grand theft auto 4 cheats
April 22, 2017 | Author: Jayashree Jayaram | Category: N/A
Short Description
come here people for gta four cheats...
Description
AITS-FT-II-(Paper-1)PCM(S)-JEE(Advanced)/13
JEE(Advanced)-2013
FIITJEE
ANSWERS, HINTS & SOLUTIONS FULL TEST – II (PAPER-1) ANSWERS KEY
ALL INDIA TEST SERIES
From Long Term Classroom Programs and Medium / Short Classroom Program 4 in Top 10, 10 in Top 20, 43 in Top 100, 75 in Top 200, 159 in Top 500 Ranks & 3542 t o t a l s e l e c t i o n s i n I I T - J E E 2 0 1 2
1
Q. No.
PHYSICS
CHEMISTRY
MATHEMATICS
ANSWER
ANSWER
ANSWER
1.
B
C
C
2.
B
B
A
3.
B
D
B
4.
B
C
A
5.
A
B
B
6.
A
A
D
7.
D
C
D
8.
C
C
A
9.
A, B
A, B
A, C
10.
B, D
A, C
A, B, C
11.
B, C, D
A, B, C, D
B, C
12.
A, D
A, D
B, C
13.
A, B, C, D
A, D
A, B, C
14.
A
B
D
15.
B
A
A
16.
B
B
A
17.
C
C
B
18.
C
B
C
1.
5
2
7
2.
4
4
4
3.
4
7
4
4.
3
0
5.
2 2
6
7
6.
8
8
4
7.
4
1
6
8.
3
2
2
9.
4
4
9
10.
1
4
1
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
2
AITS-FT-II-(Paper-1)PCM(S)-JEE(Advanced)/13
Physics
PART – I SECTION – A
1.
di ε=L dt
2 dt ⇒ dt = 5 × 10−3 sec. Q = idt = 2 × 5 × 10-3 ∴ Q = 10-2 But Q = CV 10-2 = C × 400 ∴ C = 25µF.
400 = 1 ×
2.
Total flux through this area is = E.4π (1.5R)2 Q (1.5R)2 − R3 qnet 1 = Q+ ε0 ε0 (2R)3 − R3 Q 19 75Q 1+ = = ε0 56 56ε0
{ {
}
}
R
R 1.5
2R
Gauss law E .4 π (1.5R)2 = Q (75/56ε0) 75Q E= 504πε0R2 3.
w0 =
1
=
1
4.
LC 2 × 10−2 op, 2π f = 50 25 op, f = Hz . π Use the definition of an elastic collision.
5.
Buoyant force = Weight of liquid displaced =
4 2 πr ρg 3
Viscous force = Stoke’s drag force = 6 πηrv 4 ∴ 6πηrv = πr 2ρg 3 6.
2(k2x0) = mg + iBL mg = 2kx0 ε i= R mgR . ∴ B= εL
8.
For a internal point gr g' = R
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
3
AITS-FT-II-(Paper-1)PCM(S)-JEE(Advanced)/13
⇒ g′ ∝ r F as a external point GM 1 g' = 2 = g' ∝ 2 r r dx = t2 dt
9.
y=
…(i)
1 t3 23
dy t 2 = dt 2
t = 1, vx = 1, vy =
…(ii) 1 2
G 1 v = ˆi + ˆj 2 d2 x = 2t dt 2
…(iii)
d2 y
=t dt 2 at t = 1 s ax = 2 and ay = 1 G ∴ a = 2iˆ + ˆj
10.
11.
13.
…(iv)
F Acceleration of M, a = M 1F 2 A= .t 2M 2MA t= . F G G G G G τ = M × B and U = −M.B G G here M and B are anti–parallel G G ∴ τ = O and U = +MB (maximum)
v+u=D and v – u = X D+ X D−X ⇒ v= ,u = 2 2 D2 − X 2 and f = 4D D+ X D−X m1 = , m2 = D−X D+ X
14. - 15.
The impedance is z = R2 + ω2L2 and the rms V current is irms = rms . z
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
4
AITS-FT-II-(Paper-1)PCM(S)-JEE(Advanced)/13
16.
Since the center of mass will remain at rest. m(5A − x) = M.x
x= 17.
5mA . (M + m)
MvM − mv m = 0 1 2 1 1 2 KA = MvM2 + mv m 2 2 2 Solving (i) and (ii) Km vM = A. M(M + m)
18.
vm =
…(ii)
M Km A m M(M + m) =
KE =
…(i)
KM A m(M + m)
1 2 mv m 2
SECTION – C 1.
Let, V0 → velocity of sound when source is O at the velocity component of source towards listener is VS cos 90 = 0 V0 ∴ F' = F0 = FS V0 − VS cos90 A time taken by sound to reach listener = . V0 Distance moved by source in this time A = VS V0 ∴ Distance between source and listener = A 2 + n2 A 2 = A 1 + n2 = 105 m. 2. If the plank is displaced slightly by x towards left, then a2 Kx Kx m2 f1 2 Kx – f1 = m a2 …(i) …(ii) f1 − f2 = 8 m a1 τcm = Icm α (8m)R2 α or ( f1 + f2 ) R = 2 (8m)a1 (f1 + f2 ) = …(iii) 2 From (ii) and (iii), 3a 2f1 = (8m) × 1 2 3a1 or f1 = (8m) × 4
α
f1 a1
f2 (Assumed)
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
5
AITS-FT-II-(Paper-1)PCM(S)-JEE(Advanced)/13
and f2 = 2 ma1. Hence, f2 will be in forward direction. Also, for no slipping, at the point of contact between plank and cylinder. 2a1 = a2 …(iv) 3a …(v) f1 = (8m) × 2 = (3m)a2 8 from (i) and (v), 2Kx – (3m) a2 = m a2 2K a2 = x 4m −d2 x 2K or 2 = x dt 4m or
2 π2 = − × x dt 2 4 2
d2 x
π2 4 π or ω = 2 2π π = or T 2 or T = 4 seconds.
or
3.
ω2 =
When the two disc come in contact, they exert equal and opposite forces. …(i) ∫ Fadt = I1(ω0 − ω1 )
∫ Fbdt = I2 ω2
…(ii)
finally ω1a = ω2b I1(ω0 − ω1 ) = I2
ω1 =
I1ω0 I1 +
4
5.
µ=
sin 900 sin 300
a2 I2 b2
a2 b2
.ω1
= 4 rad / s .
=2 900
300
Maxn energy is liberated for transition En → E1 and minimum energy for En → En–1 Hence, E1 E1 − = 52.224 eV n2 12 E1 E1 and − = 1.224 eV 2 n (n − 1)2
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
AITS-FT-II-(Paper-1)PCM(S)-JEE(Advanced)/13
6
Solving we get, E1 = – 54.4 eV and n=5 hence, 13.6Z2 E1 = − = −54.4 12 Z = 2. 6.
Magnetic field due to small ring at distance R from the centre B = 2
where M = i π a µ iπa2 µ ia2 ∴ B= 0 3 = 0 3 4π R 4R 2 µ ia dF = i0Rdθ 0 3 4R dFx = dFsinθ µ i.i a2 sin θdθ = 0 0 4R2 µ i i a2 π Fx = 0 02 ∫ sin θ dθ 4R 0 Fx = Fx =
µ0i i0 a2 4R2 µ0i i0 a2
µ0 M 4 π R3
θ
dθ
dF
×2
2R2
Fy = 0 ∴ Fnet = Fx =
µ0i i0 a2 2R2
= 8 Newton. 7.
F.B.D of m N = mg cos θ mg sin θ = ma a = g sin θ F.B.D. of M
N ….(i)
a mgsinθ
R = N cos θ + Mg µ R = N sin θ µ. (N cos θ + Mg) = N sin θ µ Mg = N [sin θ - µ cos θ] µ Mg = mg cos θ [sin θ - µ cos θ] µM m= cos θ[sin θ − µ cos θ] m = 4 kg.
mgcosθ
R Ncosθ
Nsinθ
µR Mg
8.
Thermal resistance of the rod, A R= kA
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
7
AITS-FT-II-(Paper-1)PCM(S)-JEE(Advanced)/13
When heat is transferred from first vessel to second, temperature of first vessel decreases while that of second vessel increases. Due to both there reasons, difference between temperature of vessels decreases. Let at an instant t, the temperature difference between two vessels be θ. θ KAθ H= = R A KAθ dQ = Hdt = dt …(i) A Since gases are contained in two vessels, therefore, processes on gases in two vessels are isochoric. Hence, decrease in temperature of gas in first vessel, dQ dQ dQ ∆θ1 = = = 5R 5R nC V 2× 2 Increase in temperature of gas in second vessel is dQ dQ ∆θ2 = = 3R 6R 4× 2 ∴ Decrease in temperature difference (–dθ) = ∆θ1 + ∆θ2 dQ 11 − dθ = × R 30 KAθ × 11 or, −dθ = dt 30RA 25
or
dθ KA × 11 t = dt θ 30AR 0∫ 50
−∫
or, An2 = or
9. 10.
t=
KA × 11 t 30AR
.693 × 30 × 242 × 10 −2 × 8.3 × 7 693 × 7 × 22 × 8.3 × 10 −4 × 11
= 3 seconds.
di d2 V 2dC dV d2 q d VL = R − 2 = L iR − C 2 + = 4 µV. dt dt dt dt dt dt From C.L.M. v M 11 v0 = Mv ⇒ v = 0 10 10 11 For block B to leave ground
…(i)
Mg K(x0 + x) = 2 Mg (where x0 = ) K Mg ∴ x= …(ii) K From COE 11 1 1 11 2 1 Mgx − K(x0 + x)2 − Kx02 = 0 − Mv 10 2 2 2 10
M 10
A K
M
2M
88M K putting the value v0 = 1 ms–1.
solving v 0 = g
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
B
8
AITS-FT-II-(Paper-1)PCM(S)-JEE(Advanced)/13
Chemistry
PART – II SECTION – A
1.
0.0591 1 log Ecell = 0 − 1 2
After electrolysis Ecell = 0 −
(1 − 0.5 ) 0.0591 log 1 ( 2 − 1)
No change. 2.
10.
8RT = πMA
3RT 8 3 ⇒ = MB πMA MB
1 H+ + e − Eo = 0.0V → H2 2 0.059 1 E = EH+ /H = − log + 2 1 H
= - 0.059 × 7 = - 0.413 So, EH+ /H < ENi2+ /Ni 2
Ni will deposit at cathode At anode cell reaction 4OH− → 2H2O + O2 + 4e 11.
Both complexes have Cr+3(d3), and coordination number is 6. Hence d2sp3 Pd+2(d8) complexes with coordination number → 4 are square plannar and magnetic moment is zero.
12.
∆ FeCl3 → FeCl2 + Cl2
2+
Dilute CuCl2 is blue due to Cu (H2 O )4 . PH3 is obtained be heating white P with NaOH. All are reducing because of weak P – H bond. 15.
Bottles 1,2,3,4 have Pb(NO3)2, HCl, Na2CO3 and CuSO4 When mixing Bottle 1 + Bottle 2 → PbSO4 Bottle 1 + Bottle 3 → PbCO3 Bottle 1 + Bottle 4 → PbSO4 Bottle 2 + Bottle 3 → CO2 Bottle 2 + Bottle 4 → No visible reaction Bottle 3 + Bottle 4 → CuCO3
18.
∆ → Li + N2 ↑
N2 + O2 Lithium → Li2 O + Li3N ∆
H2 O LiOH←
H2 O → LiOH + NH3 ↑
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
9
AITS-FT-II-(Paper-1)PCM(S)-JEE(Advanced)/13
SECTION – C CH3
CH3
1.
A=
B=
H2C
Br
Br
Br Inactive
Br
CH3
D=
C= CH3 H2CBr
Br
Inactive CH3
E= Br
H
4.
∆Tb = K b × m × i 2.08 = 0.52 × 1 × i i=4 K 3 FeIII ( CN)6
6.
Cl
HO
Cl →
Cl
Cl
O
OH ∆ →
OH
HO
(x)
O (z)
(y)
7.
logK = 0.1
10.
Glycinate is asymmetric bidentate ligand. AB type, so for M(AB)C2D2: C D
B
A
A
D M
D C
C
B
M c
D
C
B
M D
C
c
B
M A
C
D
A
C D
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
10
AITS-FT-II-(Paper-1)PCM(S)-JEE(Advanced)/13
Mathematics
PART – III SECTION – A π/2
1.
2 sin3x 1 k 3 + 2 sin x − cos x − 2k sin x 0
≤1
2 −1 1 k + − 0 − 2k − {−1} ≤ 1 3 2
k2 − 2k + 1 ≤ 1 6 k (k − 12) ≤ 0 0 ≤ k ≤ 12 k = 1, 2, 3, 4, …, 12. 101
2.
I1 =
∫
( 5 + 2x − 2x 2 )(1 + e2− 4x ) −100 101
= 2I1 =
3.
dx
∫
5 + 2x − 2x 2 −100
⇒
I1 1 = . 2 I2
I=
∫ ( 6f ( x ) − x ) ( x
I=−
4.
101
dx
∫ (x
2x 2
− f ( x ))
2
− f ( x ))
dx +
2
−100
2 − 4(1− x )
)
= I2
2x ( x − 6f ( x ) ) + f(x) 2
dx
∫ (5 + 2 (1 − x ) − 2 (1 − x ) ) (1 + e
=
2
dx
f ( x)
∫ ( 6f(x) − x ) ( x
2
− f ( x ))
2
dx =
f ' ( x ) − 2x 1 +c dx = 2 2 2 x − f(x) − f ( x ) )
∫ ( x
( sin ( x + h ) )ln(x +h) − (sin x)ln x ln x ( ) Let g(x) = sin x ⇒ g'(x) = lim h→0 h ln ( sin x ) π π + cot x ln x ⇒ f = g' = 0 ⇒ f(x) = g'(x) = g(x) x 2 2
5.
n(x1) = 3, x1 = 2, 3, 4. 4 ≤ x2 < x3 ≤ 8 ⇒ from 4, 5, 6, 7, 8 Selecting any 2 ⇒ n(x2, x3) = 5C2 = 10 and n(x4) = 2 x4 = 0, 5 ⇒ Number of such 4 digit numbers 3 × 10 × 2 = 60
6.
Let X denotes the number of toss required. 3
2 1 ⋅ 2 1 2 1 2 1 3 3 = 8 P(X ≥ 4) = ⋅ + ⋅ + ⋅ + ...... ∞ = 2 27 3 3 3 3 3 3 1− 3 3
4
5
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
11
AITS-FT-II-(Paper-1)PCM(S)-JEE(Advanced)/13
2 6 1 ⋅ 6 2 1 2 1 3 3 = 2 P(X ≥ 7) = ⋅ + ⋅ + ..... ∞ = 2 3 3 3 3 3 1− 3 6
7
6
2 8 Required probability = 3 3 = 27 2 3
8.
R = P'Q8P = A 8 3 −2 3 A2 = 1 0 0
3 − 2 1
3 A3 = 0
3) 0
−2 3 − 2 = 1 0 −2 3 − 2 3 − 2 ( = 1 0 1
3
−2 ( 3 ) − 2 3 − 2 1
= Ak then λ11 = ( 3 ) ⇒ r11 = ( 3 ) = 81 ⇒ If λij 2×2 k
9.
8
∆ ∆ abc r1 + r2 = 3R ⇒ + = 3 4∆ s−a s−b
∆2 3ab = ⇒ 4s(s – c) = 3ab ( s − a )( s − b ) 4 1 ⇒ ∠c = 60º ⇒ cos c = 2 Also r2 + r3 = 2R ∆ ∆ 2abc ⇒ + = 4∆ s−b s−c π π and ∠B = ⇒ 2s(s – a) = bc ⇒ ∠A = 6 2
⇒
10.
⇒ ∆1 = 2 2 ( 4 − 10 )
and ∆ 2 = 2 2 ( 4 + 10 )
x2 2 + ( y − 4) = 1 9
P2 P1 ∆1
∆2 A B 11.
(3a + 4b)(3a – 2b) = 0 and (3a – 2b)(a + b) = 0 ⇒ 3a = 2b
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
AITS-FT-II-(Paper-1)PCM(S)-JEE(Advanced)/13
12.
12
f(x) is non differential at x = 1 (Point A in figure) But f(x) is cont. ∀ x ∈ [0, 2] ⇒ g′(t) = f(t) – f(t – 1), t ∈ [1, 2]
y = f(x)
= ( 2t 2 − 6t + 6 ) − ( ( t − 1) + 1) = 2t 2 − 7t + 6 = ( 2t − 3 )( t − 2 )
3 2
1
y=x+1
2
⇒ Maximum when t =
14.
A
2
1
3 2
2
3 and minimum when t = 2. 2
A P ( A ∩ BE ) P , where A = sum is 4. = P B ( E) BE 1 1 1 And P (BE ) = P (B2 ) + P (B4 ) + ..... = + + + .....∞ = 4 16 64
1 4
=
1 4 1 ⋅ = 4 3 3
1 4 A A P ( A ∩ BE ) = P ( A ∩ B2 ) + P ( A ∩ B 4 ) = P (B2 ) P + P (B 4 ) P B2 B4 1−
1 3 1 1 ( 4 ⋅ 3 ⋅ 62 + 1) 433 = + 4 = 4 4 36 16 6 16.6 16.64 433 433 1 A Hence P = ⋅3 = ≅ 4 32 ⋅ 216 16 BE 16.6
=
15.
n(S) = 6 ⋅ 6 ⋅ 6 = 63 = 216 Now greatest number is 4, so atleast one of the dice shows up 4. ∴ n(A) = 43 – 33 = 37 37 Hence P(A) = 216
16-18. Equation of tangent of slope m to y2 = 4x is 1 y = mx + m 16.
As (1) passes through P(6, 5), so 5 = 6m +
….. (1) 1 m
1 1 or m = 3 2 2 2 1 1 and 2 , Points of contact are 2 , m1 m1 m2 m2 Hence R(4, 4) and Q(9, 6) 6 5 1 1 1 Area of ∆PQR = 4 4 1 = 2 2 9 6 1
⇒ 6m2 − 5m + 1 = 0 ⇒ m =
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
13
17.
AITS-FT-II-(Paper-1)PCM(S)-JEE(Advanced)/13
1 x + 2 ⇒ x – 2y + 4 = 0 ….. (2) 2 1 and y = x + 3 ⇒ x – 3y + 9 = 0 3 Now equation of circle C2 touching x – 3y + 9 = 0 at (9, 6), is ( x − 9 )2 + ( y − 6 )2 + λ ( x − 3y + 9 ) = 0 y=
As above circle passes through (1, 0), so 64 + 36 + 10λ = 0 ⇒ λ = –10 Circle C2 is x2 + y2 – 28x + 18y + 27 = 0 ….. (3) 2 Radius of C2 is r2 = 196 + 81 − 27 = 277 − 27 − 250 ⇒ r2 = 5 10 SECTION – C
1.
⇒ p – 3 = 0, 2, 3, 4 ⇒ Σp = 5 + 6 + 7 + 3 = 21
5
y
y = |x + 1/x – 3|
4 3 2 1
⇒n=7
0 3
y=3
1 2.
1 1 x + 2 x + 2 α β 2
Let I =
∫
x 2 dx +
−1
⇒
α 2 + β2 1 2 + αβ = x + 2 ( αβ )
t 4 + 4t 1 1 1 1 2 x x+ 2 − + + + x = 2 2 2t αβ 4t 4t ( αβ )
3 t2 1 1 1 + + 3 2 − 2 4 t 2t 4t
dI 3 t 1 1 1 1/ 4 = − 2 − 3 + 2 = 0 ⇒ t 4 = 2 ⇒ t = ± ( 2) dt 2 2 t t t
⇒ Min I(t) = 3 +
3 2 9 3 2 1 1 1 =3+ + 1/ 4 + − 1/ 4 = 3 + ⋅ 2 2 8 2 4 2 2 2 2
9 ⇒ + 3 = 1+ 3 = 4 8
3.
3 1 3 1 The population after 2n days = P ⋅ ⋅ ⋅ ⋅ ..........n times = 310 2 2 2 2 n
10
3 3 = 4 4
4.
⇒ n = 10 ⇒ Total number of days = 20 days
Let f(x) = 2x3 – 3x2 + p ⇒ f ' ( x ) = 6x 2 − 6x = 0 at x = 0, 1 ⇒ f(0) > 0 ⇒ p > 0 f(1) < 0 ⇒ 2 – 3 + p < 0 ⇒p
View more...
Comments