Guias de Ejercicios
August 8, 2022 | Author: Anonymous | Category: N/A
Short Description
Download Guias de Ejercicios...
Description
^lebrrbetkrêg Geg`ìjleg @lrbeelõo `b @bsgrrkcck B`uegvk
NGERCPG@ @B LONKTJÇPLEG \ ELBOELGU GYCLEG@GU BUERBCG @B ELBOELGU GYCLEG@GU
@LUB×K LOUPTREELKOGC @B CG GULAOGPRTG ARLGU @B BHBTELELKU
JGPBJGPLEGLLL
OK YTBUBOELGC ELECK8 97 ― 4949
N7 @lsb÷k Lostrueelkogc
ROL^BTUL@G@ PBEOKCKALEG @B BC UGC^G@KT BUERBCG @B ELBOELGU GYCLEG@GU –LOA. HRCLK EBUGT KTGOPBU‚ EGPB@TG @B ELBOELGU \ JGPBJÇPLEGU
ARÊGU @B BHBTELELKU GULAOGPRTG8
JGPBJGPLEG LLL ELECK8 97 - 4949 4
ARLG Ok. 7 ROL@G@ L8 –CG LOPBATGC @BNLOL@G \ URU GYCLEGELKOBU‚
Pbjg8 Uujgtkrlgs `b Tlbjgoo . Kdhbtlvk8 Wub bc bstu`lgotb sbg egpgz `b gpclegr ekrrbetgjbotb cg nõrjucg `b Tlbjgoo, bo bc eçceuck `b çrbgs `b rbalkobs pcgogs.
CKU BHBELELKU WRB BUPGO NRBTG @B TBERG@TG UKO KDCLAGPKTLKU YGTG PK@KU Lo`legelkobs8 @bsgrrkccgr eg`g uog `b cgs slaulbotbs sujgtkrlgs slo utlclzgr prkplb`g`bs k nkrjucgs. 0
0
∗4
2
∗ 0 p
a
a :9
0
p :9
4
∗f
f :9
∗ h +4 4
4
2
∗: ( h + 4 )
h : 7
h
7
2
0
n
4 T/∗ 72 n : 7
∗ ( 5 f +7 )
4
0
∗: ∘ l + 0
l
f :7
2
∗
2 4
∗: ( y + 0 )
7
yy
7
z :7 z
4
42
7
T/
74
Lo`legelkobs8 Fgelbo`k usk `b prkplb`g`bs y nõrjucgs, rbskcvbr cgs slaulbotbs sujgtkrlgs. 7.
09
2
(l +5 )
m 79
4.
7
2.
m
5
m 4
5.
0. 50
∗ ( m
4
m
∗ ( l ∔7 )
5
:7
T/ 4019
+ 5 m ∔4 )
∗
799
∗
59
∗
p ( p + 0 ) 4
1.
p ( p 4 + 0 )
:7
:7
>.
49
42
4
l :7
l +7 6o
6. 42
∗ (l
4
∔4 )
:7
:7
75. Bhbrelelk #04, –Eçceuck Cbltfkc`‚, Yça. #556 (1ª B`lelõo) 70. Yrkdgr qub
o
l 7
l 4
o o 7 4o 7
>
Lo`legelkobs8 Fgelbo`k usk `b Uujgtkrlgs `b Tlbjgoo, egceucgr bc çrbg `b cg rbalõo, cljltg`g pkr…
5
n(x) : 4x - 5= x : 4, x : 0, y 4.
7.
:9
y: 9
y : 0 - x , x : -4, x : 4, y : 0.
y : 5 + x4, x : -7, x : 0, y :
4
5.
9 2.
n(x) : 4x + 5= x : 7, x : 5,
9
y : x4 - 2x + 4, x : -7, x : 4,
y : x4 - 5x + 0, x : 9, x : 5, >. y:9
y:9
T/ »
T/ »
y : x5 + 7, x : -7, x : 4, y :
6. 1.
y : x5 + 4, x : 9, x : 4, y : 9 4
T/ 6 u
5
T./
T./ 72
5.
4
( x 0x 4) `x
1.
>.
4
T./ 5>
0
02 4
T./ 5
4
0
4
( 4 x 5) 4 `x
701 701
T./
4
0
5
7
7
T./ 56
5x `x
62
4 4
2
0
0
(x 4 2x 5) `x
2 `x
7
5
5
T./ 9.<
<
75.
∭ 7
`x
∘ x x + ∘ x x
0
71.
70.
x 5 x
`x
76.
47.
b
2 5x x
x
72.
0
`x
7.
9
x
`x
sbo 4x `x
49.
9
45.
b 5 x `x
9
0
7
2
`x
7
4
4
<
<
0
9.7 0
4
7
b
x
0
7
`x
sbe 4 x `x
9
7
(b
4 x
b
x
) `x
9
40.
(5b x b 4 x ) `x
9
2
b4
49
T./ 0
5
T./
4
T./
7 b
5 4
T./
5 b
7 4b 4
2 4
8 Fgelbo`k usk `bc Pbkrbjg Nuo`gjbotgc `bc Eçceuck , y `b gcauogs LL) Lo`legelkobs tìeolegs `b lotbargelõo , bvgcugr eg`g uog `b cgs slaulbotbs lotbargcbs.
7.
4
7
( 4x 5) 2 `x
9
T./
4.
7
x 4 ( 4x 5 7) 0 `x
9
5.
764 5
2
7 72
T./
x 5 `x
0.
9
T./ 51/4
4
2.
`x
( x 2) 5
7
4
6
70 700 0
( x 7 ) b x
4
4x
`x
79.
9
7 5 ( b 7) 4
T./
7 ( b 7) 5
T./ 5
co 4
/ 4
eks 5 x `x
1 <
77.
7
T./
4 co 4
5 0
x b x `x
74.
9
T./
7
9
4
T./ 5
T./
T./ ;;
T./ ;;
9
7 x 4 0 4
7>.
sbo 5 x eks x `x
>
72
5
T./ >0
b
∭ sbo x
7
4
72.
9
9
x `x
5
co x `x
4 b
4
ω / / 4
76.
5
sbo 5 x `x
70. 6
71.
x co x `x
x 4 co x `x
7
6.
7
4
4
4x `x x 2
1. > T./ 0 + 79 co 5
4
T./
x b x `x
>. 7 T./ b4
1
7
75.
9
4
4
T./
ARLG Ok. 5 Pbjg8 Eçceuck `b çrbgs `b rbalkobs pcgogs. Kdhbtlvk8 Wub bc bstu`lgotb sbg egpgz `b fgebr usk `b cg lotbargc `bnlol`g bo bc eçceuck `b çrbgs `b rbalkobs pcgogs.
CKU BHBELELKU WRB BUPGO NRBTG @B TBERG@TG UKO KDCLAGPKTLKU YGTG PK@KU Lo`legelkobs8 Fgelbo`k usk `bc Pbkrbjg Nuo`gjbotgc `bc Eçceuck, egceucgr bc çrbg `b cg rbalõo rba lõo
7.
cljltg`g pkr….
7.
n (x) (x) : 7 - x, x : 7, x : 0, bhb –x‚
4. y : 4x - 7, x : 4, x : 2, bhb x T./ 76 u4
2. y : -x5 , x : -4, x : 4, y :9
T./ 6 u4
>. y : x4 + 5, x : -4, x : 4, y :9
5. n (x) (x) : sbox ,
0. y : eks x ,
x : 7, x : >, y:9
x : 4, x : 0, y : 9
T./
T./
1. n (x) (x) : 0 - x, x : -4, x : >, bhb –x‚ T./ 49 u4
T./
6. y :
0 5
∔ ( x + 4 ) ,
x : 4, x : 2, y :9 T./
4
∔ x
x : 7, x : 4, y :9 T./
72. y : b4x x : -7, x : 4, y :9 T./
74. y : x5 , x : -4, x : 4, y :9 T./ 6 u4
7>. y : x5 - 5, x : -7, x : 4, y :9 T./
1
Lo`legelkobs8 Fgelbo`k usk `bc Pbkrbjg Nuo`gjbotgc `bc Eçceuck, egceucgr bc çrbg `b cg rbalõo rb alõo
4.
cljltg`g pkr….
4. x : sbo x, y:eks
7. y : sbo x,
x
y : eks x ω 4
x : 9, x :
T./ 4 ( ∘ 4 ∔ 7 ) u4
ω x : 4 x: ω 7 T./ > u4
5. x : y4 ― 4,
0. y : x4 + 4, y : -x
4
x:>―y >0 T./ 5 u4
+0 T./
>. 2. y : x + 4, y : -7 x : 4, x : 2
T./
5< 4
x : y4 ― 4, x : > ― y4 >0 T./ 5 u4
u
4
6. y : 0 ― x4, y : x4 - 0
1. y : 0 ― x4 , y : -7 T./
T./
0 T./ 5
u4
y : -4+x4 y:4 54 T./ 5 u4
y : x4
74. y4 : x + 4, x:0 T./
T./
70. . y : - x + 5, y
u4
77. y : 4 - x 4, y : 0- x
u4
>0 5
:5 x : 7, x : 0
72. y : x - 5,
T./
T./
7>. x : y4 - y, x : y - y4 7 T./ 5 u4
4
y : 4x + 0
lll) Lo`legelkobs8 Tbsubcvg ck slaulbotbs bhbrelelks. 7.
Egceuc ceucg gr bc bc çr çrbg `b ccg g rba rbalõ lõo o cclj ljlt ltg g`g pkr8 kr8
y
x
4,
y
- x 4 4
y - x 5 > x 4 - 6x, 4. 5.
y - x 4 0x
Egceuc ceucg gr bc bc çr çrbg `b ccg g rba rbalõ lõo o cclj ljlt ltg g`g pkr8 kr8 Bhbr Bhbrel elel elk k #5 #54, 4, Yça Yça 5 51< 1.
<
79
ARLG Ok. 0 Pbjg8 Eçceuck `b vkcøjbobs `b sõcl`ks `b rbvkcuelõo. Kdhbtlvk8 Wub bc bstu`lgotb sbg egpgz `b fgebr usk `b cg lotbargc `bnlol`g bo bc eçceuck `b vkcøjbobs `b sõcl`ks `b rbvkcuelõo.
CKU BHBELELKU WRB BUPGO NRBTG @B TBERG@TG UKO KDCLAGPKTLKU YGTG PK@KU Lo`legelkobs8 Fgelbo`k usk `bc JÌPK@K @BC @LUEK, egceucgr bc vkcujbo `bc skcl`õ, gc fgebr
7.
alrgr cg rbalõo cljltg`g pkr…
7. x :
y 7
,x :9
y : 9, y : 4
y : 7, y : 2, rbspbetk gc bhb
rbspbetk gc bhb–y‚
T./ 6 u
–y‚
4. x : 2 - y , x : 9, 4
5
2. x : 4, x : 9
T./
5. x : 2 - y4, x : 9, y : 9, y : 4 rbspbetk gc bhb–y‚
00> T./ 72 u5
1. y : 0 - x, y : 9 y : x 4 , y : 9
x : 7, x : 0
rbspbetk gc bhb
–y‚
rbspbetk gc bhb –x‚
rbspbetk gc bhb –x‚
y : 7, y : 5
T./ 6 u5
x : 4, x : >,
79. y : 5x + 4, y :
y : 9, y : 4 rbspbetk gc bhb–y‚
9
54 T./ 2 u5
x : 7, x : 5
rbspbetk gc bhb –x‚
T./
T./ .
T. 7 (ekovbrab) 6.
+∟
∭
5
∭ ∘ 0 x `x 9
co x
4
`x
x
7
1.
∭ `x ∘ 0∔ x 9
4
ω T. 4 (ekovbrab)
T. `lvbrab
T. > (ekovbrab)
T. 7 (ekovbrab)
4
7
T. 4 (ekovbrab)
ω
(ekovbrab)
+∟
∭ x7 `x
`x
9
`x+ x
9
77.
∟
∭ tgo ζ`ζ
ω 4 (ekovbrab)
70.
5
∘ 6∔ x
∭
9
T. `lvbrab
∭ 72.
co x x
7
4
T.
71.
∭ x 9
T. `lvbrab
∭∔∟ x b
∭ x b∔ `x 4x
76.
∔∟ T. `lvbrab
7.
9
T.
T. 7 (ekovbrab)
9
`x
5
7
7 7
7
m ∔7 9 ∘ m
74.
T. > (ekovbrab)
ω / 4
4
4
`x
4x
`lvbrab 5
∭ `x∘ 5∔ x
`x
9
49.
T.
4 ∘ 5
(ekovbrab)
(ekovbrab)
70
LL) Lo`legelkobs8 @btbrjlob sb cgs lotbargcbs `g`gs bo cks slaulbotbs bhbrelelks sko ekovbrabotbs k `lvbrabotbs. Bvgcøb gqubccgs qub sbgo ekovbrabotbs. +∟
47.
45.
7
7
∭ ∘ x +5 `x 4
+∟
T// @lvbrab
∭ ( x+ 4)(7 x+ 5) `x
44.
∭∔∟ ( 4 x∔7 5 ) `x 4
+∟
T// º
eks x` x`xx ∭ eks
9
T// - co
40.
T// @lvbrab
9
4/5
+∟
2 `x 4 x +5
∭
42. 41.
9
+
co co x x
7
4>.
T// @lvbrab
7
T// @lvbrab
46.
∭ ∘ 7 x `x 0
57.
9
7
`x
T//
co x co x `x 4 x T// 7
T//
4 ∘ 5
59.
∭ x7 `x ∔7
4
T// @lvbrab
ω
7
∭
∭
4
b 0
9
5
2
+
`x
∭ x
4 s0
5>.
5
N(s)
n(t) 5t - 4
T./
s4
4 s
L^) Lo`legelkobs8 Fgelbo`k usk `b Prgosnkrjg`gs `b Cgpcgeb bcbjbotgcbs y cg prkplb`g` `b clobgcl`g`, trgscgelõo y ktrgs. Boeubotrb
51.
5 t n (( t )): tsbo 2 teks 2 t + 0 b
T./ N(s) ;
n (( t ): b t ∔ 6 t 0 t 4
T./ »
Boekotrgr cg trgosnkrjg`g `b N(t) : bt t4 sbo4 4t ARLG Ok. > ROL@G@ LLL8 –EKKT@BOG@GU YKCGTBU‚
Pbjg8 Ulstbjg `b Ekkr`bog`gs Ykcgrbs. Kdhbtlvk8 Wub bc bstu`lgotb sbg egpgz `b fgebr usk g`beug`gjbotb `b cgs ekkr`bog`gs pkcgrbs y `b su rbcgelõo eko cgs ekkr`bog`gs egrtbslgogs, bcgdkrgr arçnleks pkcgrbs ekrrbetgjbotb, eko bc usk prbvlk `b cks erltbrlks `b sljbtrêg, egceucgr eko ngelcl`g` çrbgs `b rbalkobs pkcgrbs L) Lo`legelkobs8 Rdlqub bo uo pcgok, eg`g uok `b cks slaulbotbs puotks.
7.
( )
4.
( )
2.
(∔ ∔ )
ω 0 >.
(∔ )
1 ω 5
0,
ω 4
74.
ω 4
1 ω 0
( 5 , ω ))
ekkr`bog`gs pkcgrbs, cgs ekkr`bog`gs ekkr`bog`gs egrtbslgogs `b eg`g uok LL) Lo`legelkobs8 Egjdlb g ekkr`bog`gs `b cks slaulbotbs pgrbs kr`bog`ks 7.
(0, 4)
5 .4 ,
ω
( )
4.
(-0, -4)
5.
(1, -0)
0.
(9, -2)
>.
(0, 1)
1.
(-4, b)
6.
(-2, 9)
1
2.
(9, 5)
ekkr`bog`gs egrtbslgogs, cgs ekkr`bog`gs pkcgrbs `b eg`g uok LL) Lo`legelkobs8 Egjdlb g ekkr`bog`gs `b cks slaulbotbs pgrbs kr`bog`ks.
7.
( ) ω 0, 5
4.
T. (4, 5.2)
( )
4 ω 4 ,∔ 0 5.
( ) 2,
< ω 2
0.
∔0 ,
T. (0, -4. >.
∔5 , -
( ) 4,
5 ω 2
T. (-9.>, 7. , -
2 ω
5 T.
)
4 ω 1 T.
6.
5 ω 4
T. (9, >)
7>
ARLG Ok. 1 Pbjg8 Beugelkobs pkcgrbs y egrtbslgogs (rbetgoaucgrbs). bstu`lgotb tb sbg egpgz `b fgebr fgebr usk g`beug`gjb g`beug`gjbotb otb `b cgs ekkr ekkr`bog `bog`gs `gs Kdhbtlvk8 Wub bc bstu`lgo pkcgr pkc grbs bs y `b su rbcgel rbcgelõo õo eko cgs ekkr`b ekkr`bog` og`gs gs eg egrtb rtbslg slgog ogs, s, bcg bcgdkr dkrgr gr arçnle arçnleks ks pkc pkcgrb grbs s ekrrbetgjbotb, eko bc usk prbvlk `b cks erltbrlks `b sljbtrêg, egceucgr eko ngelcl`g` çrbgs `b rbalkobs pkcgrbs Ekovlb vlbrt rtg g g beugel beugelõo õo pkc pkcgr gr,, eg`g eg`g uog `b cgs slaul slaulbot botbs bs beu beuge gelko lkobs bs L) Lo`legelk Lo`legelkobs obs8 Eko egrtbslgogs (rbetgoaucgrbs)
y4 : .
(x4 + y4)4 - sbo 4
x4 + y4 ― 4gx : 9 T. r (r ― 4g eks )
Ekov ovlb lbrt rtg g bo be beug ugel elõo õo rbet rbetgo goau aucg cgr, r, eg eg`g `g uog uog `b cg cgs s slau slaulb lbot otbs bs Lo`legelko Lo`legelkobs bs8 Ek
beugelkobs pkcgrbs.
7.
r:>
T.
4.
r : sbo
T.
:9
x4 + y4 ― y
5. T.
r : 4 eks
0.
r 0
1 sbo
T. x4 + y4 + 1y : 0 x 4
y4
71
2.
r:
r:
7.
0 sbo 4
2
T.
x
4
y4
54
6xy
x4
: > T. y :
1.
T. y y 4 tgo 7
x
5 5
x
6.
r : 4sbe
T.
ARLG Ok. 6 Pbjg8 Arçnleks pkcgrbs y erltbrlks `b sljbtrêg. bstu`lgotb tb sbg egpgz `b fgebr fgebr usk g`beug`gjb g`beug`gjbotb otb `b cgs ekkr ekkr`bog `bog`gs `gs Kdhbtlvk8 Wub bc bstu`lgo pkcgrbs pkcgr bs y `b su rbcgel rbcgelõo õo eko cgs ekkr`b ekkr`bog` og`gs gs eg egrtb rtbslg slgog ogs, s, bcg bcgdkr dkrgr gr arçnle arçnleks ks pkc pkcgrb grbs s ekrrbetgjbotb, eko bc usk prbvlk `b cks erltbrlks `b sljbtrêg, egceucgr eko ngelcl`g` çrbgs `b rbalkobs pkcgrbs
CKU BHBELELKU WRB BUPGO NRBTG @B TBERG@TG UKO KDCLAGPKTLKU YGTG PK@KU L) Lo`legelkobs8 Ygrg eg`g uog `b cgs slaulbotbs beugelkobs, ekrrbspko`lbotbs g egrgekcbs8 g) L`botlnlqub bc tlpk `b egrgekc, d) Bcgdkrb bc arçnlek rbspbetlv rbspbetlvk.(Rsb k.(Rsb sljbtrêgs) 7. 2.
r : 7 ― 9.2 eks ζ
4.
r : 7 + eks
>.
r : 4 ― sbo ζ
ζ
. Bhbjpck 2, Yça 144, Egceuck Pfkjgs, 77ª B`lelko LL) Lo`legelkobs8 Ygrg eg`g uog `b cgs slaulbotbs beugelkobs, ekrrbspko`lbotbs g rksgs8 g) L`botlnlqub bc tlpk `b rksg, d) Bcgdkrb bc arç arçnlek nlek rbspbetlvk. rbspbetlvk. 7.
r : 4 sbo 54. ζ
2.
r : 2 eks 45. ζ
r : 4 sbo 2>. ζ
r : 0eks 4 0. ζ
r : 4 eks 21. ζ
r : 5 sbo 2 ζ
r : 5 sbo 46. ζ
r : 4 sbo 4 ζ
76
ekrrbspko`lbotbs g eêreucks LLL) Lo`legelkobs8 Ygrg eg`g uog `b cgs slaulbotbs beugelkobs, ekrrbspko`lbotbs y cbjolsegtgs, bcgdkrb bc arçnlek rbspbetlvk. 7.
r : 5 eks ζ
4.
r4 : eks4 ζ
5.
r4 : 0 sbo4 ζ
0.
r : -4 sbo ζ
2.
r4 : eks 4 ζ
>.
r4 : 0 sbo 4 ζ
OKPG LJYKTPGOPB8 Eugo`k sb vg g rbgclzgr cg arçnleg `b uog cbjolsegtg, bs ljpkrtgotb tkjgr bo eubotg qub, `b cg bxprbslõo
r 4 : g 4 sbo 4ζ
r 4 : g 4 eks 4ζ ,
õ
Ygrg tgducgr y gsê pk`br ekokebr cks `lnbrbotbs vgckrbs `b r, bs obebsgrlk ccbvgr bstgs beugelkobs g cgs nkrjgs rbspbetlvgs `b8
r:g
sbo 4ζ ∘ sbo
y r :g
eks 4ζ ∘ eks
.
Gcauoks vgckrbs `b sbok k `b eksbok, qub sb vgo g kdtbobr, sko `b slaok obagtlvk. Ykr ck tgotk, gc jkjbotk `b qubrbr egceucgr su rgêz eug`rg`g, bc rbsuctg`k ok sbrç uo vgckr rbgc, pkr ck qub bo su egceucg`krg gpgrbebrç bc jbosghb BTTKT. Botkoebs, skck sb pk`rço udlegr bo uo pcgok pkcgr, Gqubccks pgrbs (r, ζ ), bo `ko`b r fgyg rbsuctg`k uo vgckr rbgc. Eko bstks puotks sb trgzgrç cg eurvg rbqubrl`g.
B O E K O E C R U L K O 8 Bc `kjlolk `b cgs cbjolsegtgs, bstç rbstrloal`k pgrg vgckrbs `b r qub prkeb`go `b eçceucks `b sbok k `b eksbok, eko rbsuctg`k obagtlvk.
7<
ARLG Ok. < Pbjg8 Eçceuck `b çrbgs `b rbalkobs pkcgrbs. Kdhbtlvk8 Egceucgr eko ngelcl`g` çrbgs `b rbalkobs pkcgrbs. Lo`legelkobs8 Egceucb bc çrbg `b eg`g uog `b cgs slaulbotbs rbalkobs pkcgrbs.
7.
7.
Yrbsbotgr bc argnek `b cg rbalõo
ìtgck r`:ks0 peks 5 sζ `b Lotbrlkr `b r :4 - 4sbo
5.
(pkr boeljg `bc bhb pkcgr)
Lotbrlkr `b r : 4 - sbo ζ
sbo 4 ζ
r : 4 ( 7∔ eks ζ )
T.
ω 6
u4
T. T.
< ω u4
T. > ω u4
Lo`legelkobs8 Egceucb bc çrbg ekjprbo`l`g botrb rbalkobs pkcgrbs. Yrbsbotgr bc argnek `b cg rbalõo bo eg`g e g`g bhbrelelk
Lotbrlkr ekjøo `b
r : 4 ( 7 + eks ζ )
: 4 sbo ζ y T. 4 4 ( ω - 4 ) u ekss ζ y `botrk `b Nubrg `b r : > ek r :4 + 4 eks eks ζ T.
4.
r 5 y `botrk `b r : 4 ( 7 + : eks ζ )
Nubrg `b
r : 4 ( 7 + eks ζ ) y nubrg r : 4 eks ζ T. 2 ω u4
@botrk `b `b
r :5 ek ekss ζ y `botrk `b ω 4 u 0 r : 7 + eks ζ T.
0.
Nubrg `b
>.
Lotbrlkr ekjøo `b
ω ∘ 5 4 ∔ u 74 6 2.
r : ek s 4 ζ
u
r
5.
>.
T.
Ro pìtgck `b
4
r : g (7 ∔eks ζ )
T. 5 ω - 6 0.
T. 42 ω 6.
r :79 sbo ζ
4.
ug 4trek kp re: s ì2tgζcks `b
u4
2.
1.
4.
T.
r:5
+ 4 eks ζ y r: 4
T. 49
∔ ω +2 ∘ 5 u4
T. 1.
Lotbrlkr ekjøo `b
r :0 sbo 4ζ 4 ζ y r : 4 0
T. .
(-0, 7, 5)
1.
(-4, 4, 5)
(0, -4, 9)
, 5, -4 )
( -4, 9, 5 )
LLL) Lo`legelkobs8 Ygrg eg`g uok `b cks slaulbotbs vbetkrbs, egceucgr8 g) su jgaoltu` d) su rbspbetlvk vbetkr uoltgrlk
7.
F 2 h 0 m
4.
G 5 l 2 h 0 m
5.
E 1 l 4 h 5 m
47
N l h 5 m
0.
Bc vbetkr J , qub >. vg `b (-7, 5, 4) fgstg (2, 9, 5)
2.
Bc vbetkr Y , qub vg `b (0, -7, 4) fgstg (7, 2, -5)
ARLG Ok. 77
ROL@G@ L^8 –^BEPKTBU BO BC BUYGELK‚.
Pbjg8 Kpbrgelkobs eko ^betkrbs. Kdhbtlvk8 Wub bc bstu`lgotb sbg egpgz `b utlclzgr, g`beug`gjbotb, cgs prkplb`g`bs gcabdrglegs `b cks vbetkrbs bo bc bspgelk trl`ljboslkogc, pgrg uog pkstbrlkr gpclegelõo bo cg rbskcuelõo `b prkdcbjgs rbcgelkog`ks eko rbetgs bo bc bspgelk.
L) Lo`legelkobs8 @g`ks cks vbetkrbs8
G
1 l
4 h
5m
=
D
4l
2 h
7.
0m
=
E
2 l
G
4.
5 E 4D
2.
4 G 5 D
D
4ED)
4m
Boeubotrb8
E
0.
D
6.
D G
1.
G D
E 5.
>. G
> h
G
E) D
LL) Lo`legelkobs8 @g`ks cks vbetkrbs8
G 0 l 5 h m = D 4 l 0 h 2 m = E l 2 h 4 m Fgccgr8
44
↔ 7.
↔
E x D
↔ ↔ G . D
↔ ↔ E . D
4.
↔
2. .
↔
↔ ↔ G . G
↔
↔
G x G
(
↔
↔
x GG x D
)
LLL) Lo`legelkobs8 @g`ks cks vbetkrbs8
G 5 l 2 h 4 m = D 5 l 2 h 0 m = E 1 l 4 h 5 m fgccgr8 ↔ ↔ ↔ ↔
G y D
D y E 7.
çoauck botrb
5.
çoaucks `lrbetkrbs `b
4.
↔
G
çoauck botrb
0.
↔
çoaucks `lrbetkrbs `b
D
L^) Lo`legelkobs8 Tbgcleb sbaøo sb lo`lqub. @g`ks cks vbetkrbs8 ↔
»
»
»
↔
»
»
»
@g`ks cks vbetkrbs8
G : 1 l ∔ 4 h ∔ 0 m
D : 4 l ∔ > h + 0 m »
↔
»
↔
7. 4. 5.
↔
↔
↔
»
»
E : 1 l ∔ 4 h + 5 m
Ekjprkdgr qub8 ↔ ↔ ↔ ↔ G . D : D . G 7.
↔
↔
↔
↔
x ( D + E ) : ( G x D ) + ( G x E )
5. 0.
↔
↔
↔ ↔
↔
↔
G . ( D + E )) : G . D + G . E
4.
↔
»
»
↔
↔
↔
»
D : ∔5 l ∔ 2 h + 0 m
»
D x D : 9 ↔
»
↔
G x D : ∔( D x G )
↔
↔
»
G : 5 l + 2 h ∔ 4 m
E : ∔5 l + 2 h + 0 m
Ekjprkdgr qub8
»
»
↔
↔ ↔
↔
↔
↔
↔
4 ( G . D ) : ( 4 G ) . D : G . ( 4 D ) ↔
↔
↔
»
»
»
. 9: 9 , `ko`b 9 : 9 l +9 h + 9 m
45
ARLG Ok. 74 ROL@G@ L^8 –^BEPKTBU BO BC BUYGELK‚.
Pbjg8 Tbetgs y Bsnbrgs. Kdhbtlvk8 Wub bc bstu`lgotb sbg egpgz `b utlclzgr, g`beug`gjbotb, cgs prkplb`g`bs gcabdrglegs `b cks vbetkrbs bo bc bspgelk trl`ljboslkogc, pgrg uog pkstbrlkr gpclegelõo bo cg rbskcuelõo `b prkdcbjgs rbcgelkog`ks eko rbetgs bo bc bspgelk.
L) Lo`legelkobs8 Boeubotrb bc ekohuotk `b beugelkobs8 sljìtrleg y pgrgjìtrleg y vbetkrlgc `b cg 7.
(2,-5,-4),(4/5,4/5,7)
0.
rbetg qub Ygsg pkr cks puotks lo`leg`ks8 4. (4,0,5), (7,1,-4) 5. (7,5,-4) (-5,4,1)
(-2,2,2) ,(7,7,7)
1.
2.
(-4,2,5), (>,0,5)
Lolelg bo bc puotk ( -4, 0, 5 ) y qub bs pbrpbo`leucgr g » » » ↔
6.
Y : 4l ∔ 2 h + m
.
(7,9,7), (4,-7,5)
Lolelg bo bc puotk ( 4, -5, 0 ) y qub bs pgrgcbck g » » » ↔
Y : ∔5 l + 2 h + 0 m
79.
Ygsg pkr ( -4 , 9 , 5 ) y bs pbrpbo`leucgr pbrpbo`leuc gr g bc vbetkr 8 » » » ↔
^ : > l∔0 h +4 m
Lo`legelkobs8 @btbrjlob sl cgs rbetgs sb ekrtgo y bo egsk gnrjgvk, fgccgr bc puotk `b lotbrsbeelõo y bc eksbok `bc çoauck `b lotbrsbeelõo8
BUPB ORJBTGC PK@KU CKU ATRYKU CK TBUKC^BTUGO
40
7.
V: 0t+4 V:4s-4 \: 5 = \:4s+5 X: -0 ― t =
4.
=
:
5.
y ∔ 4
∔7
: X + 7
x ∔ 7
=
: \ + 4: X + 5 0 5 ∔
X:s-5
V: -5t+4 = V:0s+2 \: 4t-5 = \:4s+5 X: -4t+0 = X: -4s-4
Lo`legelkobs8 Fgccgr cg krjg abobrgc `b cg beugelõo `b cg bsbrg y argqubcg8 BUPB ORJBTGC PK@KU CKU ATRYKU CK TBUKC^BTUGO
0.
7.
Wub pgsg pkr cks puotks8 (9,9,0) , (4,7,5) y (9,4,>), (9,9,9)
4.
Ebotrk
5.
Wub tlbob ekjk `lçjbtrk bc sbajbotk `b rbetg cljltg`k pkr cks puotks (5,>,0) y (-0,1.-7) Bstb bhbrelelk ck rbskcvbrço tk`ks cks gcujoks
(0,-7,7) y rg`lk r:2
^L) Lo`legelkobs8 Fgccgr bc ebotrk, bc rg`lk y argnlegr cgs slaulbotbs bsnbrgs8 7.
x 4 y 4 z 4 y 6z 7 9
0.
< x 4 < y 4 x 76 y 7 9
ARLG Ok. 75 ROL@G@ L^8 –^BEPKTBU BO BC BUYGELK‚.
Pbjg8 Ycgoks bo bc Bspgelk. bc bstu`lgotb egpgz `b utlclzgr, g`beug`gjbotb, cgs prkplb`g`bs Kdhbtlvk gcabdrglegs `b8 Wub cks vbetkrbs bo bc sbg bspgelk trl`ljboslkogc, pgrg uog pkstbrlkr gpclegelõo bo cg rbskcuelõo `b prkdcbjgs rbcgelkog`ks rbcgelkog`ks eko pcgoks bo bc bspgelk.
L) Lo`legelkobs8 Boeubotrb cg beugelõo y argnlegr `bc pcgok bspbelnleg`k8 7.
4. 5. 0. 2.
Ygs Ygsg pk pkr cks cks puot otks ks (4,4, 4,4,7) 7) _ (-7, (-7,7, 7,-7 -7)) y b bs sp pbr brp pbo bo`l `leu eucg cgrr g gcc pcg pcgok 4x4x5y+z:5. » » »
: + ∔
Ygsg pkr bc puotk (5,4,4) y qub bs pgrgcbcg gc vbetkr bs o 4 l 5 h m Ygsg Ygsg pkr pkr cks cks pu puot otks ks (7,4 (7,4,,-5) 5),, (4,5 (4,5,7 ,7)) _ (9,(9,-4, 4,-7 -7). ). G`bj G`bjçs çs boeu boeubo botr trb b uo pcgo pcgok k pgrgcbck gc pcgok pcgok boekotrg`k boekotrg`k boekotrg`g qub pgsb pgsb pkr bc puotk (5.-0,>) Ygs Ygsg pk pkr cks cks puot otks ks (9,9, 9,9,9) 9),, (7, (7,4, 4,5) 5) _ ((-4 -4,,5,5) 5,5).. G G` `bj bjç çs boe boeub ubot otrb rb uo p pcg cgo ok pbrpbo`leucgr pbrpbo`leu cgr gc pcgok boekotr boekotrg`g g`g qub pgsb pkr bc puotk puotk (5.-0,>) Ygsg pk pkr ck cks pu puotks (7 (7,4,5), y qub su su v vb betkr okrjgc b bs s o : --5 5l +2 +2m
42
>.
Ygsg pkr bc puotk (4,7,4) y su vbetkr okrjgc bs o: -4h +0l
LL) Lo`legelkobs8 Boeubotrb Boeubotrb cg rbetg lotbrsbeelõo y Goauck botrb cks pcgoks `g`ks 8 7.
V+5y+>z:0 = 4. 2x-y-z:0
2x+4y-x:< = x0y+5z:9
5, 5,5 50. 4x+>y-z-7:9= 1x-y-5z+4:9
Pk`ks cks gcujoks gcujoks rbskcvbrço bstb bhbrelelk .
4. @btbrjlogr cg `lstgoelg botrb… Bstks bhbrelelks cks rbskcvbrço tk`ks cks gcujoks 7.
Bc puotk W(4,6,0) y bc pcgok x0y+4z:9
5.
Botrb cks pcgoks -5x+>y+1z:7 _ >x-74y-70z42:9 g`bjçs boekotrgr bc çoauck botrb cks 4 pcgoks
4.
Botrb cks pcgoks8 x-5y+0z:79 _ x-5z+0y:> g`bjçs boekotrgr bc çoauck botrb cks 4 pcgoks
0.
Bc pcgok 4 4x x+5y+z:74 y bc puotk ^(9,9,9)
ARLG Ok. 70 ROL@G@ ^8 –URYBTNLELBU ELCÊO@TLEGU \ ERÇ@TLEGU‚
Pbjg8 Uupbrnlelbs Elcêo`rlegs y Eug`rlegs. Kdhbtlvk8 Wub bc bstu`lgotb sbg egpgz `b bcgdkrgr, g`beug`gjbo g`beug`gjbotb, tb, arçnleks bo bc bspgelk, rbcgelkog`ks rbcgelkog `ks eko supbrnlelbs elcêo`rlegs elcêo`rlegs y eug`rlegs. eug`rlegs.
L) Lo`legelkobs8 rbprbsbotgr arçnlegjbotb eg`g uog `b cgs supbrnlelbs elcêo`rlegs l`botlnlego`k bo bc argnlek cg `lrbetrlz y abobrgtrlz BUPKU BHBTELELKU CKU TBUKC^BTGO PK@KU CKU ATRYKU 7.
x 4 z 4 7>
2.
z eks y9
4. >.
x 4 y 9
5.
z
1.
y
x 5 0 x 4 y4 0
0.
z y5
6.
\: co 4x
4>
4
4
y b x
77.
y sbox 9
74.
lotbrebptks, trgzgs y argnlegr cgs slaulbotbs LL) Lo`legelkobs8 L`botlnlegr, boekotrgr supbrnlelbs eug`rlegs8
BUPB ORJBTGC PK@KU CKU ATRYKU CK TBUKC^BTUGO
7.
0x 4 0 y z 4 9
0.
0 x y 4z 0 9
4. 4
4
1.
x4
4
< x
4
y 4 7>
4
y
z4
7 5. <
z
4
y 4 0 x 4
0 x 4 y 4 0z 9
2.
7 >. 0
6.
5> y :∔ x 4 >0 y 4 700z 4 21>
x 4
77.
y4 0
z4 <
x
7 74.
4
7>
y
4
0
z
4
<
9
41
View more...
Comments