenues à l’aide d’un calcul de section de béton armé itératif en augmentant progressivement le niveau de déformation dans la section. A chaque incrément, on peut alors calculer le point M-Φ en fonction de la hauteur de section comprimée c : φ =
εc c
=
εc + εs ds
;
où ds est l’épaisseur de la section par rapport au centre des armatures tendues (= D-enrobage ou h-enrobage) sur la Figure 73 ci-dessous, et M correspond au moment sollicitant, obtenu par intégration sur la section des contraintes matériaux associées aux déformations imposées.
Figure 73 : Équilibres de section relatifs à la définition de la loi moment-courbure
La courbe ainsi obtenue fait apparaître plusieurs infléchissement correspondant successivement à la fissuration du béton tendu, la plastification des aciers tendus et/ou du béton comprimé et enfin la rupture de la section, atteinte soit par écrasement du béton comprimé, soit par rupture des armatures tendues (cf. figure ci-dessous).
– 161 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Rupture (écrasement du béton comprimé ou rupture des armatures tendues)
MRd Plastification des aciers tendus
Fissuration du béton tendu
φy
φu
φ
Figure 74 : Bi-linéarisation de la courbe moment-courbure
Afin de simplifier l’analyse, la loi moment-courbure est généralement approximée par une loi bi-linéaire, conformément aux spécifications de l’Eurocode 8-2 annexes C et E : le point d’inflexion (φy,MRd) est alors calé de telle sorte que les courbes réelle et linéarisée se croisent au point correspondant à la 1ère plastification des armatures et que les surfaces balayées par chacune des courbes au-delà de ce point soient égales (cf. EC 8-2 E.3.2(3) et Figure 74). La loi moment courbure d’une section donnée dépend de l’effort normal N appliqué à la section. En théorie, cet effort varie au cours de la sollicitation sismique, en particulier dans le cas de piles portiques dont chaque fût est soumis à une variation d’effort normal ±∆N sous sollicitation horizontale alternée. En pratique, pour simplifier l’analyse, on pourra se limiter à une seule valeur de N, notée NEd, correspondant à l’effort normal obtenu dans la section au déplacement sismique de calcul dEd (voir chapitre 4.6.2) 4.6.2.3 Non-linéarité des éléments structurels 4.6.2.3.1 Rotules plastiques
Dans le cas d’un modèle général intégrant le tablier et les piles, il est souvent loisible, pour optimiser les temps de calcul, de concentrer les non-linéarités au droit des zones de rotules plastiques.
Figure 75 : Modèle général et localisation des rotules plastiques potentielles
Du point de vue de l’analyse structurelle, ces zones correspondent à une longueur dite « longueur de rotule plastique » Lp telle que la courbure plastique φp,u à un instant donné peut-être supposée constante sur cette longueur.
Figure 76 : Théorie des rotules plastiques (Eurocode 8-2 figure E.2)
– 162 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
La longueur de rotule plastique telle que définie dans l’Eurocode 8-2 est obtenue par la formule suivante : Lp = 0,10 L + 0,015 fyk.dbL
(cf. EC 8-2 équation E.19)
où L est la distance entre la section de rotule plastique et la section de moment nul, sous l’effet de l’action sismique conformément au schéma de la figure précédente, noté Lv dans la suite du paragraphe. fyk est la limite de contrainte élastique des armatures longitudinales, exprimée en MPa dbL est le diamètre des armatures longitudinales A partir de cette longueur de rotule plastique et de la loi moment-courbure définie au paragraphe précédent, on peut alors en déduire la courbe moment-rotation de la rotule :
Figure 77 : Courbe moment-rotation de la rotule
avec : θ y = φy
L p 0,5L p 1 + 1 − 2 Lv
θu = θ y + θ p ,u = θ y + (φu − φ y )L p 1 −
où
0,5L p λ (α s ) Lv
λ(αs) = 1 si le rapport de portée d’effort tranchant αs = L/d ≥ 3 λ(αs) =
αs 3
si 1 ≤ αs 1,5 Dans les zones de rotules plastiques, lorsque l’analyse sismique est basée sur la méthode du coefficient de comportement, le schéma de vérification à la flexion est le même que dans le cas précédent :
f f yk MEd ≤ MRd ck , 1 , 3 1,0 Il convient néanmoins de noter que l’évaluation de MEd est ici en théorie plus complexe du fait de la présence des coefficients de comportement (potentiellement différents dans chacune des deux directions horizontales). Se pose notamment la question de savoir si la prise en compte des effets d’un séisme minoré (multiplié par 0,3) dans la direction concomitante à la direction principale se traduit en terme de réduction d’effort (prise en compte d’une ductilité globale vis-à-vis de l’effet cumulé) ou en terme de déformation imposée (éventuellement à effort constant si on se trouve sur le palier plastique). L’Eurocode 8-2 reste muet sur cette question théorique, ce qui sous-entend implicitement que l’on doit combiner directement, dans le cadre d’un calcul en flexion déviée, les efforts (moments fléchissants) dans la direction de flexion principale avec ceux minorés correspondant à la direction concomitante (multipliés par 0,3) et éventuellement divisés par un coefficient de comportement q. Par exemple, si on considère une section circulaire homogènement ferraillée et que l’on s’intéresse à la combinaison sismique relative au séisme longitudinal prépondérant en négligeant l’effet de la composante verticale et les effets du second ordre (cas classiques), MEd est donné par la relation : MEd = [MEd,long2 + (0,3 MEd,trans)2]1/2 = [(ME,long_élast /qlong)2 + (0,3 ME,trans_élast /qtrans)2]1/2 ce qui revient, si on adopte un même coefficient de comportement global q = qlong = qtrans, à considérer une ductilité globale vis-à-vis des effets cumulés des directions principales du séisme : MEd = [ME,long_élast2 + (0,3 ME,trans_élast)2]1/2 /q L’application du principe du dimensionnement en capacité dans le reste de l’ouvrage garantit par ailleurs que seules les sections de rotules plastiques sont susceptibles d’être endommagées.
– 200 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Dans le cas d’une section non circulaire, les combinaisons quadratiques définies ci-dessus sont remplacées par des vérifications en flexion déviée à mener à l’aide d’un logiciel de calcul de section, et en vérifiant successivement les capacités résistantes en flexion MRd,long et MRd,trans selon chacune des deux directions. Notons enfin que dans le cas de l’utilisation de la méthode du coefficient de comportement, aucune vérification particulière des niveaux de déformation atteints dans les rotules plastiques n’est requise. Celle-ci est supposée implicitement justifiée par l’application des dispositions constructives parasismiques telles que définies au §5.3 (cf. EC 8-2 §4.1.6).
Conception basée sur une analyse en poussée progressive ou dynamique non-linéaire Lorsque la conception parasismique est basée sur des méthodes d’analyse en déplacement de type poussée progressive ou analyse dynamique temporelle, le principe de la justification est sensiblement différent de la méthode présentée ci-dessus et repose sur une justification explicite des niveaux de déformation atteints dans les sections de rotules plastiques (cf. EC 8-2 §4.2.4.4) à partir des lois de déformation pré-établies (momentrotation ou force-déplacement). Une fois le point de fonctionnement théorique obtenu pour le séisme dans une direction horizontale donnée seule, il convient de s’assurer que ce point de fonctionnement reste dans le domaine de sécurité en intégrant le coefficient de sécurité γR,p=1,4 ainsi que l’effet du séisme dans la direction horizontale concomitante (multiplié par 0,3) et celui le cas échéant des effets du second ordre :
θ p,E1 ≤
f f yk 1 − 0,3 θ p,E 2 − θ2 nd ordre θp,u ck , 1,40 1,3 1,0
A défaut de méthode plus précise on pourra intégrer ces deux effets en termes d’incrément de déformation évalué sur la base de l’augmentation de déformation correspondante dans l’acier le plus sollicité dans la direction de séisme étudiée. Exemple d’application : On se propose ci-après de reprendre l’exemple détaillé aux §4.6.3.2 et 4.6.3.3. 30 m
50 m
50 m
9m
14 m C0
30 m
14 m
C4
P2 P1
P3
L’élément dimensionnant concernait la pile P2 sous séisme transversal. Le point de fonctionnement était obtenu pour un déplacement global équivalent dtrans=0,133m et un effort transversal total Ftrans,tot=53,8MN (associé à une accélération spectrale Se=8,4m/s2) :
A un déplacement global dtrans=0,133m correspond un déplacement transversal en tête de P2 de 0,167m, lui-même associé à une courbure φE = 13.10-3m-1, obtenu à partir des équations établies au §4.6.2.3.2 : – 201 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Fy = MRd /H dy = φy.H2 /3 du = dy +[(φu-φy).Lp.(H-0,5Lp)].λ(αs) avec pour la pile P2 : Lp,2 = 0,10*9 + 0,015*500*0,040 = 1,2m αs,2 = 9/3 = 3 ≥ 3 => λ(αs) = 1 Fy,2 = 200 /9 = 22,2 MN dy,2 = 2.10-3*92 /3 = 0,054 m du,2 = 0,054 + [(30.10-3-2.10-3)*1,2*(9-0,5*1,2)]*1 = 0,336 m A partir des équations du §4.6.2.3.1, on peut alors situer le point de fonctionnement sur la courbe moment-rotation de la rotule plastique : θy = φy.Lp/2 (1+ (1-0,5Lp/H) = 2.10-3*1,2/2*(1+(1-0,5*1,2/9) = 2,3.10-3 rad θu = θy + θp,u = θy + (φu-φy) Lp (1+ (1-0,5Lp/H)λ(αs) = 2,3.10-3 + (30.10-3–2.10-3)*1,2*(1-0,5*1,2/9)*1 = 33,7.10-3 rad => θp,u = 31,4.10-3 rad θE = θy + θp,E = θy + (φE-φy) Lp (1+ (1-0,5Lp/H)λ(αs) = 2,3.10-3 + (13.10-3–2.10-3)*1,2*(1-0,5*1,2/9)*1 = 14,6.10-3 rad => θp,E = 12,3.10-3 rad
ΜRd Point de fonctionnement
Piles P2
200 MNm
θy = 2,3.10-3 m-1
θu = 33,7.10-3 m-1
θ
θy + θp,u/1,4 = 22,4.10-3 m-1 θE = 14,6.10-3 m-1
Au point de fonctionnement (φE = 13.10-3 m-1), l’équilibre de la section de béton armé permet de déterminer l’allongement relatif de l’acier le plus tendu εs,E et la position de l’axe neutre (D’-c) par rapport à cet acier : On obtient respectivement : εs,E = 23,4%0 et D’-c = 1,80m
c
Ftrans
D’ D’-c
εs,E
– 202 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Le moment de 2nd ordre sous séisme transversal au droit de P2 est défini par : M2nd ordre,P2 = dP2 x N2 = 0,167*20,6 = 3,4 N.m => négligeable Sous l’effet de la composante sismique dans la direction concomitante (longitudinale), on avait obtenu un point de fonctionnement caractérisé par un déplacement de 0,033m et un effort total de 68,6MN associé à une accélération spectrale Se=10,7 m/s2.
En prenant 0,3 Elong, le point de fonctionnement se décale comme suit, vers un point caractérisé par un déplacement de 0,012m et un effort total de 30,2MN associé à une accélération spectrale Se=4,7 m/s2 :
L’effort tranchant et le moment en pied de P2 sont alors respectivement de 19,7MN et 88,8MNm. Ce moment, appliqué à la section, se traduit par un incrément de déformation dans l’acier le plus sollicité sous l’effet du séisme transversal, de : ∆εs = 0,3%0, associé à un incrément de courbure équivalent dans la direction transversale de ∆φ = 1,4.10-4 m-1.
Flong
∆εs
L’abaissement de rotation admissible équivalent est donc de : ∆θu = ∆φ.Lp (1+ (1-0,5Lp/H) = 1,4.10-4*1,2*(1-0,5*1,2/9) =1,6.10-4 rad
– 203 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
ΜRd
Point de fonctionnement
Piles P2
200 MNm
θy = 2,3.10-3 m-1
θu = 33,7.10-3 m-1
θ
θy + θp,u/1,4 - ∆θu = 22,2.10-3 m-1 θE = 14,6.10-3 m-1
Le critère de vérification de la section est donc toujours bien vérifié.
5.1.1.3.2.2
Vérifications en dehors des zones de rotules plastiques
En dehors des zones de rotules plastiques, la vérification des sections est essentiellement basée sur l’application du principe de dimensionnement en capacité tel que décrit précédemment est basé sur l’équation suivante (cas d’un élément en béton armé) :
f f yk Mc = f (γ 0 .MRd_rot ) ≤ MRd ck , 1,3 1,0 Dans l’équation ci-dessus, la courbe MC est à déduire du diagramme des efforts, incluant les actions nonsismiques dans la situation sismique de calcul et établi en considérant que les rotules plastiques potentielles sont effectivement plastifiées à leur palier plastique M0 = MRd_rot majoré du coefficient de surcapacité γ0 (avec γ0=1,35 éventuellement multiplié par 1+2(ηk-0,1)2 pour les sections fortement comprimées dans le cas de structures en béton armé et γ0=1,25 dans le cas de structures métalliques).
Exemple d’application : Si on reprend l’exemple d’application précédent et que l’on s’intéresse par exemple au moment de dimensionnement à mihauteur de la pile P2 : On suppose que la pile plastifie en pied sous séisme transversal et en pied et en tête sous séisme longitudinal (Rq : la même hypothèse aurait été prise par sécurité pour P1 et P3 même si en pratique il est peu probable que ces piles plastifient).
– 204 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Sous séisme transversal, avec P2 plastifiant en pied à MRd_piedP2 = 200 MNm, le moment atteint à mi-hauteur est donc de 100 MNm et le moment de dimensionnement transversal est donc de 1,35*100=135 MNm :
135 MNm
100 MNm
lh γoMRd
MRd_pied P2 = 200 MNm
Sous séisme longitudinal, avec P2 plastifiant en pied et en tête à MRd_P2 = 200 MNm, le moment atteint à mi-hauteur, en tenant compte d’un décalage forfaitaire du point de moment nul de 0,2H (cf. §5.1.1.2.2), est donc de 200*0,2/0,7= 57MNm et le moment de dimensionnement longitudinal est donc de 1,35*57=77 MNm :
0,4 H
La pile étant circulaire, le moment dimensionnant global à mi-hauteur est MRd_H/2 = (1352+772)1/2 = 155 MNm.
5.1.1.3.3 Cas d’une conception basée sur l’emploi de dispositifs antisismiques
Ce cas, qui inclut également l’emploi d’appareils d’appui en élastomère classiques, répond aux même principes de vérification que le cas de la conception élastique ou à ductilité limitée (§5.1.1.3.1), à ceci près qu’il convient de tenir compte le cas échéant des coefficients de surcapacité ou de fiabilité (γRd et γIS) dans la vérification des éléments de structure auxquels ces dispositifs sont liaisonnés. L’équation devient alors : fck f yk , 1,3 1,0
γ Rd .MEd ≤ MRd
où les valeurs de γRd sont précisées au §5.1.1.2.3 en fonction du type de dispositifs.
Nota : Cf. nota sur les notations à la fin du §5.1.1.3.1.
– 205 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
5.1.1.4 Di men sionne ment à l’effort tranchant et ruptures fragiles 5.1.1.4.1 Cas d’une conception élastique ou à ductilité limitée
Pour les ouvrages conçus en « élastique » ou en « ductilité limitée », comme vis-à-vis de la flexion, il n'y a pas lieu d'appliquer de quelconque coefficient de surcapacité pour la vérification des efforts tranchants. En revanche, l’Eurocode 8 (cf. EC 8-2 §5.6.2(2)) requiert, vis-à-vis de cette vérification dans les éléments en béton, que les effets résultant de l’action sismique de calcul soient remultipliés par le coefficient de comportement q (avec dans ce cas q ≤ 1,5). On dimensionne donc les éléments en béton armé à l’effort tranchant pour les sollicitations issues de l’analyse sismique multipliées par le coefficient de comportement q (q≤1,5), puis par un coefficient de sécurité vis-à-vis des ruptures fragiles par effort tranchant γBd1 = 1,25 : q.VEd ≤
f f yk VRd ck , γ Bd 1 1,3 1,0 1
Notas : (1) Ce même principe de dimensionnement est à appliquer aux éléments métalliques présentant des risques de rupture fragile (assemblages, boulons, soudures…). (2) Cf. nota sur les notations à la fin du §5.1.1.3.1. 5.1.1.4.2 Cas d’une conception ductile
Comme pour la vérification en flexion des sections situées en dehors des zones de rotules plastiques (§5.1.1.3.2.2), les vérifications à l’effort tranchant dans le cas d’une conception ductile sont essentiellement basées sur l’application du principe de dimensionnement en capacité Dans le cas d’une conception ductile, on dimensionne les éléments à l’effort tranchant pour les sollicitations issues de l’analyse sismique, multipliées par le coefficient de surcapacité γo, puis par un coefficient de sécurité vis-à-vis des ruptures fragiles par effort tranchant γBd1 = 1,25 :
VC = f (γ 0 .MRd_rot ) ≤
f f yk VRd ck , γ Bd 1 1,3 1,0 1
Dans l’équation ci-dessus, la courbe VC est à déduire du diagramme des efforts, incluant les actions nonsismiques dans la situation sismique de calcul et établi en considérant que les rotules plastiques potentielles sont effectivement plastifiées à leur palier plastique M0 = MRd_rot majoré du coefficient de surcapacité γ0 (avec γ0=1,35 éventuellement multiplié par 1+2(ηk-0,1)2 pour les sections fortement comprimées dans le cas de structures en béton armé et γ0=1,25 dans le cas de structures métalliques). Les vérifications vis-à-vis de l’effort tranchant sont alors menées selon les principes de l’Eurocode matériau correspondant (EC2 ou EC3) . A noter que dans les sections de rotules plastiques des éléments en béton armé, seul le noyau de béton confiné doit être considéré comme efficace et l’angle de la bielle comprimée doit être pris égal à 45°. Remarque : Ce même principe de dimensionnement est à appliquer aux éléments métalliques présentant des risques de rupture fragile (assemblages, boulons, soudures…).
Exemple d’application : Si on reprend l’exemple d’application précédent en s’intéressant toujours la pile P2 : On suppose toujours que la pile plastifie en pied sous séisme transversal et en pied et en tête sous séisme longitudinal.
– 206 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
L’effort tranchant sous séisme transversal est égal à MRd_pied /H = 200/9 = 22,2 MN. L’effort tranchant sous séisme longitudinal est égal à (MRd_pied + MRd_tête) /H = 200*2/9 = 44,4 MN. La pile étant circulaire et après multiplication par les coefficients γ0 et γBd1, on obtient l’effort tranchant dimensionnant global VRd = (22,22+44,42)1/2 *1,35*1,25 = 83,8 MN.
5.1.1.4.3 Cas d’une conception basée sur l’emploi de dispositifs antisismiques
Ce cas, qui inclut également l’emploi d’appareils d’appui en élastomère classiques, répond aux même principes de vérification que le cas de la conception élastique ou à ductilité limitée (§5.1.1.4.1), à ceci près qu’il convient de tenir compte le cas échéant des coefficients de surcapacité ou de fiabilité (γRd et γIS) dans la vérification des éléments de structure auxquels ces dispositifs sont liaisonnés et que le coefficient de comportement à prendre en compte prend la valeur de q=1. L’équation devient alors :
γ Rd .VEd ≤
1
γ Bd 1
f f yk VRd ck , 1,3 1,0
Nota : Cf. nota sur les notations à la fin du §5.1.1.3.1. 5.1.1.5 Di men sionne ment des zones nodales
L’Eurocode 8-2 (cf. EC 8-2 §5.6.3.5) prévoit également des vérifications spécifiques pour les nœuds adjacents aux rotules plastiques. Cette configuration se retrouve par exemple dans le cas de fûts multiples reliés en tête par un chevêtre ou plus généralement à l’encastrement des fûts de piles dans les semelles de fondation. L’effort tranchant de dimensionnement dans le nœud d’encastrement est établi selon la théorie des biellestirants, en appliquant toujours le principe du dimensionnement en capacité. Dans ce cas, la ductilité est supposée provenir des aciers tendus et le coefficient de sur-résistance γ0 est appliqué à l’effort de traction dans ces derniers. Le lecteur se reportera au chapitre correspondant de l’Eurocode 8-2 pour de plus amples précisions. 5.1.1.6
Tableaux récapitulatifs
• Dans le cas d’une conception à ductilité limitée (q ≤ 1,5) : Éléments en béton armé
Éléments métalliques - Cas général :
Flexion dans les piles et le tablier
fyk f MEd ≤ MRd ck , 1,3 1,0
f MEd ≤ MRd sk (1) 1,0
- Sollicitation associée à un risque de rupture fragile de l’élément (assemblages, boulons, soudures…) : q.MEd ≤
Flexion dans les fondations
Sollicitations tangentes
f f yk q.MEd ≤ MRd ck , (3) 1,3 1,0 q.VEd ≤
– 207 –
fyk f 1 VRd ck , (2) (3) 1,25 1 , 3 1,0
1 f MRd sk (1) (3) 1,25 1,0
f q.MEd ≤ MRd sk (1) (3) 1,0
- Cas général :
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
f VEd ≤ VRd sk (1) 1,0 - Sollicitation associée à un risque de rupture fragile de l’élément (assemblages, boulons, soudures…) : q.VEd ≤
1 f VRd sk (1) (3) 1,25 1,0
(1) Les vérifications des éléments métalliques sont à mener conformément aux prescriptions de l’Eurocode 8-1 §6 et de l’Eurocode 3 (2) La résistance à l’effort tranchant des éléments en béton armé est à évaluer conformément aux prescriptions de l’Eurocode 2 (3) Cf. nota sur les notations à la fin du §5.1.1.3.1.
• Dans le cas d’une conception ductile (q > 1,5) :
Flexion dans les zones de rotules plastiques potentielles
Éléments en béton armé
Éléments métalliques
fyk f MEd ≤ MRd ck , 1,3 1,0
f MEd ≤ MRd sk (1) 1,0
- Cas général :
Flexion hors des zones de rotules plastiques potentielles
f f yk MC = f (1,35.MRd_rot ) ≤ MRd ck , (3) 1,3 1,0
f MC = f (1,25.M Rd_rot ) ≤ MRd sk (1) (3) 1,0
- Sollicitation associée à un risque de rupture fragile de l’élément (assemblages, boulons, soudures…) : MC = f (1,25.M Rd_rot ) ≤
1 f MRd sk (1) (3) 1,25 1,0
- Cas général : VC = f (1,35.MRd_rot ) ≤
Sollicitations tangentes
f f yk 1 VRd ck , 1,25 1,3 1,0
(2) (3)
f VC = f (1,25.M Rd_rot ) ≤ VRd sk (1) (3) 1,0
- Sollicitation associée à un risque de rupture fragile de l’élément (assemblages, boulons, soudures…) : VC = f (1,25.M Rd_rot ) ≤
- Analyse par méthode du coefficient de comportement : vérifié implicitement par l’application des dispositions constructives parasismiques de l'Eurocode 8-2 Rotation des rotules plastiques
- Analyse en poussée progressive ou dynamique temporelle : θp,E ≤
f fyk 1 θp,u ck , 1,40 1,3 1,0
1 f VRd sk (1) (3) 1,25 1,0
- Analyse par méthode du coefficient de comportement : vérifié implicitement par l’application des dispositions constructives parasismiques de l'Eurocode 8-2 - Analyse en poussée progressive ou dynamique temporelle : θp,E ≤
1 f θp,u sk 1,40 1,0
(1) Les vérifications des éléments métalliques sont à mener conformément aux prescriptions de l’Eurocode 8-1 §6 et de l’EC3 (2) La résistance à l’effort tranchant des éléments en béton armé est à évaluer conformément aux prescriptions de l’EC2. (3) Les valeurs de MC et VC en un point donné de la structure sont à déduire du diagramme des efforts établi en considérant que les rotules plastiques potentielles sont effectivement plastifiées à leur palier plastique M0 = MRd_rot majoré du coefficient de surcapacité γ0 (avec γ0=1,35 éventuellement multiplié par 1+2(ηk-0,1)2 pour les sections fortement comprimées dans le cas de structures en béton armé et γ0=1,25 dans le cas de structures métalliques).
– 208 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
• Dans le cas d’une conception basée sur l’isolation sismique et/ou l’emploi de dispositifs antisismiques (y compris AA en élastomère fretté) :
d perm + d diff + 0,5d Th + γ IS .d Ed ≤ dRd (3)
Déformation imposée aux dispositifs
- AA élastomère :
Résistance interne du dispositif
γ IS .FEd ≤ FRd (
f matériau
γb
) (3) (4)
- Amortisseur visqueux : γ ISα b / 2 .FEd ≤ FRd ( - Autres dispositifs : FEd ≤ FRd (
Flexion dans les attaches et la structure (piles, tablier, fondations) Sollicitations tangentes ou risque de rupture fragile dans les attaches et la structure (piles, tablier, fondations)
f matériau
γb
f matériau
γb
) (3) (4)
) (3) (4)
fck f yk f sk (1), (5) , , 1,3 1,0 1,0
γ Rd .MEd ≤ MRd γ Rd .VEd ≤
f yk f yk (1), (2), (5) f 1 VRd ck , , 1,25 1,3 1,0 1,0
(1) Les vérifications des éléments métalliques sont à mener conformément aux prescriptions de l’Eurocode 8-1 §6 et de l’Eurocode 3. (2) La résistance à l’effort tranchant des éléments en béton armé est à évaluer conformément aux prescriptions de l’EC2. (3) γIS=1,5 sauf pour les appareils d'appui en élastomère à faible amortissement en zone de sismicité faible, ou associés à des butées de sécurité, pour lesquels γIS=1,0 (cf. NF-EN 15129 §8.2.1.2.11 (2)). (4) γb est le coefficient de sécurité du matériau du dispositif (=1,0 dans le cas de l'élastomère) – cf. NF EN 15129 §6.2 ; (5) γRb dépend du type de dispositif : -
Appareils d’appui en élastomère : γRb=γIS ;
-
Amortisseurs visqueux (F=C.Vα) : γRb=γISα/2 ;
-
Dispositifs élasto-plastiques ou frottant : γRb=1,30 ;
-
Autres (fusibles…) : γRb=1,10.
Cf. nota sur les notations à la fin du §5.1.1.3.1.
5.1.2 Tablier Les vérifications décrites ci-dessous et dans les paragraphes suivants concernent les ouvrages comportant un tablier qui repose sur ses appuis par l’intermédiaire d’appareils d’appui. Les ouvrages enterrés du type cadres ou portiques sont traités au chapitre 6. Les tabliers de pont, qu'ils soient en béton, acier ou mixte ne sont en général pas endommagés lors d'un séisme du fait d'un sous-dimensionnement. Néanmoins, une des exigences de base de l'Eurocode 8-2, est que le tablier reste élastique sous séisme (cf. EC 8-2 §2.3.22). Pour ce faire, ils doivent être dimensionnés en considérant la combinaison d'action sismique (cf. §4.3) et le principe du dimensionnement en capacité. De plus, les points suivants doivent être examinés : o
Les tabliers de pont en béton précontraint doivent être vérifiés sous l’effet de la composante verticale du séisme,
o
Pour des piles encastrées dans le tablier, on doit s’assurer lors du dimensionnement du nœud que la rotule plastique se forme dans la pile et non dans le tablier. On prend donc en compte le coefficient de surcapacité γ0 pour calculer le ferraillage dans le tablier dû au moment d’encastrement,
– 209 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
o
La diffusion des efforts concentrés doit être étudiée en cas de possibilité de choc du tablier, par exemple contre une butée.
Par ailleurs, de nombreux ponts ont été rendus inutilisables à la suite de séismes ayant provoqués la chute du tablier. C’est pour cette raison que la vérification aux déplacements différentiels a été introduite. Un repos d’appui minimal doit donc être respecté comme précisé en 5.2.5.
Repos d’appui minimal
Tablier
Culée Figure 106 : Repos d’appui
Par ailleurs, on verra en 5.2 qu’il est recommandé de mettre en place des dispositifs de butée.
5.1.3 Appuis En plus des calculs de vérification énumérés ci-dessous, il convient d’appliquer les dispositions constructives détaillées au chapitre 5.3 du présent document. 5.1.3.1 Organes d'appui des tabliers
Ils sont traités au paragraphe 5.2. 5.1.3.2 Piles
On vérifie la résistance des sections près des nœuds de structure et au niveau des variations du coffrage ou du ferraillage vertical. Les principes de cette justification selon le choix de conception (élastique ou ductile) et la zone concernée (rotule plastique ou zone courante) obéissent aux principes du §5.1.1. Logiquement, la justification des sections devrait se faire en flexion composée déviée du fait de la concomitance entre les trois directions d’excitation. Pour ce qui est des ouvrages courants à biais modéré (angle de biais supérieur à 78 grad ou 70°) et lorsque les formes des piles sont simples, il est admissible de se limiter à des vérifications en flexion composée selon deux plans perpendiculaires (plans définis par un axe vertical et un des axes principaux d’inertie de la section horizontale du fût de pile). Dans le cas des ouvrages non courants, la vérification doit être menée en flexion composée déviée à partir des combinaisons sismiques.
– 210 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Axe transversal
Axe longitudinal du tablier Axe principal d’inertie du fût
Armatures dimensionnées en flexion simple M H
Moment fléchissant et effort horizontal sous combinaisons sismiques E1 ± 0.3 E2 ± 0.3 E3 après projection sur les axes principaux d’inertie du fût de pile
Figure 107 : Simplification admise pour les ouvrages courants aux piles de forme simple (cas d’un appui biais par rapport au tablier)
Fvt Fht Fvp Fhp
Figure 108 : Efforts sismiques sur une pile
Les vérifications doivent se faire en tenant compte des effets sismiques suivants : o
effort transmis par le tablier noté Fht sous séisme horizontal et Fvt sous séisme vertical,
o
effort d’inertie dû à l’accélération de la masse de la pile noté Fhp sous séisme horizontal et Fvp sous séisme vertical.
Contrairement au cas des culées (voir paragraphe suivant), on pourra négliger la poussée et la butée des terres ainsi que l’effort d’inertie provenant de l’accélération de la masse des terres sur les semelles. Néanmoins, dans le cas de sol de mauvaise qualité, une interaction sol-structure pourra être prise en compte par modélisation du sol. Dans le cas des piles immergées, une masse additionnelle d'eau agissant horizontalement doit être prise en compte pour tenir compte de l'interaction hydrodynamique.
– 211 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Si l’appareil d’appui est fixe, il n’est pas nécessaire de prendre en compte l’accélération de la masse des piles car la masse de la moitié supérieure aura été intégrée dans celle du tablier conformément à l’article 4.2.2.3 de l'Eurocode 8-2. Si l'appareil d'appui est glissant, on peut considérer que la pile vibre indépendamment du tablier. La période fondamentale de la pile est alors celle d’une console encastrée en pied et libre en tête. L’accélération à appliquer à la masse de la pile s’en déduit par lecture du spectre de réponse. Dans le cas d'un appareil d'appui en caoutchouc fretté, les modes de pile et de tablier doivent être combinés quadratiquement (voir §4.5.4.2). Donc, dans chaque plan vertical, les sollicitations doivent être cumulées quadratiquement si les modes propres concernés sont différents. Par contre, elles doivent être cumulées directement si les modes propres en jeu sont identiques. Si l’on désigne par S(F) les sollicitations créées dans la section considérée par l’effort sismique F, les combinaisons à prendre en compte, par exemple lorsque le séisme horizontal est prépondérant, sont : o
S (Fhp ) + [S ( Fht )] + 0,3 ⋅ S ( Fvp) 2 + [S ( Fvt )] pour un tablier qui n’est pas fixé sur la pile 2
2
2
(appareils d’appui en caoutchouc fretté ou appareils d’appui glissant), o
[S (Fhp ) + S ( Fht )] + 0,3 ⋅ [S (Fvp ) + S ( Fvt )] pour
un tablier qui est fixé sur la pile ou la culée (appareil d’appui fixe, section rétrécie de béton, encastrement).
Néanmoins, dans les zones de sismicité faible ou modérée les effets du séisme vertical dans les piles peuvent être négligés. Dans les zones de forte sismicité, ces effets seront pris en compte uniquement si les piles sont soumises à des contraintes de flexion importantes, dues aux actions permanentes verticales du tablier, ou lorsque le pont se trouve à proximité d'une faille sismotectonique active. Il est important d’identifier les combinaisons critiques afin de limiter les calculs. Par exemple, en direction longitudinale, on vérifiera les sections d’aciers tendus sous les deux combinaisons suivantes : o
G + S vertical ascendant + 0,3 S longitudinal
o
G + 0,3 S vertical ascendant + S longitudinal
Il conviendra de s’assurer de la résistance en compression du béton sous les combinaisons suivantes : o
G + S vertical descendant + 0,3 S longitudinal
o
G + 0,3 S vertical descendant + S longitudinal
Les piles métalliques doivent être vérifiées conformément aux prescriptions de l'Eurocode 8.2 qui renvoie à l'Eurocode 8-1, paragraphes 6.5.2, 6.5.3 (les aciers de classe 3 n'étant admis que lorsque le coefficient de comportement reste inférieur à 1.5), 6.5.4, 6.5.5 et 6.5.9. Selon le type d'ossature des piles, il convient de se reporter également aux paragraphes 5.7.1.2 à 5.7.1.4 de l'Eurocode 8-2. 5.1.3.3 Culées
Par souci de simplification, il est admissible de se limiter à des vérifications séparées dans le sens longitudinal et dans le sens transversal ou, pour une culée biaise, dans les plans définis par un axe vertical et un des axes principaux d’inertie de la section horizontale du voile de la culée (voir Figure 107). La poussée dynamique des terres est calculée par la méthode de Mononobe-Okabe explicitée au §4.5.7. On néglige en général la butée et le poids des terres se trouvant à l’avant de la culée car celles-ci sont susceptibles d’être remaniées lors de travaux d’entretien ou d’élargissement.
– 212 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Les efforts d’inertie de la culée ou des terres reposant sur la semelle sont calculés à partir des coefficients sismiques kh et kV. Nous proposons de considérer un coefficient r égal à 1 et d’utiliser les valeurs suivantes pour toutes les culées de pont dans le calcul des forces d’inertie :
k h = α .S .ST (r = 1) k v = ± 0,5 k h
Dans le cas de culée connectée de manière flexible au tablier (appareils d’appui glissants on en élastomère), un coefficient r supérieur à 1, qui suppose un déplacement acceptable de la culée, peut être utilisé pour le calcul de la poussée dynamique des terres, à condition : de prévoir ce déplacement de calcul dans l’espace à ménager entre le tablier et le mur garde grève de la culée ; de s’assurer que le déplacement considéré peut avoir réellement lieu avant que ne survienne une défaillance éventuelle de la culée elle-même. Cette exigence est supposée satisfaite si le dimensionnement du corps de la culée est effectué en utilisant la poussée des terres supplémentaire due au séisme ∆Ed majorée de 30 % (∆Ed = Ed-E0, avec Ed : poussée dynamique des terres calculée conformément au §4.5.7, , E0 = poussée statique des terres). La vérification des culées doit se faire en tenant compte des effets indiqués sur les figures suivantes. Il est nécessaire de distinguer les vérifications de stabilité interne (ferraillage des murs ou de poteaux...) et la stabilité externe (glissement ou renversement de la semelle...). Pour les culées connectées de manière rigide au tablier, il convient en outre de limiter les détériorations du sol ou du remblai situés à l’arrière en vérifiant que le déplacement sismique de calcul de la culée ne dépasse pas la valeur dlim fixée ci-après (cf. clause 6.7.3 de l’EC8-2 et son annexe nationale) : catégorie d’importance IV : dlim = 50 mm ; catégories d’importance I, II ou II : aucune limitation. Ce déplacement doit être calculé sur la base d’un modèle global qui intègre l’effet de l’interaction entre le sol et les culées en utilisant des bornes inférieures et supérieures pour les caractéristiques de raideur du sol (cf. §4.4.3.3).
– 213 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
• pour les vérifications de stabilité interne : • EFFORTS SISMIQUES VERS LE TABLIER
Fvt Fht
Fht, Fvt : efforts transmis par le tablier sous séisme Fvc Fhc
Fhc, Fvc : efforts provenant de l’accélération de la culée, calculés avec kh et kV Ed : poussée des terres calculée selon Mononobe-Okabe
Ed
EFFORTS SISMIQUES VERS LA CULEE Fvt Fht
Fvc Fhc Ed
Fht, Fvt : efforts transmis par le tablier sous séisme Fhc, Fvc : efforts provenant de l’accélération de la culée, calculés avec kh et kv Ed : butée des terres avec un coefficient de butée Kpd de 1
Lorsque le chevêtre repose sur des poteaux et non sur un voile continu, on appliquera la poussée ou la butée des terres sur une surface fictive trois fois plus large que le poteau (sans dépasser la largeur totale de la culée) afin de tenir compte de l’effet de voûte qui se développe dans le sol. Il est loisible de ne pas effectuer la vérification avec l’effort sismique vers la culée, sous réserve de disposer un ferraillage symétrique dans le mur ou les poteaux de la culée. En outre, cette vérification n’est pas imposée par l’EC8-2 pour les culées connectées de manière flexible au tablier. L’EC8-2 prévoit de dimensionner les culées connectées de manière rigide au tablier sous les effets cumulés de la poussée statique des terres et de la réaction du sol provoquée par le mouvement de la culée et des murs en aile en direction du remblai. Cette disposition est couverte pour les cas courants par les hypothèses définies cidessus.
– 214 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
• pour les vérifications de stabilité externe :
EFFORTS SISMIQUES VERS LE TABLIER Fvt Fht
Fhc, Fvc : efforts provenant de l’accélération de la culée, calculés avec kh et kv
Fve Fhe
Fht, Fvt : efforts transmis par le tablier sous séisme
Fvc
Ed Fhc
Ed : poussée des terres calculée selon MononobeOkabe Fhe, Fve : efforts provenant de l’accélération de la masse des terres reposant sur la semelle, calculés avec kh et kv
La poussée ou la butée des terres sont appliquées sur une surface verticale fictive qui passe par l’arrière de la semelle et de même largeur que cette dernière. La masse des terres à accélérer avec le mur est délimitée par cette surface. On pourra négliger l’effet de la dalle de transition. Les concomitances entre les sollicitations créées par chacun des efforts doivent être prises en compte de la manière suivante : • les sollicitations créées par Fhc, Fvc, Fhe, Fve et Ed sont concomitantes et doivent être cumulées directement ; • les sollicitations créées par Fht et Fvt doivent être cumulées directement si le tablier est fixé sur la culée. Si le tablier n’est pas fixé sur la culée, les pratiques anciennes (PS92) consistaient à les cumuler quadratiquement avec les précédentes. L’EC8-2 (§6.7.2) préconisent désormais de supposer que ces actions agissent en phase, ce qui revient également à un cumul direct. Dans tous les cas de figure, lorsque le séisme horizontal est prépondérant, les combinaisons des sollicitations sont par exemple : •
[S (Fhc ) + S (Ed ) + S ( Fhe ) + S ( Fht )] + 0,3 ⋅ [S (Fvc ) + S ( Fve ) + S ( Fvt )]
La poussée des terres sous séisme désignée par Ed intègre l’effet du séisme vertical (cf §4.5.7). De ce fait, des valeurs différentes sont à utiliser selon que le séisme vertical est ascendant ou descendant. Les vérifications à faire dans le sens transversal sont basées sur les combinaisons analogues.
5.1.4 Fondations Dans un premier temps, le projeteur doit contrôler que le sol ne présente pas de risque de liquéfaction (cf. 3.4.1). La vérification des fondations se fait selon l’Eurocode 7-1 en tenant compte des précisions détaillées ci-après. Les états limites concernant les matériaux constitutifs des éléments de fondation sont justifiés selon les règles adaptées (EC2 et EC3). Les effets des actions sur les fondations doivent être évalués de la manière suivante (cf. EC8-5 §5.3) :
– 215 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Pour les structures dissipatives, en considérant un dimensionnement en capacité tenant compte du développement possible d’une sur-résistance, sans toutefois dépasser les effets des actions obtenus à partir de l’analyse de la situation sismique de calcul et en considérant l’hypothèse du comportement élastique de la structure ; Pour les structures non dissipatives (ou faiblement dissipative : q0.06) (cf. NF EN 15129 §8.2.1.1). Cette justification doit être réalisée suivant le §8.2.3.3 de la norme NF EN 15129, aussi bien pour les appareils d'appui en élastomère à fort amortissement que ceux à faible amortissement (cf. NF EN 15129 §8.2.3.1). Néanmoins, pour les appareils d'appui à faible amortissement soumis à une faible action sismique (cf. NF EN 15129 §8.2.1.1), les prescriptions de la norme NF EN 1337-3 s’appliquent, complétée par celles du §8.2.1.2.11 de la NF EN 15129.
– 220 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Nota : Une « faible action sismique de calcul » au sens de la norme NF EN 15129 (§8.2.1.1) est définie de telle sorte que l'effet du séisme (déplacement ou effort) reste inférieur à l'effet total des autres actions dans la situation sismique de calcul. 5.2.4.1 Valeur du module de cisaille ment G
Pour les appareils d’appui en élastomère à faible amortissement, on pourra utiliser le module de cisaillement dynamique Gb obtenu à partir du module de cisaillement conventionnel Gg défini dans la norme NF EN1337-3 §4.3.1.1 avec Gb=1,1.Gg = 1,1x0,9 = 1,0 MPa (cf. §4.4.3.4.1.1). Pour les appareils d'appui à fort amortissement, le fabriquant devra réaliser les essais recommandés dans la norme NF EN 15129 §8.2.4.2.5.2 pour déterminer le module de cisaillement dynamique. Le module de cisaillement de calcul correspond à la déformation de 100% déterminée à 23°C par l'essai de type §8.2.2.1.3.2. 5.2.4.2 Co mbinaison des directions des séis mes et cu mul des actions
Il convient de se référer au paragraphe §4.3.3 du présent guide. 5.2.4.3 Cas où le séis me est entièreme nt repris par les appareils en élasto mère 5.2.4.3.1.1
Distorsion maximale
Les vérifications concernent la distorsion totale et la distorsion provenant uniquement des efforts horizontaux. Distorsion totale : Il convient de vérifier les appareils d'appui normaux en élastomère conformément aux règles du paragraphe 8.2.3.4.2 de la norme NF EN 15129 en utilisant la valeur KL donnée dans l'Annexe C de la norme NF EN 13373 (la valeur est généralement de 1). Cette vérification est valable à la fois vis-à-vis du séisme ultime et du séisme de service (pris en compte dans le cas des ouvrages ferroviaires par exemple).
(
)
ε t ,d = K L ε c, E + ε q , max + ε α ,d ≤ 7 / γ m
où : - γ m =1,0 - ε t ,d est la somme des déformations. - ε c ,E est la déformation de calcul due aux charges de compression de calcul
ε c,E =
6 SN Ed ,max Ar E c
'
où N Ed ,max est la force verticale, Ar l'aire réduite, S le coefficient de forme, G le module de cisaillement,
(
)
E c = 3G 1 + 2S 2 dans le cas des dispositifs circulaires et rectangulaires (pour les dispositifs annulaires, cf. '
NF EN 15129).
Nota : Pour le calcul de l'aire réduite, seules les déformations d'origine non-sismique sont prises en compte, conformément aux prescriptions de la NF EN 15129 §8.2.3.1. - ε q , max est la distorsion de calcul due au déplacement horizontal maximal dEd :
ε q , max = – 221 –
d Ed Tq
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
où T q est l’épaisseur totale de l’élastomère actif au cours du cisaillement. Le déplacement de calcul sous séisme doit être affecté d'un coefficient de fiabilité γIS=1,50. - ε α , d est la distorsion de calcul due à la rotation angulaire de calcul, selon le §5.3.3.4 de la norme NF EN 13373 avec un angle minimal de rotation de 0.003 radians dans chaque direction orthogonale ;
ε α ,d
a ' 2α + b ' 2α t a ,d b,d i = 3 2∑ t i
α a, d est l'angle de rotation autour de la largeur de l'appareil d'appui ;
α b, d est l'angle de rotation (le cas échéant) autour de la longueur de l'appareil d'appui ; ti est l'épaisseur d'un feuillet d'élastomère.
Distorsion due à l’effort horizontal : La distorsion maximale autorisée ( ε q ,max ) est évaluée, en fonction de l’état limite considéré, à : - εqmax service ≤ 1,0 pour le séisme de service (cas des ouvrages ferroviaires par exemple) - εqmax ultime ≤ 2,5 pour le séisme ultime
5.2.4.3.1.2
Epaisseur des frettes
Le dimensionnement de l'épaisseur des frettes se fait comme en statique, conformément à la norme NF EN 1337-3 §5.3.3 avec kh=1 s'il y a un noyau central et kh=2 s'il y en a plusieurs.
5.2.4.3.1.3
Flambement
Cette vérification est valable pour tous les élastomères exceptés ceux à noyaux de plomb. On vérifie sous combinaisons sismiques :
Pcr 4
Si
N Ed ,max <
Si
Pcr P ≤ N Ed ,max < cr 4 2
et que
N Ed ,max <
d Ed
alors
alors
a' 1−
≤ 0,7 ;
2 ⋅ N Ed ,max Pcr
Pcr dans tous les cas. 2
Avec Pcr, la charge critique de flambement ; Pcr =
λ ⋅ G ⋅ AR ⋅ a ' ⋅ S Tq
si le coefficient de forme, S > 5 ;
– 222 –
≥ 0,7
d Ed a'
;
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
N Ed ,max la force verticale, Ar l'aire réduite, a' la largeur des frettes, S ' le coefficient de forme, Tq l'épaisseur totale d'élastomère, G le module dynamique de cisaillement, λ coefficient valant 1,3 pour une section rectangulaire et 1,1 pour une section circulaire. 5.2.4.3.1.4
Glissement
Le glissement est à vérifier sous la combinaison sismique la plus défavorable (lorsque le séisme vertical est ascendant). On effectuera les mêmes vérifications que pour les charges courantes selon la norme NF EN 1337-3, mais en tenant compte du séisme. Toutefois, le coefficient de frottement à utiliser est celui de l’État Limite de Service. Kf Fxy ,d ≤ 0,1 + σm
⋅ N Ed ,min
où
σm =
N Ed ,min
et
Ar
σ m ≥ 3,0 MPa
Dans la plupart des cas, il ne sera pas possible de vérifier les conditions de non-glissement en zone sismique et on sera conduit à prévoir des dispositifs anti-cheminement (taquets …). A noter que la norme NF EN 15129 ne prévoit pas de vérification au glissement (considérant sûrement implicitement que des dispositions anticheminement sont systématiquement requises en zone de sismicité non négligeable). On se réfèrera donc à la NF EN 1337-3 lorsque cette vérification est nécessaire (efforts sismiques suffisamment faibles pouvant justifier une dispense de dispositifs anti-cheminement).
5.2.4.3.1.5
Stabilité vis-à-vis du roulement
Si des isolateurs encastrés ou des isolateurs à liaison par goujons sont utilisés, au lieu des méthodes standards de fixation, il faut s'assurer de la stabilité vis-à-vis du roulement en utilisant l'équation :
d Ed ≤
1
N Ed,min ⋅ a ′
γ R (K b Tb + N Ed,min )
(24)
où : NEd,min est l'effort vertical minimal dans la situation sismique de calcul Kb est la rigidité en cisaillement horizontal mesurée à la plus grande déformation en cisaillement d'essai Tb est la hauteur totale du dispositif
γR est un coefficient partiel, dont la valeur recommandée est égale à 1,5. Nota : Les appareils d'appui à faible amortissement soumis à une faible action sismique de calcul au sens du §8.2.1.1 de la norme NF EN15129, sont vérifiés suivant la norme NF EN 1337-3, c'est à dire selon les mêmes critères que pour les justifications vis-à-vis des actions non-sismiques, à l'exception de la distorsion due à l'effort horizontal provenant des seuls efforts horizontaux, pour laquelle la valeur autorisée sous séisme est deux fois supérieure à la valeur admise pour les autres charges : ε q,d =
d Ed ≤ 2,0 Tq
Par ailleurs, le déplacement de calcul sous séisme n'est dans ce cas affecté d'aucun coefficient de fiabilité (cf. NF EN 15129 §8.2.1.2.11).
– 223 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
5.2.4.4 Cas où les appareils d'appui sont couplés à des attelages sis mi q ues jouant le rôle de butée de sécurité
Dans certains cas de figure, il peut être intéressant de compléter les appareils d'appui en élastomère par des attelages sismiques jouant le rôle de butée de sécurité. Cela permet notamment de se dispenser du coefficient de fiabilité γIS sur le dimensionnement de l’appareil d’appui. Ces attelages doivent être prévus avec un jeu ou des marges appropriées de manière à demeurer inactifs sous l'action sismique de calcul, et n'intervenir qu'en fin de course de l'appareil d'appui. Dans ce cas il conviendra en théorie de représenter correctement le comportement de la liaison entre le tablier et l’appui considéré avant et après mise en butée ou sollicitation de l’attelage. Ceci se traduit généralement par une courbe bi-linéaire à rigidité croissante telle que définie sur la figure ci-dessous. A minima, une approximation linéaire équivalente basée sur la rigidité sécante (courbe C) peut être utilisée -Approche introduite pour la 1ère fois dans le cadre de l’Eurocode 8- (cf. EC 8-2 figure 6.2). La valeur de la rigidité sécante est alors évaluée à partir de la somme de la flèche élastique maximale de l’appui et du jeu de l’attelage (ou course de l’appareil d’appui) dy+s tels que l'énergie globale mise en jeu (surface balayée par la courbe ci-dessous) soit égale à 1,5 fois l'énergie au déplacement sismique de calcul dEd. Dans les cas les plus courants, une approche simplifiée est néanmoins permise, qui consiste uniquement à dimensionner les butées de sécurité pour 75% des efforts sismiques de calcul repris par les appareils d’appui en fin de course (cf. §4.4.3.4.3 et nota).
Légende s : Jeu de l'attelage dy : Flèche élastique maximale de l'élément d'appui A — Rigidité de l'appareil d'appui B — Rigidité de l'élément d'appui C — Approximation linéaire de la courbe
Figure 109 : Courbe force-déplacement de la liaison
Le dimensionnement des butées est défini au paragraphe 5.2.6.3. 5.2.4.5 Appareils d’appui en élastomère sur une partie des piles et fixes sur les autres piles
Dans ce cas, les appareils d'appui en élastomère sont dimensionnés pour résister aux déplacements sismiques de calcul (majorés du coefficient γIS), les efforts sismiques étant repris principalement (mais pas uniquement) par les appuis fixes.
5.2.4.6 Appareils d'appui en élastomère sur tout ou partie des appuis, co mplétés par des dispositifs de blocage reprenant les efforts sis mique s
Dans certains cas, il est utile de bloquer le fonctionnement de l’appareil d’appui dans une des deux directions horizontales, par exemple pour préserver l’intégrité des équipements (joints de chaussée, dispositifs de retenue...), ou parce qu'on ne souhaite pas dimensionner les appareils d'appui pour les efforts sismiques de calcul. Bien entendu, le modèle de calcul dynamique doit tenir compte de ce blocage.
– 224 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Le dimensionnement des butées est défini au paragraphe 5.2.6.4. 5.2.4.7 Appareils d’appui en élastomère associé à un dispositif de glissement
Il est bien évident qu’un tel appareil d’appui ne reprend pas les efforts sismiques. Par contre, il doit être dimensionné pour supporter sans endommagement le déplacement sismique de calcul.
5.2.5 Repos d’appui Il faut prévoir une surface d’appui suffisante pour le tablier sur les piles et les culées afin d’éviter que le tablier ne s'échappe de sa surface d’appui. L'Eurocode 8-2 demande de vérifier que le recouvrement entre le tablier et son support présente une longueur suffisante. La valeur du repos d’appui minimal, lov, se calcule par la formule suivante (cf. EC 8-2 §6.6.4) : l ov = l m + d eg + d es où :
- lm est la longueur minimale d'appui assurant la transmission en toute sécurité de la réaction verticale, avec un minimum de 400 mm, - deg est le déplacement effectif des deux parties, dû à la variation spatiale du déplacement sismique du sol : d eg = ε e L eff ≤ 2d g
avec : ε e = 2d g / L g
Lorsque le pont se situe à une distance inférieure à 5 km d'une faille sismique active connue, capable de produire un événement sismique d'une magnitude M > 6,5, et à défaut d'une étude sismologique spécifique, il convient que la valeur de deg à utiliser soit prise égale au double de la valeur donnée dans l'expression ci-dessus. - dg : le déplacement de calcul du sol conformément au paragraphe 4.2.5.3, - Lg : le paramètre de distance spécifié dans le paragraphe 4.3.4 sur la variabilité spatiale. - Leff : la longueur effective du tablier, prise comme la distance entre le joint de séparation du tablier concerné et la connexion rigide la plus proche entre le tablier et la structure sous-jacente. Si le tablier est entièrement connecté à un groupe de plus de deux piles, alors Leff doit être considérée comme la distance entre l'appui et le centre du groupe de piles. Dans ce contexte, le terme «connexion rigide» désigne l'assemblage du tablier ou d'un tronçon de tablier à un élément de la structure sous-jacente, soit de manière monolithique, soit par l'intermédiaire d'appareils d'appui fixes, d'attelages sismiques ou de dispositifs de transmission des chocs, ne comportant pas de fonction de limitation des forces. - des : le déplacement sismique effectif du support dû à la déformation de la structure. Pour des tabliers connectés à des piles, soit de manière monolithique, soit par des appareils d'appui fixes agissant comme des attelages sismiques complets : des = dEd où dEd est la valeur de calcul totale du déplacement longitudinal dans la situation sismique de calcul. Pour des tabliers connectés à des piles ou à une culée, par des attelages sismiques dont le jeu est égal à s : des = dEd + s Dans le cas d'un joint de séparation intermédiaire entre deux tronçons du tablier, il convient d'évaluer lov en prenant la racine carrée de la somme des carrés des valeurs calculées pour chacun des deux tronçons du tablier. Au droit d'un support d'extrémité d'un tronçon de tablier sur une pile intermédiaire, il convient de considérer lov comme la valeur évaluée plus le déplacement maximal de la tête de la pile dans la situation sismique de calcul, dE.
– 225 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
TABLIER
TABLIER DEPLACE SOUS SEISME lov
≥ lov
des + deg lm ≥ 400mm
APPAREIL D’APPUI
CULEE
APPAREIL D’APPUI DISTORDU
CULEE
Figure 110 : Repos d'appui
5.2.6 Butées Les butées pourront être en charpente métallique ou en béton armé. Il convient de distinguer deux sortes de butées : o
Les butées de sécurité (qui entrent dans la famille des attelages sismiques) qui sont destinées à empêcher le tablier de quitter ses appuis sous l’effet d’un séisme de niveau potentiellement supérieur au séisme de calcul. Ces butées permettent les libres distorsions des appareils d'appui sous les actions sismiques de calcul. Elles ne s’imposent pas sur les lignes d’appui assurant le blocage transversal ou longitudinal du tablier en service (appareils d’appui fixes), sauf si ceux ci ne sont pas dimensionnés au séisme (voir paragraphe 5.2.2) ;
o
Les butées de blocage qui sont destinées à limiter fortement le déplacement relatif du tablier par rapport à ses appuis sous séisme. Ces butées sont utilisées en complément à des appareils d'appui en élastomère fretté ou à des appareils d'appui spéciaux glissants. Ces butées jouent, bien évidemment également le rôle de butées de sécurité.
Nota : Pour les ouvrages biais, l'orientation des facettes de butée est importante car elle conditionne le bon fonctionnement du tablier. Une disposition adéquate des faces de contact, permet de limiter les phénomènes de rotation d'axe vertical.
a)
b)
– 226 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
c) Figure 111 : a) butées de blocage latéral sur appui - b )butées latérales de sécurité sur appui - c) butées de blocage latéral sur appui
5.2.6.1 Butées longitudinales
La mise en place de butées longitudinales de sécurité n’est en général pas nécessaire du fait de la sécurité qu’apportent les remblais contre les culées. Néanmoins, lorsque qu'un choc risque de se produire dans une zone d'about sensible (par exemple ancrage de la précontrainte en extrémité de tablier), il est nécessaire de les mettre en œuvre pour protéger cette zone. De telles butées peuvent être envisagées en complément à des appareils d’appui en élastomère fretté lorsque l’application du coefficient de fiabilité γIS s’avère trop pénalisant. Sous séisme de calcul, les appareils d'appui se déforment jusqu'à un niveau prédéfini (jeu entre l'appareil d'appui au repos et la butée), ce qui permet d’augmenter favorablement la souplesse de l’ouvrage, puis les butées prennent le relais pour éviter une distorsion trop importante et une rupture de l'appareil d'appui. Des butées de blocage peuvent également parfois être envisagées, par exemple lorsque l’on souhaite bénéficier d’un coefficient de comportement sur certaines piles (piles centrales le plus souvent). Dans ce cas, le jeu de réglage des butées doit permettre la libre dilatation du tablier en service (température, fluage, retrait), mais ne doit pas être trop important afin de limiter les effets de chocs sur les appuis, le risque d'échappement d'appui et de permettre la transmission des charges verticales. Les dispositifs de transmission de chocs (STU) peuvent être considérés comme des butées, car ils bloquent les déplacements sous séisme (tout en laissant libre les déplacements en service). Ils doivent être dimensionnés conformément à la norme NF EN 15129. Pour les ponts à comportement ductile, leur résistance doit être dimensionnée pour répondre au dimensionnement en capacité. Pour les ponts à comportement à ductilité limitée, leur résistance doit être au moins égale à la réaction due à l'action sismique de calcul multipliée par le coefficient de comportement q. Il convient également de vérifier leur capacité de déplacement vis-à-vis du déplacement sismique. Ces dispositifs peuvent également avoir une fonction de limitation des forces qu'ils transmettent. 5.2.6.2 Butées transversales
Les appareils d'appui doivent être, en général, complétés par des butées latérales de sécurité ou de blocage, afin de limiter les déplacements relatifs du tablier par rapport à ses appuis et d’empêcher la chute du tablier. Lorsqu’il est prévu un système de liaison entre le tablier et les appuis par des appareils d’appui en élastomère fretté, il est conseillé de mettre en place au droit des culées, des butées de blocage avec un faible jeu entre le tablier et celles-ci (1 à 2 cm). Ce faible jeu permet de ne pas entraver le fonctionnement de l’ouvrage en service et limite les effets de choc sous séisme. On considérera dans les calculs sismiques que l’ouvrage est fixe transversalement au droit des culées. On pourra également remplacer l'ensemble appareils d’appui en élastomère fretté et butées par des appareils d’appui monodirectionnels correctement dimensionnés. Dans le cas d’un tablier bloqué transversalement sur deux lignes d’appuis (les deux culées par exemple), le blocage transversal du tablier sur les autres lignes d’appuis n’est en général pas nécessaire (sauf réseaux majeurs, biais, courbure). Des butées de sécurité sont tout de même conseillées pour les ouvrages de portée supérieure à 40m.
– 227 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
5.2.6.3 Di men sionne ment des butées de sécurité
Les butées de sécurité n’entrent en jeu qu’en cas de déformation extrême de l’appareil d’appui. Elles doivent donc être conçues de telle sorte qu’elles laissent libre un jeu égal au déplacement calculé sous la combinaison sismique. Dans le cas de butées de sécurité disposées pour éviter la chute du tablier sous l’effet du séisme longitudinal, il convient de prendre en compte également une portion des effets thermiques et la totalité des effets différés dans le calcul du jeu : d = dG + 0,5 dTh + ddiff + dE o
dG : déplacement dû aux actions permanentes et quasi-permanentes;
o
dTh : déplacement de calcul dû aux mouvements thermiques;
o
ddiff : déplacement dû aux effets différés;
o
dE : déplacement sismique.
Nota : Pour les ponts urbains à trafic intense, c’est-à-dire ceux de la classe 1 de l'Annexe Nationale de l'Eurocode 1-2, il convient d'ajouter 20 % des charges d’exploitation à caractère normal (30% pour les ponts ferroviaires). Le jeu dégagé ne doit pas être plus important afin de limiter les effets de choc provenant de la mise en mouvement du tablier.
d
TABLIER
≥ 10 cm
Appareil d’appui
Bossages d’appui
APPUI
Figure 112 : Principe des butées de sécurité
La Figure 112 présente une disposition possible. La butée est obtenue par des tenons en béton armé solidaires de l’appui ou du tablier et se recouvrant sur une hauteur de l’ordre de 10 cm. La butée de sécurité ainsi constituée fonctionne dans le sens transversal uniquement. Une autre disposition possible consiste à intégrer les butées dans les murs caches qui reposent sur les chevêtres des culées et jouxtent le tablier. Les efforts de dimensionnement des butées de sécurité sont l’une ou l’autre des deux approches décrites au §4.4.3.4.3 : évaluation de la raideur sécante équivalente telle que l'énergie globale mise en jeu (surface balayée par la courbe décrivant le comportement avant et après mise en butée) soit égale à 1,5 fois l'énergie au déplacement sismique de calcul dEd (Approche introduite pour la première fois ici, inspirée du §6.6.1 de l'EC 8-2 et remplaçant la règle des 40% du guide AFPS 92) ou prise en compte uniquement de la raideur avant butée et dimensionnement forfaitaire des butées de sécurité pour 75% de l’effort sismique nominal. Il doit être vérifié que les butées n’amènent pas de dispositions préjudiciables à la durabilité des appareils d’appui (évacuation des eaux, possibilités de vérinage, gène dans les dilatations thermiques...).
– 228 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
5.2.6.4 Di men sionne ment des butées de blocage
Les butées de blocage reprennent la totalité des efforts sismiques, elles doivent donc être dimensionnées pour résister aux actions de calcul résultant du principe de dimensionnement en capacité (efforts résultant de l'atteinte du niveau de plastification dans la pile sous-jacente). Le dispositif est analogue aux butées de sécurité décrit ci-dessus, avec un jeu réduit à une valeur ne dépassant pas 15 mm. Cette distance constitue un compromis entre : o
les tolérances de réalisation sur chantier,
o
le jeu nécessaire pour laisser libres les déformations dans la direction perpendiculaire au blocage,
o
le jeu à ne pas dépasser pour éviter les effets de chocs.
5.2.7 Attelages sismiques de travées indépendantes Les attelages sismiques doivent être calculés selon la norme adaptée à leur matériau constitutif. Les vérifications se feront à l’État Limite Ultime en respectant le principe de dimensionnement en capacité (cf. §5.1.1.2) s'ils doivent reprendre la totalité des efforts sismiques, mais avec la valeur nominale de la masse des éléments de tablier considérés (c’est-à-dire que G ne sera pas pondéré par 1,35). Les coefficients de sécurité portant sur les matériaux sont ceux définis dans l'Eurocode 8-2 (1,3 pour le béton et 1,0 pour l'acier). Au niveau de deux travées indépendantes, à défaut d'une analyse plus précise qui tienne compte de l'interaction dynamique des sections adjacentes du tablier, les éléments de liaison peuvent être dimensionnés pour une action égale à 1,5αg.S.ST.Md où αg est l'accélération de calcul au niveau d'un sol de classe A, S est le paramètre du sol et Md est la masse du tronçon du tablier lié à une pile ou à une culée, ou la plus faible des masses des deux tronçons de tablier de chaque côté du joint de séparation intermédiaire (cf. EC8-2 §6.6.3.1).
5.2.8 Justification des dispositifs antisismiques – Amortisseurs Certains ouvrages pourront comporter des dispositifs amortisseurs qui permettent de dissiper l’énergie sismique en exploitant le comportement visco-élastique d’un fluide ou la plasticité des métaux (cf. §4.6.4.1). Leur grand intérêt est de limiter les efforts généraux dans l’ouvrage, et par suite d’optimiser le dimensionnement des fondations et des appuis. Ces dispositifs doivent être dimensionnés conformément à la norme NF EN 15129 "Dispositifs antisismiques". Néanmoins l’Eurocode 8-2 donne quelques recommandations supplémentaires. Il préconise de dimensionner ces dispositifs sur la base d’un coefficient de fiabilité γIS = 1,50 à appliquer au déplacement de calcul, lui-même établi en tenant compte de la variabilité des propriétés des amortisseurs (cf. EC 8-2, §4.2.4.5). A noter que dans le cas d’amortisseurs visqueux F=C.Vα, la majoration correspondante de l’effort transmis est γISα/2 ( cf. EC 8-2 §7.6.2(4)NOTE). Le reste de la structure (y compris l’ancrage des dispositifs sur leur appui) doit être dimensionné en appliquant le principe du dimensionnement en capacité par rapport à l’effort maximal de calcul dans les dispositifs conformément aux principes énoncés au §5.1.1.2. Bien entendu, l’utilisation de dispositifs amortisseurs ne dispense pas d’appliquer le coefficient de sécurité supplémentaire γBd1 vis-à-vis des ruptures fragiles d’effort tranchant. A noter enfin que l’Eurocode 8-2 (§7.7) requiert de justifier d’une capacité de rappel latéral minimale pour les isolateurs/amortisseurs. Cette exigence est généralement couverte dans la configuration classique ou le dispositif est couplé sur un ou plusieurs autres appuis à des appareils d’appui élastiques ou des butées de blocage. Le lecteur se reportera au chapitre correspondant de l’Eurocode pour de plus amples précisions sur la méthode de vérification à employer.
– 229 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Nota : Il est à noter que la norme NF EN 15129 définit également un critère de recentrage. Malgré une approche différente entre la norme NF EN 15129 et l'Eurocode 8-2 (énergétique ou en déplacement), les deux critères donnent des résultats proches, néanmoins, concernant les aspects structuraux, l'Eurocode prime sur la norme NF EN 15129 qui est une norme produit.
5.3
Dispositions constructives
5.3.1 Introduction Les règles antérieures à l'Eurocode 8 sur les dispositions constructives étaient issues du guide de l'AFPS pour la conception parasismique des ponts. L'Eurocode 8 introduit de nouvelles règles, qui suivent globalement la même logique que les précédentes, mais présentent quelques particularités. Contrairement aux règles du guide AFPS, les dispositions constructives de l'Eurocode 8 concernent surtout les sections critiques (conception à ductilité limitée), les zones de rotules plastiques potentielles (conception ductile), ou les zones adjacentes à ces régions. Si le dimensionnement en capacité est respecté, les autres zones ne doivent pas nécessairement être munies de dispositions constructives particulières, en particulier concernant le ferraillage longitudinal minimal. De plus, le principe des dispositions constructives est adapté au type de conception (ductile ou à ductilité limitée) et au fonctionnement réel des sections. Si celles-ci sont par exemple naturellement suffisamment ductiles, le ferraillage de confinement ne sera pas nécessaire. Ces nouvelles dispositions représentent l’exigence réglementaire stricte. Dans le présent guide, elles ont été complétées par certaines recommandations issues des bonnes pratiques anciennes [ 8] [ 9] lorsque nous considérions que celles-ci apportaient un plus au comportement global de la structure, ou lorsqu'elles donnaient des éléments de réponse à des points où l'Eurocode 8 est muet. Les dispositions constructives parasismiques à mettre en oeuvre dans les ouvrages d'art sont décrites dans le chapitre 6 de l'Eurocode 8 partie 2. Le paragraphe 6.2 est consacré aux piles en béton, le paragraphe 6.3 aux piles en acier (qui renvoie vers l'Eurocode 8 partie 1), le paragraphe 6.4 aux fondations, le paragraphe 6.5 aux dispositions qui concernent la ductilité limitée, et le paragraphe 6.6 aux attelages sismiques. Au sens de l’Eurocode 8-2, seules certains régions de la structure (principalement des appuis), correspondant aux zones les plus sollicitées sous l’effet des sollicitations sismiques et identifiées comme des zones potentielles de dissipation d’énergie (zones critiques ou zones de rotules plastiques potentielles) sont soumises à l’application de dispositions constructives parasismiques spécifiques. Il en résulte que les régions dimensionnées par demeurer essentiellement élastique sous l’effet du dimensionnement en capacité (cas d’une conception ductile), de même que les régions situées en dehors des zones critiques (cas d’une conception en ductilité limitée) ne sont pas soumises à ces dispositions. Ce sera le cas notamment des tabliers ainsi que des fondations (cf. EC8-2 §6.4), dans lesquels la formation des rotules plastiques n'est pas autorisée, en dehors des zones nodales d’encastrement des piles ou des pieux, qui restent soumises aux prescriptions du paragraphe 5.3.5.1.4 ainsi que de certaines régions des fondations profondes (pieux ou barrettes) systématiquement considérées comme des rotules plastiques potentielles (cf. §5.3.4.3.2). De la même façon, certains éléments structuraux non-critiques tels que les murs caches de culées, voire les murs en retour situés à une distance suffisamment importante de l’ouvrage pour ne pas impacter le remblai d’accès ne sont pas soumis à l’application des dispositions constructives parasismiques. Il convient de noter que ces dispositions décrites dans l'Eurocode 8 sont des dispositions complémentaires à adopter, par rapport à celles prescrites dans l'Eurocode 2, pour le comportement en zone sismique. Il est donc impératif que les différentes prescriptions de l'Eurocode 2 soient appliquées (ferraillage minimal en particulier), et complétées le cas échéant par celles de l'Eurocode 8.
– 230 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
5.3.2 Rôle des dispositions constructives parasismiques Le respect des dispositions constructives parasismiques imposées par l'Eurocode 8-2 est particulièrement contraignant dans toutes les zones où des rotules plastiques sont susceptibles de se former ainsi que plus généralement dans les sections de la structure les plus sollicitées (extrémités de piles encastrées, parties des pieux traversant des zones de sol hétérogènes…). Ces sections particulièrement exposées et sujettes à des dispositions constructives très spécifiques sont appelées sections critiques ou zones de rotules plastiques potentielles. Évidemment, les dispositions constructives à mettre en œuvre sont beaucoup plus contraignantes dans le cas d’une conception ductile, basée sur de larges incursions des matériaux dans leur domaine non-linéaire de comportement, que dans le cas d’une conception élastique ou à ductilité limitée. En particulier, le niveau de ductilité visé dans le cas d’une conception ductile par l’application des règles de calcul et dispositions constructives forfaitaires fixées dans l’Eurocode 8-2 visent à garantir que la structure pourra supporter au moins 5 cycles complets de déformation jusqu’au déplacement ultime sans produire de défaillance des armatures de confinement et sans diminution de plus de 20% de la résistance ultime des éléments en béton armé.
Figure 113 : Niveau de ductilité théorique visé par l’Eurocode 8-2 (Eurocode 8-2, fig. 2.3)
Le rôle des dispositions constructives est donc multiple : •
Elles permettent d'assurer une ductilité suffisante dans les zones rotules plastiques, notamment quand la section est très comprimée et que sa rupture intervient par manque de ductilité du béton (qui est fragile en compression). On place alors des armatures de confinement en nombre suffisant pour augmenter la résistance, mais surtout la ductilité du béton et donc de la section.
Figure 114 : Loi de comportement du béton confiné (Eurocode 8-2, fig. E.1)
Nota : Sous l'effet d'une charge de compression, le béton a tendance à se dilater sur les cotés. Le ferraillage transversal entrave cette dilatation et confine le béton. La pression de confinement est proportionnelle à la – 231 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
contrainte de traction dans les cadres transversaux, qui augmente avec le gonflement du béton. Pour une section circulaire, la pression de confinement vaut :
σ=
2 f yc Asc Dc s
Figure 115 : Principe du confinement
Figure 116 : Rôle des armatures de confinement
•
Elles permettent d'éviter le flambement des armatures verticales comprimées dans les zones de rotules plastiques, qui est un phénomène nettement plus probable qu'en statique du fait des fortes compressions et déformations de compression qui existent, de l’alternance des cycles de compression/traction et de la perte en général de l'épaisseur d'enrobage (béton par définition non confiné) qui a un rôle stabilisateur en fonctionnement statique.
Figure 117 : Mise en évidence du rôle des armatures transversales vis-à-vis du flambement des aciers longitudinaux
– 232 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
•
Elles permettent d'éviter les inconvénients de la perte de la zone d'enrobage dans la rotule plastique (le rôle de cette couche est important pour le flambement, pour l'ancrage des armatures transversales et le recouvrement des barres longitudinales).
•
Dans les précédentes règles PS92, elles permettaient aussi d'assurer une ductilité minimale partout dans la structure (à l'exception du tablier), à l'aide d'un ferraillage minimal plus élevé, pour se prémunir contre un comportement imprévu sous l'action sismique. Ce minimum de ductilité généralisé n'a pas été repris par l'Eurocode 8.
Les principales dispositions constructives concernent donc l’augmentation des longueurs d’ancrage et de recouvrement des armatures longitudinales, et une forte densité d’armatures transversales. Ces armatures transversales assurent la triple fonction : o
d’améliorer la ductilité du béton par confinement, en particulier dans les zones les plus sollicitées;
o
de garantir la résistance des sections vis-à-vis des ruptures fragiles d’effort tranchant;
o
d’empêcher le flambement des armatures longitudinales.
Figure 118 : Reprise des ruptures d’effort tranchant par une densité importante d’armatures transversales
5.3.3 Choix des matériaux Toujours dans la logique de conférer une ductilité optimale à la structure, seuls les aciers de classe C sont autorisés par l’Eurocode 8-2 (limite de déformation εsu ≥ 75%0) dans toutes les zones ou des rotules plastiques sont susceptibles de se former (cas de la conception ductile uniquement). Des aciers de classe B (limite de déformation εsu ≥ 50%0) au minimum sont à utiliser dans tous les autres cas (cf. EC 8-2 §5.2.1). Aucune spécification relative au choix de la classe de résistance du béton n’est précisée. Le concepteur gardera néanmoins à l’esprit que de manière générale, plus la résistance du béton augmente et plus sa ductilité diminue. L’utilisation d’un béton haute résistance dans les appuis associée à une conception ductile devra donc être justifiée par un calcul spécifique et une vérification des niveaux de déformation admissibles dont les hypothèses intègreront les caractéristiques réelles des matériaux (analyse en moment-courbure telle que décrite au §4.6.2).
5.3.4 Étendue des zones concernées par les dispositions constructives de l'Eurocode 8-2 5.3.4.1 Piles di mensionnées en ductilité limitée
L'Eurocode 8-2 introduit une possibilité de fonctionnement de la structure en ductilité limitée. Ce type de conception est intéressant dans les zones faiblement sismiques (zone à sismicité faible, voire modérée si le coefficient d'importance de l'ouvrage est faible) lorsqu'on n'a pas besoin d'un coefficient de comportement important, et que l'on veut éviter les lourdes dispositions constructives associées. – 233 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Les dispositions constructives à mettre en oeuvre pour la ductilité limitée sont définies au paragraphe 6.5 de l'Eurocode 8-2 : o Zones telles que MRd < 1,3 MEd (avec MRd ≥ MEd imposé par le dimensionnement) : des dispositions constructives concernant le confinement et le flambement sont à prévoir sur la hauteur concernée. Cette hauteur est alors appelée zone critique. Néanmoins, les dispositions constructives relatives au confinement dépendent également du taux de compression moyen de la section et du niveau de sollicitation des matériaux (cf. EC 8-2 §6.2.1.1(2)P) : o Zones telles que MRd < 1,3 MEd et η k = N Ed / Ac f ck ≤ 0,08 : aucune disposition constructive de confinement imposée. Néanmoins, nous recommandons d’adopter, dans les zones où des rotules plastiques sont susceptibles de se former (chevêtre de pile portique par exemple), le même ferraillage de confinement que dans les zones critiques soumises à un taux de compression ηk > 0,08. o
o
Zones telles que MRd < 1,3 MEd et η k = N Ed / Ac f ck > 0,08 : •
Si µφ admissible > 7 et εcu < 3,5‰ : aucune disposition constructive de confinement (εcu ramené à 2‰ dans l'EC2 dans le cas des sections creuses) ;
•
Si µφ admissible < 7 : dispositions constructives de confinement.
Zones telles que MRd > 1,3 MEd : aucune disposition constructive n'est imposée ;
Il est donc en théorie possible, dans le cas de la conception en ductilité limité, de s'abstenir de toute disposition constructive, et de toute vérification de ductilité, dès lors que l'on surdimensionne les sections de 30%, par rapport à des efforts réduits par le coefficient de comportement (compris entre 1 et 1,5 suivant le type de structure).
Notas : (1) Pour les ponts dont la conception est essentiellement élastique (MRd > MEd_élastique évalué sur la base de q = 1) mais dont la typologie pourrait justifier l’utilisation d’un coefficient de comportement q > 1,3, le surdimensionnement de 30% est automatiquement couvert et aucune disposition constructive particulière n’est donc réglementairement requise, puisque : MRd > MEd_élastique = q.MEd
avec q > 1,3
(2) Pour les ponts dont la typologie limite le coefficient de comportement à des valeurs strictement inférieures à 1,3 (cas notamment des ponts à béquilles inclinées, des structures bloquées et des arcs, ainsi que des ponts pour lesquels la reprise des sollicitations sismiques est essentiellement assurée par des appareils d’appui en élastomère fretté dans le cas général – cf. §4.1.2), le surdimensionnement de 30% est à justifier par le calcul, ou des dispositions constructives particulières telles que définies ci-après sont à mettre en œuvre. (3) Nous attirons l’attention du concepteur sur le fait que le niveau de dimensionnement sismique de référence, quel qu’il soit, demeure conventionnel (puisque théoriquement associé à une certaine période de retour d’événement) et peut être dépassé en réalité. Les séismes de l’Aquila en 2009 en Italie et de Lorca en 2011 en Espagne ont par exemple enregistré des accélérations de 2 à 3 fois supérieures aux accélérations de référence définies par les normes parasismiques de ces pays. L’application des dispositions constructives parasismiques permet, dans le cas de tels dépassements, un meilleur comportement structurel par une amélioration de la ductilité des constructions. C’est pourquoi elles demeurent fortement recommandées dans les zones de sismicité modérées à fortes (zones 3 à 5 du nouveau zonage sismique national) et dans les sections les plus sollicitées de la structure.
– 234 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
5.3.4.2 Piles di mensionnées en ductilité
Dans le cas des ouvrages dimensionnés en ductilité, l'Eurocode 8-2 distingue deux types de zones concernées par les dispositions constructives : o
les zones de rotules plastiques potentielles
o
les zones adjacentes aux zones de rotules plastiques potentielles
Dans le cas des piles ductiles, l'Eurocode 8-2 définit la longueur des rotules plastiques potentielles Lh en fonction du niveau de compression : o
sections comprimées à moins de 30% (η k ≤ 0.30 ) : la longueur des zones de rotules plastiques potentielles, Lh, est la plus grande des dimensions suivantes (cf. EC 8-2 §6.2.1.5 et Figure 119 cidessous) : • la hauteur de la section du fût dans le plan de la flexion (perpendiculairement à l'axe de rotation de la rotule) ; • la distance entre le point de moment maximal et le point où le moment de calcul est inférieur à 80% de la valeur du moment maximal ;
o
sections comprimées à plus de 30%, la longueur des zones de rotules plastiques potentielles Lh est majorée de 50%
Les dispositions constructives relatives au confinement sont à mettre en oeuvre dans les zones de rotules plastiques potentielles selon le taux de compression moyen de la section et le niveau de sollicitation des matériaux (cf. EC 8-2 §6.2.1.1) : : o η k = N Ed / Ac f ck ≤ 0,08 : aucune disposition constructive de confinement (cf. EC 8-2 §6.2.1.1(2)P). Néanmoins, nous recommandons d’adopter, dans les zones où des rotules plastiques sont explicitement prévues par le concepteur (chevêtre de pile portique par exemple), le même ferraillage de confinement que dans les zones de rotules plastiques potentielles soumises à un taux de compression ηk > 0,08. o η k = N Ed / Ac f ck > 0,08 : •
Si µφ admissible > 13 et εcu < 3,5‰ : aucune disposition constructive de confinement (εcu ramené à 2‰ dans l'EC2 dans le cas des sections creuses) ;
•
Si µφ admissible < 13 : dispositions constructives de confinement.
– 235 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Autres zones (sans dispositions constructives)
γ0 MRd(z)
0,8MEdmax
Zone adjacente à la rotule plastique de longueur Lh
Zone de rotule plastique de longueur Lh
MEdmax MRd
Figure 119 : Définition des zones de rotule plastique potentielle
5.3.4.3 Fondations 5.3.4.3.1 Fondations superficielles
Les fondations superficielles (semelles, puits…) doivent être conçues pour rester dans le domaine élastique de comportement des matériaux. Par conséquent, l'Eurocode 8-2 ne prescrit aucune disposition constructive particulière pour ces éléments (cf. EC 8-2 §6.4.1). Des dispositions minimales de bonne conception sont néanmoins décrites au §5.3.5.6.1 ci-après. 5.3.4.3.2 Fondations profondes
L’Eurocode 8-2 (cf. EC8-2 §5.8.1(1)P) stipule que « les fondations des ponts ne doivent pas être utilisées intentionnellement comme des sources de dissipation de l’énergie hystérétique, et doivent par conséquent être dimensionnées, dans toute la mesure du possible, de manière à demeurer élastiques sous l’action sismique de calcul ». Néanmoins, lorsqu'il est impossible d'éviter une plastification localisée dans les pieux ou les barrettes par l’utilisation du dimensionnement en capacité, il convient d’assurer l’intégrité des fondations et leur comportement ductile par l’application systématique des dispositions constructives des rotules plastiques potentielles à certaines zones (cf. EC8-2 § 6.4.2(1)P – notamment version anglaise du texte plus explicite sur ce point que la version française). Ces zones (cf. EC 8-2 §6.4.2(2)) correspondent aux parties supérieures des fondations au niveau de l'encastrement dans la semelle, aux zones de moment maximal, ainsi qu’aux zones situées aux interfaces des couches de sol ayant des raideurs sensiblement différentes (rapport des modules de cisaillement supérieur à 6). Leur étendue est définie par les relations suivantes : •
au niveau de l'encastrement sous la semelle : Lh=3Φpieu (ou 3Bmin,barrette)
•
de part et d’autre de moment maxi : Lh=2Φpieu (ou 2Bmin,barrette)
•
interface de sols différents: Lh=2Φpieu (ou 2Bmin,barrette)
Nota : Les zones de rotules plastiques potentielles et les sections critiques Lh définies dans les paragraphes précédents correspondent aux zones dans lesquelles des dispositions constructives particulières (confinement, tenue des armatures longitudinales…) doivent être adoptées. Ne pas confondre avec la longueur équivalente de rotule plastique Lp qui permet de modéliser la zone de rotule plastique théorique servant au calcul des valeurs – 236 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
des rotations et des déformations plastiques dans le cadre des méthodes d’analyses en déplacement (cf. §4.6.3). De façon évidente, Lh englobe Lp.
5.3.5 Recommandations générales vis-à-vis des dispositions constructives 5.3.5.1 Dispositions relatives aux armatures longitudinales 5.3.5.1.1 Pourcentages mini et maxi
Contrairement aux règles "PS 92", l'Eurocode 8 ne fixe plus de pourcentage minimal d'armatures longitudinales à mettre en place dans les différents éléments des appuis de l'ouvrage. Néanmoins, les zones de rotules plastiques sont en général très ferraillées. Il en va de même des zones immédiatement adjacentes compte-tenu du dimensionnement en capacité. De plus, on rappelle que l'Eurocode 2 impose des ferraillages minimum dans les sections de béton pour éviter la rupture fragile. La fourchette ci-dessous, issue des anciennes règles "PS92", fournit une idée de l’ordre de grandeur des ratios de ferraillage longitudinal à adopter dans les appuis (zones de rotules plastiques potentielles ou zones critiques des piles et des pieux) des ouvrages en zone sismique, et plus particulièrement dans les zones de sismicité modérée à forte. La valeur haute de la fourchette permet notamment de s’assurer que la plasticité soit amenée davantage par les aciers que par le béton, ce qui offre une meilleure garantie de ductilité, tandis que la valeur basse est censée garantir une répartition des fissures et donc de la plastification des barres sur une zone suffisamment étendue : 0,5% Ac,couronne ≤ As ≤3% Ac (6% si recouvrement) Nota : Dans le cas de piles massives, le ratio d’armatures longitudinales tel que défini ci-dessus est à évaluer non pas sur la section brute complète mais uniquement sur l’anneau périphérique ferraillé dont l’épaisseur doit correspondre au minimum à D/8, où D est le diamètre de la section dans le cas des piles circulaire ou le plus grand côté dans le cas des piles rectangulaires. On privilégiera cependant dans ce cas des piles de sections creuses, conduisant à la fois à des économies de matières (ainsi qu'une réduction des risques de réaction sulfatique interne) et à une réduction des efforts sismiques, directement proportionnels à la masse (mais induisant des difficultés de mise en œuvre du ferraillage plus importantes).
Figure 120 : Adaptation pour les piles massives
5.3.5.1.2 Espacement des armatures longitudinales
L'espacement des barres longitudinales dans les zones de rotules plastiques potentielles de la conception ductile, de même que dans les zones critiques de la ductilité limitée, doit être inférieur ou égal à 200 mm. Cette limitation n'est pas explicitement donnée dans l'Eurocode 8 mais provient de la limitation de l'espacement des cadres transversaux (cf. EC 8-2 §6.2.2 et §5.3.5.2.1.2 et 5.3.5.2.2.3 du présent guide). Il est également recommandé d’adopter la même disposition dans les zones directement adjacentes aux zones de rotules plastiques potentielles de la conception ductile.
– 237 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
5.3.5.1.3 Continuité
L'Eurocode 8 n'autorise aucun recouvrement dans les zones de rotules plastiques potentielles (cf. EC8-2 §6.2.3(3)P). Cette interdiction nécessite, pour l’ancrage des piles dans les semelles de fondation, de poursuivre les armatures en attente des semelles de fondation sur une hauteur égale à la longueur de la rotule plastique, augmentée de la longueur de recouvrement, et qui engendre des sujétions spéciales pour assurer le maintien de ces armatures en attente de longueur importante. Nous recommandons, lorsque cela ne pose pas de difficultés de chantier rédhibitoires, de conserver cette prescription pour les zones critiques dans le cas de la conception en ductilité limitée, ou à défaut d’augmenter forfaitairement dans ce cas les longueurs de recouvrement de 50 φL et de privilégier des recouvrements alternés). Concernant les longueurs de recouvrement, les anciennes règles PS92 recommandaient de majorer de 30% toutes les longueurs de recouvrement, y compris dans les zones peu sollicitées par l'action sismique. Cette disposition n’est pas reprise dans l’Eurocode 8-2. A noter néanmoins que les dispositions générales de l'Eurocode 2 concernant le recouvrement des armatures doivent s'appliquer. Ces dispositions majorent sensiblement les longueurs de recouvrement par rapport aux anciennes règles BAEL, notamment lorsque plus de 25% des armatures se recouvrent dans une même section (cf. EC2 §8.7.3). Nous recommandons donc de limiter les prescriptions relatives aux longueurs de recouvrement à celles déduites de l’application de l’Eurocode 2 tout en s’assurant, dans les zones de rotules plastiques potentielles de la conception ductile ainsi que dans les zones critiques de la ductilité limitée, que ces longueurs couvrent celles issues des anciennes règles PS92, soit 50 φL dans les fûts de pile et 65 φL dans les fondations profondes. Par ailleurs il conviendra autant que faire ce peut de prévoir des recouvrements alternés dans les zones adjacentes aux zones de rotules plastiques.
Recouvrements alternés l0 = max (EC2, 50 φL)
Figure 121 : Principe général de dimensionnement (cas d’une conception ductile, également recommandé en ductilité limitée)
– 238 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Figure 122 : Armatures en attente
Aucune spécification particulière concernant les dispositifs spéciaux de raboutage (manchons, soudures) n'existe dans les textes de référence. On ne pourra y avoir recours qu'après des études et essais spécifiques. En l'absence d'essais spécifiques, ces éléments supposés "fragiles" seront dimensionnés avec un coefficient de sécurité de 1,25, identique au coefficient γBd1 utilisé pour les ruptures fragiles d'effort tranchant. 5.3.5.1.4 Ancrage des armatures d'extrémité
Conformément aux prescriptions de l'Eurocode 8, les ancrages d’extrémité doivent être assurés au moyen de coudes à 90°. Ces coudes doivent se situer dans la partie confinée de la pièce ou des pièces sur lesquelles l’élément est assemblé et être disposés le long de la face la plus éloignées du dit élément, la concavité du coude étant dirigée vers l’intérieur du béton (cf. EC 8-2, §5.6.3.5.4(4)). Dans le cas particulier des piles-portiques, si l'épaisseur de l'élément d'ancrage (poteau ou fût de pile) est insuffisante, des dispositions supplémentaires peuvent être prises afin d'assurer l'ancrage des armatures d'extrémité (cf. Figure 123) : o
prolongement de la poutre (ou chevêtre) sous forme d'ergots extérieurs,
o
armatures aboutées ou plaques d'ancrage soudées aux extrémités des armatures…
Figure 123 : Dispositions complémentaires pour l'ancrage des armatures d'extrémité applicables par exemple aux piles-portiques (Eurocode 8-1, fig. 5.13)
– 239 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
5.3.5.2 Dispositions relatives aux armatures transversales
Dans les sections ne nécessitant pas d'armatures de confinement (zones courantes ou justifiant d’un niveau de ductilité admissible suffisant sans disposition particulière), aucune prescription sur les armatures transversales n'est requise par l'Eurocode 8-2, autres que celles imposées par l’application de l’Eurocode 2. Les dispositions ci-dessous s’appliquent donc, en complément de celles imposées par l’EC2, uniquement aux zones de rotules plastiques potentielles et zones critiques soumises à l’application des dispositions constructives parasismiques, telles que définies au §6 de l’Eurocode 8-2 et au §5.3.4 du présent guide. 5.3.5.2.1 Confinement (Eurocode 8-2 §6.2.1)
Les dispositions constructives relatives au confinement doivent être mises en œuvre dans les zones explicitées au §5.3.4. Il est précisé dans l'Eurocode 8-2, (cf. EC 8-2 §6.2.4), que les piles creuse en forme de caisson simple ou multiple, avec ηk inférieur à 0,20 n'ont pas besoin de vérifier les clauses concernant les armatures de confinement à condition de vérifier celles relatives au flambement des armatures longitudinales. Dans les zones comprimées profondes, le confinement doit s'étendre jusqu'à la profondeur à laquelle la déformation en compression dépasse 0,5.εcu2.
5.3.5.2.1.1
Quantité d'armatures de confinement exigée
L'Eurocode 8-2 définit la quantité d'armatures de confinement par le rapport mécanique d'armatures : ωwd = ρw. fyd / fcd
(Eurocode 8-2, Eq. 6.3)
où ρw définit le ratio volumique d'armatures transversales :
avec : Asw sL b Asp Dsp
- ρw = Asw / sL.b
dans le cas de sections rectangulaires ;
- ρw = 4 Asp / Dsp.sL
dans le cas de sections circulaires.
section transversale totale des armatures transversales espacement longitudinale dimension de la section transversale du noyau en béton mesurée au nu extérieur de la frettes section transversale de la barre de frettes diamètre formé par la barre de frettes (diamètre de cerces ou de spires)
La quantité minimale d'armatures de confinement doit alors être déterminée comme suit dans les deux directions horizontales : - Pour des cadres rectangulaires et des épingles : ωwd,r > max ( ωw,req, 2/3 ωw,min)
(Eurocode 8-2, Eq. 6.6)
- Pour des cadres circulaires : ωwd,c > max ( 1,4 ωw,req, ωw,min)
(Eurocode 8-2, Eq. 6.8)
Dans les équations ci-dessus, ωw,req est défini par l'équation suivante : ωw,req = Ac/Acc λ ηk + 0,13 fyd/fcd (ρL –0,01)
– 240 –
(Eurocode 8-2, Eq. 6.7)
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
où Ac est l'aire de la section brute de béton, Acc la section transversale du noyau en béton confiné, fyd et fyc les résistances caractéristiques des aciers et du béton, ρL est le pourcentage d'armatures longitudinales et λ et ωw,min sont spécifiés dans le tableau suivant en fonction du mode de comportement recherché : Comportement sismique
λ
ωw,min
Ductile
0,37
0,18
A ductilité limitée
0,28
0,12
Tableau 7 : Valeurs minimales de λ et ωw,min (Eurocode 8-2, Tab. 6.1)
Au-delà de la zone de rotule plastique Lh, la quantité d'armatures transversales peut être réduite progressivement. Néanmoins, elle doit rester supérieure à 50% de la quantité requise dans la zone de rotule plastique dans la zone directement adjacente à cette zone (notamment les zones d’ancrage dans les semelles ou le cas des piles encastrées dans le tablier), sur une longueur supplémentaire de Lh (cf. EC 8-2, §6.2.1.5(4)).
5.3.5.2.1.2
Espacement des armatures de confinement
L'espacement longitudinal sL des armatures transversales (cadres, épingles, cerces…) dans les zones de rotule plastique doit satisfaire chacune des deux conditions suivantes : o
sL < 6 fois le diamètre des barres longitudinales, dbl;
o
sL < 1/5 de la dimension minimale du noyau de béton confiné, mesuré par rapport à l'axe des frettes.
La distance transversale sT entre les côtés des frettes ou entre les épingles transversales supplémentaires, ne doit quant à elle pas dépasser (cf. EC 8-2, §6.2.1.2(2)) : o
sT < 1/3 de la dimension bmin du noyau de béton confiné, mesuré par rapport à l'axe des frettes,
o
sT < 200 mm
st1, st2 ≤ min { bmin /3 ; 200 mm}
Figure 124 : Dispositions typiques des armatures de confinement
Dans les zones adjacentes sur une longueur supplémentaire de Lh (notamment les zones d’ancrage dans les semelles ou cas des piles encastrées), l’espacement des armatures transversales imposées par le confinement peut être progressivement augmenté de sL à 2sL, en conservant les règles de positionnement des armatures. Le bon confinement des zones de rotules plastiques par des armatures transversales constitue une condition essentielle au bon comportement sismique des structures en béton armé. Son efficacité dépend donc fortement de la géométrie de la section. o
Cas d'une section pleine
Dans le cas des sections pleines, la façon dont le confinement est atteint diffère fortement selon que la section est de géométrie circulaire ou rectangulaire. – 241 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Pour une section circulaire ou elliptique, le confinement le plus efficace est obtenu grâce à des cerces transversales (dispositions A, B et C de Figure 125 ci-dessous). Ces cerces doivent néanmoins être complétées par des armatures de maintien des aciers longitudinaux vis-à-vis du flambement lorsque le diamètre de la section est supérieur à 1,50 m (cf. §5.3.5.2.2.3). Pour les sections rectangulaires, les dispositions de détail du type D sont interdites car elles ne permettent pas une tenue suffisante des armatures longitudinales. Les dispositions de type E sont possibles mais souvent difficiles à mettre en œuvre sur le chantier (problèmes d'encombrement). Pour ce type de section rectangulaire, la disposition F, constituée de cerces enchevêtrées, peut donc représenter une alternative intéressante, la distance entre les centres des cerces enchevêtrées ne devant cependant pas dépasser 0,6 fois le diamètre de la cerce. Pour les sections de type mur-voile, un exemple de confinement est représenté par la disposition G.
Figure 125 : Confinement des sections pleines
o
Cas d'une section creuse
Les sections creuses peuvent être utilisées avantageusement pour réduire la masse et les forces d'inertie sismiques, notamment dans le cas des piles de pont de hauteur élevée. Néanmoins leurs dimensions doivent respecter le ratio épaisseur du voile sur largeur de la section, supérieur ou égal à 1/8, comme indiqué sur la Figure 126.
Figure 126 : Confinement des sections creuses
– 242 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Dans le cas des sections circulaires creuses, les cerces intérieures sont sollicitées en compression pour assurer le maintien des armatures longitudinales de la face interne. Elles ne peuvent donc pas être considérées comme efficaces vis-à-vis du maintien du filant. Par conséquent, les armatures longitudinales internes doivent être maintenues par des cadres les reliant aux filants extérieurs (cf. Figure 126 ci-dessus). Les armatures transversales intérieures ne pourront par ailleurs être prises en compte dans le confinement que sous réserve qu'elles soient ligaturées ou soudées avec les cadres.
5.3.5.2.1.3
Autres règles
Les armatures transversales seront de préférence constituées par des cadres ou des étriers dont la continuité, la fermeture et l'ancrage sont assurés au moyen de crochets d'angle égal à au moins 135° et comportant un retour rectiligne de 10Ø. En cas de difficulté de mise en œuvre, l'Eurocode 8-2 autorise l'utilisation d'épingles comportant des crochets à 135° à une extrémité et des crochets à 90° à l'autre extrémité, à condition que le taux de compression de la section ne dépasse pas 30% de l'effort de compression critique et que les crochets différents soient alternés sur les épingles adjacentes, à la fois horizontalement et verticalement. L'ancrage des cerces doit être réalisé sur deux armatures principales au minimum et il convient de ne pas disposer tous les recouvrements sur la même génératrice.
Figure 127 : Ancrage des cerces d'une pile de pont
Conformément à l'Annexe Nationale de l'Eurocode 8-2 (§6.2.1.4(1)P), les spires hélicoïdales sont interdites dans toutes les zones de rotules plastiques. Les épingles sont en général à éviter et il est recommandé de ne les utiliser qu’en complément de cadres quand le nombre d’armatures longitudinales l’impose. Enfin, et conformément aux anciennes règles PS92, il est recommandé, dans le cas des piles et des pieux, de disposer le premier cours d'armatures transversales à 50 mm au plus du nu de l'appui ou de l'encastrement.
Nota : La densité du ferraillage transversal est particulièrement importante dans les zones de rotules plastiques. L'espacement maximal entre deux barres longitudinales est de 200mm. (6.2.1.2 (2)P). Contrairement aux anciennes règles, l'Eurocode 8-2 ne donne pas de diamètre minimum. Il est néanmoins recommandé d'adopter des armatures de diamètre au moins égal à 10mm (hors armatures de construction).
En parement, l'emploi de recouvrements rectilignes, ainsi que celui de coudes ou crochets d'angle au centre inférieur à 135° assurant la continuité, la fermeture ou l'ancrage des armatures transversales est interdit (cf. Figure 128 ci-dessous). Les épingles sont admises en renfort dans les poutres dalles (radiers, piédroits, dalles) sous réserve que leur proportion n'excède pas 1/3 et qu'elles soient ancrées par des crochets à 180°.
– 243 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Figure 128 : Recouvrement des armatures transversales en parement
Nous conseillons également de disposer le premier cours d'armatures transversales à 50mm maximum du parement. 5.3.5.2.2 Tenue des armatures longitudinales (flambement)
Les dispositions anti-flambement ci-dessous sont applicables en conception ductile dans les zones de rotules plastiques potentielles et leur zone directement adjacente, et en conception en ductilité limitée dans les zones critiques.
5.3.5.2.2.1
Quantité d'armatures anti-flambement exigée
La section des armatures transversales AT doit vérifier la relation :
AT ≥
∑A
L
f ys
1,6 f yt
× sT
(Eurocode 8-2, Eq. 6.10 et recommandations AFPS 90 art. 11.423)
où sT représente l'espacement des armatures transversales en m, ΣAL est la somme des aires des barres maintenue(s) par chaque brin d'armature transversale (à comptabiliser uniquement sur la fibre comprimée de la section dans la situation sismique de calcul considérée), fys et fyt sont les contraintes caractéristiques de l'acier des armatures longitudinales et transversales respectivement. Dans les zones directement adjacentes sur une longueur supplémentaire de Lh (notamment les zones d’ancrage dans les semelles ou cas des piles encastrées), les quantités d'armatures transversales imposées par le flambement sont réduites de moitié. 5.3.5.2.2.2
Espacement des armatures anti-flambement
Afin de se prémunir contre les risques de flambement des armatures longitudinales entre deux lits d’armatures transversales, l'Eurocode 8-2 impose dans les zones de rotule plastique, ou les zones critiques des pièces fléchies un espacement maximal s tel que :
s ≤ δ d bl où dbl représente le diamètre des armatures longitudinales.
5 ≤ δ = 2,5 (f tk /f yk ) + 2,25 ≤ 6
(Eurocode 8-2 2, Eq. 6.9)
où fyk et ftk correspondent respectivement à la contrainte de limite élastique et à la contrainte plastique maximale (ou contrainte de rupture) caractéristiques des armatures longitudinales. – 244 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Dans les zones adjacentes aux zones de rotules plastiques potentielles, sur une longueur supplémentaire de Lh sur le fût de pile, l’espacement des armatures transversales imposées par le flambement peut être progressivement augmenté de sL à 2sL, en conservant les principes de positionnement des armatures. 5.3.5.2.2.3
Autres règles
Les armatures transversales doivent être disposées de façon telle que chaque barre longitudinale (ou chaque groupe de barres) soit individuellement maintenue par au moins un lit sur deux d’armatures transversales s'opposant à son flambement vers l'extérieur, avec un espacement transversal (horizontal) sT ne dépassant pas 200 mm (Eurocode 8-2 §6.2.2). Chaque cours d'armature doit comprendre au moins un cadre (ou plusieurs, si la forme de la section l'exige) disposé de façon à s'opposer au gonflement du béton. Pour les sections circulaires de diamètre inférieur à 1,50 m, il est loisible de considérer que le maintien des armatures filantes est assuré par la courbure des armatures transversales sur la face tendue (cf. Figure 129 cidessous). Dans le cas des pieux ou des fûts de pile de diamètre supérieur à 1,50 m, il convient donc de prévoir des cadres ou étriers individuels supplémentaires tout en s'assurant de conditions nécessaires à la bonne mise en œuvre du béton (entraxe de 10 cm mini à conserver entre armatures transversales ou longitudinales, diamètre des cerces à limiter si possible à des HA20…).
(a)
(b)
Figure 129 : Maintien des armatures longitudinales a) cas d'un fût circulaire de diamètre D' ≤ 1,50m b) cas d'une section
rectangulaire hors zone critique
Figure 130 : Exemple d'une section rectangulaire en zone critique
5.3.5.3 Zones nodales
Les zones nodales (encastrements pile/semelle, pile/chevêtre, pile/tablier ou nœuds des piles-portiques) sont généralement très sollicitées en cas de séisme. Leur confinement doit donc être particulièrement soigné. L'Eurocode 8-2 (§5.6.3.5.4) recommande ainsi de prolonger les armatures transversales (cadres, épingles, cerces) des poutres et poteaux jusqu'à l'intérieur du nœud (cf. Figure 131). Nous recommandons notamment de conserver 50% des quantités d’aciers de confinement requises dans les zones de rotules plastiques adjacentes.
– 245 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Les armatures longitudinales du poteau doivent également pénétrer dans la poutre et s'ancrer sur la face opposée à l'interface poteau/poutre, les retours doivent être en crochets à 90° vers l'intérieur du nœud. Des étriers verticaux doivent maintenir au flambement les armatures longitudinales de la poutre au niveau de la face opposée au poteau. Nous recommandons également de le faire sur la face contiguë au poteau par au moins un lit sur deux d'étriers en alternance. Des étriers horizontaux doivent également maintenir les armatures verticales du poteau et se prolonger à l'intérieur du nœud (cf. EC 8-2 §5.6.3.5.4(1)). En cas de difficulté de mise en œuvre, des sujétions alternatives sont toutefois acceptées (50% des cadres peuvent être remplacé par des armatures en U encerclant les barres longitudinales en face "libre" du nœud, possibilité de décaler de part et d'autre du nœud, et sous certaines conditions de conservation des sections d'aciers nécessaires, quelques aciers en bordure immédiate à l'extérieur de nœud (cf. EC 8-2, §5.6.3.5.4(2),(6) et (7)).
a) section verticale dans le plan xz, b) vue en plan / rotule plastique selon la direction x, c) vue en plan / rotule plastique selon les directions x et y Figure 131 : Dispositions particulières relatives au confinement des zones nodales Eurocode 8-2, fig. 5.3)
5.3.5.4 Fûts de piles
Le lecteur se reportera aux paragraphes précédents ou au tableau synthétique (§5.3.6) pour tout ce qui concerne les prescriptions fixées par la norme en terme de dispositions constructives. Des schémas de détail des dispositions constructives (ferraillage) sont présentés ci-après pour différentes typologies de fûts de piles. Ces schémas sont conformes aux prescriptions de l'Eurocode 8-2. A noter que la
– 246 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
liaison entre le tablier et la tête de pile, ou le pied de pile et la fondation se comporte comme des zones nodales, il est donc important de croiser les armatures pour éviter tout phénomène d'arrachement.
Aucune disposition constructive particulière à l'EC8
Lh l0 = max(EC2 ; 50 φL)
Lh
Recouvrements alternés, 50% au moins d'armatures de confinement + armatures trans de recouvrement
Pas de recouvrement, confinement maximal
Figure 132 : Principe de ferraillage d'un fut de pile
Figure 133 : Principe de ferraillage d'une pile encastrée en tête
5.3.5.5 Chevêtres, têtes de piles et culées
Les chevêtres et culées, dans leurs zones courantes, doivent être dimensionnés et ferraillés conformément aux prescriptions de l’Eurocode 2. Dans les zones adjacentes aux zones de rotules plastiques potentielles, sur une distance horizontale égale à la moitié de la hauteur du chevêtre autour des nœuds d'encastrement (cas des piles encastrées dans le tablier ou encastrement des pieux dans un chevêtre de culée), nous conseillons de traiter la zone comme une zone adjacente de rotule plastique en section de pile, en ajoutant les prescriptions pour les zones nodales (§5.3.5.1.4). Une attention particulière doit en outre être apportée à la conception de ces éléments, car ils portent les organes d'appui. Les repos d'appui doivent donc être garantis, l'accès aux appareils d'appui et dispositifs antisismiques également, en prévision d'une inspection, d'un repositionnement ou remplacement suite à un séisme. 5.3.5.6 Fondations
On distingue les fondations profondes (pieux, barrettes) des fondations superficielles (semelles).
– 247 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
5.3.5.6.1 Semelles
En ce qui concerne le ferraillage des semelles (semelle superficielle ou semelle de liaison des pieux), l'Eurocode 8-2 n’impose aucune disposition constructive particulière (la formation de rotules plastiques n'étant pas autorisée dans les semelles superficielles) et les schémas de détails ci-après sont donc uniquement des dispositions de principes recommandées dans le cadre du présent guide. Dans les zones adjacentes aux zones de rotules plastiques, sur une distance horizontale égale à la moitié de la hauteur de la semelle autour des nœuds d'encastrement (piles ou pieux), nous conseillons de traiter la zone comme une zone adjacente de rotule plastique située en section de pile, en ajoutant les prescriptions pour les zones nodales (§5.3.5.1.4).
Figure 134 : Principe de ferraillage des semelles sur fondations profondes
Le schéma de la figure ci-dessus ne présente qu'une disposition de ferraillage possible pouvant faire l'objet de divers aménagement. En particulier, les cadres doivent surtout être placés dans la périphérie des volumes correspondant aux nœuds d'encastrement du fût de pile et des pieux comme cela est indiqué sur la Figure 131. Par contre il est indispensable que les aciers longitudinaux soient croisés par des barres transversales qui assurent la couture bien représentée sur la Figure 131(a) (surtout aciers A). Sur les vues de profil et de face, si les U supérieurs et inférieurs sont de sections supérieures ou égales à HA20, ils ne peuvent pas se recouvrir sur la face latérale et doivent être tenus (cf. EC2). Il est préférable dans ce cas de prévoir des retours à 135° en haut et surtout en bas et d’ajouter des U de fermeture sur les cotés. 5.3.5.6.2 Pieux, barrettes
Dans le cas d’une structure conçue en ductilité limitée, la définition des zones critiques (zones telles que MRd < 1,3 MEd) s’applique également aux fondations profondes. On se ramenera donc, en ce qui concerne les dispositions constructives parasismiques des fondations, aux mêmes prescriptions que celles définies pour les zones critiques des piles.
– 248 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Dans le cas d’une structure conçue en ductilité, il convient de repréciser que les fondations profondes doivent être dimensionnées en priorité en capacité, la structure ne devant pas dissiper d'énergie par les pieux ou les barrettes (cf. §5.8.1 de l'Eurocode 8-2). Lorsque ce dimensionnement en capacité des fondations est impossible (notamment s’il conduit en pratique à disposer une densité exagérée d'armatures longitudinales), certaines zones telles que définies au §5.3.4.3.2 (zones d'encastrement, de moment maximum ou d'interface de sols différents) sont à considérer systématiquement comme des zones de rotules plastiques potentielles. Le lecteur se reportera alors aux paragraphes précédents relatifs aux sections de piles pour tout ce qui concerne les prescriptions fixées par la norme en termes de dispositions constructives. Les zones adjacentes à ces zones seront également traitées comme dans le cas des piles. Notons que dans le cas de fondations chemisées, il est généralement avantageux de laisser les gaines métalliques en place car celles-ci confèrent à la fondation un confinement très efficace. Il est d'ailleurs autorisé de prendre en compte la section de cette gaine, déduction faite de l'épaisseur sacrifiée pour la corrosion, dans le calcul des armatures transversales. Toutefois, cette prise en compte ne pourra réduire les ferraillages définis précédemment de plus de 50%.
Figure 135 : Principe de ferraillage des fondations profondes
5.3.5.7 Tabliers
Il est rappelé que les tabliers doivent rester élastiques sous séisme, il n'y a donc aucune disposition constructive spécifique à appliquer. Il est néanmoins recommandé de confiner et ferrailler les zones d'efforts locaux (butées parasismiques, ancrages des amortisseurs…) à partir des efforts majorés selon le principe du dimensionnement en capacité. Dans le cas d'un encastrement des piles, il convient d'appliquer les règles du dimensionnement en capacité et les dispositions constructives relatives aux zones nodales.
5.3.6 Tableau synthétique des dispositions constructives parasismiques
– 249 –
Ponts en zone sismique– Conception et dimensionnement selon l’Eurocode 8– Guide méthodologique
Comportement visé
Partie d’ouvrage
Noir : EC8-2 Bleu : recommandations inspirées notamment des anciennes règles PS92
Armatures longitudinales
Zones concernées
Section totale
Diamètre Classe de ductilité
Espacement
Armatures transversales
Recouvrement
Section totale
Diamètre Classe de ductilité
Espacement
Dispositions constructives
Retour 10Φ Crochet 135°
VRd > γBd1.VC
Zones rotules plastiques potentielles (ZRPP) si η k ≤ 0,3 Lh1 = max( - épaisseur section
Recouvrement alterné des armatures transversales 1er cours d’armatures transversales disposé à 50mm maxi du parement
s L ≤ δ d bl
MRd > MEd 0,5% Ac, couronne ≤ Φ ≥ 10mm As ≤3% Ac (6% si Classe C recouvrement)
≤ 200mm (conséquen ce du critère sur sT)
Flambement : Interdits AT
∑A ≥
L
1,6
f ys f yt
5≤δ=2,5(ftk/fyk)+2,25≤6
× sT
s T ≤ 200mm
- distance
Ductile
Ancrage sur 2 armatures principales
avec VC résultant du dimensionnent en capacité : VC = f Φ ≥ 10mm (γ0.M0) Classe C
Mmax - 0,8Mmax)
Confinement :
si η k ≥ 0,3
- Cadres rectangulaires : f yd Ac (ρ l − 0.01); 2 0.18 0.37η k + 0.13 f cd 3 Acc
ω wd ,r ≥ max
Lh 2=1,5Lh1
- Cadres circulaires (cerces)
1 s L ≤ min(6 d bl ; bmin ) 5 1 s T ≤ min(200mm bmin ) 3
Épingle périphérique tenue par épingles intermédiaires ou Armature angle + 1 barre sur 2 (en alternance) tenue par un brin
Spirales interdites
f yd Ac 0.37η k + 0.13 (ρ l − 0.01);0.18 f cd Acc
ω wd ,c ≥ max1,4
VRd > γBd1.VC MRd > MC
Piles
Zones adjacentes
avec MC résultant du dimensionnent en capacité : MC = Φ ≥ 10mm f (γ0.M0) Classe B
≤ 200mm
Max (EC2, 50 dbl)
Alternés
Lh1 ou Lh2
avec VC résultant du dimensionnent en Φ ≥ 10mm capacité : VC = f Classe B (γ0.M0) 50% confinement ZRPP
Réduction progressive des quantités avec espacement Identiques ZRPP maximum de 2sL (ZRPP)
50% flambement ZRPP
Zones courantes
MRd > MC avec MC résultant du dimensionnent en capacité : MC = Φ ≥ 10mm f (γ0.M0) Classe B
VRd > γBd1.VC
Cf. EC2
Cf. EC2
avec VC résultant Φ ≥ 10mm du dimensionnent en Classe B capacité : VC = f (γ0.M0)
Cf. EC2
VRd > q γBd1.VEd*
s L ≤ δ d bl Φ ≥ 10mm
Flambement : AT ≥
MRd > MEd Ductilité limitée
Zones critiques telles que MRd < 1,3 MEd
Φ ≥ 10mm
0,5% Ac, couronne
Classe B
≤ As ≤3% Ac (6% si recouvrement)
≤ 200mm Max (EC2, 50 dbl)
(conséquen ce du critère Alternés sur sT)
∑A
L
1,6
f ys f yt
Classe B
× sT
Cf. EC2
5≤δ=2,5(ftk/fyk)+2,25≤6
s T ≤ 200mm
Confinement :
Cf. EC2 + conditions spécifiques flambement et confinement
- Cadres rectangulaires : f yd Ac 0.28η k + 0.13 (ρ l − 0.01); 2 0.12 f cd 3 Acc
ω wd ,r ≥ max
- Cadres circulaires (cerces)
f yd Ac 0.28η k + 0.13 (ρ l − 0.01);0.12 f cd Acc
ω wd ,c ≥ max1,4
Élastique
Tablier
Zones courantes
MRd > 1,3MEd
Φ ≥ 10mm
Cf. EC2
Cf. EC2
VRd > q γBd1.VEd*
Φ ≥ 10mm Classe B
Classe B
Cf. EC2
Cf. EC2
Aucune disposition constructive parasismique spécifique Confiner et ferrailler les zones d'action d'efforts locaux (butées parasismiques, ancrages des amortisseurs…) à partir des efforts majorés selon le principe du dimensionnement en capacité + même critères que pour les semelles de fondation dans le cas de piles encastrées dans le tablier
– 250 –
février 2012
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Armatures longitudinales
Zone concernées
Cas d’une conception ductile de l’ouvrage
Élastique (sauf cas exceptionnel)
Fondations profondes : Pieux - Barrettes
Partie d’ouvrage Comportement visé
Noir : EC8-2 Bleu : recommandations inspirées notamment des anciennes règles PS92
Section totale
Cas où les plastifications dans les pieux (ou barrettes) sont évitées par l’utilisation du dimensionnement en capacité : Toutes les zones
Autres cas (déconseillés) : Zones le long du pieu (ou barrette) à considérer comme rotules plastiques potentielles : - sous encastrement dans semelle Lh =3Φ pieu (ou 3B min,barrette )
MRd > MC avec MC résultant du dimensionnent en capacité : MC = f (γ0.M0)
Diamètre Classe de ductilité
Armatures transversales
Espacement Recouvrement
Section totale
Diamètre Classe de ductilité
Espacement
Dispositions constructives
VRd > γBd1.VC Φ ≥ 12mm
Cf. EC2
Cf. EC2
Classe B
avec VC résultant Φ ≥ 10mm du dimensionnent en capacité : VC = Classe B f (γ0.M0)
Cf. EC2
Cf. EC2
Identiques ZRPP piles Puis réduction progressive des quantités d’armatures transversales dans les zones adjacentes, sur une longueur supplémentaire Lh, avec espacement maximum de 2sL (avec s L défini pour les ZRPP) Aucune disposition constructive particulière, autre que EC2, ailleurs (zones courantes)
- de part et d’autre de moment maxi ou interface de sols différents
Cas d’une conception en ductilité limitée de l’ouvrage
Lh=2Φpieu (ou 2Bmin,barrette)
Identiques zones critiques piles
Zones critiques telles que : MRd < 1,3 MEd
MRd > q.MEd* et VRd > q.γBd1VEd*
MRd > max (qMEd* ; 1,3 MEd)
Zones courantes
Φ ≥ 12mm
Cf. EC2
Cf. EC2
VRd > q.γBd1VEd*
Classe B
Φ ≥ 10mm Classe B
Cf. EC2
Cf. EC2
Aucune disposition constructive particulière autre que EC2.
Élastique
Semelles de fondation - Chevêtres
Zones courantes
o
si conception ductile des piles : MRd > MC et VRd > γ Bd1VC avec MC et VC résultant du dimensionnent en capacité : MC, VC = f (γ0.M0)
o
si conception en ductilité limitée des piles : MRd > qMEd et VRd > q.γ Bd1VEd
si conception ductile de l’ouvrage
Effort tranchant zone nodale :
MRd > MC
VRd > γ Bd1VC
avec MC résultant du Zones adjacentes au ZRPP, dimensionnent sur une distance horizontale en capacité : égale à la moitié de la hauteur MC = f (γ0.M0) de la semelle ou du chevêtre autour des nœuds d’encastrement avec la pile (ou les pieux ou barrettes dans le cas déconseillé d’une si conception plastification de ces derniers) en ductilité limitée de l’ouvrage
avec VC résultant du dimensionnent en capacité : VC = f (γ0.M0)
Φ ≥ 10mm Classe B
Φ ≥ 10mm Cf. EC2
Max (EC2, 50 dbl)
Classe B
Alternés
VRd > q.γ Bd1VEd*
MRd > qMEd* 50% confinement ZRPP 50% flambement ZRPP *
Cf. nota sur les notations à la fin du §5.1.1.3.1.
– 251 –
Cf. EC2
Étriers verticaux entourant les armatures longitudinales face opposée et contiguë au fût de pile (pieux ou barrettes) Tenue des armatures longitudinales (faces opposées et contiguës) au fût de piles (pieux ou barrettes) au moins un lit sur deux en alternance par armatures transversales (cf. Figure 131) Prolongation des aciers transversaux du fût de pile (pieux ou barrettes) dans le nœud avec une densité égale à 50% de ce qui est requis dans les ZRPP ou zones critiques jouxtant la semelle Armatures verticales du fût de pile (pieux ou barrettes) ancrées au plus profond dans le nœud et retour à 90° Identiques aux zones adjacentes des piles et fondations
Ponts en zone sismique– Conception et dimensionnement selon l’Eurocode 8– Guide méthodologique
5.4
Équipements
Conformément à l'Eurocode 8-2 (cf. EC8-2 §2.3.6.3(5)), les joints de chaussées, murs en retour des culées, qui sont supposés être endommagés par le séisme doivent avoir un mode de détérioration prévisible, ainsi qu'un accès pour effectuer la réparation. Les marges de débattement doivent prévoir un pourcentage approprié du déplacement sismique de calcul et du mouvement thermique, respectivement pE et pT, après avoir rendu possibles tous les effets de fluage et de retrait à long terme, de manière à éviter tout dommage dû à des séismes fréquents. Les valeurs appropriées de ces pourcentages peuvent être choisies, sur la base d'une évaluation de la rentabilité des mesures prises pour éviter tout dommage. A défaut, les valeurs attribuées à pE et pT, recommandées dans l’Eurocode 8-2, sont respectivement 0,4 (pour le déplacement sismique de calcul) et 0,5 (pour le mouvement thermique). Les paragraphes suivants proposent un raffinement de cette approche forfaitaire en fonction des différentes configurations rencontrées.
5.4.1 Conceptions des zones d’about / joints de chaussées Les dispositions constructives doivent être cohérentes avec le fonctionnement de la structure sous séisme. En particulier, les déplacements longitudinaux prévus par le modèle de calcul ne doivent pas être entravés par le mur garde-grève de la culée. Les joints « fusibles » comme les joints à revêtement amélioré ou les joints à hiatus avec profilé en caoutchouc seront privilégiés dans le cas des ouvrages courants. Les joints à peigne et à dents, tant dans le sens longitudinal que transversal (cas des joints à peigne), sont extrêmement robustes et ne peuvent être considérés comme « fusibles » sous l’effet du séisme transversal. Le débattement transversal de l’ouvrage est donc fortement limité par la présence des joints de chaussée. Il y a un risque, qu'après un séisme transversal, ils bloquent l'ouvrage. Dans le cas d'utilisation de tels joints, un blocage transversal est donc toujours souhaitable. En service, mis à part les lignes d’appuis biaises qui sont rares dans les grands ouvrages, on évite si possible les dents biaises. 5.4.1.1 Ouvrages de catégorie IV
Généralement, on retiendra les prescriptions relatives aux ouvrages de catégorie III. Pour les ouvrages de catégorie IV devant rester circulables après avoir subi l’action sismique ultime réglementaire, il convient de vérifier que les éléments assurant la continuité de roulement entre la route et les ouvrages de franchissement demeurent utilisables. C’est pourquoi il pourra être envisagé, en concertation avec le maître d'ouvrage, de retenir les joints de chaussées pouvant subir les déformations imposées par le séisme ultime sans dommage. Lorsque le tablier repose sur des appuis souples, les déplacements longitudinaux sont très importants. Ceci conduit à placer des joints de chaussées possédant un souffle nettement supérieur à celui nécessaire en service. Ces joints sont plus chers, et leur durée de vie bien inférieure à la période de retour du séisme extrême servant à les dimensionner. Cette contrainte peut alors conduire au choix d'une solution avec un ou plusieurs appuis fixes sur les piles. Il peut également être envisagé de ne pas tenir compte du séisme pour le dimensionnement des joints de chaussée, et accepter qu'ils soient endommagés sous séisme et qu'il faille les remplacer. Par contre, il faut veiller à ne pas endommager l'about du tablier ou la culée suite à la rupture du joint de chaussée, sous les déplacements sismiques prévus. 5.4.1.2 Ouvrages de catégorie III
Les joints de chaussées sont dimensionnés de la manière suivante : • Tablier de pont à faible déplacement sous séisme (+/- 2 cm)
– 253 –
février 2012
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
C’est notamment le cas des ouvrages courants reposant sur des piles peu élevées par l’intermédiaire d’appuis fixes. Il est alors tout à fait loisible de conserver des joints de chaussée dimensionnés sous séisme ultime. • Tablier de pont à fort déplacement sous séisme (> +/- 2 cm) Dans ce cas, il est possible de dimensionner les joints de chaussées avec la combinaison : « Souffle total » = « Souffle de Service » + « Souffle sismique » x 0,4 N.B. : Le souffle de service = souffle des déformations différées + 0,5 souffle thermique. En pratique, pour la plupart des joints de chaussées (sauf les joints à « pont souple à bande »), une ouverture supérieure à leur ouverture normale n’entraîne que de très légers dégâts. Par exemple, pour des joints à hiatus, l’arrachement du profilé en caoutchouc. Dans ces cas, le supplément de souffle nécessaire vis-à-vis du séisme n’est plus que la valeur du déplacement sismique longitudinal du tablier dans une seule direction. On obtient alors : « Souffle total » = « Souffle de Service » + « Souffle sismique » x 0,2 Sous séisme extrême, le choc du tablier sur la culée doit être pris en compte pour la justification des appuis. Il est souhaitable de limiter ces efforts en prévoyant par exemple une zone fusible qui permet au tablier de retrouver en partie le débattement libre dont il a besoin. Dans tous les cas, il faut veiller à ne pas endommager l'about du tablier ou la culée suite à la rupture du joint de chaussée, sous les déplacements sismiques prévus. 5.4.1.3 Ouvrages de catégorie II
Compte tenu de la durée de vie des joints de chaussée par rapport à la période de retour du séisme, il peut être envisagé de ne pas tenir compte du séisme pour le dimensionnement des joints de chaussée, et accepter qu'ils soient à remplacer suite à un séisme. Par contre, il faut veiller à ne pas endommager l'about du tablier ou la culée suite à la rupture du joint de chaussée, sous les déplacements sismiques prévus. 5.4.1.4 Ouvrages équipés de joints non-apparents à revêtement a mélioré
Pour des ouvrages courants dont la longueur dilatable à l’ELS, donc hors des mouvements sismiques, justifie l’emploi de joints non apparents à revêtement amélioré (JRA) il est souhaitable de conserver cette famille de joints (60% des joints mis en œuvre). Ceci implique de revoir certaines dispositions constructives, notamment en augmentant la distance libre entre le tablier et le garde-grève. Les avis techniques considèrent que, jusqu'à une valeur de 7 cm entre le tablier et le garde-grève, on reste dans le domaine d’emploi normal du joint; au-delà et jusqu'à 10-11 cm environ, il est possible d’utiliser ce type de joint mais cela nécessite des plaques de pontage adaptées en largeur et en épaisseur. L’avis technique reste valable mais on considère que l’on est dans une situation particulière et le marché devra clairement expliciter ce point pour que le fabricant installateur puisse faire des propositions en accord avec son manuel de pose. Les garanties habituelles contractuelles peuvent s’appliquer. Sous séisme, la rupture du JRA n’aura pas de conséquence sur l’utilisation à court terme de l’ouvrage. Avant la rupture de la chaussée, le tablier se comporte comme une masse liée au sol par l’intermédiaire de la chaussée qui assure le maintien de l’ouvrage. Cette phase n’a pas besoin de faire l’objet de vérifications particulières. Les seuls dégâts prévisibles sont la création de bourrelets dans la chaussée dus à de légers déplacements du tablier. Après rupture de la chaussée, le tablier se comporte comme une masse placée sur appareils d’appui en élastomère fretté.
– 254 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Figure 136 : Position de la plaque de pontage
5.4.1.5 Garde-grève fusible
Suivant la position relative du corbeau du garde-grève par rapport au niveau du sommier, on pourra retenir l’une des solutions suivantes :
– 255 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
partie fusible
partie fusible
tablier de faible épaisseur
tablier de forte épaisseur
Figure 137 : Position conseillée de la zone fusible en fonction de l’épaisseur du tablier
• Pour les tabliers de faible hauteur, on pourra retenir des garde-grèves « fusibles » au-dessus de la dalle de transition. Jusqu'à la rupture du garde-grève, les efforts transmis aux fondations sont plafonnés par la plastification des aciers passifs du mur garde-grève. • Pour les tabliers de forte hauteur, on évitera la rupture en pied de garde-grève qui conduit à des travaux de réfection onéreux (arrêt de la circulation, déblaiement partiel des culées, nivellement de la structure s'il n’y a pas de place entre l’about du tablier et le mur garde-grève). Il est préférable de concevoir un joint de chaussée fusible, en tête du mur garde-grève, dont le remplacement se fera facilement. Ce coin fusible sera un bloc de béton coulé en deuxième phase : la face béton support de la reprise de bétonnage sera peinte ou enduite d’un film polyuréthanne. La liaison entre ce bloc et la culée se fera par contact sur toute la surface. Quelques aciers passifs galvanisés pourront être prévus en complément pour assurer la tenue du bloc fusible lors du freinage d’un camion.
400 mini 400
Figure 138 : Exemple de coin fusible
5.4.1.5.1 Principe de justification
Le mur garde-grève fusible a pour but d'écrêter les efforts provenant du choc du tablier sur la culée sous l'effet du séisme. Ceci permet de ne pas avoir à surdimensionner les fondations des culées. Certains pays ont développé des murs garde-grève fusibles en leur partie supérieure. Cette option, en dépit des réserves qu'elle peut soulever du fait de sa relative complexité et des difficultés liées à l'évaluation précise des seuils de rupture et aux problèmes de durabilité, est présentée ci-après : • Le mur garde-grève est dimensionné pour résister au freinage Pour cela, on considère une force horizontale de freinage égale à 60% du poids αQ1Q1 (notée FLM1) de l'essieu TS de la voie 1 du LM1 agissant simultanément avec la charge verticale αQ1Q1 (notée PLM1) (cf. §4.9.2 de l'EC1-2). Le calcul étant effectué à l'ELU, on applique un coefficient de 1,35 à cette valeur. La section «fusible» est alors dimensionnée vis-à-vis du glissement (cisaillement des aciers) ainsi que du basculement (traction des aciers).
– 256 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
• On calcule l'effort sismique nécessaire à la rupture du fusible Le séisme agit aussi bien horizontalement sur le tablier, que verticalement sur la partie du mur garde-grève se situant au-dessus de la section fusible. Le calcul s'effectue donc en présence de deux forces concomitantes, l'une horizontale simulant le choc du tablier (noté Fg) et s'appliquant au niveau du point de contact, l'autre verticale et descendante provenant des actions de poids propre Ppp et s'appliquant au centre de gravité de la partie fusible. Cette dernière force vaut : ag Ppp 1 ± 0.5 g
Le coefficient de 0,5 correspond à une combinaison quadratique. Comme les périodes dans les deux directions sont proches, un coefficient de 0,5 est préférable à 0,3. Ce calcul est effectué en capacité car il s'agit de connaître la borne supérieure de l'effort transmis à la fondation. Pour cela on calcule la résistance du mur garde-grève fusible en utilisant la résistance probable à la rupture de l'acier, soit :
f yd
prob
= 1.5 f yd
carac
5.4.1.5.2 Les conceptions possibles 5.4.1.5.2.1
Le mur garde-grève "plat'
Rotations possibles : • sous freinage LM1 : autour de r1, et r2. • sous séisme : autour de r1.
FLM1 Fs dFLM1 Plan de rupture
r1
dFs
ξ=
d FLM 1 d FS
Le rapport t, du bras de levier de la force de freinage FLM1 (notée dFLM1sur celui de la force sismique Fs (notée dFS) doit être le plus proche possible de 1, car cette différence de bras de levier tend à faire augmenter le rapport FS / FLM1 Dans le meilleur des cas (ξ=1 ), ce rapport vaut :
r2
1.5 f yd
prob
/ f yd
carac
• Dimensionnement sous freinage LM1 •
- Vis-à-vis du glissement PLM1 FLM1 Ppp RV RAC
Le nombre de nappes d'acier prises en compte dans ce calcul est égal 2.
RH RAC
– 257 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
•
- Vis-à-vis du renversement PLM1 FLM1
Ppp Point de rotation
Le nombre de nappes d'acier prises en compte dans ce calcul est égal à 1. On peut avoir un basculement dans les 2 directions, il faut donc mettre en place 1 nappe de chaque côté.
RAT
•
- Vérification de la rupture sous séisme (vis-à-vis du renversement) FS Ppp Point de rotation
RAT
5.4.1.5.2.2
Le mur garde-grève "incliné"
Rotations possibles : • sous freinage LM1 : autour de r1, et r2. • sous séisme : aucune.
PLM1 FLM1 r1
FS
Ppp r2
Il s'agit de faire passer la force sismique Fg par le point de rotation r1, afin de supprimer le risque de basculement autour de ce point. De ce fait, les aciers rompent uniquement par cisaillement, il n'y a donc pas de vérification à faire vis à vis du basculement sous séisme. D'autre part, on monte le point r2 au maximum afin de diminuer le bras de levier sous freinage LM1 et donc de réduire les aciers.
• Dimensionnement sous freinage LM1 •
- Vis-à-vis du glissement
– 258 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
PLM1 FLM1 Ppp RAC
Par simplification, les actions de contact entre la partie fusible et le mur garde-grève sont considérées uniquement sur la partie horizontale. Les aciers travaillent uniquement en cisaillement.
RV RH
•
- Vis-à-vis du renversement PLM1
PLM1 FLM1
FLM1
Ppp
Ppp RAT
RAT
• Vérification de la rupture sous séisme (vis-à-vis du glissement) Le poids propre de coin fusible est négligé. Le tablier pousse le fusible sur le plan incliné ce qui créé une force qui soulève le fusible. FS
RAC(1) Rf RAC(2)
La composante verticale de cette force est entièrement reprise par les barres AC(1 ) et AC(2) sous forme d'effort normal, ainsi que par frottement sur le plan incliné. La composante horizontale est quant à elle reprise parles barres AC(1) et AC(2) sous forme de cisaillement, ainsi que par frottement sur le plan incliné. L'effort normal dans les barres tend à diminuer la résistance de celles-ci vis-à-vis du cisaillement. Cette interaction a été omise par sécurité et pour simplifier les calculs.
Nota : Il est intéressant de prendre une hauteur côté remblai (position de r) la plus petite possible afin d'avoir une force sismique de rupture relativement faible. 5.4.1.5.2.3
Le fusible "incliné + butée"
– 259 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
PLM1
FLM1 FS
Ppp
Rotations possibles : • sous freinage LM1 : autour de r1, et r2. • sous séisme : autour de r1.
Le principe de conception est identique à celui du fusible incliné, si ce n'est la présence de la butée. Cette butée empêche tout glissement vers l'ouvrage sous freinage LM1, ce qui permet de réduire la quantité d'acier nécessaire à la résistance du fusible. La butée permet aussi de remonter le point r2 et ainsi de diminuer le bras de levier sous freinage LM1. Ceci permet aussi de réduire la quantité d'aciers. Il y a donc moins d'aciers que pour le fusible «incliné». La force sismique nécessaire à la rupture du fusible est donc inférieure. On notera, toutefois, que la fabrication de ce type de fusible est peu aisée et requiert un bon contrôle lors de l'exécution.
5.4.2
Équipements
On veillera à assurer une bonne attache des équipements sur les tabliers (corniches, canalisations) et les piles (éléments préfabriqués), afin d’éviter leur chute éventuelle. Les systèmes de fixation devront être calculés sous l’action sismique ultime afin d’éviter toute chute. Pour ce faire, on se reportera aux recommandations AFPS sur les équipements de bâtiments ou on évaluera les efforts de dimensionnement à partir de la masse des équipements multipliée par le plateau du spectre de calcul.
5.4.3
Drainage
Il convient d’éviter la stagnation d’eau dans le sol et les remblais d’accès. Cette eau augmente les actions sismiques horizontales mises en jeu (cf. §4.5.7). Une détérioration des caractéristiques du remblai ou des tassements post-sismiques est alors à craindre. On veillera donc particulièrement au drainage : *
du sol derrière les culées et les piédroits des cadres et des portiques,
*
des remblais d’accès.
Ce drainage consistera en la mise en place de drains et/ou de matériaux drainants. Les systèmes de drainage situés derrière la structure doivent en outre être capables d’absorber des mouvements transitoires et permanents sans perte de fonctionnalité.
– 260 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Chapitre 6 Ponts cadres et portiques
– 261 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
6 Ponts-cadres et portiques 6.1 Introduction Les ponts cadres et les portiques sont réputés peu sensibles aux séismes, car ils sont relativement souples et suivent la déformation du massif sans perturber notablement la propagation des ondes de cisaillement dans le sol. Par ailleurs, le fait qu’ils soient « bloqués » dans le sol au niveau de chacune des deux culées limite sensiblement les effets liés aux amplifications dynamiques des autres structures. Une justification parasismique de ces structures reste pourtant nécessaire. En effet, certains ouvrages ont connu de graves désordres qui auraient pu être évités par l'application des règles parasismiques: les ouvrages du métro de Daikai lors du séisme de Hyogoken-Nanbu au Japon en janvier 1995.
6.2 Détermination des paramètres 6.2.1 Coefficients sismiques Il est possible d'utiliser une analyse pseudo-statique, où l'action sismique est représentée par un ensemble de forces statiques horizontales et verticales égales au produit des forces gravitaires par un coefficient sismique : •
le coefficient sismique horizontal kh
•
de manière concomitante le coefficient sismique vertical kv.
En l'absence d'études spécifiques, on adoptera les valeurs de l'EC8-5 correspondant aux ouvrages de soutènement non déplaçables : kh =
a gS g
et
k v = 0,5k h
avec : ag : accélération nominale S : paramètre caractéristique de la classe de sol (cf. §4.2.3) g : accélération de la pesanteur. Le coefficient d’amplification topographique ST doit également être prise en compte le cas échéant (cf. §4.2.4).
6.3 Combinaisons et vérifications 6.3.1 Combinaisons La vérification de la résistance de la structure s'effectue sous combinaison sismique dont le format général est : G k + E Ed + Ψ21Q1k
avec : Gk : charges permanentes (poids propre et poussée statique des terres) EEd : action sismique (forces d'inertie et poussée dynamique des terres) Qik : action variable des charges d'exploitation Ψ21 : coefficient de combinaison
– 262 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Le coefficient de combinaison est nul dans la plupart des cas. La concomitance entre les charges d'exploitation et le séisme n'est à prendre en compte que pour les ouvrages très sollicités : Ψ21
= 0,2 pour les charges routières (ouvrages urbains à trafic intense). = 0,3 pour les charges ferroviaires
6.3.2 Vérifications La vérification se limite à la vérification de la résistance des sections conformément aux recommandations du §5.1.1.
6.4 Sollicitations dues au séisme Dans le cas des ponts-cadres avec une couverture de faible dimension, une approche en force peut être employée pour l'analyse. Le coefficient de comportement q est pris égal à 1,5 si l'ouvrage n'est pas enterré à plus de 80% de sa hauteur dans un sol raide. Dans les cas contraires, une valeur de q égal à 1 sera retenue et les forces d'inertie seront évaluées sans amplification spectrale. Si la couverture est de dimension importante, ou l’ouvrage fortement enterré (épaisseur de remblai au-dessus de la dalle supérieure à 50% de la portée), les résultats de l’approche en force ne sont pas réalistes, et une approche en déformation doit être envisagée (compatibilité cinématique entre la structure du pont-cadre et la déformation sismique en champ libre du sol environnant).
6.4.1 Sollicitations verticales dues au séisme Les sollicitations verticales dues au séisme sont déterminées par l'application aux diverses parties de l'ouvrage (et aux masses solidaires de l'ouvrage) de l'accélération verticale définie ci-dessus. La force d'inertie par unité de volume qui s'exerce sur un élément de poids volumique γ est égale à : fi = ±γ k v
Le frottement des terres en contact avec les piédroits est supposé négligeable.
6.4.2 Sollicitations horizontales dues au séisme Les sollicitations horizontales dues au séisme peuvent être prises en compte selon deux méthodes (§6.7.4 EC82) : •
une approche en déformation imposée représentative du comportement des ouvrages enterrés ;
•
une approche en force (de type calcul à la rupture - poussée-butée du sol) représentative du comportement des ouvrages proches de la surface.
6.4.2.1
Approche en déformation
La déformée de l'ouvrage est assimilée à celle de la déformation sismique du sol en champ libre. La déformation sismique du sol en champ libre peut être considérée comme un champ uniforme de déformation de cisaillement, avec la déformation de cisaillement γs du sol suivante (EC8-2 §6.7.4) : γs =
vg vs
avec :
– 263 –
=
STc a g 2πv s
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
•
vg : vitesse maximale du sol (dont une expression simplifiée est donnée en l’absence de donnée spécifiques) ;
•
vs : célérité de l'onde de cisaillement dans le sol, compatible avec la déformation de cisaillement associée à l'accélération au niveau du sol. Elle peut être déterminée à partir de la valeur vs,max mesurée pour les faibles déformations (cf.§4.2.3.) ;
•
S : paramètre caractéristique de la classe de sol (cf.4.2.3) ;
•
Tc : période du spectre (cf.§4.2.5.2).
Figure 139 : Réponse cinématique d'un pont cadre
Pour obtenir cette déformation, on peut appliquer une pression uniforme sur la paroi latérale de l'ouvrage telle que la déformée entre le haut et le bas de l'ouvrage soit égale à ∆ds : H. γs. ∆ds
γs
6.4.2.2 Approche en force. 6.4.2.2.1 Principes généraux
Les sollicitations provenant d'une accélération horizontale peuvent se décomposer comme suit : Sollicitations actives :
– 264 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
- incrément de poussée active du sol. - forces d'inertie dues à l'accélération horizontale de l'ouvrage. - force de frottement due au remblai situé sur la traverse supérieure. Réactions passives : - force de butée du sol (à négliger dans les calculs). - force de frottement au-dessous de l'ouvrage
A
D Sollicitation due au remblai
Butée du sol (à négliger)
Force d'inertie de la structure
B
Incrément de poussée active
C Frottement au-dessous de l'ouvrage
Sens de déplacement du sol
Remarque : L'ouvrage constitue un "trou" à l'intérieur du massif de sol. Il a une masse faible par rapport au sol qu'il remplace et doit donc suivre les mouvements du sol.
6.4.2.2.2 Évaluation des sollicitations Force d'inertie de la structure
La force d'inertie par unité de volume qui s'exerce sur un élément de poids volumique γ est égale à : fi = γ k h
Force dynamique agissant sur l'ouvrage
L'incrément dynamique de poussée active qui s'exerce sur un écran de hauteur H est pris égal à (cf. §4.5.7) :
1 1 ∆E d = E d − E0 = γ * H 2 [(1 ± k v )K ad ] + E ws + E wd − γ * K as H 2 2 2 avec : γ*
poids volumique du sol tenant compte des conditions hydrauliques ;
kv
coefficient sismique vertical ;
Kad
coefficient de poussée des terres sous situations de projet sismiques ;
– 265 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Kas
coefficient de poussée des terres sous charges statiques ;
Ews
poussée statique de l'eau ;
Ewd
poussée hydrodynamique de l’eau ;
Remarques : - Le point d’application de ∆Ed peut être pris à mi-hauteur du mur, et l’effort modélisé par une charge uniformément répartie sur l'écran. - Le coefficient de poussée dynamique des terres Kad peut être calculé suivant la formule dite de Mononobe-Okabe (cf. §4.5.7). Pour que les détériorations des caractéristiques du sol ou du remblai restent acceptables, il convient que le déplacement sismique de calcul ne dépasse pas les valeurs limites dlim suivantes, dépendant de la catégorie d'importance du pont : catégorie d’importance IV : dlim = 50 mm ; catégories d’importance II ou III : aucune limitation.
Incrément dynamique de poussée passive (butée), à négliger dans le cas général : L'incrément dynamique de poussée passive qui s'exerce sur un écran de hauteur H est pris égal à (cf. §4.5.7):
[
]
1 1 ∆E d = E d − E0 = γ * H 2 (1 ± k v )K pd + E ws + E wd − γ * K ps H 2 2 2 où : Kpd : coefficient de poussée passive des terres sous situations de projet sismiques, qui peut être calculé suivant la formule dite de Mononobe-Okabe (cf. §4.5.7); Kps : coefficient de poussée passive des terres sous charges statiques ; Remarques : •
La butée du sol ne peut être prise en compte que si le déplacement du piédroit est suffisant. Des essais ont montré qu'un faible déplacement de l'écran suffisait pour obtenir une valeur de Kp proche de 1, mais qu'il fallait un déplacement important (de l'ordre de 0,03h à 0,06h) pour mobiliser pleinement la butée du sol (cas des sables denses). L’annexe C de l’EC7 donnent des indications sur l’ordre de grandeur des mouvements nécessaires à mobiliser les pressions limites.
•
Il convient donc dans le cas général de négliger l’incrément dynamique de poussée passive. A défaut le coefficient de réaction passive Kpd sera plafonné à 1 ;
•
Le coefficient de frottement sol/écran en butée sera pris égal à zéro, et on admettra que la résultante s'exerce au tiers de la hauteur de l'écran.
– 266 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
6.4.2.2.3 Prise en compte du remblai situé au-dessus de la traverse.
L
Hr Sollicitation due au remblai
Ouvrage partiellement remblayé ou faiblement enterré
Dans la cas où l'ouvrage est partiellement remblayé ou faiblement enterré (Hr < 1m), la traverse supérieure subit la force d'inertie du remblai Sr :
Sr = H r L γ k h où γ représente le poids volumique du remblai. Ouvrage fortement enterré ou fortement remblayé
Dès que la hauteur Hr augmente, la force d'inertie dans le remblai devient très importante et dépasse la résultante des contraintes de cisaillement mobilisables à l'interface ouvrage/remblai. En fait, cette résultante tend vers zéro lorsque l'ouvrage est suffisamment enterré et ne perturbe que faiblement la propagation des ondes de cisaillement à travers le massif de sol. L
Butée du sol
Inertie du remblai
Poussée du sol Hr
Sollicitation due au remblai
Le remblai situé sur la traverse est soumis aux forces suivantes : •
la force d'inertie correspondant à la masse du remblai ;
•
les forces de poussée-butée du sol adjacent ;
•
la réaction de la traverse sur le remblai.
L'équilibre horizontal du remblai permet de déterminer la sollicitation de l'ouvrage provenant du remblai :
Sr =
1 γH 2r ( K ad − K pd ) + γk h H r L 2
Nota : A partir d'une certaine hauteur de remblai ( Hr ~ 0,25 L ag S), Sr devient négative ce qui correspond à un remblai entraîné par le terrain adjacent plutôt que par l'ouvrage. D'une manière générale, ce calcul conduit alors à des efforts inférieurs à l'approche "en déplacement".
– 267 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
6.5 Conclusion Le fonctionnement mécanique des dalots et des ponts cadres fait intervenir une forte interaction sol/structure. Les hypothèses de fonctionnement des ouvrages retenus sont certes simplistes, mais sont en accord avec l'Eurocode et donnent des résultats numériques cohérents au regard des publications sur le sujet. Les calculs précédents ne dispensent pas de l'application des règles parasismiques des chapitres précédents concernant : •
la vérification du sol de fondations (liquéfaction, etc ..) ;
•
la vérification des sections ;
•
les dispositions constructives parasismiques.
– 268 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Chapitre 7 Annexes
– 269 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
7 Annexes 7.1 Annexe 1: Exemple de dimensionnement d'un pont dalle en zone sismique 7.2 Annexe 2 : Exemple de dimensionnement d'un pont mixte sur néoprènes en zone sismique 7.3 Annexe 3 : Exemple de dimensionnement d'un pont caisson BP en zone sismique À intégrer + mise à jour % nouvel arrêté (catégories et avg) - JP
– 270 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
7.4 Annexe 4 : Approches, méthodes de calcul et technologies introduites ou normalisées pour la 1 èr e fois dans le cadre de l’Eurocode 8 Nouveautés par rapport aux règles PS92 décrites dans la version précédente du guide
§ du guide concernés
Modification du zonage sismique, des valeurs d’accélération et de la forme des spectres
1.2.2 et 4.2
Définition d’une notion de séisme de service (ELS)
3.2
Définition de la notion de ductilité limitée associée à un coefficient de comportement q tel que : 1 < q ≤ 1,5
3.3.1
Modification des valeurs de coefficient de comportement
4.1.2
Critère de régularité vis-à-vis de l’appel en ductilité pour l’application de la méthode du coefficient de comportement
4.1.2.1
Possibilité de prendre en compte le séisme en phase de construction
4.2.1
Nouvelle définition des classes de sol, coefficients associés et niveaux de reconnaissance géotechnique
4.2.3
Intégration du coefficient de comportement q directement dans les spectres de calcul
4.2.5.2.2
Définition des spectres en déplacement pour les méthodes en déplacement (poussée progressive et dynamique temporelle)
4.2.5.3
Caractérisation des accélérogrammes de calcul pour les analyses dynamiques temporelles
4.2.5.4
Restriction de la prise en compte de la composante verticale du séisme
4.3.2
Modification du coefficient de pondération de l’action thermique concomitante
4.3.3
Prise en compte de la variabilité spatiale de l’action sismique
4.3.4
Réduction significative de la rigidité de torsion des tabliers en béton
4.4.3.1.2
Prise en compte des inerties fissurées dans le cas de la conception ductile
4.4.3.2
Prise en compte du comportement élasto-plastique des sections dans les calculs en déplacement (poussée progressive et dynamique temporel non-linéaire)
4.4.3.2 et 4.6.2
Évolution des principes de prise en compte de l’interaction sol-structure
4.4.3.3 et 4.5.6
Prise en compte d’une rigidité sécante équivalente dans le cas d’appareils d’appui souples associés à un attelage sismique ou butées de sécurité
4.4.3.4.3
Modification de la prise en compte du coefficient d’amortissement structurel
4.4.4
Prise en compte forfaitaire de la torsion d’axe vertical dans le cas des ponts biais
4.5.3.5
Prise en compte forfaitaire des effets du second ordre dans le cas des piles de grande hauteur
4.5.5.3
Modification de la prise en compte de la poussée dynamique des terres selon Mononobe-Okabe
4.5.7
– 271 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Description de la méthode en poussée progressive
4.6.3
Utilisation de dispositifs amortisseurs et méthodes d’analyse associées
4.6.4
Description des méthodes d’analyse dynamique temporelles
4.6.5
Modification des coefficients de surcapacité
5.1.1
Introduction de la notion de dimensionnement en capacité, remplaçant celle du critère de cohérence
5.1.1.2
Modification du coefficient de sécurité vis-à-vis de l’effort tranchant
5.1.1.4
Modification des critères de justification des fondations
5.1.4
Modification des critères de justification des appareils d’appui
5.2
Principes de dimensionnement des attelages sismiques et butées parasismiques
5.2.4.4 et 5.2.6
Modification des critères de repos d’appui
5.2.5
Modification de certaines dispositions constructives
5.3
– 272 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
Bibliographie [ 1] Décret n°2010-1254 du 22 octobre 2010 relatif à la prévention du risque sismique [ 2] Décret n°2010-1255 du 22 octobre 2010 portant délimitation des zones de sismicité du territoire français [ 3] Arrêté du 26 octobre 2011 relatif à la classification et aux règles de construction parasismique applicables aux ponts de la catégorie dites "à risque normal" [ 4] NF EN1998-1 Eurocode 8 : Calcul des structure en béton pour leur résistance aux séismes – Partie 1 : Règles générales, actions sismiques et règles pour les bâtiments [ 5] NF EN1998-2 Eurocode 8 : Calcul des structure en béton pour leur résistance aux séismes – Partie 2 : Ponts [ 6] NF EN1998-5 Eurocode 8 : Calcul des structure en béton pour leur résistance aux séismes – Partie 5 : Fondations, ouvrages de soutènement et aspects géotechniques [ 7] NF EN 15129 : Dispositifs antisismiques [ 8] Guide AFPS 92 pour la protection parasismique des ponts [ 9] Guide Sétra/Sncf « Conception des ponts courants en zones sismiques » (obsolète et remplacé par le présent guide). [ 10] Guide AFPS « Dispositions constructives parasismiques des ouvrages en acier, béton, bois et maçonnerie » [ 11] Guide AFPS/Sétra « Dispositifs antisismiques pour les ponts», à paraître [ 12] Guide Sétra « Diagnostic et renforcement sismique des ponts existants », à paraître [ 13] Cahier technique AFPS n°26 « Méthodes en déplacement : Principe – Codification – Application » [ 14] Displacement-Based Seismic Design of Structures - Earthquake Spectra Volume 24, Issue 2, pp. 555-557 (May 2008) - M. J. N. Priestley, G. M. Calvi, and M. J. Kowalsky [ 15] European Macroseismic Scale 1998 - Cahiers du Centre Européen de Géodynamique et de Séismologie Volume 19, Luxembourg, 2001, sous la direction de G. Grünthal [ 16] The energy release in great earthquakes - Journal of Geophysical Research, Volume 82, 2981—2987, 1977, Kanamori H [ 17] Waves and Vibrations in Soils: Earthquakes, Traffic, Shocks, Construction works, IUSS Press, Pavie, Italie, 2009, Semblat J.F., Pecker A [ 18] Dynamique des sols – Presse des ponts et chaussées (1984) – A. Pecker [ 19] Horizontal stiffness and damping of singles piles – Journal of Geotechnical Engineering Division, Volume 108, n°GT3, pp 439-459 (March 1982) – R. Dobry, E.V. Vicente, M.J. O’Rourke, J.M. Roesset [ 20] A study of piles during earthquakes : issues of design and analysis – Bulletin of Earthquake Engineering, Volume 3, pp 141-234 (2005) – W.D.L. Finn [ 21] Analysis of machine foundation vibrations : state of the art – International Journal of Soil Dynamics and Earthquake Engineering, Volume 2, n°1, pp 2-42 (1983) – G. Gazetas [ 22] Dynamic stiffness and damping piles – Canadian Geotechnical Journal, Volume 11, pp 573-598 (1974) – M. Novak
– 273 –
Ponts en zone sismique – Conception et dimensionnement selon l’Eurocode 8 – Guide méthodologique
[ 23] Stat of the art – Seismic design of pile foundations : structural and geotechnical issues – Proceedings of the thrird International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, Volume 3, Saint Louis, Missouri (april 1995) – G.R. Martin, I.P. Lam [ 24] On the determination of earthpressure during earthquakes - Procedure World Engineering Congress, Tokyo, Volume 9, paper n°388, p.176.(1929) - Mononobe N., Matsuo H. [ 25] General theory of earth pressure and seismic stability of retaining walls - Journal of the Japanese Society of Civil Engineers - Volume 12, n°1 - (1926) - Okabe S. [ 26] Liquefaction resistance of soils : summary report from the 1996 NCEER and 1998 NCEER/NSF worshops on evaluation of liquefaction resistance of soils – Journal of Geotechnical and Geoenvironmental Engineering, Volume 127, n°10, pp 817_833 (2001) - Journal of Geotechnical and Geoenvironmental Engineering, Volume 129, n°10, pp 283-286 (2003) – T.L. Youd, I.M. Idriss and al.
– 274 –
Les anciennes règles AFPS 92, pour la conception parasismique, avaient nécessité la publication d’un guide par le Sétra en 2000 "Ponts courants en zone sismique" dont l’objet était d’expliquer la conception parasismique, et de permettre l’application pratique des règles aux ouvrages d’art. L’utilité de ce guide n’est plus à démontrer, mais sa remise à jour vis-à-vis de l’Eurocode 8 et de la nouvelle législation sismique nationale était devenue indispensable, ainsi que sa généralisation aux ouvrages non-courants. Ce guide méthodologique présente donc la mise en accord de l'ancien guide "Ponts courants en zone sismique" vis-à-vis des prescriptions de l'Eurocode 8 et des nouveaux décrets et arrêtés sismiques nationaux publiés en 2010 et 2011, élargi aux ouvrages non-courants, en mettant l'accent sur les évolutions par rapport aux règles AFPS 92, notamment concernant les méthodes d’analyse sophistiquées (méthode en poussée progressive, analyse temporelle, utilisation de dispositifs spéciaux…) et les dispositions constructives. L’explication de ces méthodes sur des cas concrets est également une avancée du présent guide. Ce guide devrait permettre aux ingénieurs et concepteurs de dimensionner les ouvrages d’art vis-à-vis du risque sismique, en appliquant avec discernement les Eurocodes 8.
Document disponible au bureau de vente du Sétra 46 avenue Aristide Briand – BP 100 – 92225 Bagneux Cedex – France téléphone : 33(0)1 46 31 53 – télécopie : 33 (0)1 46 11 33 55 Référence : xxxxxx Prix : xx €
View more...
Comments