Grain Loading Plan & Stability Booklet

March 17, 2017 | Author: thuduong | Category: N/A
Share Embed Donate


Short Description

Download Grain Loading Plan & Stability Booklet...

Description

BIBLIOGRAPHY I

,0' ANT Grain SC,23 OV,

TAIJI

rority nt of public

fs

-

UE

,ffi t'

;"."

i;&

e

FINISHED PLAN

IMO 9478tt82

SHIP NAME

CRANE ISLAND

SHIP N o

522

D.

W.

32,OOO

CLASSIFICATION NK

MT TYPE OPEN HATCH CARGO

GRAIN LOADING PLAN

MANAGER

KANDA SHIPBUILDING CO., LTD.

DESIGN DEPARTMENT

& STABILITY

7,fu

DEPUTY MANAGER

HE +tr

flo'

8

.=.

#i fe

fli

BOOKLET

SCALE

DATE ISSUED

CHIEF

tu

DEPUTY CHIEF IN CHARGE

KURE JAPAN

SHIP

DRAWN BY ,'St

* ,{s

,R. -H.

+t

G.M.

tA

#ot

H

*/1"

DX

fl#

{t a

t6 fr,*

DATE DRAWN

20 October 2009

DRAWING No.

K-36

E atu CIJ(

*t1,

frx

oJ( =&

ffo'

i& ED(

t# EE EEL

E& oJ(

> I

h

H

trl

I

)E

(TOTAL 254 SHEETS WITH

COVER)

( Chapter VI "

PART

Car

r i age

of

Cargoes

'r of

S0LAS

197

4) PAGE

I.

PRINCIPAL PARTICULARS.....

2.

5

GENERAL INFORI',IATION

2-1 lntroduction.....-...-2-2 Regulation to be observed .........---

6

2-3 2-4

1

3.

6

Data & Unit System to be used ...--.-Method of Grain Loading Calculation'......-.-.

7

GRAIN LOADING CALCULATION USING ALLOWABLE GRAIN HEELING

I,l|Oll|ENT

3-1 Flow chart 3-2 STEP-A . Metacentric Height Calculation .......... 3-3 STEP-B : Actual Heel ing Moment Calculation........ 3-4 STEP-C : Al lowable Heel ing Moment 3-5 sample calculation using Al lowable Grain Heel ing Moment 3-6 Table of Allowable Grain Heeling Moment

4. 4-1 4-2

CRAIN LOADING CALCULATION USING STABILITY

Flow

Chart

STEP-D

:

Calculation of Heeling Angle & Residual

Dynamical Stability."..... Stabi I ity Curves from Table of

Cross Curves--...------. Sample Calculation using Stabi I ity DATA FOR EACH CARGO

5.

Curve..

10

.-

1l 14

ig 19

ZO

21

Zz 24 30

STANDARD LOADINC CONDITION

6-1 Blank Sheet 6-2 Stowage Plan-....-... 6-3 Surunary of Loading Table.-.-......... 6-4 Surrnary of Grain Stability Calculation........... 6-5 Standard Loading Condition...........

1.

l0

HOLD

Hold Capacity Table.......-... 5-2 Tables of Volume & Heel ing Moment 5-3 Volumetr ic Heel ing Moment, Volume & KG Diagram.......

5-1

6.

9

CURVE

4-3 Drawing Statical 4-4

g

HYDROSTATIC

TABLE....

36 31

38 41

43 91

Z

PAGE

8.

STABILITY

DATA

8-1 Riehting Lever ( KN ) Table 8-2 Curve of lnflow Angle 8-3 Curve of Deck Edge lmmersion Ang1e..............

9.

14g 166 16g

DATA FOR TANK CAPACITY

9-1 Tank Arrangement ( Tank Surrnary ) ....-....... 9-2 Volume Curves ( with Correction Curve of Free Surface Effect

ll.l

) ...-......-.

1ls

3 PART

IT

( A 10.3

OF INTERNATIONAL GRAIN CODE, END UNTRIMI||ED ) PAGE

1. 2. 2-1

3.

GENERAL INF0RMATI0N

..........

......

te6

.........

197

DATA FOR EACH CARGO HOLD

Hold Capacity Table

(

End-Untrimmed

)...........-.-

STANDARD LOADING CONDITION

3-1 Stowage Plan....-..-. 3-2 Surrnary of Loadine Table..'.-.-.-..-.. 3-3 Surmary of Grain Stabi I ity Calculation..........3-4 Standard Loading Condition...........

200 ZO1

ZO4

206

4

PART

I

chaptervl *carriage of cargoes, of S0LAS 1974

(,I

u)

1.

Principal particulars

Length overall

117.13

t\{

Length between perpend i cu I ar s

168 500

r\{

400

t\{

14. 250

t\|

1A.022

tI|

Breadth Depth

I Fu I I

Fu I

mou I ded

28.

lartaaaaalaltaattala

rnou I ded I

oad dr af t (Sunmer

I

oaded

d i sp

I

,

Ext r eme)

acement

39,671

Deadwe i ght

32, 154.11

Gross tonnage (Register) r . r ! . r r . . r r r r r r

r

Light ship weisht Center of gr av i ty from midship t ' ! t r ' r r r r ' r Center of grav i ty above base line . r . . t ! r . r r

r

. r . ! ! r . . . r r . r . . r r . . . r

.

CIaSS nafne.

' r r . r r . r . . . r r . r . t r !

SymbOl

J,523.11

aft

.

MT

631ttll B.

96

tll

NK

NS*(BCM,

BC_X

II

, GRAB)

,

MNS-

25 Persons

ifiCatiOn

Service

t\JlT

24, 242

Comp I ement

QUal

.82 It|T

r r r . r r r . r . r . r r r . . r . r

ltr.

C.0.

C.

S.0. (85%)

.

.

0cean Go i ng

6,620 kw (9,000 PS) x 125 min-r(RPlrl) 5, 627 kw (7, 650 PS) x 1 18.4 min-r(RPl',l)

speed.

about 14.30 Knots (at designed draft = 9.50m,

C.

S.0. ,15%

Slrl)

Cal I Sign . . . . . r r . r . r r . r r r r . r r r

r

3

nUmbef . . r r r . r r r . . r . ! r . r .

r

39778_PEXT-1

r r ! r . r r r r . r . . r . r r

r

PANAMA

laid r . r . r r r r r . r ! . . r ! . . r . .

r

25 December

LaUnChed ! r . r . r . r . r . . . . r r r . r . r

r

21 July 2009

Del iVefed r . . r r r r t ! . r . r r . . r r r r r

.

4 November 2009

flffiCial

POft Of fegistfy Keel

NK

Class No. 095291

EX53

2001

b

2. 2-1

I

ntroduct

i

GENERAL

I NFORI1ilAI I ON

on

"

Grain Loadins Plan and stabirity Booklet " for this ship has been prepared to enable the master to demonstrate the abi I ity of the ship at all stages of any voyage carrying bulk grain to comply with the stability requirement of chapter vl " carr iage of cargoes " of S0LAS 1g74. ln applying chapter vl of sOLAS rg74, this part I has been prepared in accordance with the " lnternational Grain Code ( Res.MSC.23(SOy -. ;

This

2-2

to be observed

Regulations (1 )

Trinrning of Grain necessary and reasonable trinrming shall be performed to level all free grain surfaces and to minimize the effect of grain shifting. ln any " f illed cornpartment ", the bulk grain shall be trimmed so as to fill all the space under the decks and hatch covers to the maximum extent possible. After loading, all free grain surfaces in" partly fiiled compartment,, shal I be trinuned level and the ship shall be upright before proceeding

All

to

sea.

ln case where the dispensation from trimming of end of fully filled compartment is granted under the provisions of the lnternational

Grain

code, in this case the grain cargo can be loaded with ends untrinmed. ( Refer to Chapter I I in this booklet ) (2)

ntact Stab i I i ty Requ i rements The intact stabi I ity characteristics of any ship carrying bulk grain shall be shown meet, throughout the voyage, at least the following criteria after taking into account the heel ingmoments due to grain shift: (i) the angle of heel due to the shift of grain shall not be greater than 12 degree or the angre at which the deck edge is imrnersed, I

(i

i)

(iii)

is the lesser, inthestatical stabi I itydiagram, thenetor residual

whichever

areabetween

the heeling arm curve and the righting arm curve up to the angle of heel of maximum difference between the ordinates of the two curves, or 40 degrees or the " angle of flooding( 0f) ,,, whichever is the least, shall in ail conditions of loadingnot be less than 0. 075 meter-radians; and the initial metacentric heieht, after correction for the free surface effects of tiquids in tanks, shal I not be less than 0.30 meter.

7

2-3

Date &

t

Systern

to be used

(1)

The ship's cargo capacity, tankage, etc., together with vertical & longitudinal centers of gravity and free surface effect ( inertia ) should be taken from the Capacity Table and the Volume Curves ( with correction curves of free surface effect ).

(2)

The ship's Displacement,.Transverse KM, Hydrostatic Table.

(3) 2-4

Un i

Method

etc. should be taken from the

metric system of units is used in all the calculations, unless otherwise special ly stated, in this booklet.

The

of Grain

loading Calculation

This Grain Loading Booklet contains two ways of calculating the intact stability for the purpose of the requirements in the Relevant Regulation ( see 2-2(2) ) , one is a method using the Table or the Curves of Allowable Grain Heeling Moment and the other is to obtain directly the heeling angle and residual dynamical stability from the stability curve, the latter being more accurate in particular.

4

3

. GRAIN LOADING CALCULATION USING ALLOUIABLE GRAIN HEELING MOMENT

Grain loading calculations using IABLE 0F as shown in a flow chart below. For Qu i ck reference, samp I e Ca I cu I at i on ( DEPARTURE ) have been given in 3-5. 3-1

F

I

ALL0WABLE HEELINC IttI0tttIENT Proceed COND I T

I

0N N0. 63

S.

F

.

=44

CF

/tt

ow chart

Start

'13 c.)

!-

(.)

E 'o

C.G. & Trin

Calculation

STEP-A (see 3-2)

o o o

-o E

o = -l'-

a (.

o

# 1]

B

Actual heeling moment calculation

STEP-B (see 3-3)

Allowable hee ling mornent calculation

STEP-C(see 3-4)

h0

(-

T' $ o

J

t*.

o

#

o

d Actual heelins moment Allowable heeling mome

7 3-2

STEP-A

: Metacentric Height Calculation

height is obtained in an usual method of calculation center of gravity and the trim as fol lows.

The metacentric

for

the

(1)

Estimate the weight and their center of gravity of consumables on board and write them into the proper column in the calculation form.

(2)

Decide the weights and their center of gravity of the grain cargoes and others, and write them into the proper columns in the calculation form.

(3)

Decide the

vertical center of gravity(KG) of the loading condition

under

consideration. (4)

Then

the corrected metacentric heieht

from

GoM

can be obtained

:

Gott,l=TKIll-KG-GGo Metacentric Height above Base Line, is read from the Hydrostatic Table. GGo is loss in 0[ll due to Free Surface Effects. ( See also the following paragraph (5).)

where which

(5)

; TK[tl is Transverse

Free Surface Effects Prov i ded a tank i s comp I ete I y f i I I ed wi th I i qu i d, no movement of the I iqu i d is possible and the effect of the liquid on the ship's stability is precisely the same as if tank contained sol id material. when a quantity of I iquid is withdrawn from the tank, the situation changes completely and the stabi I ity of the ship is adversely affected by what is known as the " free surface effects ". This adverse effect on the stabi I ity is referred to as a " loss in GM " or as a " Virtual rise in KG " and is calculated as fol lows : -

Loss in

GM due

Sum

to

of

Fr

Free Surface Effects ee

Su

Displacement

rf ace

( GGo )

Mornents

of ship in

Tons

Tanks where free surface is taken into account, (1) For tanks containing liquid which may be consumed

or discharged during navigation, the expected maximum moment of free surface is to be given. (2) lltlhen liquid in tank is maintained constant at partly f illed condition during navigation, the moment of free surface may be calculated on the basis of actual quantity of the I iquid. The moment of free surface should be calculated by " Specific gravity of liquid x lnertia ", and the inertia of each tank should be referred to " V0LUME CURVES( with [lAX. lT ) or correction curve of free surface effect "

Notes

:

(1)

The corrected metacentric

heieht is shown in this booklet as

"

Go[t{

"

/c 3-3

STEP-B

. Actual Heeling Moment calculation

The heeling moment

(1) (2)

Read

"

is obtained in the following

procedure as shown below.

the weight(T) of grain cargo in each hold from calculation " and write it into the column

STEP-A

calculate the vo I ume

(M3)

volume(M3)

=

WEIGHT(T),

from the foilowing formura.

Stowaee f actor

(CFILF)

x

llle i

sht

(T)

35. 88

(3)

ln case of partly f illed cornpartments, f ind out the Heeling Moment(Ma) ( =1.12 x Trans Heeling Moment ) corresponding to the volume(M3) from " Tables of Volume, center of Gravity & Heeling Moment,, or

"

Heeling Moment, Volume & KG Diagran,,. ln case of filled compartments,find out the Heeling Moment(11r1a) from " SUMMARY TABLE 0F HEELING lrl0MENT FOR FILLED H0LD " of END-TRIMMED or END_UNTR I lllr',lED.

(4)

" Heeling lr{oment(ttl4) " into heeling

]',loment( T-M ) from the it into the column HEELING trr1g1yENT( T-M ). Hee I i ng Moment = 35. g8 x Hee I ne Moment (It{4) ( T-tt{ ) Stowage Factor (CFl11)

Transform

following formula and write

i

3-4

STEP-C

: Al lowable Heel ing Moment

Al lowable Heel ing Moment can be determined by

the fol lowing

procedure.

l)

Correct the KGo by the free surface effect. KGo=KG+66o where ; KG : vertical center of gravity of the ship for the loading condition. GGo r Loss in GoM, i. e. apparent rise of center of gravity.

(2)

the allowable transverse heel ing moment(T*M) from the table of allowable heeling moment at the displacement and the above " KGo,,. For intermediate displacement and " KGo ", the al lowable heel ing moment to be obtained by interpolation. Read

// 3-5

Sample

calculation using al lor,vable grain heel ing moment

( c0NDlTl0N :

1)

N0 61 S F.42

CF/tt

DEPARTURE UNTRTrt4tllED)

At first, the weisht of loading items are investigated and entered in column " WEIGHT ". For instance, from page 206 Itern

We i

LIGHT SHIP

7

ght

,523.

PROVISION

201

CARGO

I

B9

.

st

Con

st ant

Con

i

nvest nvest I nvest I nvest

26

1

92)

34)

.

,

" HEEL

or

The

we

I

CAL

tllOt\JIENT

I

gated

V0LUME CURVES

& KG D I AGRAM " rnoment w i I I be surnmed

NG IIIOIIIENT, VOLUME

ight and vert ica I 39, 611 .82 322, 418. 1

= =

f1t

VERT

i

39, 611 . 82

of each tank or ho l d can be found by the draw i ng "

:-

gated gated i gated i

I

22s. 17

t

nvest i gated

I

1 812

TOTAL

(pages 1 75 (pages 30

an

0. 00

FRESH IlJATER

F.0. & D.0.

namely

11

29904 1g

WATER BALLAST

KG

Notes

0. 00

CONSTANTS

2)

(MT)

1

up.

[!lT [vlT-[vl

and KG

VERT

I

CAL

MOII,|ENT

B 13 lll

ll1l

The

3)

effect of free surface of I iquid (l)

sarne dr aw i ng

as above "

V0LUME CURVES "

wi and

I

I be a I so found by the their moment wi I I be

surnmed up.

I

*

D\IIIT

tem

I

xp

.6

51.

1 F. 0. T. * N0. 2 F. 0. T. {< N0. 3 F. 0. T. * NO. 4 F O T * D.O T {< DOT {<

p 1.000

I

(P)

N0.

P/S )

52

0. 980

2408

C

)

1228.

B

0.980

1204

C

)

1228.

B

0. 980

1204

C

)

141

.7

733

P

)

44.1

0.980 0.900

44.

0

2451

S

1

40

900

40

TOTAL

5,

681

tl,lT-tlll

and

GGo=T0TAL I

|1l x:

The tank

x p =

5,68'l

=0.14[VI

39, 611 . 82

containing liquid which may be consumed during navigation.

fz

q

KGo

is calculated by using result of preceding paragraphs

fol lows

:-

KGo=KG+GGo = 8.'13 + 0. 14 = 8.21

5)

The al lowable heel ing moment can be found by the

"

TABLE OF ALLOWABLE GRAIN HEELING lilOlIENT

( pages 15 - 17 ) by interpolation. DISPLACEMENT = 39.677.82 KGo = B.ZJ D

lSP. =

Where:

KGo

=

B.

33, 452 32,589

20

!11

=

1

Where

:-

8.30 32, 5Bg +

KGo

=

1

Where

i,l

D 1

863 841

39,GIT.BZ 617

.82 = 33,

1

000

:-

34,

Allowable Heeling

037

Mornent

+ r

-B7B

= 33,422

x

0. 07

[rllT-[rll

000

33, 430

39, Gll . Bz

x

IFF.

34, 315

000

!1l =

841

IrlT

DISP.= 40, 000

39, 000 KGo = B. 30

"

=

J3, 4ZZ

Sg

as

,rf lrl

6)

actual heelingmoment can be found by the " SU]ttl]rilARY TABLE 0F HEELING ll|0]t|ENT FOR FILLED H0LD " ( paee 23 ) for the filled holds ( No.1,2,4 and 5 hold ), and can be found by " Tables of Volume, Center of Gravity & Heel ing Moment .. The

( pages 24 - 29) or " Heeling Moment, Volume & KG Diagram" ( pases 30 - 34 ) for partly fi I led hold ( No 3 hold ) where the corresponded grain volume are 33% of ful I grain capacity respectively.

Total

heel ing moment lvi I I be summed up as HOLD NAME

fol lows.

HEEL I NG MOtl,lENT

(

UNTR I IlItvlED )

No.1 CARG0 HOLD ( Full ) No.2 CARG0 H0LD ( Full ) No.3 CARG0 H0LD (partly f illed = 3,038. 1 rn3 ) No.4 CARG0 HOLD ( Full ) No.5 CARG0 H0LD ( Full )

1, 179 2, 965 .l

HEEL I NG

42

IllOtllENT

=

CF

2.134 26,51

/LT =

26,51

0. 8543

4x

= 22,lA2

MT/tt,|3

0. 8543

(

22,102 MT-lll

)

the allowable heeling moment ( 33,422 [tllT-M ). ing

moment

are less

than

of

No.3 CARG0 HOLD No.3 CARG0 H0LD (33% Fi I led = 3,038. t rf ) Vo lurne ( m3 ) Trans hee I ing rnornent ( 3097 .5 15018.9 2926. 5 1 4181 .2 D|FF. 171.0 231 .1 Heel

4 m4

[\llT-[\ll

The ship's grain heeling moment

x

731 r

2,965

TOTAL

ST0IIAGE FACTOR

6,

Trans heeling moment = 14,781.2

+

231.7

x

m4 )

( 3,038.1

-

2,926.5

)

171.0 '14,938

Total heeling

1)

moment

= = 1.12

ma

x

14,938 = 16,731

ma

ln this condition : a) The angle of heel due to the shift of grain is not greater than 12 degrees or the angle at which the deck edge is immersed, whichever is the lesser. b) The area or residual dynamical stabi I ity is not less than 0.075 meter-rad i ans. c) The initial metacentric height after correction for the free surface effects of I iquids in tanks, is not less than 0.30meters. Therefore, this condition is compl ied with the lntact Stabi I ity Requirement of lnternational Grain Code.

i /'l rT

3-6

TABLE OF ALLO$IABLE

GRA I

N HEEL I NG MO[\,|ENT

ALLO\/IIABLE HEEL ING

t\llOt\4ENT

This table shows the al lowable maximum heel ing moment due which satisfy fol lowing conditions.

1) 2)

3)

to shift of grain

of heel due to shift of grain (0 i) shal I be not greater than 12 degrees or the angle at which the deck edge inrmersed, whichever is the The angle

lesser.

)

The net or residual area ( Ar between arm curve up to angle of heel of maximum

the heel ing arm curve and the righting difference between the ordinates of (0m), the two curves or 40 degrees or the angle of flooding (0f), whichever is the least, shal I be not less than 0.075 meter-radians. The

ofl

l

initial metacentric height iquids

in

afte r cor rect i on

for the free

tanks (Go[\4) sha I be not less than 0.30 I

surface effects

meters

Statigrl stability curve GoM

Righting arrn curve

Heeling arm

shift

40 0m Heeling angle (deg)

ef

:t.t

TABLE OF ALLOWABLE GRAIN HEELING MOMENT NOTE; VC GO=KG+F.S.C

O

RR.)

DISPLACEMENT (MT) 20000

000 22000 23000

21

24000

25000

I

700

34602

34503

3447 4

34524

34656

7.1 0

34159

33988

3401

7.2A

337 17

34038 33574

3350

730

33215

331 09

3301 5

33507 32998

7.40 7.50 7.60 7.70 7.80 7.90 8.00

32833 32390

32645

32528

32490

34126 33595 33064 32533

321 B0

31 981

32042

32104

31 948

31716

472 309 64

31

472

506 063

32041 31 555 31 068

307 87

30582 30095

29348

8.1 0

29736 29294

30455 29946 29438 28929 28420

3t 551 30999 30446 29893 29340

2881 8

281 87

31 31

3062

1

30179

30323

31

3094 1 3041 0 2987

I

3486 3431 6

33763 3321 0

32657

29 609

27524

27176 26689

26894 26385

na82

26

26203

25877

26 640

607 261 43

257 16

25368

25102

2491 6

26197

2567 8

25230

24571

24364

25755

2521 4

247 43

24859 24351

2381

9.1 0

2531 3

247 49

9.20 9.30 9.40 9.50 9.60 9.70 9.80 9.90

24870 24428

24285 23820

24256 23770

24040 23509 22979 22448

23986

23356 22891 22427 21 963

21 917

21599 21046 20493 1 9940

10.00 10.10

2885

1

28409 27 967

23543 231 01

22659

1

1

4531

4067 1 3602

1

1

8755

1

8834

1

8281

1

8201

17140

7931

7229 6t 20 6212

5985 1 5498 1

15012

14525 1 4038 1 3552 1 3065 12579

1

2651

22152

9263

7738

5703 15194 1 4686 1 4177 1 3668 13160

23258 22705

18732

1

18418

6958

1

9387

17671

16471

1

9713 1 9264

27 128 2657 5

1

18246

1

6024

20281

386

8904

1

17 444

5581

15139 1 4697

I 9391

17782

1

6908 6466

9877

18247

1

11.40 11.50

207 90

20855 20325 1 9794

1871

1

25469

21

1

1

26022

21299

20569 201 05 1 9640 19176

11.00 1 1.10 1 1.20 11.30

261 64

25633

21 8A7

21332

17318 1 6854 1 6389 1 5925 1 5460 1 4996

27 681

21824

20364

17351

10.50 I 0.60 1 0.70

27 403

28234

27756 27225 26694

22310

23283

21034

1

912

227 97

21 498

0.90

10.40

27

28287

23842 23333 22825 22316

2221 6 2177 4

10.80

10.20 10.30

291 22

286 36 281 49 27 662

21337 20850

20889 20447 20005 1 9562 19120 1 8678 1 8235 1 7793

1

31252

1

6

29858 29394 28929 28465 28000 27536 27072

8.20 8.30 8.40 8.50 8.60 8.70 8.80 8.90 9.00

26000

2700a

ALLOWABLE GRAIN HEELING MOMENT (MT-M)

VCGO (M)

6609 1 6078 15547 15017 1 4486 1 3955 1

13424 2893

17729 17176 1 6623 I 6070 15517 1

4964

14411

3858 1 3305 1 2752 1

1

121 99

2363 11832

11646 1 1094

1

121 42

1

1301

11634

1

0770

1

0541

I 988

57 355 0 34582 3491 3 34007 3431 6 33432 3371 B 32857 331 21 32282 32524 31707 31927 31 32 31 330 30557 30733 29982 301 36 29407 29538 2883 1 28941 28256 28344 27681 277 4l 271A6 27150 2653 1 26553 25956 25955 2538 1 25358 24806 247 61 24231 24164 23656 23567 23081 22970 22506 22373 21 931 21775 21 356 21178 20781 20581 20206 9984 9631 9387 9056 8790 8481 81 93 7906 7595 7331 6998 6756 6401 61 81 5804 5606 15207 5031 461 0 4456 1 4012 3881 341 5 3306 281 8 12731 12221 21 55 11624 1 1580 11027 11005 10430 0430 9832 9855 9235 9280 8638

351

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

i

I

ty, { i*r'

TABLE OF ALLOWABLE GRAIN HEELING MOMENT NOTE; VC G0=KG+F.S.C

O

RR.)

DISPLACEMENT (MT) 27000

28000 29000 30000

31

000

32000

33000

34000

ALLOWABLE GRAIN HEELING MOMENT

VCGO

(M) 7.00 7.1 0

7.24

730 7.40 7.50

760 7

.70

780 7.90 8.00

3551 0 3491 3 3431 6 3371 B 331 21

32524 31 927 31

330

307 33 301 36

29538

8.1 0

28941

8.20 8.30 8.40 8.50 8.60 8.70 8.80

28344 27t 4l 21 150

26553 259 55

25358

890

247 61 241 64

9.00

23567

9.1 0

22970 22373 21775 21178

9.20 9.30 9.40 9.50 9.60 9.70 9.80 9.90 10.00 10.10 10.20 10.30 10.40

2058 1 1 9984 1 9387 1 8790 18193 1 7595 1 6998 1

6401

1

5804

I0.50

5207 14610

10 60

14012

0.70

13415 12818 12221

1

10.80

0.90 11.00 1

1.10 11.20 1 1.30 1 1.40 1 1.50

1

1

11624 1 1

1027 0430 9832 9235 8638

4 36351 35294 3571 0 34675 35069 34056 34421 33437 33786 32817 331 44 321 98 32503 31 579 31 862 30960 3122A 30340 30579 29721 29938 29102 29296 28482 28655 27863 2801 3 27244 21372 26625 26731 26005 26089 25386 25448 247 67 24806 24148 24165 23528 23524 22909 22882 22290 22241 21671 21 599 21 051 20958 20432 20317 19813 19675 91 93 9034 8574 8393 7955 17751 17336 17110 16716 16468 6097 15827 15478 I5186 4859 1 4544 1 4239 3903 3620 326 3001 2620 12382 979 11762 337 11143 10696 10524 0055 9904 941 3 9285 8772 8666 81 30 8047 7489

3591

1

1

1

1

3682

1

361 58

35494 3483

1

341 67

33504 32840 32171

31513 30850 301 86

29523 28859 28196

27532 2686

I

26205

25542 2487

B

24215 2355

1

22888 22224 21 561

20897 20234 9570 1 8907

1

18243

1

7580 16916 1 6253 1 5589

1

4926 1 4262

1

1

1

1

1

1

1

1

1

1

3599

1

2935

11

12272 11608

11

1

0945

1

0281

1

961 8

8954 829 1 7 627

6964

37332 37892 36647 37 85 3596 1 36471 35276 35769 34590 3506 33904 34354 3321 I 33646 32533 32938 31 847 32230 31 62 31 523 30476 3081 5 29791 301 07 291 05 29399 28419 28692 27734 27984 21048 2727 6 26362 26569 25671 2586 24991 251 53 24306 24445 23620 23738 22934 23030 22249 22322 21 563 2161 4 24878 20907 20192 201 99 9506 949 8821 8783 81 35 8076 11 449 7368 6764 6660 6078 5952 5393 15245 1 4707 1 4537 1 4021 3829 3336 13122 r 2650 1241 4 11964 11706 11279 10998 0593 029 9908 9583 9222 8875 8536 81 67 785 1 460 71 65 6752 6480 6044 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

7

38509 37179 37050 36320 35590 34860 341 30 33400 32671 31 941 31211 30481 29751 29021 28291 27562 26832 26102 25372 24642 23912 23182 22453 21723 20993 20263 9533 8803 8073 17 344 16614 5884 15154 1 4424 3694 12964 12235 11505 10775 0045 9315 8585 7856 7 126 6396 5666

39 1 92

38440 37688 36936 361 84

35432 34680 33928 3s1 76

32424 31672 30920 301 68

2941 6

28664 27912 27160 26408 25656

24904 24152 23400 22648 21

896

211 44

20392

1

1

1

1

9640 8888

1

1

81 36

1

1

1

17384 16632 I 5881

15129 1

4377

1

3625

12873 12121 11369 10617 9865 9113 836

1

7609 6857 6 1 05

5353

& il

TABLE OF ALLOWABLE GRAIN HEELING MOMENT NOTE; VCG0=KG+F.S.C O RR.) DISPLACEMENT (MT) 41 000 38000 39000 40000 ALLOWABLE GRAIN HEELING MOMENT

34000

35000 36000 37000

700 710

391 92

39947

407 83

41 709

421 21

43802

4493

38440

391 73

39

987

40890

41 881

7.20

37 688

391 91

4007 2

41

44267

36 936

38395

42277

.40 7.50 7.60 7.10

361 84

3685

3759

I

39254

42940 42077 41215

431 61

730

38399 37 625

38435

40352

41

43360 42453

35432

3607 7

3761 7

41

35302 34528

39 623

780 790

33176

33754

32424

329 80

39490 38627 37765 36902 36040

40507

34680 33928

802 36006

40640 39733 38826 37919

8.00

3167 2

810

30920

8.20

301 68 2941 6

32206 31 432 30658

VCGO

(M)

1

8.30 8.40

850 860 870 8.80 8.90 9.00 9.1 0

9.20 9.30 9.40

950 9.60 9,70 9.80 9.90 10.00 10.10 10.20 10.30 10.40 10.50 10.60

I0.70 10.80 10.90 11.00 1 1.10 11.20 11.30 11.40 11.50

1

36

3521 0 3441 4 3361

I

36799 35980 351 62

34344

32821

33525

32025 31229 30433

32707 31 889 31 070

29637

34252

26 788

28840 28044 27 248

2861 5 277 97

2601 3

26452

26979

25656

261 61

24152

25239 24465

24859

25342

23400 22648

23691 22917

24063

24524 23706

28664 27

912

27160 26408 25656 24904

29884 29110 28336

27562

21896

221 43

21144

21

20392 1 1

9640 8888 18136

17384

369

23267 22471

22069

20595 1

9821

20082

20432

1

9047

1

9286 1 8490

19614 1 8796 17 977 17159

18273 7498

1

7694

6632

167 24

1

6897

1

5881

1

1

5950

15176

1

4377

1

4402

1

3625

1

3628

12873

1

2854 2080

12121 11369 10617 9865

1

11306 1

0532 9

758

1

5305 1 4509 13713 12916

15522 14704

1

12120 1 1324 1 0528

3886 1 3067

1

12249 1

1431

32 8935

81 57

97

8984 8209 7 435

81 39

6857

6661

61 05

5353

609

6341

10612 97 94 8976

836 7

21251

16101

91 13 1

22887

21675 20878

1

15129

29434

040 40200 39359 3851 I 37678 36838 35997 351 57 3431 7 33476

46080

1

44046

4517 4

392

351 77

38738 37853 36969 36084

3431 4

351 99

[- if^452 3€15l l- 32589 33430 30955 31727 32545

3701 3 361 06 351 99

32636

31 795

4 4 28434 27593 26753 25912 25072 24231

301 1 2927

2339 22551 1

u71A 20870 20029 91 89 8348 7508 6667 15821 1 4987 41 46 13306 12465 11625 10784 9944

546

I

I

34292 33385 32479

30864 30002

31 661

291 39

28277

2989 29007

27 41 4

28122

297 58 2885 1

26551

27 237

27 945

25689

26353 25468 24583 23699

24826 239 64 231 01

30776 1

3151 2 306 65

27038 261 31

25224 24318

22239 21376 20514

2281 4

2341

21929 21045

22504 206 90

1

21597

1

1

9651

201 60

1

1

8788

1

9275

1

9784

1

17926

1

8391

1

8877

1

1

7063

1

7506

1

6201

1

6621

1

5338 4476 13613 12751 11888 11025 9307

1

5737

1

1

4852

1

1

3967

1

2861

1

3083

1

0521

1

1

1017

970 7063

7

61

56

5250

B3OB

8750

622s

6625

4306 2540

04

71 49

4648

5l 30 3264

2841 1211

942

339

649 5644

6547

6024

37 60

1

578

0

0

5887

575

41 65

2032

106

0

0

51 13

4436

2428

503

0

0

0

7

343 1

7

91 7

0

{

iJ

Fr

4,

GRAIN LOADING CALCULATION USING STABILITY

CURVE

Althoueh general ly determined as described in the preceding Chapter the grain loading stabi I ity can be also calculated more accurately, if necessary, using the stabi I ity curve as shown herein.

4-1

F

I

ow

3,

chart

-ci

C.G. & Trirn

0.)

l-

o -o

Ca

'a

STEP-A (see 3-2)

lculation

C

o o 0)

-o E

o = Ja o

;

-()

Actual Heeling Moment Calculation

STEP-B (see 3-3)

B b0

C

T] (tr

o

J

Calc. of Heeling Ang. & Residual Dynamical Stability

l-

o

-s-

P

o



12' Edge Immersion

Residual

Area

0.075 (M-Rad.) (tvt-D.g)

= 4.30

STEP-D(see 4-2)

tf

t'4

4-2

STEP-D:

Calculation of Heel ine Angle & Residual Dynamical Stabi I ity

The heel ing angle and

the residual dynamical stabi I ity can be obtained

by the fol lowing figure. Righting arm curve after

corrction for the free surface effects of liquids in tanks T.t

\-/ =l EI

\\

I

angle of heel due grain shift

l-l (III

bol

GoM

to

./

:l

tsl bol rEl Heeling arm

to tra nsverse

idua ll 6yna

m

ica

I

sta b ilit

B

urve due arn

shift which rna be approximately represente by the straigh line AB

d

0m40

0vt

Heeling angle (deg)

i0

= Tota

I Hee I ine Moment Di

sp

I

acement

([tllT-[\ll)

([vIT)

i40 = 0.8 x A

0m is the angle of heel of

difference between the ord i nates of curve, or 40 degrees or the ang I e of

maximum

r ight ing arm curve and heeI ing arm flooding, rlvhichever is the least.

-> dfr

4-3

Drawing

Statical Stabi I ity Curves from Table of Cross

Curves

Statical Stabi I ity Curves ( Righting Arm Curves ) for the purpose as stated in preceding paragraph can be derived from the Righting Lever ( KN ) Table as fol lows.

(l)

The corrected

from

riehtine arm 0 ( Corrected GoZ ) is obtained

:

Corrected

GoZ =

KN

(

frcrn KN Table

)-

KGo

x

sin6

KG

=

Where

KN = KGo = KG = GGo = Q = (2)

Righting lever at assumed

0.0M

KG+GGo

Vertical center of gravity ( fe

) at the loading

condit ion under consideration Loss of G[t,l due to free Surface Effect Angle of incl ination

The Transeverse Metacentric

Heieht (

GoM

) is obtained

from : IVhe r e

KGo = the same as above

(3)

Example; C0NDlTl0N61 S.F.42 CFlIfGRAINL0ADING

KG

=

KGo

=

B. 13tvl KG

+ GGo = 8.21

[y|

xTher efor e,

(1)

e

(" )

Q)

sin0

(3)

(4)

X sin0

(0 = (3)

5

0. 0872

l$l tab le 105

12

0. 2079

2.50

20

0 3420

4. 11

112 283

033 078 134

30

0. 5000

6. 00

4.14

1. 86

40

0 0 0

6428

753

5.32

2.21

7660

B49 B98

633

2. 16

1 16

1. 82

50 60

Then using

8660

KN f rom

KGO

0.12

Corrected

(4)

GOZ

the corrected GoZ values in column (5), a Statical Stability for the ship at this displacement.

Curve can be drawn

?l -t

4-4 Sample Calculatron Usrng Stab:. 11ty

Cunve

I

cr)

*lx I

sl

tLo

3 UHCOCUN IOCU CUFN V Z N O ill(o tr O) aco o_

ZO

LlJ ll

il

CU

N CO

,(-)il

,'

U

l co

cuLo

= T NO il

:,

,,\O ,, CU

C[JI!(D

LU+ tJ

LD

O CU ftl LO

IOX 'N .Z-

/1 t

a

CO

q s-1

-l -l

\dftlss-l

|l.l ,,nloLo

rolv < ol -ls cql I llt

OLfJsiN

(f

OHILD UOO:I

,,

ll

N

(D

og Z H

-J II II I

o

?T?Iq OOrl

.-lvl

r11:? COTO\sCUO

-,1:-,1: ln ln -,1, -,1><

O

.JFV

C]n_u_

Vlocuo9q

LO

:Y o.lco \u cn

Hl-

o_

O

-, 1*

O OOftJ O Ct

X

o

F

Lrn

COCOV

_^. l-r) cu JUuo

!

H

mca

< tro F a

sl cr)

ttt-)

O ll -J <

a s

O

o

t

CD

ro Ln

O< H+ z tl

il

CU_J

.;)

OO ll

F-tOv

ottrntt CU CT] \r F CU

CUCOss -r (! ro ro ro

FCt Hl _J>

><

a

tx Ct

l ml

ol

tl

(f)t o-r

I

3l

rl

:l

il O -1

?(

5. DATA FOR EACH CARGO HOLD

Z3

5-1

HOLD CAPAC I TY TABLE

TR I illlllED COIVIPARItvlENTS

UNTR

CENTER OF GRAV I TY

I [vltvlED

LOCAT I ON

(FR. No. )

CAPAC

I

IY

HEEL, [!I' T

CAPAC I TY

(ma)

(m3)

(ma)

859.9

5, 374.6

1.119.3

-63. 29

B. 53

(m3)

HEEL,

tvlID.

tlJl

KG

G

(m)

(m)

NO.

1 CARGO HOLD

172-2A3

5, 648. 5

NO.

2

CARGO HOLD

136-1 72

9, 499.

6

2,479.8

9, 256. 2

2, 964.

6

-38.22

B.68

NO.

3

CARGO HOLD

1

00-1 36

9, 499.

6

2,479.8

9,256.2

2,964.

6

-9. 42

B.68

NO.

4

CARGO HOLD

64-1 00

9, 499. 6

2,479.8

g, 256. 2

2, 964.

6

19.38

B. 68

NO.

5

CARGO HOLD

-64

8, 303. 3

2,321

.2

B, 079. g

2,133. 7

46.73

8. 97

IOTAL

NOTE

31

42,450.6

1

0, 626. 5

41

,223,1

1

2, 806.

B

:

1) Grain capacity (EN0 UNTRIltrIt{ED) represents ful I capacity in the untrirrned ends.

minus the volume

of the voids

2) ln order to provide for the vertical shift of the grain in the untrimrned ends, the geometric center of gravity of the hold, as indicated in the above table, shall be used as the KG value for the grain in the hold. 3) Mid.G (L.C.G.) = Longitudinal center of gravity from midship, no sign and minus (-) sign show aft and fore from midship respectively.

4)

KG (V.C.G.) =

Vertical center of gravity

above base tine.

z#

5-2

TABLES OF VOLUME AND HEEL I NG VOLUMETR

1

)

I

C

HEEL I NG ttll0tllENT

l\,lOt\/lENT

AT *PARTLY

F

I

LLED

COMPARTMENT-

the free surface of the bulk grain has not been secured, i t sha I I be assumed that the grain surface after shifting shal I at 25" to the hor i zonta I

When

be

.

2) ln "partly fi lled compartments" the adverse effect of the vertical shift of grain

surfaces shall be taken into account as foilows: hee I

ing

rnornent

ic hee I ing moment curves in the fo I I ow i ng pages ar e shown n the form wh i ch i nc I udes the adverse effect of the vert i ca I shift of gra i n surfaces as stated above.

The vo lurnetr i

t-

Z5 NO.l CARGO HOLD (C) VOLMETRIC HEELING MOMENT TABLE POSITION ULI-AGE

HEIGHT

(M)

VOLUME (Mxx3)

0.00 0.25 0.50

5649.5

0.7 5

5488.2 5434.7 5381.2 5303.0 5210.3

1.00 1.25 1.50 1.75

2.00 2.25 2.50 2.15 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.15 5.00 5.25 5.50 5,75 6.00 6.25 6.50 6.75 7.00 1.25 7.50 7

.15

8.00 8.25 8.50 8.75 9.00 9.25 9.50 9.7 5

10.00 10.25 10.50 10.75 1 1.00 11.25 1 1.50 I 1.75

5595.1 554't .6

FR.172.50

KG (M) 8.53 8.46 8.39 8.33 8.26 8,1 9 8.1 0

4922.4 4823.5 4723.2

7.99 7.88 7 .16 7.65 7.53 1.42

51 15.9 501 9.9

4621 .6

7.30

4518,8

7.1 B

4414.7

7.06

4309.6 4203.4 4096.2 3988.3

6.94

387 9.8 377 0.7

6.44

3661 .4 3552.1

6.1

3442.e 3333.8 3224.9 31 16.1

3007.4 2898.9 27e0.5 2682.2 257 4.A

2466.2 2358.8 2251 .1

2145.1

2038.8 1932.9 1827.4 1722.3

6.81

6,69 6.56 6.31

I

6.05 5.93

5.80 5.6 7

5.54 5.42 5.29 5.'t 6

5.03

4.90 4.78 4.65 4.52 4.39 4.26 4.14 4.01

1409.5

3.88 3.75 3.63 3.50

1306.1

3-37

'l

203.3

1

100.9

3.24 3.12 2.99 2.86 2.14

1

61 7.6

1

51 3.3

12.15

999.0 897.6 796.1 696.3 596.6

13.00

497.5

13.25

399.0

2.36 2.23

13.50 13.75 'l 4.00

301 .2

2.11

204.A 107.4 11.5

0.0

1.98 1.86 1.73 1.72

NOTE: DEDUCTED

RATE (1.000)

12.00 12.25

12.50

14.25 14.28

2.61

2.49

-

FR.203.00 TRANS. HEEL. MT

W.L.

(M**4)

(M)

.2 6.000 1096.2 't 5.750 1402.6 5.500 1692.1 5.250 1969.2 5.000 2229.9 14.750 2472.0 14.500 2697.1 4.250 2908.4 14.000 31 75.3 13.750 34e5.6 3.500 3789.5 't 3.250 4051.6 3.000 4284.8 12.15A 4485.9 12.500 4657.6 12.250 4801 .9 12.000 4924.6 't 1.750 5036.2 11.500 5137.e 1.250 5231 .9 1.000 5320.8 10.750 5401 .5 10.500 5475.6 10.250 5541 .8 10.000 560'l .1 9.750 5652.6 9.500 56e7.5 9.250 5735.6 9.000 5766.6 8.750 5790.5 8.500 5808.1 8.250 5818.7 8.000 5821.9 7.750 5819.1 7.500 5809.8 7.250 57e5.5 7.000 577 4.5 6.750 5745.8 6.500 5705.7 6.250 5646.5 6.000 5566.5 5.750 5466.6 5.500 5343.2 5.250 5194.8 5.000 501 9.7 4.750 4817.2 4.500 4585.7 4.250 4321 .8 4.000 4023.7 3.750 3689.9 3.500 3319.2 3.250 2909.8 3.000 2459.5 2.750 960.1 2.500 1408.6 2.250 794.1 2.000 86.3 1.750 0.0 1.720

1001

1

1

1 1

1

't

't

1

1

1

?& NO.2 CARGO HOLD

FR.136.50

POSITION

ULLAGE

HEIGHT

(M)

(C) VOLMETRIC HEELING MOMENT TABLE

KG (M)

VOLUME (M*.i.3)

0.00 0.25 0.50 0.7s

9499.6 9376.8 9253.4

1.00 1.25 1.50 1.75

9006.5 8882.9 8740.e 8575.4

8.31

2.00 2.25 2.50

8396. B 8225.1

1.87

8054.8 7883.9 7712.e 7542.0 7371.0

7.61

7240.1 7029.1

6.99 6.86

6858.2 6687.3 6516.3 6345.4 617 4.4 6003.5 5832.6

6.7

2.t5 3.00 3.25 3.50 3.7 5

4.00 4.25 4.50 4.15 5.00 5.25 5.50 5.75

6.00 6.25 6.50 6.75 7.00

5661 .6

7.25

4806.9 4636.0 4465.0

7.50 1

.75

8.00 8.25 8.50 8.75 9.00 9.25 9.50 9.75 10.00 10.25 10.50 10.75 1 1.00 1,25 1 1.50 1 1.75

54s0.7 531e.7 5148.8 4911 .8

10256.8 10981.9

7.4e

7.36 1.24

11

4

141

6.49 6.36 6.24 1

5.99 5.86 5.7 4 5.61

5.4e 5.36 5.24 1

4123.1

4.61

3781 .2

4.4e 4.36 4.24 4.11

27 55.6

3.99 3.86 3.7 4

2584,6

3.61

2413.7 2242.8

3.49 3.36 3,24

2071 .8

3.1

12.00

1900.9 1729.9 't 55e.0

12.25

1

388.1

2.7

12.50

1217

12.15

1046.2

13.00 13.25 13.50 13.75 14.00

875.2

.1

704.3 533.3 362.4 191.5 20.5 0.0

NOTE: DEDUCTED RATE

1

2,99 2.86

4

2.61

2.49 2.36 2.24 2.11

1.99 1.86 1.7

5081

1

3952.2 3610.3 3439.4 3268.4 3097.5 2926.5

29.8

14436.7 147A5.2 14e24.1

6.61

5.1

660.5

12275.9 12834.3 13314.9 13745.9

1

1

14.25 14.28

1

4.99 4.86 4.14

4294.1

(M)

1

1.74

6.1

W.L.

(M**.4)

1

8.22 8.12 8.00

7.1

FR.172.50 TRANS. HEEL. MT

2778.6 16.000 3241 .2 5.750 15.500 4321 .5 5286.8 15.250 617 2.5 5.000 6e76.1 14.750 7710.5 4.500 8383.1 14.250 9037.9 14.000 9604.8 13.750

8.68 8.59 8.50 8.40

91 29.9

-

4

1.72

(1.000)

.1

15207.4 152e5.7 15362.5

3.500 13.250 13.000 12.750 12.500 12.250 1 2.000 11.750

1

1 1

1.500 1.250

.000 0.750 10.500 10.250 10.000 9.750 9.500 e.250 9.000 8.750 9.500 8.250 8.000 7.750 7.500

11 1

.5 15462.4 15493.7 5512.0 5520.1 15516.3 1s507.4 15493.9 5482.1 15414.7 15456.2 .250 15422.5 7.000 'l 5332.0 6.750 5211 .2 6.500 15018.9 6.250 14787.2 6.000 4506.1 5.750 141 56.6 5.500 137 62.1 5.250 3313.2 5.000 127 88.9 4.750 12207.4 4.500 1565.2 4.250 10855.0 4.000 10069.2 3.750 9205.7 3.500 8258.5 3.250 221 .6 3.000 6088.6 2.15A 4848.8 2.500 3482.2 2.250 1963.6 2.000 213.4 1.750 0.0 1.72A

15421

1

1

1

7

1

1

'l

1

7

27 NO.3 CARGO HOLD POSITION

(C) VOLMETRIC HEELING FR.100.50

ULLAGE

HEIGHT

VOLUME

(M)

(M**s) 9499.6

8.6I

6.8

8.59 8.50 8.40

1.00 1.25 1.50 1.75

9006.5 8882.9 8740.9

2.00 2.25 2.50 2.75 3.00

9253.4 91 29.9

3.25

3.50 3.75 4.00 4.25 4.50 4,75 5.00 5.25 5.50 5.75 6.00 6.25 6.50 6.7s 7.00 7.25 7.50

15.000 14.750

8.12 8.00

7710.5

14.500

857 5.4

8383.1

8396.8

7.87

9037.9 9604.8

14.250 14.000 13.750

8225.t

7.74 7.61

't

0256.9

13.500

1.49 7.36 7.24

10981.9 1 1660.5

13.250

7371 .0

7

.11

7200.1 7029.1

6.99

1227 5.e

668 7.3 651 6.3

6.61

6345.4

6.36

617 4.4

6.24

12834.3 1 3314.9 13745.e 14129.8 14436.1 14705.2 14924.1 15081.2

6003.5 5832.6 5661.6 5490.7 531e.7

6.1

15201 .4

51 48.8

5.4e 5.36 5.24

5295.7 5362.5 15421.5 15462.4 15493.7 15512.0 1 5520.1

5.1

1551 6.3

858.2

6.86 6.7

4

6.4e

1

5.99 5.96 5.7 4 5.61

1

1

1

42s4.1

8.25

4123.1

4.7 4

8.50

3952.2 3781.2 3610.3 343e.4

4,61

15482.1 1547 4.1

4.4e 4.36 4.24

15456.2 15422.5 15332.0

3268.4 3097.5

4.11 3.99

0.00

2926.5

10.25

27 55.6

3.86 3.7 4

10.50 10.75

2584.6

3.61

1

2413.7 2242.8

1

2071 .B

3.49 3.36 3.24

1,00 1.25 1 1.50 11.75

2.00

12.75

3.00

1

3.25

1559.0

2.86 2.7 4

1046.2 875.2 704.3 533.3 362.4 191.5 20.5 0.0

13.50 3.75

14.00 14.25 14.28

NOTE

3.1

388.1 1211 .1

12.50 't

1900.9 1 729.9 'l

12.25

:

15.250

8054.8 7883.e 7712.9 7542.0

8.00

9.50 9.75

15.750 15.500

6976.1

4.99 4.86

9.25

16.000

8.22

.75

9.00

'l

4321 .5

(M)

5286.8 6172.5

6

8.75

1

2118.6 3247.2

W.L.

8.31

4e71.8 4806.9 4636.0 4465.0

J

'l

7

FR.'l 36.50

TRANS. HEEL. MT (M**.4)

KG (M)

0.00 0.25 0.50 0.75

93

-

MOMENT TABLE

15507.4 15493.9

.2 501 8.9

1521 1 't

14781 ,2

4506.1 14156.6

1

1

37 62.1

1

3313.2

127 BB.9

2.4e

12207.4 1565.2 10855.0 10069.2 9205.7 8258.5

2.36

7 221 .6

2.24

1.74

6088.7 4848.8 3482.2 1963.6 213,4

1.12

0.0

1

2.99

2.61

2.11

1.99 1.86

DEDUCTED RATE (1.000)

1

13.000 12.750

12.500 12.250 12.000 1.750 1.500 1.250 1.000

10.750 10.500 10.250 10.000 e.7 50

9.500 9.250 9.000 8.7 50

8.500 8.250 8.000 7.7 s0 7.500 1.250 7.000 6.7 50

6.500 6.250 6.000 5.7 50

5.500 5.250 5.000 4.75A 4.500 4.25A 4.000 3.7 50

s.500 3.250 3.000

2.150 2.500

2.250 2.000 1.750 1.72A

Z8 NO.4 CARGO HOLD (C) VOLMETRIC HEELING MOMENT TABLE

FR.64.50

POSITION

ULLAGE

HEIGHT

(M)

KG (M)

VOLUME (M**c3)

9253.4

8.40

9006.5 8882.9 8740.9 8575.4 8396.8

8.31

5286.8 6112.5

1.00 1.25 1.50 1.75

3.7 5

4.00 4.25 4.50 4.75 5.00 5.25 5.50

7

6.8

4321 .5

6976.1 771 0.5 8383.1

8225.7

7.74

8054.8 7883.9 7712.9 1542.0 7371.0

7.61

7200.1 7029.1

6.99 6.86 6.7 4

651 6.3

6345.4 617 4.4 6003.5 5832.6 5661.6 54e0,7

6.00 6.25 6.50

3247.2

8.22 8.12 8.00 1.81

6858.2 6687.3

5.7 5

7.4s 7.36

1.24 7.1

1

6.61

6.49 6.36

6.24 6.1

1

5.99

5.86 5.7 4

531 e.7

5.61

6.7 5

5148.8

7.00 7.25 7,50 7.75

4e71 .8

5.4e 5.36

4806.9 4636.0 4465.0

8.00

42e4.1

8.25

4123.1

8.50 8.7 5

3952.2 3781.2

9.00

361 0.3

9.25

3439.4 3268.4 3097.5 2926.5 2155.6 2584.6

9.50 e.7 5

10.00 10.25

10.50

2413.7

10.75 1 1.00 11.25 1 1.50 1 1.75

12.00

2242.8 2071.8 'l 900.9 1 729,9 1559.0

12.25

1

12.50

1211

12.75

1046.2

13.00

875.2

13.25

704.3 533.3 362.4 191.5 20.5 0.0

13.50 13.75

14.00 14.25 14.28

NOTE

:

(M)

91 29.9

93

3.00 3.25 3.50

W.L.

(M**4) 217 8.6

9499.6

2.75

TRANS. HEEL. MT

8.68 8.59 8.50

0.00 0.25 0.50 0.75

2.00 2.25 2.50

- FR.100.50

388.1 .1

9037.9 9604.8 10256.9 10981.9 1 1660.5 12275.e 1 2834.3 1 331 4.9 13745.9 1 41 29.8 14436.7 14105.2 14924.7 15081.2 15207.4 152e5.7 15362.5 15421.5 15462.4 't 54e3.7 1 5512.0

5.24

1

5.1

1

1

4.99 4.86 4.14

5520.1 55'l 6.3

15507.4 154e3.e

16.000 15.750 15.500 15.250 'l 5.000 14.750

'14.500

14.250 14.000 13.750 13.500 13.250 13.000 12.7 50

12.500 12.25A 12.000 1 1.750 1 1.500 1 1.250 1 1.000 10.750 10.500 10.250 10.000 9.750 9.500 9.250 9.000 8.750 8.500 8.250 8.000

15482.1 1547 4.1

1,154 7.250

4.11

15456.2 15422.5 15332.0 15211.2

3.99 3.86 3.14

1501 8.9 14187 .2 14506,1

3.61

141 56.6 1 37 62.1

4.61

4.4e 4.36 4.24

3.49 3.36 3.24 3.'l

1

2.99 2. B6

2.7

4

2.61

2.49 2.36 2.24 2.11

1.99 1.86

1.t4 1.12

DEDUCTED RATE (1.000)

13313.2 127 88.9 122A1 .4

1565.2 10855.0 10069.2 9205.7 8258.5

1

7221 .6

6088.7 4848.8 3482.2 1 963.6 213.4 0.0

7.500 7.000 6.750 6.500 6.250 6.000 5.750 5.500 5.250 5.000 4.750 4.500

4.250 4.000 3.750 3.500 3.250 3.000 2.15A 2.500

2.250 2.000 1.750

1.720

Z? NO.s CARGO HOLD (C) VOLMETRIC HEELING MOMENT TABLE POSITION

HEIGHT

(M)

KG (M)

VOLUME

(M**s)

0.00 0.25 0.50 0.75

.00

FR.3'l

ULLAGE

-

FR.64.50 TRANS. HEEL. MT (M*.*+)

B.e7

26'1

8.89

3A41

8075.2

8.7I

't

961 .2

8.70

1.00 1.25 1.50 1.75

1847.3 7 7 33.3

8.60

7601 .7

8.40

7 447 .8

8.28

2.00

1281 .1

8.1 5

2.25

7122.5 6963.5 6904.4 6645.4 6486.4 6327.3 6'l 68.3 6009.3 58s0.2

8.02 7.89 7.16 7.63

1A172.1 10787.1

7.51

1

7.38 7.25

11

5691 .2 5532.1 5373.1 5214.1 5055.1 48e6.1

6.86

4137.2 4578,6 4420.3

6.07

4262.6

5.68 5.55

2.50 2.75

3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.15 5.00 5.25 5.50 5.7s 6.00 6.25

6.50 6.75 7.00

05.4 3948.9 3793.0

41

7.25

7.s0 7.75 8.00

3637.

6.99

1

6.34 6.21

5.e4 5.81

5.41

5.28

8.50 8.75

3023.1

9.00 9.25 9.50 9.75 10.00

2871.0 2119.5 2568.7

5.02 4.88 4.75 4.62 4.49 4.35 4.22 4.09 3.95 3.82 3.68 3.55 3.42 3.28

10.25

2121

10.50

1975.1

10.75 1 1.00 11 .25 1 1.50 11.75 12.00 12.25

1831.0 1688.8 1548.4 1410.0 1213.4 1 138.8 1006.0 815.2

12.50

.1

3.15

3.02 2.89 2.7 6

2.63 2.50

12.15 13.00

7

't

493.9 370.6

2.24

249.5 130.7 14.8

1.99 1.86 1.73 1.12

46.2 619.1

3.25

13.50 1 3.75 14.00 14.25 14.28

NOTE

0.0

:

'l

6.47

5.1 5

2269.0

1

6.60

3483.2 3329.2 31 75.8

241 8.5

1334.4 g1 9.1 12243.6 2602.8 2905.4

13155.3 13339.2 13465.5

6.73

B

8.25

1

8.51

7.12

2.37 2.11

DEDUCTED RATE (1.000)

(M)

0.9 16.000 .2 15.750 4032.4 5.500 15.250 4s21 .3 5741.0 5.000 6486.2 14.750 7164.8 14.500 1784,9 14.25A 8387.7 14.000 8905.9 13.750 9501 .0 13.500

8303.3 8189.1 7

W.L.

3540.9

13556.6 13542.2 13500.2

13.250 13.000 1 2.750 1 2.500 12.25A 12.000 1 1.750 1 1,500 1 1.250 1 1.000 10.750 10.500 10.250 10.000 e.750 e.500 9.250 9.000 8.750 8.500 8.250 8.000 7.750 7.500

13435.1 13349.4 13243.6 13120.8 12982.8 12829.0 12663.8 12492.0 12312.8 12128,4 1e37.4 1733.6 512.0 11272,8 101 4.3 10725.0 1A411 .4 10061.5 e670.6 9248.1 878e.5 8295.1 7758.1 7184.7 6573.7 5e23.7 5233.1 4499.8 3721.0 2892.7 2020.5 103.9 126.2 0.0 1

7.250

1

7.000 6.750 6.500 6.250 6.000 5.750 5.500 5.250 5.000 4.750 4.500 4.250 4.000 3.750 3.500 3.250 3.000

11

1

1

2.150 2.500

2.250 2.000 1.750

1.720

o o o

O O o

o o

o o o o

sr

< z,

\,.-,

LLr

E,

== LLTE

O c, x. c)

--

7

=il == od

z,

(5 e e o o

x. ....rO L-

=.LU

=' lr

=rofr o == C'= Z.a r-{ l-

ltl -l LLI EF J-

z. t t IJ.J -J-

\-/ OOOCIOOe)c>e'OOO F

-C\lc?$lr2
View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF