Graph Theory and Its Applications, Second - Jonathan L. Gross.pdf
April 6, 2017 | Author: Armando Churro | Category: N/A
Short Description
Download Graph Theory and Its Applications, Second - Jonathan L. Gross.pdf...
Description
DISCRETE MATHEMATICS AND ITS APPLICATIONS Series Editor KENNETH H. ROSEN
Graph Theory and Its Applications Second Edition
DISCRETE MATHEMATICS and ITS APPLICATIONS Series Editor
Kenneth H. Rosen, Ph.D. Juergen Bierbrauer, Introduction to Coding Theory Kun-Mao Chao and Bang Ye Wu, Spanning Trees and Optimization Problems Charalambos A. Charalambides, Enumerative Combinatorics Henri Cohen, Gerhard Frey, et al., Handbook of Elliptic and Hyperelliptic Curve Cryptography Charles J. Colbourn and Jeffrey H. Dinitz, The CRC Handbook of Combinatorial Designs Steven Furino, Ying Miao, and Jianxing Yin, Frames and Resolvable Designs: Uses, Constructions, and Existence Randy Goldberg and Lance Riek, A Practical Handbook of Speech Coders Jacob E. Goodman and Joseph O’Rourke, Handbook of Discrete and Computational Geometry, Second Edition Jonathan L. Gross and Jay Yellen, Graph Theory and Its Applications, Second Edition Jonathan L. Gross and Jay Yellen, Handbook of Graph Theory Darrel R. Hankerson, Greg A. Harris, and Peter D. Johnson, Introduction to Information Theory and Data Compression, Second Edition Daryl D. Harms, Miroslav Kraetzl, Charles J. Colbourn, and John S. Devitt, Network Reliability: Experiments with a Symbolic Algebra Environment Derek F. Holt with Bettina Eick and Eamonn A. O’Brien, Handbook of Computational Group Theory David M. Jackson and Terry I. Visentin, An Atlas of Smaller Maps in Orientable and Nonorientable Surfaces Richard E. Klima, Ernest Stitzinger, and Neil P. Sigmon, Abstract Algebra Applications with Maple Patrick Knupp and Kambiz Salari, Verification of Computer Codes in Computational Science and Engineering William Kocay and Donald L. Kreher, Graphs, Algorithms, and Optimization Donald L. Kreher and Douglas R. Stinson, Combinatorial Algorithms: Generation Enumeration and Search Charles C. Lindner and Christopher A. Rodgers, Design Theory Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone, Handbook of Applied Cryptography
Continued Titles Richard A. Mollin, Algebraic Number Theory Richard A. Mollin, Codes: The Guide to Secrecy from Ancient to Modern Times Richard A. Mollin, Fundamental Number Theory with Applications Richard A. Mollin, An Introduction to Cryptography Richard A. Mollin, Quadratics Richard A. Mollin, RSA and Public-Key Cryptography Kenneth H. Rosen, Handbook of Discrete and Combinatorial Mathematics Douglas R. Shier and K.T. Wallenius, Applied Mathematical Modeling: A Multidisciplinary Approach Jörn Steuding, Diophantine Analysis Douglas R. Stinson, Cryptography: Theory and Practice, Second Edition Roberto Togneri and Christopher J. deSilva, Fundamentals of Information Theory and Coding Design Lawrence C. Washington, Elliptic Curves: Number Theory and Cryptography
DISCRETE MATHEMATICS AND ITS APPLICATIONS Series Editor KENNETH H. ROSEN
Graph Theory and Its Applications Second Edition
Jonathan L. Gross Jay Yellen
Boca Raton London New York
Copyright Jonathan L. Gross and Jay Yellen
CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2006 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20110713 International Standard Book Number-13: 978-1-4200-5714-0 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http:// www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com
PREFACE
!"" #"""
$ $ % &
'
Æ
% ( ) * % + ! % + ,- % !
% .
% (" % (( / 0 % (# (1 2
% (3 () 4 % ( ) 5 2 6
Ü3)7
6 7
8
$ % ! 5 % ( % # Ü1(
9
¯ Ü1# Ü3( ¯ Ü3( Ü3# Ü:3 Ü(#: ¯ Ü3: Ü:1 Ü)( ¯ ; % : Ü(11 ¯ % ! Ü()( Ü()# ¯ Ü(:( Ü(:# Ü(:1 Ü()1 Ü()3 Ü(): $
% 3 6 7 : 6 7 ) 6 7 . 6 7 (# 6 7 (1 627 - $
% 1 67 $ % + 6 7 % ! 6 7 % (3 67 % (: 6 7 % () 6 7
¯
¯
4 % '
$ ("" . 9
Ü!) ? Ü.3 @ Ü("( ? Ü("# ? Ü("1 A
Ü("3 Ü((( 0 Ü((# Ü((1 0
= % (
>
>
* % # * % 1 3 2 % :
Ü:#
* 0 # * % + ,- 6 % . 7 % ! % + 6 % (: 7 4 % + 6 7 % . % (" 6Ü.37 % (" (( 6Ü (":
Ü(")7 % +
% (# % (( % (1 % (# % (3 (: () % (1 (3 (: % (3 6 7 A- B % () 6 7 % + % !
@
Ü33 Ü1+
' -
8
? ' $
%0% ;
$
' 8
A A
C % B , * , A 4 A 4 4 , 0 ' C ' ? D * A 4
' * ,
C C E
ABOUT THE AUTHORS Jonathan Gross is Professor of Computer Science at Columbia University. His research in topology, graph theory, and cultural sociometry has earned him an Alfred P. Sloan Fellowship, an IBM Postdoctoral Fellowship, and various research grants from the Office of Naval Research, the National Science Foundation, and the Russell Sage Foundation. Professor Gross has created and delivered numerous softwaredevelopment short courses for Bell Laboratories and for IBM. These include mathematical methods for performance evaluation at the advanced level and for developing reusable software at a basic level. He has received several awards for outstanding teaching at Columbia University, including the career Great Teacher Award from the Society of Columbia Graduates. His peak semester enrollment in his graph theory course at Columbia was 101 students. His previous books include Topological Graph Theory, coauthored with Thomas W. Tucker. Another previous book, Measuring Culture, coauthored with Steve Rayner, constructs network-theoretic tools for measuring sociological phenomena. Prior to Columbia University, Professor Gross was in the Mathematics Department at Princeton University. His undergraduate work was at M.I.T., and he wrote his Ph.D. thesis on 3-dimensional topology at Dartmouth College.
Jay Yellen is Professor of Mathematics at Rollins College. He received his B.S. and M.S. in Mathematics at Polytechnic University of New York and did his doctoral work in finite group theory at Colorado State University. Dr. Yellen has had regular faculty appointments at Allegheny College, State University of New York at Fredonia, and Florida Institute of Technology, where he was Chair of Operations Research from 1995 to 1999. He has had visiting appointments at Emory University, Georgia Institute of Technology, and Columbia University. In addition to the Handbook of Graph Theory, which he coedited with Professor Gross, Professor Yellen has written manuscripts used at IBM for two courses in discrete mathematics within the Principles of Computer Science Series and has contributed two sections to the Handbook of Discrete and Combinatorial Mathematics. He also has designed and conducted several summer workshops on creative problem solving for secondary-school mathematics teachers, which were funded by the National Science Foundation and New York State. He has been a recipient of a Student’s Choice Professor Award at Rollins College. Dr. Yellen has published research articles in character theory of finite groups, graph theory, power-system scheduling, and timetabling. His current research interests include graph theory, discrete optimization, and graph algorithms for software testing and course timetabling.
C $
C 4
CONTENTS Preface 1.
INTRODUCTION to GRAPH MODELS (( ? # (# % @ (: (1 4 $ ## (3 * ? #! (: ; % 1. () F $9 4 $ 3! (+ ' :( :1
1
2.
STRUCTURE and REPRESENTATION #( :! ## $ ' ): #1 ' +# #3 ' > !" #: = !. #) 4 0 .: #+ 4 > ("( #! ' ("+ (("
57
3.
TREES 1(
% ;
(()
1#
0 > A
(#3
11 13 1: 1) 1+ 1! 1.
4.
A A' 58 > ; % ; % B 9 ;G % A 9 % 0 '
115
SPANNING TREES 3( 3# ? @ A @ ' 31 4 ' ' ; 33 $ ? @ ' 3: % % ' 3) F ' 3+ 4 $ 3! '
(1# (1+ (3( (3) (:( (:) (:! ()"
163 ()3 (+( (+) (!# (." (.+ #"+ #(# #(1
5.
CONNECTIVITY F
:#
% 0 =
:1 :3 ::
6.
7.
8.
44 ? 4- A ? '
:(
%
OPTIMAL GRAPH TRAVERSALS )( )# ?A& ' ; ; )1 5 ; % )3 % ' ; ): ' PLANARITY AND KURATOWSKI’S THEOREM +( ; ? ' A ' +# ' 5 +1 ; ? +3 ,- +: $ ; +) ; $ ++ % = +! ' DRAWING GRAPHS AND MAPS !( B ? !# 5 > ' !1 4 4 ? !3 0 4 ' !: 5 > ' !) ? !+ '
9. GRAPH COLORINGS .( F% .# 4 % .1 % .3 @ .: '
217 #(! ##1 #1( #3( #33 #3:
247 #3! #:# #)+ #+1 #!# #!1
285 #!) #.# #.+ 1"3 1(( 1#3 1#+ 11( 113
337 11! 13( 13) 13. 1:3 1)( 1): 1))
371 1+# 1!) 1.1 3"+ 3(( 3(1
10. MEASUREMENT AND MAPPINGS ("( ? ("# ? ("1 A ("3 (": B 4 (") 4 = ("+ ' 11. ANALYTIC GRAPH THEORY ((( 0 ((# ((1 0 ((3 '
417 3(! 3#3 31" 31: 333 3:1 3)# 3)1
469 3+" 3+: 3!" 3!. 3."
12. SPECIAL DIGRAPH MODELS ;& ' % ; @ ' % ? '
493
(#(
? ; 4 0
3.3
(##
? 4 0
:":
(#1 (#3 (#: (#)
13. NETWORK FLOWS and APPLICATIONS (1( @ % = (1# ' 4@ ; (11 @ % (13 4 F % (1: '
:(( :() :#1 :#! :#.
533 :13 :3# ::( :)" :+1 :+3
14. GRAPHICAL ENUMERATION (3( (3# (31 (33 (3: (3) (3+
% ' A- B % ; ; 4 % ' ;H A ' $ '
577 :+! :!1 :!. :.: )"" )") )". )("
15. ALGEBRAIC SPECIFICATION of GRAPHS (:( % F (:# % 0 F (:1 ; F (:3 ' ; $ (:: = ; (:) '
613 )(3 )#1 )1# )1+ )33 )3) )3.
16. NONPLANAR LAYOUTS ? F ' B =,FB F 5 4 % ; '
()(
0
()# ()1 ()3 (): ())
0
651 ):# ):. ))3 )+" )+# )++ )+!
APPENDIX
681
' A % $ ' $ % ' 0
$(
B @
)!(
$#
0 @
)!1
$1 $3 $: $)
)!) )!+ ).# ).3
BIBLIOGRAPHY
695
A(
0
).:
A#
0
).+
SOLUTIONS and HINTS
709
INDEXES ( # 1 3
757
$ = $
+:+ +:. +)( +)+
Chapter
1
INTRODUCTION TO GRAPH MODELS 1.1 Graphs and Digraphs 1.2 Common Families of Graphs 1.3 Graph Modeling Applications 1.4 Walks and Distance 1.5 Paths, Cycles, and Trees 1.6 Vertex and Edge Attributes: More Applications
INTRODUCTION
!
!
"
"
#
$
%
& '
%
(
) " $
1
2
1.1
Chapter 1 INTRODUCTION TO GRAPH MODELS
GRAPHS AND DIGRAPHS
%
*
+
, ( (
Figure 1.1.1
-
)
. + ,
+ , /
" ( " " +,
01 . +, % + +, +,,
"
+, 01
"
222 . . "
. . 3 ("
4
" Simple Graphs and General Graphs
# " ( "
Section 1.1
Graphs and Digraphs
3
# "
(
(
+ ,
5
222 !
%
"
"
6
Null and Trivial Graphs
"
" Edge Directions
#
+ ,
# +, +,
4
Chapter 1 INTRODUCTION TO GRAPH MODELS
+ ,
# " "
0 1
227 #
Figure 1.1.2
+ , " + ,
22*
Figure 1.1.3
6
! " 2*
Formal Specification of Graphs and Digraphs
/" !
6
+ " ,
+
, # ("
Section 1.1
5
Graphs and Digraphs
" "
228
' '
' ' Figure 1.1.4
. + ,
+ ,
"
229
Figure 1.1.5
. + , ' ' " "
4
!' "
#
" 22: ;<
"
6
Chapter 1 INTRODUCTION TO GRAPH MODELS
+, . +, . +, . +, . +, . +, . ! +, . +, . + , . +, . +, . +, . ! +, . +, . +, . + , . Figure 1.1.6
!' 4
+, +
, =
( +, +,
'
7 ' + , (
$
(
>
+ , %
/
6 " $ ( ' + ,
? 2:
Section 1.1
7
Graphs and Digraphs
Mathematical Modeling with Graphs
"
# " 22@
Figure 1.1.7
$ !
% 22?
Figure 1.1.8
Degree of a Vertex
( # " + , " +,
"
Æ Æ + Æ +, Æ +,
, 6
Æ Æ A Æ
8
Chapter 1 INTRODUCTION TO GRAPH MODELS
"
& 22B
: : 8 2 2 C - " Figure 1.1.9
'
$
( 222C $
Figure 1.1.10
) ' * * * 7 7 7 7
6 2* +
2*7, +
+
6
C 2 D "
C "
2
"
C
2 ( 7 D - 2
> / +2@C@E2@?*, /
) , -
+
/
.
+
227
D
Section 1.1
Graphs and Digraphs
9
.
229 "
9 8 * * 7 2 C
( "
2222
Figure 1.1.11
. ' 9 8 * * 7 2 C
)
+ , . . 2 +
6
"
F 22* G
(
Graphic Sequences
229
6 !
) "
+ , . . 2 7 ½ +
"
+ , . . 2 7 . +, ½ " # . # " " 7 H 2
( " " H 2 ( + + , . , & + , + , "
10
Chapter 1 INTRODUCTION TO GRAPH MODELS
" ( > + 2227,
+ , ½ + , ½ . H 2
Figure 1.1.12
/ 0 1
. # ,21 3&4 2! 3&"4-
2 ½ 2 ½ !"
# !' 22@
1 5 /'3 4 '
' =I/
! >6/ # . C = =I/ /
# C = >6/ /
> 2 ½ 2 ½ = 6 + , Algorithm 1.1.1:
!' 6
22@ "
+
/"
,
-
D -
" "
%
* * 7 7 2 2 222*
6 -
"
"
Section 1.1
11
Graphs and Digraphs
Figure 1.1.13
) 6 ' * * 7 7 2 2
Indegree and Outdegree in a Digraph
"
" ! " /
"
* 8 * 7
2 *
) 1 " / G J
6 227
Figure 1.1.14
) %
+
/
+,
+, 7 .8// / ! "
22
. ! ! . +, . ! + , . ! +, . !
12
Chapter 1 INTRODUCTION TO GRAPH MODELS
22
. " ! ! . +, . ! +, . ! +, . ! +, . 22 . " ! ! . +, . + , . ! +, . ! ! +, . +, . " # $ % . % .
22 22 22"
"
"
"
& ' "
22# 22%
22&
( ) "
22( /"
22@ 22 /"
22? 22 /"
22B
22 J
? @ * B ? ? : 9 * 2
Section 1.1
Graphs and Digraphs
13
22 J
: 8 8 * * 7 2 2 9 9 9 * * * * * * ! + , - .
&
22 7 7 2 C C 8 * 7 2 C 22" 8 7 7 2 2 7 7 7 7 22# 8 * 7 7 2 8 * * * 2 22% 8 8 8 8 * * * * * 7 7 2 C 22& 222
#
- @ : : 9 8 * 7 2 9 9 9 8 7 2 2 2 @ @ : 9 8 8 * 7 9 9 8 8 7 7 2 2 22( I
22: 22@ 22 % 222 22@
-
22
"
K 22 J
22 % K 22 J
"
' 2 2 2 ' 2 2 2 ' 7 2 ' * C
" "
# + , . + , . . 2 7 22" J
* 2 2 C 2 2 2 7 22# / 22@
22% D $
-
K 22&
* $
22(
97 $
"
22
$
"
K 22 J " "
( K
14
Chapter 1 INTRODUCTION TO GRAPH MODELS
22 ) ' " 2* *2
2
8 > . + , $ $ " $ +6
2*8, 22 - + , " "
? "
22 " "
22@ 22"
( 6
(
J
( +6
7* B2, 22# - " + ,
"
? "
22% "
" 22@ 22& "
/"
22*:
( +6
B* 2*8, 22( - " + , "
? " 22 " " 22@ 22 " /"
22*: > . + , $ $ + , " $ ( " $ $ 0 1 +6
2C7, 22 - + ,
"
? "
Section 1.2
15
Common Families of Graphs
22
"
22@ 22
/"
22*:
1.2
COMMON FAMILIES OF GRAPHS
" Complete Graphs
( %
272
Figure 1.2.1
) 1
Bipartite Graphs
"
& $ &
$ & $ & $
277
Figure 1.2.2
+
) *
+
16
Chapter 1 INTRODUCTION TO GRAPH MODELS
% 27*
Figure 1.2.3
) $*
"
( "
'
%
% 278
Figure 1.2.4
) * %
Regular Graphs
"
279
"
Figure 1.2.5
) 1
%
Section 1.2
17
Common Families of Graphs
# *
27: F
)
(
Figure 1.2.6
) +
" ( "
7 27@
Figure 1.2.7
$ (
Bouquets and Dipoles
4 " " + ,
+
29, "
Figure 1.2.8
9 '
(
"
" 27@
27B
Figure 1.2.9
:
18
Chapter 1 INTRODUCTION TO GRAPH MODELS
Path Graphs and Cycle Graphs
) . H2
2 ) # ) ) ) 272C
+ ) )
Figure 1.2.10
"
*
.
" * % * * * 2722
Figure 1.2.11
. * * *
!'
28 29 Hypercubes and Circular Ladders
+
"
$ " & ? " 279 + +
/"
,
*, -
( ( *, 2727
Figure 1.2.12
. *,
Section 1.2
19
Common Families of Graphs
Circulant Graphs
. C 2 2
- 2 2
+ ' - ,
"
. ( - H . . . H . #
- #
- . + ' ,
272*
Figure 1.2.13
) +9 ' 2 7, +: ' 2 7, +? ' 2 8,
!' 3
.
29 Intersection and Interval Graphs
"
. . - - - " ( . . - - . "
2728 '
+2 *,
+7 :,
Figure 1.2.14
+9 ?,
+8 @,
1
' 6
" 2CCC F 2CCC J #
( #
20
Chapter 1 INTRODUCTION TO GRAPH MODELS
#
+2CCC 2CCC, +
,
Figure 1.2.15
!' #
-
2C8
Line Graphs /
,+, " ,+, ( " ,+,
272: ,+,
Figure 1.2.16
7 .8// / 27 % % 27 % "
' K 27 J
27 J % * ) 27 J * %
Section 1.2
21
Common Families of Graphs
)$ )&
27"
27#
27% > 279 *
( $ " 27&
" " $ K #
"K 27( ) ' " 9 22
27 J * "
J 8 "
" 27 ) "
C "
C 27 6
D $ "
K 27 > 0 > C81
"
& . $ . + , . . 2 7 + , . . 2 7 )
7 C C 2 2 ½ 2 ½ ½ 27 8 " 27" 6
27# 6
Æ + ' , * 27%
Æ + ' , /7 ( 27& J -
+ 22 "
, % % * )
*, 27( J - " + 22 "
, % % * )
*,
22
Chapter 1 INTRODUCTION TO GRAPH MODELS
27 J -
+ 22
"
, % % * )
*, 27 J - " + 22 "
, % % * )
*, 27 6 % 2 27 J +C 7, +* ?, +2 8, +* 8, +7 9, +@ B, 27 6 272 +2CCC 2CCC, 27" ) * 8 27# J
2 7 * 27% )
1.3
GRAPH MODELING APPLICATIONS
J $
6 !
Models That Use Simple Graphs
$
$ % 6
$ (
(
( (
" ( K # 2*2
(
(
2*
Figure 1.3.1
0 *
Section 1.3
Graph Modeling Applications
23
& ' % # $ "
(
2*7 # 6 %
"
6 ; <
Figure 1.3.2
' !
F ) 222 2*7
* * * * 8 8 8 : ( % # 2** "
(
Figure 1.3.3
5 0
( $ % " * % " 2
2*8
2
Figure 1.3.4
$ $ !
24
Chapter 1 INTRODUCTION TO GRAPH MODELS
& ' $ % 3
" #
"
2*9
0 29 $
Figure 1.3.5
$*;$ $ !
"
) * % %
$
- $
6
2CC $
2CC 2*:
! " # $
! " # && ' '( )' (* + ,, ** - *&
Figure 1.3.6
$ &' -( (& + '*
% (( ,-, ( + ,
$'$ *
( $ $
B
Section 1.3
25
Graph Modeling Applications
Models Requiring Non-Simple Graphs
# + )
% # ( 2** (
( % , - % - 2*@ 6 8
"
8!
"
2
Figure 1.3.7
) *6
Models That Use Simple Digraphs
"
& " %
2*? /
" " "
Figure 1.3.8
)
* .
. -'/0 )-
26
Chapter 1 INTRODUCTION TO GRAPH MODELS
( & ' % # (
2*B
L " " $
27
Figure 1.3.9
1 *
* . , $ % /
" " " I
Models Requiring Non-Simple Digraphs
-' . % 6
4G %G 2*2C ( 4G C8 G
"
%G C: 4G # 1
D ;4< ;%<
4G %G &
1 2*2C / " " 2 & " +
2:, 4 " & 27
Figure 1.3.10
0
- +=
" 7, J
J 0
- . 2 7 * 8 9 0 . +2 7, +7 2, +2 2, +2 9, +8 9, +* *, 2* J
" ! ! !
1.4
WALKS AND DISTANCE
&
Section 1.4
29
Walks and Distance
F "
(
Walks and Directed Walks
#
" "
# $" " "
$ . + , . . 2 # + " , $ $" " " + , . + , . #
"
$ . #
" "
$ . + , "
$" ! + $" !4
" "
C "
$"
$" + $", + , " $" + $", $
# 282 :
4D ) 3M L & 3M ) 4 ) 3 Æ 29
5
30
Chapter 1 INTRODUCTION TO GRAPH MODELS
Figure 1.4.1
5 0
# & + 2*27,
4G %G %G " 4G
4 % % % 4 &
" 4G 8 @ @ * . CC9??
Figure 1.4.2
"
( : !' J
2C2 Connectedness
L " "
6
& 28? 7*
Figure 1.4.8
$
Section 1.4
33
Walks and Distance
Strongly Connected Digraphs
( 28B
Figure 1.4.9
6
282C
Æ
Figure 1.4.10
!?
"
6
27 - Application of Connectedness to Rigidity
+ + * ' ' 7
(
1
34
Chapter 1 INTRODUCTION TO GRAPH MODELS
-
" 2822
Figure 1.4.11
) !
6 ) + *' 6
2 7
8 ' 77
Section 1.4
Walks and Distance
35
2 7
6
+2 2, & .
. F
'
8 ' 2827 2822
3
4 )
Figure 1.4.12
/ ) !
7 .8// / 28 J "
! ! ! !
36
Chapter 1 INTRODUCTION TO GRAPH MODELS
28
8 9 " "
28
28 %
K
28 /"
! " !
#$ #,
28" 28# 28%
28& /" K 28( J 28 "
28
"
Section 1.4
Walks and Distance
37
28 #
+ , K 28 J ? "
28 J @ "
28" J ? "
"
28# J 9 " #, #),
28% /"
282 28& /"
287 28( ) ) * + 27, 28 * 8 + 27, 28 % * 28 % ' * + 27, 28 )
+ 27, 28 D + ! - +K + 27, 28" *, 8 + 27, 28# J + 27, 28% # + 27, 28& J
+ 27, +9 ' 2 7,! +: ' 2 7,! +? ' 2 7, 28( J + ' ',
' 28 J + ' ,
28 > )
+, '+, 7 +, 28 )
-
# # # $
28
38
Chapter 1 INTRODUCTION TO GRAPH MODELS
28
28"
28# 6 K
28% > )
" 28& )
"
28( > ) 28 > " $ % " 7 * 28 > " $ ( % " 7 * 28 > " $ ( % " 7 * 28 )
!
" ! + ! , + ", H +" ! , 28 > ) + ", 7 " " + ", . + , H + ", 28" > " +, " )
Section 1.5
1.5
39
Paths, Cycles, and Trees
PATHS, CYCLES, AND TREES
F " " %
"
Trails and Paths
+ "
, " I
4
#
292 $ . !
2 .
"
$ . ! 2 . Figure 1.5.1
@! $ 2
!' J
" % " (
Deleting Closed Subwalks from Walks
$ .
$ ¼ . $" $ $" $ ¼ $ $ ¼ $ $ ¼ . $ $ ¼ $ $ ¼ " 4
$ $ ¼ $ ¼ $
297
$ $ ¼ $ $ ¼ 4
$ $ ¼
40
Chapter 1 INTRODUCTION TO GRAPH MODELS
$ " $ ¼ " "
$ . $ ¼ . $ $ ¼ . Figure 1.5.2
! $ * *! $ ¼
!' + ,
$" "
. $ $ $ . . 2 2 $ $
$ "
" " ' $ "
' +
# $ "
$
$ ) $ " ' $ "
" ' $ +
# $ "
$
" =
"
" > 292 . "
/ " +
" " 297
Cycles
" +:*
,
2 3 4
Section 1.5
41
Paths, Cycles, and Trees
29* ! "
Figure 1.5.3
- ) +
4 +,' 6
6 5Æ +,' > 7 %
) " +3 4 , '
3 . + , 4 . " + ", # +3 4 ,
( > ) ) F
3 4
6 " " +
298, 6 ) )
)
)
F
D +3 4 ,
Figure 1.5.4
= Æ )
297 + "
2 ' +
> 2 ¼
2 # 2 ¼
2 ¼
42
Chapter 1 INTRODUCTION TO GRAPH MODELS
!'
) 299 2
+
/"
, ( * * * * 2
2
2
) "
% 2 +
F
' 3 " 2
' H 2 F ) 299 2
* 2 *
' F 2 *
(
* 2
* * *
2 299
-
Figure 1.5.5
2
Eulerian Trails
2 . . 29:
# ( 298
- 89
Figure 1.5.6
5 6 #
Section 1.5
43
Paths, Cycles, and Trees
" & '% 6
29:
" K
/" 299 2
: Girth
" 29@ * * 7 2
Figure 1.5.7
Trees
Figure 1.5.8
$
" * 8
"
$ , %
# " 6
G
% 2
44
Chapter 1 INTRODUCTION TO GRAPH MODELS
8 * 29B
Figure 1.5.9
) * * *
0 . % &
+
,
G
+
*7, 292C
Figure 1.5.10
*
+ ' 6 +
*7, Æ
#
(+#+,, 2922
*
3 % %
Figure 1.5.11
*$ $ !
Section 1.5
Paths, Cycles, and Trees
45
- , & ' ' 6
. ¾
( #
2927 3
Figure 1.5.12
. 1 *
7 .8// / 29 % "
K % K % K %
K " " " " "
29 % "
K % K % K %
K " " " 29 #
9
29 # @
"
46
Chapter 1 INTRODUCTION TO GRAPH MODELS
29 J
29" J )
+ 27, " 9 B 9 : ? B 29#
29% "
29& > " $ % " 7 * 29( > " $ % 9 " 8 29 > " ( % " 7 * 8 29 > " $ ( % " 7 * 8 29 > " ( % * " 7 * 8 29 > " $ ( % * " 7 * 8 ++ +))
29 29" 29# 29% 29& 29( 29 29
% % ' * % D + - + K *, - *,K )
J #
29 J + 27, +9 ' 2 7,! +: ' 2 7,! +? ' 2 7, 29 J + ' ', '
Section 1.5
Paths, Cycles, and Trees
47
29 J + ' , 29"
Æ + ' , 29# J + 29% J )
29& J *, * 29( ) "
29 ) ' /
29 ) " " " " 29 6
) ) 7 29 6 297 29 6 ) 299 29" 6 29: 29#
/" 298
+
, 29% #
* 2922
#
2922K 29&
29( J
$ 29 % K 29 ) "
29 ) "
48
Chapter 1 INTRODUCTION TO GRAPH MODELS
1.6 VERTEX AND EDGE ATTRIBUTES: MORE APPLICATIONS
# & " 2*
Four Classical Edge-Weight Problems in Combinatorial Optimization
$
$ /
-
" $ $ % 6
2:2
+ , " " +
8,
Figure 1.6.1
$ *
" -1
$ % 6
"
2:7 J - +
8,
Figure 1.6.2
Section 1.6 Vertex and Edge Attributes: More Applications
49
" $ % 6
" 2:*
G - #
+
:,
Figure 1.6.3
1
" -* $ % 6
2:8
" +
2*,
Figure 1.6.4
$; *
# %
Æ
47%8 # $ Vertex-Weights and Labels
" " "
" " &
50
Chapter 1 INTRODUCTION TO GRAPH MODELS
" $ ' 59%
" %9 * * 3 N
" -
29
Figure 1.6.5
) A$ -
"" ,
$ $ ' J
" G
#
: < ' G "
- . 7 7
:7
!' I
G
"
" 7 .8// / " 2:
+ 2*2, " +D ' , 2: > " % D $ D K $ $, %
:
2: 6
"
D
K
Section 1.7
Supplementary Exercises
51
2: 6
D
- K 2:
/
Æ
% Æ
K 2:" '
%
. . D
- K 2:# 6
O P%D " 5 P%D /
' / P%D
. D K 2:% 6
'
9C . D
- K
1.7
SUPPLEMENTARY EXERCISES
2@ 7C " :7 / "
* @ D
*K 2@ / * @ " " 2@ ) 9 " @ 7 2@ I
D D
9***77 # 2@ J
,+,
22777** 2@" J
,+ ,
22777** /"
2@9 2@# D K 2@% D + K 2@& % )
K /" 2@( # +78 ' 2 9, +*,K
52
Chapter 1 INTRODUCTION TO GRAPH MODELS
2@ # +78 ' 2 9, 7 " *K 2@ # +78 ' 8 B, K %
K D K 2@ % " +2* ' 2 9, CK 2@ +2* ' 2 9, 2@ ?? )
:7 *2 ( 2@" ) '
2@# ) " 2@% $ % 2@& > "
% " K "
( (
2@( > 9 ) +6
78, 2@ >
8 ( $ " % "
% K /" .
2@ ) "
C+ 8, 2+ 8, 2@
K 2@ 6
8 H 2 ) "
7 " ' ' C 2 ' ¼ ' C 2 ' + , +,
2@ ) * 2@" ) *
Glossary
53
GLOSSARY
' 0 *' " " 0 ' 0 1 ' ( '
! ' *
' "
& . $ . + , . . 2 7 + , . . 2 7 * '
"
+ ,
* '
* '' "
1 ' "
+, .
+, + ' - ,
- 2 2'
"
. C 2 2 . ( H . . . H . *, ' -
( '' 34 !' + ,
* '
$ ( ' ( $ $ '
$ $ $ $ '
'
'
' 2 " !
54
Chapter 1 INTRODUCTION TO GRAPH MODELS
2 ' * * * (
* 2
2 "' "
''
'+,' '+, . ¾ " + ", '
' " "
+ , . # + , . . 2 7 ' "
" ' ' ' ! " " '
'
!
'
' "
$ " $ ( " $ " ' " ! +, '
$ ' "
( ( ' % $ '
+ , '
' '
' ' + , " ' ' " ' ' C 2 ' ¼ ' C 2 ' + , +,
Glossary
55
. + ,'
+ , /
'
'
"
'
* +'
"
$ " '
* '
" ' '
( '
(
1 '
"
'
,+, ' " ,+, ( " '
( ' $ '
$ '
* ' " ' '
"
34 !'
" $
" ' ' ' + "
",! '
56
Chapter 1 INTRODUCTION TO GRAPH MODELS
+ ' * 2C " Q )
' " ' * E '
+,' " * " " ' " ! $ $ ¼'
$ ¼ " $ '
$ ' . $
'
" + ,' + ,
$ ! ' ' '
*! $ '
$ ' '
' ' 1 ' " " ' + , 1' 1'
! 1 1 ' "
$ " $ ! " " '
" " '
%
Chapter
2
STRUCTURE AND REPRESENTATION 2.1 Graph Isomorphism 2.2 Automorphisms and Symmetry 2.3 Subgraphs 2.4 Some Graph Operations 2.5 Tests for Non-Isomorphism 2.6 Matrix Representations 2.7 More Graph Operations
INTRODUCTION
! ! " # $ # # # # %
& ' ( ) 57
58
Chapter 2
STRUCTURE AND REPRESENTATION
* + ' ! , # # # -. # / # Æ Æ
2.1
GRAPH ISOMORPHISM
Æ !
! Structurally Equivalent Graphs
$ -00
Figure 2.1.1
, ' ' 1 ,
Section 2.1
59
Graph Isomorphism
-0- !
Figure 2.1.2
$
,
' # 0 4
- . 2 5 3 6 $ # 0 ' - 2 4 , # 7 (0) ' 7 (-) 7 (2) 7 (4) , # '
8 ' ' " Formalizing Structural Equivalence for Simple Graphs
9 # ' 8 ' () ( ) '
() ( ) ' '
# ' 8 # ' ' ' () ( ) '
7 # # ' 8
# 1 ! # 8 8
$ -02 %! # '
60
Chapter 2
Figure 2.1.3
STRUCTURE AND REPRESENTATION
$ -03
Figure 2.1.4
8 ' # ' ' 8 , 9 % 0: # ; 3 $ -04 ' ' ' , ' : - ' 3 .
Figure 2.1.5
!"# "$#% &
' # - $ -0. ' ' '
Figure 2.1.6
(# " $"% & "#
Section 2.1
Graph Isomorphism
61
Extending the Definition of Isomorphism to General Graphs
# # ' ) 8 # $ -05 () 7 7 0 - 2 ' '
Figure 2.1.7
&& *&#
# ' 8 # () ( :)
() ( ) () # # ()
# ( ) # # ' 8 7 Specifying an Isomorphism Between Graphs Having Multi-Edges
9 # ' 8 ' 8
() ( 8 8 ) 8 ( 7 8 8
(
, # ' ' % 7 # ' 8 1 ' 8
' () ( ) ( ) 8 , # ' 8 '
8 () ( )
62
Chapter 2
STRUCTURE AND REPRESENTATION
9" 9
Binary Trees
5 +
"
Figure 3.2.11
9
. 6 3
/ 0 '
)* 9*9 ' ( ' &
Figure 3.2.12
5 &8 6 &&
130
Chapter 3 TREES
! + ! * +
)*
9* 9
Figure 3.2.13
/ 6
9: +
$ 9
! 9 * ! - B B 9 * 4 * !
9 * * 4 9 * 4 9 * - 9 *
! 9
*
)* " 9* 9: ! -
Figure 3.2.14
6 3
131
Section 3.2 Rooted Trees, Ordered Trees, and Binary Trees
)1)/2) 9 F /!0 /! *0 9: 9: 9 9: $ 9" I J ; ! B ! * 9 *
3.3
BINARY-TREE TRAVERSALS
; $ $ $ $ Level-Order Traversal
)*
*
! "
Figure 3.3.1
! ,&
! "
Pre-Order, Post-Order, and In-Order Traversals
9 /*B0
+
*
Section 3.3
133
Binary-Tree Traversals
; , / 0 2 2
)* ' & ! ,9& ! "
; 2 2 , / 0 )* ' & ,9&; ! "
; 2 , / 0 2
)* ' & 2,9&;
! "
Processing Arithmetic Expressions
;
)*
// 4 0 / 00#
9
Figure 3.3.2
. * // 4 0 / 00#
. ,. , . . / ( A
" " "
134
Chapter 3 TREES
)* 9 ; # 4 ; 4 # ; // 4 0 / 00# +
Geometric Descriptions of Pre-order, Post-Order, and In-Order Traversals
$" & / 0
Figure 3.3.3
,9& ;
. ,4 0 &
! "
,9& ; ! " A 2,9& ; ! " A Stack Implementations of Pre-Order, Post-Order, and In-Order Traversals
+
/ / 0
$%$/& 0 &%$/& 0 5
$%$ &%$ 0
Section 3.3
135
Binary-Tree Traversals
Algorithm 3.3.1:
! ,9&
; 0;
2 %%& A 2 ' 2
Algorithm 3.3.2:
,9&
; 0;
2 %%& A &%$/& 0 6 > ;- $%$/& 0 ,
Algorithm 3.3.3:
2,9&
; 0;
2 %%& A ;- &%$/& 0 A 2 " & !"/0 ;- " & !"/0 ;- $%$/& 0 , 2 !& !"/0 ;- !& !"/0 > A ;- $%$/& 0 , 2 !& !"/0 ;- !& !"/0
Queue Implementation of Level-Order Traversal
+
/ 0 & + / 0
136
Chapter 3 TREES
Algorithm 3.3.4:
! ,9& ,,' !,,/3
; 0;
> + %%& A + F+ > +
)1)/2) $ $ $ $
=
* / $ 1 " "
"
/ 4 0 / / 4 00 // 4 / 00 0#
// 4 0 / / 4 000 /// 4 / 00 0# 0 // / 4 0 / 00#/ 4 00 // 4 0 !0 /// 4 0 0 / 4 00 /// 4 / 00 0# 0
Section 3.4
Binary-Search Trees
137
# =
2 + 9 / *9 > *B ** C! % E * > * C! % E 9 > * C! % E > * C! % E
> *
3.4
BINARY-SEARCH TREES
+
1 %
/5! 0 )* 5 * ;
& @ *9 * 9* 99 9 9& : B " 3 5! ! / > 0
138
Chapter 3 TREES
Figure 3.4.1
6, 3 0
/0;
! 9
! * / 0
3 ! * ! *
Section 3.6
147
Priority Trees
"*
Figure 3.6.1
. , 6 3
/ 0 / 0
)* "9
9*
Figure 3.6.2
. 3
A + + + /; $$ )
Figure 3.7.3
Figure 3.7.4
5 = &3
! = &3
3
2N +
"/0
,6 4 * 2N +
9 4 * , *
Section 3.7 Counting Labeled Trees: Prüfer Encoding
153
2N +
) "/0 2N +
) £ £ - 5
/0 +
"/0 ) £ 5 -
"/0 ) £ )
/0 -
/0
/0 -
/0 4 * "/0
) ) £ Prüfer Encoding
2N +
Algorithm 3.7.2:
= 7&3
; 2N +
0;
9 * ( 2N +
( * * ( ( * - * 9 , * , . H * H
. * H (
)*
+
# # : 2 #* ; /*0 - /90 /0 - /"0 - *8 / 0 - /#0 - 8 /:0 - 9 * * #
. * # *
# +
+
! ; 2N +
154
Chapter 3 TREES
. ; ,6 9
2N
155
Section 3.7 Counting Labeled Trees: Prüfer Encoding
+
3 ; 7 ,6 9
- 9
9 2N +
$ $ $ * 9 4 *
$ $% 3 * 9
9 + 2N +
$ $ * * 4 * 4 * 5 $
* 9 4 * 3 > #9 2N +
# # : > #* 2N
# # :
; ; % &
$ $ !( 3
2 #
+
H 2 +
/0; ' $%
'
)1)/2) 9 9+ 1 9
#
#
#
#
#
#
156
Chapter 3 TREES
99 9
# #" #
" # 9 * # 9 * * * : * :
# 9 * * : : # # * 9 : # * * : 9 :
# F # ; +
/ 0 & + / 0
162
Chapter 3 TREES
&, 6; +
1 % 3,&; 3& ; ; & ;
,
; + 63 ; 0; +
/ 0 / 0 && &3 ; ( && ; ; $ ,3 +
; +
+
; ,&; ; 2 , / 0 2 ,&; ; , / 0 2 2 ,&; ,&; ; 2 2 , / 0 + &*;
Chapter
4 SPANNING TREES
4.1 Tree Growing 4.2 Depth-First and Breadth-First Search 4.3 Minimum Spanning Trees and Shortest Paths 4.4 Applications of Depth-First Search 4.5 Cycles, Edge-Cuts, and Spanning Trees 4.6 Graphs and Vector Spaces 4.7 Matroids and the Greedy Algorithm
INTRODUCTION
!
" # $ %&' ( !
)
163
164
4.1
Chapter 4
SPANNING TREES
TREE-GROWING
! * )
$
Frontier Edges
*
$ $ +,,
Figure 4.1.1
- $ +,,
(
.
$ /+ Choosing a Frontier Edge
*
0
Section 4.1
165
Tree-Growing
.
- 1
2 3
*
$ +,/ 4 " ' $ +,/ " ' 5 " '
Figure 4.1.2 Algorithm 4.1.1:
.
.
3 2 3 2 6 4 0 4 " ' 0 * " ' 7
. 8 !
! 9 3 +/ +%
! 9
166
Chapter 4
SPANNING TREES
Discovery Order of the Vertices
0 9
" ' :
$ +,% ! 9 $ " '
8 . 5 +,/
Figure 4.1.3
! "#
$ -
9 ( 9 " +; + ! $ # +,+
3
3 9 ; $ +,+ , ; $ Figure 4.1.4
&
$ " ' . * * *
.
1
.
3 # ,/ *
)
Forest-Growing
9 8 $ 9 " '
* !
Section 4.1
169
Tree-Growing
Algorithm 4.1.2:
' % %
.
. "'
3 2 3 2 .4 , 6 0 4 " ' ? 9 "' * .4 @ , 7 "' 4
( $ +,; " ' 5
Figure 4.1.5
Some Implementation Considerations
. * 9 "* +,,'
) - > )
A " B*>?C%D BAC%D B CCD'
. #
* ) 9 "* +,,' 3
170
Chapter 4
SPANNING TREES
8
" /
.
$ $ &
3
Algorithm 4.4.2:
+
.
.
3 2 - 3 2 " .4 6 4 " ' 4 " - .4 - " .4 " , 7
* * ++, Æ
.
# ,/
186
Chapter 4
SPANNING TREES
Finding the Cut-Vertices of a Connected Graph
2
/ !
-
5 "' 3 3 (Æ "' 3 !
$ 3 $ ++% " '
- *
Figure 4.4.3
1 2 7
0 $
5 "' A
5 1 " $ +++' +/, (Æ "'
Section 4.4
Applications of Depth-First Search
187
++L
Figure 4.4.4
$
*
5 "' A " $ ++;' $ 6 3 - ! E " $ ++;' *
" 8 ' 3 ! > ++L
(Æ "'
Figure 4.4.5
188
Chapter 4
SPANNING TREES
Characterizing Cut-Vertices in Terms of the
A +/, ++,, "'
0 '"' "' ++,, "* ++%'
% # $ '"' "'
Algorithm 4.4.3:
' % 8
.
. *
3 2 * # 8 0 3 * * $ # '"' $ 3 '"' "' * * 7 *
' $ ++<
Figure 4.4.6
' & 2
Section 4.4
189
Applications of Depth-First Search
3 '"' . "' " ' '"'
' 3 ' '"' "$ B*>?C%D' 6 Escaping From a Maze: Tarry’s Algorithm
2 *
N 2 8 9
2 ,CL; &' . $ $# $ Æ $
A
. 3 -? 3 35 3 35 3 -?
$ , . )
190
Chapter 4
SPANNING TREES
) %*+ + + ! 0# * + $ ' $ $ &# $ 6 $ , *+ $ 7 $ . !/ * +
++ ++ ++$ ++ ++( ++, ++-
E E E E E E E
++.
++/ # ++% ++ 0 +++ ++ ++; ++ ++
(7- >" >
(7. >"
! 8
(7/ (" 2G (7 '
!
(7! ' 66 60! !
(7%
(7&
(7+
(7
272
Chapter 6 OPTIMAL GRAPH TRAVERSALS
(7,
(7-
(7.
' (7!/ !
% 3 ;
1 (72= 1
#:'&$ (7! :
"
"
" #
(7!!
8
5 '
8
(7!%
F8 ;: (7= I ;= J ; I ;= J=
(7!&
Æ ! 8
(9 "
(7!+ :
2 9 1
H H
1
2 9 1
(7! '
("
(" (7!,
"0 ;5?
2 9 = (7!- 2C
% H
5
D ;5?
= (7!. 7 7 7
96 2 2 2 %
D
Section 6.4
6.4
273
Gray Codes and Traveling Salesman Problems
GRAY CODES AND TRAVELING SALESMAN PROBLEMS
%
I J #
; =
I J
9 "
;
= H &
GGG 2GG 22G G2G G22 222 2G2 GG2 3 7
"
"
H 3
1 ()2
Figure 6.4.1
0 ; ;
3
; B 2="
" ? 0 G
"
0 2
0
(5?
96
1 ()2
1 ()9
G 2
GGG
K
;G22=K
GG2K
GGG
274
Chapter 6 OPTIMAL GRAPH TRAVERSALS
Figure 6.4.2
; % ; !
& ! 9 )"
9
G G G 2 2 2 G
' * ?
3
I J
1
3 . ()2
2 > G22 ;A * $ $ 4# # " * 6# # ! #, # 3 # F* #, # *
392
0**
Chapter 9 GRAPH COLORINGS
( # / 5? *
4 "
1 # # # * 0** , ! ( ! # A B # , *
0** ) >5 8 ( 0**29 $ # * 0** ! + # # 5 : ( F 3# "7 ) # $ 4#* % O 0** ! 3 * 0** ! * 0** ( ! * 0** ) ! *
0** * ! *
Section 9.3
9.3
393
Edge-Colorings
EDGE-COLORINGS
( # #5 # 75 * 75 #5 #5 * #5 75 #5 * The Minimization Problem for Edge-Colorings
# *
# * 4 *
Figure 9.4.1
4>
5 *
4 5 *
( 0*>* 5 4 *
4 89 * 6 4 89 # # # ?5 # >5 *
Figure 9.4.2
-. >
5 # * # 5 #
# 5 *
408
Chapter 9 GRAPH COLORINGS
Tutte’s 1-Factor Theorem
* HM>I 4 K 5 @ # 5 * # # # K * ## * !" % ## % # 7# % * / . & " K # # # ### #, * L K # % * 6 # % 8 L 9 % 7 % * 6 # % ## #* # # , % * 6 # % # ## # ## - % 8 # 9* 6 # ## ## # 8 9*
/ & ! & # /! # - 0! % 0" & F 2** + -* 6 # # # # 7 # - 8 #9* % 7 7 - # 7 # * 8 # # # #*9 6 # 5 *
" 0*>* 7 # ( 0*>*?* 6 # # # # * # # # 5 # " 0*>**
Figure 9.4.3
-. ' .
" + # 0 * # + 0 #5 8 9 8 9*
Section 9.4
Factorization
409
K 5( # " .4 H" 1I*
- 0!" $ !2 0"
% ! % # % & 89 $ 5 * ## % 7 # 7 # 7 # 7 % * 6 % % * 89 F # 7 K # 5 * F ## # # 5 K # 8 " 0*>*9 # # 7 5 * % # # 5 * " 7 ; #, 7
% $ *
7 7 ## * + 7 #, 8 # 9* K # ## * ' ## 7 * 5
7 8 #9 # * #, 8 # 9 # # * $ # Æ * K # % ; ## * % $ * 6 5#, - # * 7 #, * F # ## # 5 * 6 + # 0 5 L - # L * % # * 1 5 * F 5 1 # + 5 * Petersen’s 1-Factor Theorem
##
# # $8 9*
- 0% " $ !2 $ " " /"
0" & F K 5( Æ K 5 # * " % # # % # ## % * %
? %
7 % # ? ?5* ( ## % # , %
;
7 # ? * F +K 5$ 8*9 # * $ ## ? ##* $ 5# 2
? # ?$8
%9
;
?$8 % 9 ? %
K # $8 % 9 % *
% ' ( $ " " /" %" & F K 5( 5 * $ ?5 #5 5 5 *
Section 9.5
411
Supplementary Exercises
: (* FQ 8HFQ?I9 # 8 95#5 # 5 5 # 5#5 # 8 L 95 5 5 * : # ! ?* 89 " . # ! ? # @ * & " $ ! H/Q 2I + 5
2 M 5 * % " $ ! H0I* + # 5 * 6 0*>* 0*>* 0*>*
%7"" "
5 *
?5 5 5 5 5 5 * # 5 ,
0*>* # # 5 # 5 5 * 0*>*( 5 # 5 * 0*>*) 5 * ' : # * 0*>** 5 # # 5 # # # * 0*>*+ 5 #5 5 * 0*>* $ 5 # #* 5 O 0*>* , 5 # # 5 * 0*>* 5 # # 5 *
9.5
SUPPLEMENTARY EXERCISES
(-# (-+ #/
0** 0** 0** 0** 0**(
% .
2
% 5 * ?5 % # ?5 * >5 % # >5 * 5 % # 5 * 25 % # 25 *
412
Chapter 9 GRAPH COLORINGS
0**) % 15 * 0*** # 8 L 9 ; 8 9 L 8 9* 0**+ 257 8 9 L 8 9 ; #5 * 0** 257 8 9 L 8 9 ; 1* 0** , ! 5 2 * 0** 75 # #5 3 ( 0** # * 0** 75 # #5 ( 0** # *
Figure 9.5.1
0** ! 7 # # * 6 7 O 6 # O
Figure 9.5.2
0** >5 057 * 8' : # # ?5 >5 057 *9 0** ( ! 7 # ?5 * F * 0** ) ! 8? : 9* 0** * * * * #
# ?5 *
Figure 9.5.3
0** + ! *
413
Glossary
0** ) >5 ' " * % ? # > :> !; , *(
:AA -; , :AA1=D; 3 $ + $
# $
$ 6 $
Section 10.2
425
Domination in Graphs
+
& #$$
%#$
#
, #
$
2 # $
8
Figure 10.2.1
,
, + J ! < ! & 00 0!5 / 0 + & 00 ! ! K 02 0! > + *+ 02
504
Chapter 12
SPECIAL DIGRAPH MODELS
0! ; *+ 02 ! 0!! / 0 + *+ 02 ! ! K 02 0!# !
0!- 0 + + ! ! K 02 0!/ ! " )(. # ! !
! 399 & + 8 !! 99 G !! 99 !G !! ! + B ! & ! / ! / !! 5 0 + ! ! K 02
0!0 K 0!4 E F 4 7 " J & 0
*+ 0 0 0!( E F 8
$B. " 03% + , -
+ , -
505
Section 12.2 Digraphs as Models for Relations
12.2 DIGRAPHS AS MODELS FOR RELATIONS
" "
" + + # $ #% " " $ #% " + + # . 7 ! ! 8 !
# " 6 ! $ % $ % $ % $ % $ % " " 00
Figure 12.2.1
"
The Transitive Closure of a Digraph
& " + + # # $ $ " " ! " "
! $ #% " + 6 6 # $ % " 6 9 * " " " ) ! " " " " " $ #% 6 #
# # + . 4 +
506
Chapter 12
SPECIAL DIGRAPH MODELS
" 00
000
Figure 12.2.2
,
* # +($ # % + ! % " + + ! " " ! " +
Constructing the Transitive Closure of a Digraph: Warshall’s Algorithm
) ! % + & 8 6 ! 6 % / ! !
$ % $ % 0 +
Figure 12.2.3
Algorithm 12.2.1:
$ %
6 * , .
. % + . 4 ( ! 6 % 6 % 4 $ % 6 % 4 $ % &
$ % $ % ;
507
Section 12.2 Digraphs as Models for Relations
& Æ - $ 0% !
$ % 6
9 4 9 ! ! ! .6 $ % " & 00
% !! # # $ #%
" 6 !
$6% $ % $ #% 7 1+ # ! + # 4 + + $ #% 4 + + ! $ % $ #% B $ #%
Partial Orders, Hasse Diagrams, and Linear Extensions
" ! ! . & D+ " $ % ! ) 6 0 5 3 @ 0 ! ! # # $ % " 003
Figure 12.2.4
& ! .
508
Chapter 12
SPECIAL DIGRAPH MODELS
) ! & $ % . * ! + 4 # # + # + G ' ! # #
+ + #
" ' ! !
" ! 1 ! B # " B + 002
Figure 12.2.5
7
1 ! !
B
+ ! + " ! B " # $ % ! # # # & ! - / " 002 ! ! $ 5 @ ! % . 7 B !
! & $ % # # & $ % !
/
509
Section 12.2 Digraphs as Models for Relations
& + 4 + , - - ' . # ! " # # # & + ! 2 . # B 00
6 & '
Figure 12.2.6
7
" + " & $ % ( ( 4 B + +
! !
Algorithm 12.2.2:
8
. % $ % . + $ % 6 % ) ! $ % .6 ;
& & 000 ! & 0 " B ! & 000 B 00 7 B
& ' " !
510
Chapter 12
SPECIAL DIGRAPH MODELS
Figure 12.2.7
2 !
Figure 12.2.8
2 # 0
1 .233 3
00
!"
00
00!
00#
00-
00/
#
000 004 00( 00 5 00
00
" 0 1 '
" *+ 00 " *+ 000 " *+ 005 " *+ 003 " *+ 002 " *+ 00
2 4
3"
.
00 ! $ % 6 0 5 3 2 # ) # 00 # $ % 6 0 5 3 2 @ ? A0 # # 00 - $ % ! 6 0 5 # ! #
Section 12.3
511
Tournaments
!
5"
00 / " *+ 005 00 0 " *+ 003 00 4 " *+ 002 00 ( + B ! $; ! %
005 E F 4 8 < & 00 *+ 00 00 + , -
12.3
TOURNAMENTS
" ! ! B D+!
& " ! !
Transitive Tournaments
" + & !
* + 4 ! + ! ! ! 05 ! 2 !
! # !
* 6 7 + + +
512
Chapter 12
Figure 12.3.1
SPECIAL DIGRAPH MODELS
-, ,
! + + # # $ 4 ! + + $
$ ! B ! $ ! 4 !
" ! # # ! $ ! $ " ! ! + 4 # $ % # 1 ! '
$% " + ! Score Sequence
"
!
% 9 %
$% # #
Æ % ' ) # ! $ #% 1+ + ! + # " + 6 $# % '
$#% 6 + + $ % " '
$% + : ) '
$#% $% # 9 % ; ! '
$ % 6 6 9 % " + + 4 + + )
. % ! ! " ! K 050
+ 4 + $ *+%
Section 12.3
513
Tournaments
. " Æ ! &
,!- " + ! # & 9' (!#) ) ! % + 6 !
+ 7 % " + 7 + ! ! $ % ! 4 $ % + 4 $ % $ % 6 4 + + . J ! ; ! ; ! ! ! "
< ! ! # E @F " + !
%
6
7
! - " K 00 05 ! # - . . #
" ( ! ! !
E78L93F Regular Tournaments and Kelly’s Conjecture
& '
$% 6 ! ! & A + 050 ! 1 ! . 905329 903529 932059
514
Chapter 12
Figure 12.3.2
SPECIAL DIGRAPH MODELS
0,
! "# $ E @F% " % + ! $% %,0 ! . 7 & % ?
E7"@F EM@9F E"@0F EBN?5F K ?3 8
Tournament Kings
B J ) E)25F , - + & + + ! ! 0
! / ( 8 ! " + +
& % % + ) ! $% : % + ! + 7 ) ! + 4 + + + . " ! # E @9F ( E;?F Voting and the Condorcet Paradox
& % + < % $ % * % ! + # # ) ! + " # + + + # #
Section 12.3
515
Tournaments
. 4 < < 4
! ! # 055 2 + < * * + + ! + + * + + ! + ! *
Figure 12.3.3
:%
" "
# # !
" + + " " ! #' " + ! * 055 + 8 ! ! * * " ! * * ! ! !
! . "
, + 9 + 0
9 9
1 .233 3 ! 05 J 5 + 05 2 + +
05! / ! 3 + 05# # + 9 05- K + +
516
Chapter 12
SPECIAL DIGRAPH MODELS
05/ ) ! + 9 ! K + 050 K ! 054 055 05( K ! ! 05 5 K
12.4
PROJECT SCHEDULING
& ! + " ! ! ! " ! ! ( The Critical-Path Method for Project Scheduling
4 $.+% ! ! K !
! $%$ * $ % " * + && , ! & ! ! ! ! #
" + ! && 4 ! ! * ! 0 5 Figure 12.4.1
, ,% !
Section 12.4
517
Project Scheduling
Figure 12.4.2
Figure 12.4.3
, ! ,% *
,% " ! *
8 ! ! ! * " *
Figure 12.4.4
,% *
. 1 && ! " && ! !
J && ! . >+ + % 0 * ! + 5 " ! + $ % ! + ! $ % 3 * + 2 " ! ! $ % & ( ! !
! ! * ! ! 1 * ! ! ! !
Figure 12.4.5
; % ! *
518
Chapter 12
SPECIAL DIGRAPH MODELS
- * /. # $% ! & K / $ % 6 8 I ! 6 K ! I ? * 6 8 O & 7 @ 6 & 7 A 6 / 9 - 6 4 * 0 4 && 03
#
Figure 12.4.6
$
" ) $ % $ % Calculating the Earliest Event Times
) $ % +
& + +
) $ % ! + " ! ! $% 6 9 " $ % $ % + 4 + + " + ! $% : $ % # + $ % + 03A
Figure 12.4.7
$ % 6 ( $ % : $ %
Section 12.4
Project Scheduling
519
# 4 +
$0% 6 $% : ? 6 ? $5% 6 ( $% : 6 $0% : 9 6 ? 6 ? $3% 6 $5% : A 6 $2% 6 ( $5% : @ 6 A $3% : 9 6 0 6 0 $% 6 $2% : 0 6 5@
" 5@ # 0 ( 0 % $ % (
# + 9
! ! " $ % " + $ *+% #
1 1
" ! K 030 4 + 9 >+
+ ! & ! + + $ *+% Algorithm 12.4.1:
. ,
. % + && . 0 % . $% $0% $%% E F 4 ( .6 . 6 % $ % .6 9 E F 6 % ) ! + 9 $ % # $% .6 ( $% $% : $ % .6 ; $% $0% $%%
8
$
Calculating the Latest Event Times
) / $ % +
520
Chapter 12
& +
SPECIAL DIGRAPH MODELS
+
) $ % ! + " / $ % ! ! + % 4 ! ! / $%% 6 $%% 1+ + + 4 + / $% $ % / $% ! # / $ % ' 03@
Figure 12.4.8
/ $ % 6 ( % / $ % $ %
# ! + / $% 6 5@ / $2% 6 / $% 0 6 0 / $3% 6 / $2% 9 6 / $5% 6 ( %/ $3% A 6 ? / $2% @ 6 @ 6 ? / $0% 6 / $5% 9 6 ? / $% 6 ( %/ $0% ? 6 9 / $5% 6 5 6 9
& 030 / & 03 Algorithm 12.4.2:
. 8 ,
. % + && . 0 % . / $% / $0% / $%% E F 4 ( .6 . 6 % / $ % .6 E F 6 % ) ! + 9 $ % # / $% .6 ( %/ $% / $% $ % .6 ; / $% / $0% / $%%
8
$
Section 12.4
521
Project Scheduling
Determining the Critical Activities
" & $ % - $ % ! $ % $ % !
* D ! $ % ! " D !
# ! 2 $ % - $ % 6 / $% $ % $ % # $ %
! " $ % ! $ % : : $ % " $ % : : $ % 6 / $% # # " + ( ! >+ $ % / $ % 9 9 0 ? ? 5 ? ? 3 2 0 0 5@ 5@ 7 K 035 D - $ % 6 - $ 5% 6 / $5% $% 6 5 - $! % 6 - $ 0% 6 / $0% $% ? 6 9 - $* % 6 - $5 2% 6 / $2% $5% @ 6 ? - $% 6 - $5 3% 6 / $3% $5% A 6 9 - $ % 6 - $3 2% 6 / $2% $3% 9 6 9 - $- % 6 - $2 % 6 / $% $2% 0 6 9 1 * ! 4 ! & D ( & + + # - 0 5 3 2 " + !
7
522
Chapter 12
SPECIAL DIGRAPH MODELS
# #
0 ( 3 3
1 .233 3 # :
- "
03
: 2"
"
- " ' +,
!
9 A 2 5 0 3 I I ! 03 ! 9 2 5 3 2 2 2 I I ! 03! ! A 5 0 @ 3 9 2 ? I ! 03# & 9 !
" ! & K ! K 6 1 0 6 0 / 6 / 5 6 5 0 & 6 & / J" 6 J " / /* 6 /' * 0 # 6 # K 6 K!! 0/ )& 6 ) & ! / 5 03- K 03 03/ K K 030 030 K * " & 03 034 K ) " & 030 03( K K 033 03 5 E F 8 % + && D + , -
Section 12.5 Finding the Strong Components of a Digraph
523
12.5 FINDING THE STRONG COMPONENTS OF A DIGRAPH
" !! ! 23 " ! ! $ *+%
Depth-First Search Revisited
& ! +
& ! . & 30
! ! " + & 02 + & 020 & + ! ! + 4 + ! + + ! ; 30 ! + &% ( $% / + & 02 ! + 4 $ % $% + + &% ( $% +
$% + ! + " ! +
$ % + " & 02 ( &% ( $% " ( %
! + ! ( ( % $ % $ %
"$% + Classifying the Non-Tree Arcs of a DFS Tree
& + & + & + +
524
Chapter 12
2
./. > ? ? = @ = ./.:
Section 13.1
Flows and Cuts in Networks
541
3
./. ? % ./.A ? = @ = ./.:
./. ? % ./.A ? = @ = ./.:
./. ! ? = @ = ./.:
./. 0 > $ () $ = @ = ./.:
./. + 0 B
./. % ./.
= = @ = ./.: " = ./.
./3 C / 0D ! $ ./3/ % ./33 ./35
13.3
FLOWS AND CONNECTIVITY
N -/ N 1 8.
"
( +,( ) % +,( ) +,() % ( +,() ( +,() , +,()
!
+ - * * - * ( +,(* ) , ( +,(* )) 6
- - - -
-
!
( +,( ) +,( ) , " , +,() ( +,()
( +,() , +,()
,
" '
!
" , . & 5./ 6 .-3 & 6 " , ! ! . " , ! 9 . + .//. ; " , ! ; 6 ! & ! ! 9 . &
552
Chapter 13
NETWORK FLOWS AND APPLICATIONS
Two Basic Properties of 0-1 Networks
$
8 .
!
() , . $ &
'
!
+ , & = () , 8 () , .
() , () , ( +,()
() , () , +,()
( )
( +,( ) +,( ) , ( ) , +,() ( +,()
( +,() , +,()
,
6 " .//3 ( ) & ( ) , & *
() ,
. 8
( ) , , ( % ) ( ) ,
Separating Sets and Cuts = -)
(
+ . $ . . .
+ / $ / / / /
* !
Section 13.3
553
Flows and Connectivity
!
() , . &
!
+ , 0 0 ( ) 0 1 0 1 1 1
( )
1
,
0
,
( ) ( .) (
1 )
Arc and Edge Versions of Menger’s Theorem Revisited
& ) 95 . 3 / 7 - 5 : > ! ! 4 0! $2F
"
# 0! $2F !
G $%$% $% " : # =
: C ) #
; " $%
9# $%$$ $%$> $%$
658
Chapter 16
NONPLANAR LAYOUTS
/#011 1 ! "
$%$
$%$
$%$
$%$$
# ! "
$%$.
$%$
$ %! " ! &' ! &'
$%$2
$%$
$%$(
$%$+
$%$
$%$
( )! " ! &' ! &'
$%$ $%$$ $%$.
9# $%$H 9# $%$ 9# $%$C
Section 16.2
$%$ $%$2 $%$
659
Genus Distribution of a Graph
9# $%$$1 9# $%$$$ 9# $%$$>
* %)! +" "
$%$( $%$ $%$ $%$. $%$2
16.2
$%$+ $%$ $%$$ $%$ $%$
: 5
5
GENUS DISTRIBUTION OF A GRAPH
Æ (
$C E ) / $C 1 $C% $C% I * Minimum Genus
! 4 ! 1
, ( ,
! 4 $ '
! 5 $ > ! ! > " E 9 !
5 4 > > ! 9; , H ! > ! ! ! ! >!
> > ! ! !
! ! >! !
> ! ! > 5$ ' !
#! %
!
% > 5$ " ' ! ! : ' $%>$
' ! ! 4 : ? $%>> !
5$ >% > > >= 5 % 4 : 4> 4 % > 5$ 4 %
Maximum Genus
0J'H$2 0J)'H>2 ! 4 # ! 1
#
Section 16.2
Genus Distribution of a Graph
661
" ! " # !
" ! 4 5 $
" ! ! > " E # 9 5 4 > > ! ) 9 > ! 5 4 5 > 4 " ! 5 $ $! " ! ! > '
$ # 1 " ! 4 1 . 9# $%$> ! $ - $%>:
" ! : > 4 > 4$ ? ! 4 $ !
Genus Range
= $
6 ? $%> 0 ! !2
HF! 8 $%$% G $%>$ $%>: 0> $12
' # # #
$%>: #
0; E -2 # $%>$ K JD 0 C2 Non-Orientable Imbeddings
8 # ; , ! , ! 4 1 , ! , ! 4 1
Section 16.2
663
Genus Distribution of a Graph
% !
: 5 >
"
? $%>> K
#
2 ! 4 " !
" " ! 4 5 $
" " ! ! $%>: D 09% 2 /#011 1 % % %! , %% "
%
$%> $%> $%>. $%>2 $%>( $%> $%>
$%>
% $%>$
$%> % % % $%> % 5 %
$%>+ #
$%> " $%>$ ? $%>> ! ! 4 = $%>$ " 9# $%>$: 9# $%>$$ $%>$> % # %% ! - %( "
$%>. $%>2 $%>( $%> $%>
%
% % %
$%>. D $%>%
$%> $%> $%>+ $%> $%>$
%
% 5 % %&
664
Chapter 16
NONPLANAR LAYOUTS
16.3 VOLTAGE-GRAPH SPECIFICATION OF GRAPH LAYOUTS
#
, / Signed Walks
/ " ! ½ ¾
/
! / Æ 6 / 3 4 ½ ¾ / ' 6 / ' ! 4 ' !
; $%:$ D /
4 ( (
# / # # # ( / # ( ' ! 4 '! 5 '! '! 4 $ 5 1 > 4 $ !
665
Section 16.3 Voltage-Graph Specification of Graph Layouts
Figure 16.3.1
4 ! "
%5 6 7 , ' (
" "#
4 ½ ¾
4 ½ ½ ¾ ½ "# " ; ) 4 $ * 4 5 ' !
½
½
# / 3 / #
/ # L&3 -
Figure 16.3.2
897 4 4
$
; ; $%::
- H >$
Figure 16.3.3
1 !
! 4 -
; $%:= L&3 ' $= 9 H >$ 5 $= 4 1 4 > > '
Figure 16.3.4
1 :
668
Chapter 16
NONPLANAR LAYOUTS
# . 6 M 6
/#011 1 ( (%! " " /01 "
$%:
$%:
$%: D L&3 +6 D 9 5 1! $%:$ D L&3 +6 D 5 >! $%:. ' ; $%:> K K $%: ' ; $%:= K K ($ (
!
$%:2
' /
$%:
' /
# (
#
669
Section 16.3 Voltage-Graph Specification of Graph Layouts
$%:( ' /
$%:+ ' / (
# (
#
$%: ' / N # (
3 ' 6 / !
$%: 3 ' 6 ( D # # (
/ ( ) $%: 3 ' 6 B 9# $%:$> 0"E H%2 $%:$ 3 $ D L 8 / D > $> / % , 7 7 # /
Figure 16.4.1
1 :
Minimum-Genus Formula for Hypercube Graphs
" (
Section 16.4
671
Non-KVL Imbedded Voltage Graphs
" $ ! =! > 5 $ > " ; 4 > 4 : 1 ; = $%>$
!
! ! >! > ! ! > 5 $
' ! 4 > ! 4 > ! ! 4 = ( > = >! > !
>= > 5$ 4 > > == >! >> 5 $ 4 > > 5 $ 4 =! > 5 $
" $ ! =! > 5 $ > " , Æ =!> 5$ ; $%=$ ( ; $%=>
Figure 16.4.2
9 !
' ! ! 4 = $%>$ ; $%=>
> > / , > /
672
Chapter 16
NONPLANAR LAYOUTS
/#011 1 $ ! "
$%=
$%=
$%=
$%=$
$%=.
$%=
" "
$ )! " " "
$%=2
16.5
!
$%=
HEAWOOD MAP-COLORING PROBLEM
Æ = C>!
( D + +
9 + O # # # L #
> >
Section 16.5
673
Heawood Map-Coloring Problem
" # E / / + ! ! 9 ! Heawood Number of a Surface
7 . ! ! ! H % !
"
Æ Æ
$! Æ ! % >! Æ ! Æ ! :! ! $ Æ ! =! ! $ % ! ! H %! ! H
%! C$$! $! >! :!! =!! ! ! !
7 . ! 1 ! H
% ! !
" 3 ! 9 ! $! ! H 3 $% $! >! ! ! 4 ! ! :! >! % 1! $! :!! =! ! H
! 9 !
H 5 =C >= ! 0 !! 4 >
. %';* (+, " ! $ ! 0 !! " G D P Æ + - Æ ; ! 4 $ 3 $% $ ! % 4 0 $! ; ! 1 3 $% >
674
Chapter 16
! H ! 5 % !
NONPLANAR LAYOUTS
1 ;
=C >= ! H =C >= ! H 5 ! ! > >
1
' ! 1 H ' !
6 9 ! 4 > " 0 >! 4 = $% : Heawood Conjecture and Minimum Genus
+ ( + + O
$ H 5 $ 5 = " + 0 > >! 4 , > :! =! ! = $>
0 > >! :!0 > >! =! ! $> ! D ! # D ; / $C:= ! 4 % ' 9 L ! 1 0 1! 4 H ; /O
# + > > * : 4 4 6 M ! = ! 6 / 6 ! 8 6
6 '; > 6 6 <
# 6 # , # # ! , # ! ; 6 / ! ! 6 ! 4 6 ' ' " 6 8976 L&3
APPENDIX
A.1 Logic Fundamentals A.2 Relations and Functions A.3 Some Basic Combinatorics A.4 Algebraic Structures A.5 Algorithmic Complexity A.6 Supplementary Reading
A.1
LOGIC FUNDAMENTALS
Propositional Logic
Æ
681
682
Chapter A APPENDIX
Types of Proof
! " # ! $"% ! &
' '
!" ( ) * +
Mathematical Induction
, $% $% - $% $ ) *%
$ % $% $ ) *%
*
$ ) *% " ! * * ! *
*
' -
!$
!
% ) $ ) *% ! $
"
$ ) *%% ) $ ) *% !
)*
"
$ ) "%
, $% $% - $ $% $ ) *% $%% $ ) *%
$ ) *%
$% $ ) *% $%
Section A.2
A.2
683
Relations and Functions
RELATIONS AND FUNCTIONS
Relations
! $ %
.
$ % $ %
$ %
/+
! (
0 1
01 !
- 2 3+ " * 041 ! ( 0*1 ! ( ) * 0"1 ! ( ) " 5
6 2 ! * !
684
Chapter A APPENDIX
* " 01 ! 01 ( 01 01 !
041 0*1 0"1 3+ " "
Partial Orderings and Posets
!
$ %
/+
$ %
Functions
.
+
2 + ! $ %
$ % ! $%
.
$ % ! $%
Section A.2
685
Relations and Functions
$ % $% ! $%
6 6
!
$ % +
$ % !
7 7
$46 % +6 6+ +
4 * * 7
4 * * 4 *
!" # $" %
* 6 6 " ( !
7
Æ
$ % ! $ $ %%
Æ
$ % !
Æ
&
686
A.3
Chapter A APPENDIX
SOME BASIC COMBINATORICS
# %
!
6 7
6
6 8 ' 6
9
$ %9
6 6 6 6 $ %
!
9 9$ %9
!" # !"% !
$ ) % !
$% ! ! ) ) ) ) )
* *
* ! *
* " (
! !
!
* !
*
* $* %
Section A.4
A.4
687
Algebraic Structures
ALGEBRAIC STRUCTURES
Groups
$$ %% !
! 4 * " : *4 - ; ; ! *" ! " $ *4% ; ; ! (; ! ; $ *4%
$ % ! $ % ! ! ! $
% - $
% ! ! ! $ %
*
" ( 3 $ % 3 ! $ % $ % $
%
)
- $ %
& *
! $ )% >
5 * " " + 2 $ %
,
> + ! * " (
*"( ! ? *"( *"( ! ?
("*
*"( ! ? *(" *"( ! ? "(*
*"( ! ? "*( *"( ! (*"
> 8
Æ
Æ
Æ
Æ
Æ
Æ
Æ
! ! ! ? ! ? ! ? !
> @ ! ! (
Æ
! Cycle Notation for a Permutation
3 7 * " ( 3+ & :
! * " ( * " ( * " ( * " (
6 $ %
!
!
$% !
-
$ % 6 ! * *
3+ & : $* " (% $" ( *% $( * "%
690
Chapter A APPENDIX
+ .
A # > # !
7 #
#
! $* B &%$"%$( ;%$= C :% $* B &%$( ;%$= C :%
Fields
! ! $$ ) % $ ) $ % 6 2 * $$ )% " $$ 4 % 4 ( $ ) % ! $ % ) $ % $ ) % ! $ % ) $ %
Finite Field $ $"%
! 4 * 4 * ! * 4 ! *? 4 4 ! * 4 ! 4 * ! 4? * * ! *
! ! $ $"% "
4 4 ! * * ! 4? Vector Spaces
2 $ % $ % ) $ $$ %% %%
2 % & * $ )% $ ) D 2 % " $ %% ! $%% ( $ ) %% ! % ) % & $% ) &% ! % ) & = % ! % 2
' ! $# # #% # $ $"% $ "% ' - # $ $"% & ! $# # #% 2
! $# # # # # #%
' $ $"% #&
2 3+ & *" 6 2
Section A.4
691
Algebraic Structures
Independence, Subspaces, and Dimension
2
2 + ' 2 3+ & *"
% % % % % ! #% ) ) ) # % # ! * "
# %
' $* 4 *% $* * 4% $4 * *% $* 4 *% ! *$* * 4% ) *$4 * *% $* 4 *% $* * 4% $4 * *% 4
% % %
+
$* * 4% $4 * 4% $4 * *% ' +
3+ & *& '
$* 4 4% $4 * 4% $4 4 *%
"$ % ( (
(
(
* % ) & ( % & ( " #% ( # % (
&
3 (6 3+ & *= (6 ( ! $4 4 4% $* * 4% $4 * *% $* 4 *%
"6 '
'
( ( ( (
( ( ( ( % ) % % %
692
Chapter A APPENDIX
& ( ( ( ( "$( ( % ! "$( % ) "$( % "$( ( %
A.5
ALGORITHMIC COMPLEXITY
5 E
7 $ %
$ % 2 Big-) Notation
* * $% )$$%% $ 6) $%% +
$% $%
, +
$% )$$%% $%
$% Æ Æ $% $% )$$%% $ %
2 $% )$$%% $% $% !
, 4
$% !
)$ %
) ) ) ! " "
2 ! " + ! 4 $% )$ % " )$ % ! " + ! 4 )$ $%% $% !
) ! " $%
+ + D 6
Section A.5
693
Algorithmic Complexity
F 2 + % - + +
" 7 + . 7 + $ % 6 + $+ % + + ! & SURFACES and TOPOLOGICAL GRAPH THEORY
63 + / # :& ;9 " / .E &63< 023 / ! 0 % &23 *3) * ! &3) /6) / . * " @ .%
&6)
B.2
REFERENCES
E , -# , ,, , , Chapter 1: Introduction to Graph Models
* 6) 9 ! * (.%
&6) /) * / - Ü&7 -# + D
$*$ ( :) // * / / / > ! &
698
BIBLIOGRAPHY
Chapter 2: Structure and Representation
033 1 # 0' $ , ,
/0 & ;&33
View more...
Comments