Giáo trình độc học môi trường

April 2, 2017 | Author: darlingcpt | Category: N/A
Share Embed Donate


Short Description

Giáo trình chuyên đề độc học môi trường - GS.TS. Nguy&#...

Description

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN

---------------

NGUYỄN ĐỨC HUỆ

§éc häc m«i tr-êng (Gi¸o tr×nh chuyªn ®Ò)

-Hµ Néi 2010

MỤC LỤC

Chương 1. Mở đầu độc học và độc học môi trường 1.1. Định nghĩa và phạm vi 1.2. Các quan hệ số lượng trong độc học 1.2.1. Các quan hệ liều lượng – đáp ứng 1.2.2. Sự đánh giá quan hệ liều lượng 1.3. Các đặc điểm của phơi nhiễm 1.3.1. Đường và vị trí phơi nhiễm 1.3.2. Độ dài thời gian và tần suất phơi nhiễm 1.4. Tính độc 1.4.1. Tính độc cấp 1.4.2. Tính độc mãn 1.5. Cơ chế vận chuyển chất độc 1.5.1. Sự khuếch tán thụ động 1.5.2. Độc học bậc nhất 1.5.3. Sự vận chuyển màng được điều chế bởi chất mang 1.6. Động học độc chất 1.6.1. Mô hình một ngăn 1.6.2. Mô hình hai ngăn 1.7. Cơ chế gây độc 1.7.1. Giai đoạn 1: phân phối 1.7.2. Giai đoạn 2: phản ứng của chất độc sau cùng với phân tử mục tiêu 1.7.3. Giai đoạn 3: sự mất chức năng tế bào và độc tính tạo ra 1.7.4. Sự sửa chữa và mất khả năng sửa chữa 1.8. Sự ô nhiễm môi trường 1.8.1. Sự ô nhiễm không khí 1.8.2. Sự ô nhiễm đất và nước Chương 2. Phân loại chất độc và ảnh hưởng độc 2.1. Phân loại, nguồn gôc, sự tồn lưu của chất độc trong môi trường 2.1.1. Phân loại 2.1.2. Nguồn gốc 2.1.3. Sự tồn lưu chất độc trong môi trường 2.1.4. Sự sinh tích luỹ 2.2. Phân loại các ảnh hưởng có hại của hoá chất

Trang 1 1 2 2 12 16 16 17 18 18 19 20 20 21 23 24 25 28 32 34 36 42 43 44 44 47 50 50 50 50 54 52 55

2.2.1. Ảnh hưởng độc thông thường của hoá chất 2.2.2. Ảnh hưởng độc khác thường của hoá chất 2.2.3. Tính độc chọn lọc Chương 3. Sinh chuyển hoá các chất độc 3.1. Các phản ứng giai đoạn 1 3.1.1. Oxi hoá Monooxigenaza xitocrom P-450 phụ thuộc (CYP) Monooxigenaza chứa flavon (FMO) 3.1.2. Những sự oxi hoá không vi thể 3.1.3. Các phản ứng khử 3.2. Các phản ứng giai đoạn 2 3.2.1. Sự liên hợp glucuronit 3.2.2. Sự liên hợp glucozit 3.2.3. Sự liên hợp sunfat 3.2.4. Metyltransferaza 3.2.5. Glutathion S-transferaza (GST) và sự hình thành axit mecapturic 3.2.6. Axyl hoá 3.2.7. Sự liên hợp axit amin 3.2.7. Sự liên hợp photphat Chương 4. Độc học và sinh hoá các hợp chất vô cơ 4.1. Các khí độc, xianua, nitrat và nitrit, flo 4.1.1. Cacbon monoxit (CO) 4.1.2. Lưu huỳnh đioxit (SO2) 4.1.3. Các nitơ oxit (NOx) 4.1.4. Ozon (O3) 4.1.5. Xianua (CN )   4.1.6. Nitrat và nitrit ( NO 3 và NO 2 )

4.1.7. Flo 4.2. Kim loại nặng và hoá chất vô cơ khác 4.2.3. Catmi (Cd) 4.2.4. Crom (Cr) 4.2.5. Niken (Ni) 4.2.6. Đồng (Cu) 4.2.7. Selen (Se) 4.2.8. Asen (As)

55 57 60 64 65 65 65 78 81 84 89 90 91 91 92 94 97 98 99 100 100 100 101 102 102 104 107 110 111 131 136 138 141 143 146

4.3. Nguyên tố phóng xạ 4.3.1. Những khái niệm cơ bản 4.3.2. Sự nguy hại của chất độc phóng xạ 4.3.3. Các đồng vị phóng xạ quan trọng sinh học Chương 5. Độc học và sinh hoá các hợp chất hữu cơ 5.1. Hiđrocacbon 5.1.1. Ankan và xicloankan 5.1.2. Hiđrocacbon thơm 5.1.3. Hiđrocacbon thơm đa vòng 5.2. Độc học và sinh hoá các hợp chất cơ clo 5.2.1. Giới thiệu hợp chất cơ clo được tổng hợp và sử dụng rộng rãi 5.2.2. Sự ô nhiễm môi trường và đường phơi nhiễm hợp chất cơ clo 5.2.3. Tính độc và cơ chế gây độc 5.2.4. Các dung môi cơ clo 5.2.5. Vinyl clorua 5.2.6. Các thuốc trừ sâu cơ clo 5.2.7. Policlobiphenyl (PCB) 5.2.8. Policlođibenzo-p-đioxin và policlođibenzofuran 5.3. Độc học và sinh hoá các hợp chất cơ photpho 5.3.1. Giới thiệu các hợp chất trừ sâu cơ photpho và chất độc chiến tranh cơ photpho 5.3.2. Sự ô nhiễm và phơi nhiễm thuốc trừ sâu cơ photpho 5.3.3. Sự trao đổi chất của thuốc trừ sâu cơ photpho 5.3.4. Tính độc và cơ chế gây độc 5.4. Độc học và sinh hoá các thuốc trừ dịch hại khác 5.4.1. Thuốc trừ cỏ cacbamat 5.4.2. Thuốc trừ sâu piretroit 5.4.3. Thuốc trừ cỏ phenoxiaxit 5.4.4. Thuốc trừ cỏ triazin 5.4.5. Thuốc trừ cỏ bipiriđili 5.4.6. Thuốc trừ cỏ cloaxetanilit 5.4.7. Thuốc trừ cỏ axit photphonometyl amin 5.4.8. Thuốc trừ nấm phtalimit và đicacboximit 5.4.9. Thuốc trừ nấm đithiocacbamat 5.4.10. Hợp chất cơ kim 5.5. Các hoá chất hữu cơ như là các homon môi trường 5.5.1. Cơ chế giả thiết đối với sự tác động của các hợp chất estrogen 5.5.2. Giới thiệu về các estrogen môi trường 5.5.3. Các chất tăng sinh peroxisom 5.6. Một số độc tố tự nhiên thực phẩm

151 151 162 165 168 168 168 169 179 184 184 187 187 189 192 193 199 207 214 214 216 216 218 221 221 223 224 225 225 227 227 228 229 229 230 231 232 233 234

5.6.1. Aflatoxxin 5.6.2. Tetrođotoxin 5.6.3. Axit đomoic 5.6.4. Histamin Chương 6. Độc học môi trường các quá trình 6.1. Khai thác mỏ và nấu luyện kim loại 6.1.1. Đặt vấn đề 6.1.2. Các quá trình bao gồm sự tách chiết và làm sạch kim loại 6.1.3. Các chất quan tâm được tạo ra và phát thải 6.1.4. Độc học môi trường của sự khai mỏ và nấu luyện 6.2. Sản xuất điện năng 6.2.1. Sản xuất điện từ nhiên liệu hoá thạch 6.2.2. Sản xuất điện từ năng lượng hạt nhân 6.2.3. Thuỷ điện 6.3. Nông nghiệp 6.3.1. Đặt vấn đề 6.3.2. Các chất quan tâm: phân bón, thuốc trừ dịch hại 6.4. Chiết tách, vận chuyển và gia công dầu mỏ 6.4.1. Đặt vấn đề 6.4.2. Độc học môi trường của dầu 6.4.3. Sử dụng các chất phân tán Chương 7. Số phận và ảnh hưởng của chất độc trong môi trường 7.1. Sự vận chuyển và số phận của các chất độc trong môi trường 7.1.1. Mở đầu 7.1.2. Nguồn các chất độc đi vào môi trường 7.1.3. Các quá trình vận chuyển hoá chất trong môi trường 7.1.4. Tính cách và sự nhận diện sinh học hoá chất 7.1.5. Các quá trình chuyển hoá 7.1.6. Mô hình số phân môi trường của hoá chất 7.2. Sự đánh giá rủi ro môi trường 7.2.1. Mở đầu 7.2.2. Trình bày vấn đề 7.2.3. Phân tích 7.2.4. Đặc trưng rủi ro Quản lí rủi ro 7.3. Độc học môi trường và sức khoẻ con người Tài liệu tham khảo

234 237 237 238 240 240 240 240 241 242 243 243 243 246 246 246 247 252 252 253 254 255 255 255 256 258 265 268 279 280 280 282 287 291 294 294 298

Chương 1 MỞ ĐẦU ĐỘC HỌC VÀ ĐỘC HỌC MÔI TRƯỜNG 1.1. Định nghĩa và phạm vi Độc học có thể được định nghĩa như là một ngành khoa học liên quan với các chất độc, và chất độc có thể được định nghĩa là chất bất kì nào gây ra ảnh hưởng có hại cho cơ thể sống khi bị nhiễm. Theo quy ước thì độc học còn bao gồm cả sự nghiên cứu về những ảnh hưởng có hại gây ra bởi các hiện tương vật lý như sự bức xạ của các loại tiếng động. Phạm vi nghiên cứu của độc học rất rộng, song hai câu hỏi chính được đặt ra cho sự nghiên cứu độc học là bao nhiêu và vì sao một số chất gây ra những phiền toái cho các hệ thống sinh học dẫn đến những ảnh hưởng độc. Khái niệm độc (có hại) và không độc (lành, an toàn, có ích) đã hình thành từ cổ xưa. Dựa trên khái niệm này ngày nay người ta phân chia các chất thành hai loại: độc và không độc. Tuy nhiên sự phân loại này chỉ là tương đối, vì ngay cả cái ăn được, uống được, nếu dùng quá liều lượng thì trở thành độc; ngược lại chất được xem là độc, nhưng nếu được dùng lượng nhỏ hoặc rất nhỏ thì lại không độc và có những trường hợp lại trở thành có ích (thuốc chữa bệnh, các nguyên tố vi lượng,….) và đây chính là một cơ sở (một nguyên tắc) của môn độc học. Độc học phải nghiên cứu những ảnh hưởng định lượng đến mô sinh vật (liều lượng độc). Định nghĩa chất độc bao gồm khía cạnh sinh học. Vì sao chất độc gây hại cho mô sinh học hoặc một chất có thể là độc đối với chủng loại sinh vật này, nhưng lại không độc với chủng loại sinh vật kia. Ví dụ, cacbon tetraclorua (CCl4) là chất độc gan trong nhiều chủng loại sinh vật, nhưng lại tương đối không độc với gà; piretroit là chất có ở trong hoa cúc vàng diệt được nhiều loại sâu rau, nhưng lai rất ít độc với người, và đây cũng chính là một nguyên tắc của môn độc học. Độc học phải nghiên cứu cơ chế sinh học cũng như các điều kiện mà dưới đó gây ra tác dụng có hại. Độc học hiên đại là một lĩnh vực khoa học đa ngành, chiết trung có quan hệ với một phổ rộng các khoa học khác và các hoạt động của con người mà ở một đầu là những khoa học tạo dựng lên nó (hóa học, hóa sinh, bệnh học, sinh lý học, dịch tễ học, sinh thái học và toán sinh học, đặc biệt là sinh học phân tử trong vài ba chục năm gần đây đã có đóng góp vào sự tiến bộ đáng kể trong độc học) và ở một đầu kia của phổ là những khoa học mà độc học đóng góp (y học như y học pháp lý, độc học điều trị, dược khoa và dược học, sức khỏe cộng đồng, vệ sinh công nghiệp, sử dụng an toàn nông dược, nghiên cứu môi trường).

1

Độc học môi trường có liên quan trước hết tới những tác động có hại của các hóa chất mà con người tiếp nhận chúng một cách ngẫu nhiên từ môi trường sống đất, nước, không khí bị ô nhiễm hoặc do tiếp xúc trong quá trình hoạt động nghề nghiệp, hoặc do ăn uống thức ăn có chứa những chất độc tự nhiên hoăc những hóa chất tồn dư. Hiện nay có khoảng trên 100.000 hóa chất có nguồn gốc tự nhiên và tổng hợp đã đươc nghiên cứu về độc tính. Nhiều hóa chất trong số này (các khí độc, kim loại nặng độc, các hóa chất trừ dịch hại, dung môi và chất bay hơi, chất tẩy rửa, các phụ gia thực phẩm, thức ăn chăn nuôi, các độc tố (toxin)…tồn tại trong môi trường sống, môi trường lao động, chuỗi thức ăn. Độc học môi trường vì vậy được xem như là một nhánh của độc học, liên quan với sự nhiễm độc ngẫu nhiên với mô sinh học bởi các hóa chất là những chất gây ô nhiễm chủ yếu của môi trường và thực phẩm. Nó nghiên cứu sự vận chuyển và số phận của chất đôc trong môi trường, sự tích lũy và sự biến đổi của chất độc trong cơ chế sinh học cũng như nghiên cứu các nguyên nhân, các điều kiện, các ảnh hưởng và các giới hạn an toàn của sự nhiễm độc các hóa chất và đánh giá sự rủi ro của môi trường. Các thí dụ về chuỗi thức ăn của môi trường bị ô nhiễm (hình 1.1)

Đất (chứa các dư lượng)

Động vật không xương sống  Động vật không xương sống ăn thịt  Động vật xương sống mặt đất  Chim hoặc thú ăn thịt Cây cỏ mặt đất  Động vật ăn cỏ  Chim hoặc thú ăn thịt

Hình 1.1. Sơ đồ các ví dụ chuỗi thức ăn môi trường ô nhiễm. 1.2. Các quan hệ số lượng trong độc học Quan niệm hiện nay cho rằng không có tác nhân hóa học nào hoàn toàn là không độc và cũng không có tác nhân hóa học nào hoàn toàn là độc. Quan niệm này dựa trên tiền đề cho rằng bất kỳ một hóa chất nào khi xâm nhập vào cơ thể sinh vật không gây ra ảnh hưởng có hại nếu liều lượng (nồng độ) của tác nhân hóa học đó thấp hơn mức tối thiểu gây độc. Nói cách khác, tác nhân hóa học chỉ gây ảnh hưởng có hại cho cơ thể sinh vật khi nó xâm nhập vào cơ thể với một liều đủ lớn. Như vậy, một yếu tố quan trọng nhất quyết định sự có hại hoăc sự an toàn của hợp chất là quan hệ giữa liều lượng của hóa chất và ảnh hưởng (đáp ứng) được tạo ra trên cơ thể sinh vật. 1.2.1. Các quan hệ liều lượng - đáp ứng Từ bức tranh phối cảnh thực tế, người ta thấy 2 loại quan hệ liều lương - đáp ứng: (1) quan hệ liều lượng - đáp ứng cá thể, nó miêu tả sự đáp ứng của cơ thể (hoặc tổ chức) 2

của cá thể đối với sự thay đổi liều lựơng hóa chất, hay còn gọi là đáp ứng được "độ hoá" vì ảnh hưởng được đo là liên tục trên một dãy các liều, (2) quan hệ liều lương - đáp ứng nhảy cách, nó đặc trưng cho sự phân bố các đáp ứng đối với những liều khác nhau trong quần thể các sinh vật cá thể. a) Các quan hệ liều lượng - đáp ứng cá thể hoặc “độ hóa”. Các quan hệ liều lượng - đáp ứng cá thể được đặc trưng bởi sự tăng liều liên quan trong sự làm tăng mạnh đáp ứng. Ví dụ, hình 1.2 chỉ ra quan hệ liều lượng - đáp ứng giữa các liếu ăn thường ngày khác nhau của thuốc trừ sâu cơ photpho clopyriphot và đáp ứng ức chế của hai enzim khác nhau trong não và trong gan: axetylcholinesteraza và cacboxylesteraza. Ở trong não, mức độ ức chế của cả hai enzim phụ thuộc rõ ràng vào liều liên quan trải ra một khoảng rộng, mặc dù lượng ức chế trên đơn vị liều là khác nhau đối với hai enzim. Từ hình dạng của hai đường biểu diễn liều lượng - đáp ứng này rõ ràng là ở trong não, cholinesteraza bị ức chế dễ dàng hơn so với cacboxylesteraza. Lưu ý rằng khi ta sử dụng thang log10 cuả liều (hình 1.2B) sẽ cho đường biểu diễn thẳng thích hợp hơn (tiện dùng).

100 - B

75 -

% øc chÕ

% øc chÕ

100 - A Cholinesteraza

50 25 0

cacboxylesteraza . . . . 2,5 5,0 7,5 10 LiÒu (mg/kg), thang th¼ng

75 50 25 0. 1

. . . . . . . . . 2 3 4 5 6 7 8 9 10 LiÒu (mg/kg), thang log

Hình 1.2. Quan hệ liều lượng-đáp ứng giữa các liều khác nhau của clopyriphot và sự ức chế các enzim esteraza trong não b) Các quan hệ liều lượng - đáp ứng nhảy cách hoặc "tất cả hoặc không" Trái với quan hệ liều lượng - đáp ứng "độ hóa" hoặc thang liên tục xẩy ra trong các cá thể, quan hệ liều lượng - đáp ứng nhảy cách hoặc "tất cả hoặc không" xẩy ra trong quần thể. Trong thực tế người ta thấy rằng có những sự khác nhau tồn tại giữa các thành viên cá thể của một quần thể các tế bào, các mô hoặc các động vật. Bản chất của những sự khác nhau này hiếm khi thể hiện rõ và chỉ trở nên rõ ràng khi cơ thể được thử thách

3

như bởi sự phơi nhiễm hóa chất. Nếu như hóa chất có khả năng gây ra ảnh hưởng thấy được như sự chết sinh vật, hoặc ảnh hưởng mà từ đó các tế bào hoặc các động vật hồi phục trong chu kì thời gian, thì liều hóa chất có thể được chọn để nó có thể gây ra được ảnh hưởng đó và nếu ảnh hưởng đó có thể định lượng được thì thực nghiệm có thể chỉ ra rằng không phải tất cả các thành viên của nhóm đáp ứng với cùng một liều hóa chất một cách định lượng như nhau. Một số động vật chỉ ra sự đáp ứng mạnh, một số khác chỉ ra sự đáp ứng nhỏ (một số bị chết, một số khác còn sống) đối với cùng một liều hóa chất. Điều này có nghĩa là, ở một liều cho bất kì, một cá thể trong quần thể được phân loại hoặc là “cá thể đáp ứng” hoặc là “cá thể không đáp ứng” mặc dù sự phân biệt này của các quan hệ liều lượng - đáp ứng “cá thể độ hóa” và “quần thể nhảy cách” được dùng, hai loại đáp úng này là đồng nhất khái niệm.Trục tung trong cả hai trường hợp biểu thị sự đáp ứng và trục hoành biểu thị dãy các liều tiếp nhận. Sự đáp ứng nhảy cách được biểu hiện dưới hai dạng: Đáp ứng tần suất Thực nghiệm chỉ ra rằng sự khác biệt sinh học trong sự đáp ứng đối với các hóa chất giữa các thành viên của một loài nói chung là nhỏ hơn so với sự khác biệt sinh học giữa các loài. Vì một trong số các tiêu chuẩn thực nghiệm của chúng ta là sự đáp ứng có thể được định lượng mà không quan tâm đến ảnh hưởng được đo, sau đó bằng thực nghiệm khác mỗi động vật trong dãy các thành viên đồng nhất của một loại riêng được tiếp nhận một liều đủ hóa chất để tạo ra đáp ứng đồng nhất. Các dữ liệu nhận được từ thực nghiệm như thế có thể được vẽ thành đồ thị ở dạng đường cong phân bố hoặc tần suất - đáp ứng (hình 1.3).

TÇn suÊt chÕt, %

50 40 -

A'

A

30 20 -

B

B'

10 Cùc tiÓu

Cùc ®¹i LiÒu (mg/kg)

Hình 1.3. Đồ thị tần xuất đáp ứng sau khi tiếp nhận tác nhân hoá học đối với quần thể đồng nhất của các chủng sinh vật

4

Đồ thị được chỉ ra ở hình 1.3 thường được tham vấn như là đường biểu diễn của đáp ứng nhảy cách vì nó biểu thị dãy các liều đòi hỏi để tạo ra đáp ứng đồng nhất một cách định lượng trong một quần thể lớn của các đối tượng thí nghiệm. Từ đường biểu diễn ta thấy rõ là chỉ một số ít động vật được đáp ứng đối với liều thấp nhất và liều cao nhất. Một số lớn các động vật được đáp ứng đối với các liều nằm giữa hai tột điểm này, và tần suất cực đại của đáp ứng xảy ra ở phần giữa của khoảng liều. Như vậy ta có đường biểu diễn hình chuông được biết như là sự phân bố tần suất chuẩn. Nguyên nhân của sự phân bố chuẩn này la do những sự khác nhau về tính nhạy cảm đối với hóa chất giữa các cá thể, cái mà được gọi là sự khác biệt sinh học đã đề cập đến ở trên. Những động vật đáp ứng ở phía đầu trái của đường biểu diễn được xem như là nhạy cảm cao và những động vật đáp ửng ở phía đầu phải của đường biểu diễn được xem như là nhạy cảm thấp. Đường biểu diễn có hai điểm uốn chính (A, A’, B, B’) ở mỗi bên của tần suất cực đại. Liều nhận được như liều X là liều trung bình, và tổng số tất cả những động vật đáp ứng đối với những liều cao hơn liều trung bình sẽ bằng tổng số tất cả các động vật đáp ứng đối với những liều nhỏ hơn liều trung bình. Theo định nghĩa diện tích dưới đường biểu diễn giới hạn bởi các trục tung và trục hoành từ điểm A đến điểm A’ bao gồm toàn bộ quần thể đáp ứng liều trung bình cộng hoặc trừ một độ lệch chuẩn từ liều trung bình và diện tích dưới đường biểu diễn giới hạn bởi các trục tung và trục hoành từ điểm B đến điểm B’ bao gồm toàn bộ quần thể đáp ứng liều trung bình cộng hoặc trừ 2 độ lệch chuẩn từ liều trung bình. Trong thực tế đường phân bố đáp ứng tần suất (phân bố Gaussian) ít gặp. Sự biến đổi gập ghềnh của đường biểu diễn thường nhận được là đường phù hợp nhất với các dữ kiện thực nghiệm. Đáp ứng tích lũy Trong độc học đồ thị đáp ứng tần suất ít được sử dụng. Thường người ta xây dựng đồ thị dữ kiện ở dạng đường biểu diễn biểu thị mối liên quan giữa liều lượng của hóa chất với phần trăm tích lũy của động vật để chỉ sự đáp ứng (như chết). Những đồ thị như vậy nói chung được biết như là các đồ thị liều lượng - đáp ứng. Các dữ kiện để xây dựng nó có thể nhận được bằng thực nghiệm như sau: các nhóm của những chủng đồng nhất, chẳng hạn chuột, cho nhiễm dung dịch hóa chất bằng một con đường riêng nào đó (tiêm, uống…) và bằng thực nghiệm chọn một liều như thế nào để cho động vật không chết tất cả và cũng không sống tất cả. Liều lượng khởi đầu có thể là liều lượng nhỏ để không có ảnh hưởng nào biểu hiện ở động vật. Những nhóm động vật tiếp theo, liều lượng có thể tăng lên bằng nhân với một hệ số chẳng hạn là 2 hoặc trên cơ sở logarit cho đến khi đạt được một liều đủ cao của hóa chất để tất cả động vật trong nhóm chết do nhiễm hóa chất.

5

Đường biểu diễn nhận được có dạng hình chữ S (hình 1.4). Đường biểu diễn dạng chữ S được phân bố chuẩn như một đầu ở gần đáp ứng 0% khi liều được giảm và ở đầu kia ở gần đáp ứng 100% khi liều được tăng (về lý thuyết đường biểu thị không khi nào đi qua 0% và 100%) các khúc đoạn của đường biểu diễn được biểu thị như sau:

Liều (mg/kg), thang thẳng Hình 1.4. Đồ thị quan hệ liều lượng - đáp ứng Khúc đoạn I: Đây là phần biểu diễn không có độ dốc và nó được biểu thị bởi những liều chất độc không gây ra sự chết của quần thể sinh vật thí nghiệm. Liều ngưỡng (liều ảnh hưởng của cực tiểu của chất độc) nằm ở đây. Khúc đoạn II: Khúc đoạn này biểu thị các liều chất độc mà chỉ ảnh hưởng đến những thành viên nhạy cảm nhất của quần thể bị nhiễm. Theo đó, các ảnh hưởng này được gây ra ở các liều thấp và chỉ một số ít phần trăm sinh vật chịu ảnh hưởng. Khúc đoạn III: Phần này của đường biểu diễn bao gồm những liều mà ở đó hầu hết các nhóm sinh vật chịu sự đáp ứng tới mức nào đó đối với chất độc vì hầu hết các nhóm sinh vật bị nhiễm đáp ứng đối với chất độc trong khoảng này của liều, nên khúc đoạn III có độ dốc lớn và tương đối thẳng trong số các khúc đoạn. Khúc đoạn IV: Phần này của đường biểu diễn bao gồm những liều chất độc chỉ độc đối với sinh vật chịu đựng nhất trong quần thể. Theo đó, các liều cao của chất độc được đòi hỏi để ảnh hưởng đến những sinh vật này. Khúc đoạn V: Khúc đoạn V không có độ dốc và biểu thị những liều mà ở đó 100% các sinh vật bị nhiễm chất độc chịu ảnh hưởng. Đường biểu diễn dạng S có một phần tương đối thẳng giứa 16% và 84% . Các giá trị này biểu thị các giới hạn một độ lệch chuẩn (ĐLC) từ giá trị trung bình (50%) trong quần thể với sự phân bố chuẩn hoặc sự phân bố GAUSSIAN. Tuy nhiên, người ta không miêu tả đường biểu diễn liều lượng - đáp ứng từ kiểu đồ thị này do khó khăn thực tế.

6

Trong một quần thể được phân bố thông thường (chuẩn), giá trị trung bình  1 ĐLC biểu thị 68.3% quần thể, giá trị trung bình  2 ĐLC biểu thị 95,5% quần thể và giá trị trung bình  3 ĐLC bằng 99,7% quần thể. Vì hiện tượng liều lượng - đáp ứng nhảy cách thường được phân bố chuẩn, người ta có thể chuyển đổi đáp ứng phần trăm thành các đơn vị độ lệch từ giá trị trung bình hay là độ lệch tương đương chuẩn. Như vậy, độ lêch tương đương chuẩn đối với đáp ứng 50% là 0, độ lệch tương đương chuẩn +1 tương đương với 84% đáp ứng và độ lệch -1 tương đương với 16% đáp ứng. Để tránh các số âm người ta đề nghị các đơn vị của độ lệch tương đương chuẩn phải được chuyển đổi bằng thêm 5 vào giá trị và các đơn vị chuyển đổi này được gọi là các đơn vị con số. Trong sự chuyển đổi này, đáp ứng 50% trở thành con số 5, còn +1 độ lệch trở thành con số 6 và -1 độ lệch là con số 4, +2 độ lệch là con số 7 và -2 độ lệch là con số 3. Đường biểu diễn liều lượng - đáp ứng được xác định tốt có thể sử dụng để tính liều LD50 (LC50). LD50 là liều chất gây ra sự chết 50% động vật thí nghiệm, thường được biểu thị bằng miligam chất độc trên kilogam thể trọng của động vật thí nghiệm (mg/kg). LC50 là nồng độ chất gây ra sự chết 50% động vật thí nghiệm, thường được biểu thị bằng mg chất/lit nước. Để xác định liều LD50 (LC50) từ đồ thị người ta kẻ đường nằm ngang từ điểm chết 50% trên trục tung tới gặp đường biểu diễn và từ điểm cắt này kéo đường thẳng đứng tới trục hoành là liều LD50 (LC50). Bằng phương pháp tương tự như vậy ta cũng có thông tin với liều chết khác: 95% hoặc 5%, 90% hoặc 10%. Tuy nhiên, để có sự xác định chính xác liều LC50 thì đường biểu diễn phải được tuyến tính hóa hoặc qua sự chuyển đổi thích hợp các dữ kiện gồm chuyển các liều (các nồng độ) thành thang logarit và phần trăm đáp ứng thành các đơn vị con số (hình 1.5).

6,0 -

Kho¶ng tin cËy 95%

5,0 4,0 3,4

LD50

3,0 LD5

. . . . . . . . . . . . .

98 95 90 80 70 60 50 40 30 20 10 5 2

% chÕt

ChÕt (®¬n vÞ con sè)

7,0 -

LiÒu (mg/kg) thang log

Hình 1.5. Quan hệ liều lượng-đáp ứng biểu thị trên thang log liều-con số 7

Zero phần trăm và 100% đáp ứng không thể chuyển thành các đơn vị con số, như vậy các sự kiện trong các khúc đoạn I và V không được sử dụng. Khoảng tin cậy 95% cũng được xác định đối với sự tuyến tính hóa quan hệ liều lượng-đáp ứng. Như được miêu tả trên hình 1.5, mức độ lớn nhất của độ tin cậy (nghĩa là khoảng tin cậy 95% nhỏ nhất) biểu hiện ở mức 50% đáp ứng, điều này nói lên vì sao các giá trị LD50 được ưu tiên so với một sự đo lường nào khác (chẳng hạn LD5). Mức độ tin cậy cao này ở LD50 biểu hiện khi các dữ kiện nhiều, phong phú hiển hiện giứa 51% và 99% đáp ứng cũng như giữa 1% và 49% đáp ứng. Thông tin bổ sung quan trọng có thể có được dẫn ra từ đường biểu diễn liều lượng - đáp ứng là độ dốc của đường biểu diễn thẳng nói lên kiểu tác dụng độc (hình 1.6). Trong trường hợp chỉ ra ở đây, các liều LD50 của hai hóa chất A và B là đồng nhất, mặc dầu sự đáp ứng đối với A biểu hiện độ độc lớn hơn so với B. Độ dốc có thể biểu thị cho tốc độ hấp thu cao của hóa chất A và chứng tỏ sự tăng nhanh đáp ứng trên một khoảng liều tương đối hẹp. Ngược lại, đường biểu diễn đáp ứng đối với B bằng hơn biểu thị cho tốc độ hấp thu chậm hơn hoặc có thế là sự đào thải nhanh hơn hoặc tốc độ khử độc nhanh hơn. Mặc dù thực tế các liều LD50 đối với A và B cả hai là như nhau (10 mg/ 1 kg), độ dốc của A thoạt nhìn ta nghĩ tới độ độc lớn hơn độ độc của B. Tuy nhiên, trong độc học chúng ta thường quan tâm nhiều đến các ảnh hưởng độc của những liều thấp của hóa chất (nghĩa là những liều nhỏ hơn liều LD50). Ở phần thấp phía bên trái của đồ thị, chúng ta nhận thấy ở liều một nửa của liều LD50 (5 mg/1 kg), hóa chất A gây chết ít hơn 1% số động vật thí nghiệm, trong khi đó hóa chất B gây chết trên 20%. Đường biểu diễn liều lượng-đáp ứng cũng còn được sử dụng để xác định liều ngưỡng. Liều ngưỡng được định nghĩa là liều nhỏ nhất của hóa chất mà thấp hơn liều đó không có những ảnh hưởng có hại xảy ra.

A

% chÕt

.7 B

70 -

.6

50 -

.5

20 -

.4

10 11

ChÕt (®¬n vÞ con sè)

99 98 -

.3 . 2

. . . . 5 10 20 50 LiÒu (mg/kg) thang log

Hình 1.6. Quan hệ liều lượng-đáp ứng của hai hoá chất A và B có LD50 như nhau nhưng độ dốc đường biểu diễn khác nhau. 8

Liều ngưỡng thường được xác định bằng thực nghiệm là liều nhỏ hơn liều thấp nhất mà ở đó ảnh hưởng đo được nhưng cao hơn liều lớn nhất mà ở đó ảnh hưởng không xác định được. Một cách khái quát liều ngưỡng được xác đình là điểm cắt của khúc đoạn I và II ( hình 1.4) hoặc liều LD5 (hình 1.5). c. Các quan hệ liều lượng-đáp ứng khác thường. Các chất dinh dưỡng thiết yếu. Mặc dù những mô tả đã nêu về quan hệ trực tiếp giữa liều hóa chất và sự đáp ứng bất kỳ xảy ra là đúng cho tất cả các chất thường gặp không có ở trong hệ thống sinh học, gọi là chất ngoại sinh. Khái niệm này không bao gồm các chất thường có mặt trong cơ thể sinh vật (chất nội sinh). Ngoài thức ăn, nước uống, muối khoáng, nhiều chất khác như các nguyên tố đa lượng cũng như vi lượng cần thiết như crom, coban, selen,…, các vitamin được đòi hỏi cho các chức năng sinh lý thông thường và sự sống. Khi thiếu các chất này hoặc thừa các chất này con người sẽ phát triển những ảnh hưởng không mong muốn. Đường biểu diễn quan hệ liều lượng - đáp ứng được “độ hóa” của những chất nội sinh này có dạng chữ U trên toàn bộ khoảng liều (hình 1.7a). Từ đồ thị ta thấy ở các liều rất thấp có mức độ ảnh hưởng có hại cao, ảnh hưởng này giảm với liều tăng lên. Vùng này của quan hệ liều lượng - đáp ứng đối với các chất dinh dưỡng thiết yếu được xem là liên quan với sự thiếu. Khi liều được tăng lên tới điểm mà ở đây sự thiếu không còn tồn tại, đáp ứng có hại không còn xác định được và cơ thể ở trong trạng thái nội cân bằng (cân bằng tự nhiên, bình thường). Tuy nhiên, khi liều được tăng lên đến mức

§¸p øng

ChÕt

§¸p øng

cao không bình thường, đáp ứng có hại (thường khác biệt về chất đối với những gì được quan sát thấy ở các liều thiếu) xuất hiện và tăng lên ở mức độ lớn với sự tăng lên của liều.

a

Ng-ìng ®¸p øng cã h¹i

b BÖnh thiÕu BÖnh thõa canxi canxi

ChÕt Vïng néi c©n b»ng

§éc B×nh th-êng

ThiÕu

LiÒu

. . 6

Thõa

. 8

.

. 10

.

. 12

.

. 14

Canxi huyết thanh (mg/100ml)

Liều Hình 1.7. Quan hệ liều lượng-đáp ứng được "độ hóa" đối với các chất dinh dưỡng thiết yếu: a. như vitamin hoặc nguyên tố vi lượng, b. của canxi

9

Vùng này của quan hệ liều lượng - đáp ứng liên quan với sự thừa. Chẳng hạn người ta thấy thừa vitamin A gây độc gan, liều cao của selen có thể ảnh hưởng đến não và sự thừa estrogen có thể làm tăng sự rủi ro ung thư vú. Một ví dụ kinh điển về sự thiếu thừa canxi cũng được nêu ra ở đây (hình 1.7b). Từ đồ thị ta thấy có vùng nồng độ canxi giữa 9 và 10,5 mg/100ml huyết thanh là cần thiết cho chức năng bình thường (vùng nội cân bằng). Trong trường hợp nồng độ canxi giảm (do cơ thể không được cung cấp đủ vitamin D hoặc canxi) cơ thể gặp phải chứng chuột rút (bó cơ), mắc bệnh thiếu canxi. Ngược lại khi nồng độ canxi tăng lên trên mức bình thường, cơ thể mắc chứng suy thận, bệnh thừa canxi. Sự chết có thể xảy ra khi nồng độ canxi quá thấp hoặc quá cao. Nói chung, sự thiếu hoặc thừa các chất nội sinh chủ yếu đều gây độc cho cơ thể. Nói cách khác, chất nội sinh chúng có mối quan hệ liều lượng - đáp ứng hai mặt. Hiện tượng lưỡng tác Có một số chất độc không dinh dưỡng có thể tác động ảnh hưởng có ích ở các liều thấp nhưng lại tạo ra những ảnh hưởng có hại ở liều cao (lưỡng tác). Như vậy, trong sự vẽ độ thì liều lượng - đáp ứng trên một khoảng đủ rộng các liều, những ảnh hưởng lưỡng tác cũng sẽ tạo ra đường biểu diễn liều lượng - đáp ứng dạng U (hình 1.8). Những ảnh hưởng lưỡng tác có ích của chất được giả thiết xảy ra ở những liều tương đối thấp (đường B), một ngưỡng được vượt qua khi liều tăng và các ảnh hưởng lưỡng tác có hại xảy ra tăng như sự tăng liều lượng - đáp ứng điển hình thông thường (đường A). Sự tổ hợp các ảnh hưởng toàn bộ (đường B và đường A) sẽ cho đường biểu diễn liều lượng - đáp ứng tương tự như quan hệ liều lượng -đáp ứng cá thể riêng (đường C) đối với các chất dinh dưỡng thiết yếu trong hình 1.7. Ta có thể lấy thí dụ về hiện tượng lưỡng tác này đối với rượu. Sự tiêu thụ rượu trường diễn như ta biết sẽ làm tăng rủi ro ung thư thực quản, ung thư gan và xơ gan ở các liều tương đối cao, và sự đáp ứng này là liên quan liều (đường A hình 1.8). Tuy nhiên, cũng có những bằng chứng về lâm sàng và dịch tễ học cho thấy sự tiêu thụ ít cho đến vừa phải rượu sẽ làm giảm tỉ lệ tác động ảnh hưởng chứng bệnh vành tim và sơ vữa mạch máu (đường B hình 1.8). Như vậy, khi tất cả các đáp ứng được đưa lên trục tung, đường biểu diễn liều lượng - đáp ứng dạng U sẽ nhận được (đường C hình 1.8). Trong thực tế ta còn gặp những quan hệ liều lượng -đáp ứng khác thường phức tạp hơn như chỉ ra ở hình 1.9. Ví dụ, sự ảnh hưởng của hóa chất đến sự tiết homon corticosteroit của vỏ thượng thận. Ở một liều ngưỡng thực (đúng) của hóa chất, cơ thể bắt đầu thể hiện sự tăng kích thích tiết corticosteroit. Tuy nhiên, ở những liều cao hơn một chút, đáp ứng bù trừ xảy ra nhờ đó sự tiết corticosteroit được giảm xuống để duy trì nội cân bằng trong cơ thể. Sự bù trừ quá mức có thể gây ra sự giảm tiết corticosteroit ở các 10

liều chất độc nào đó. Cuối cùng các khả năng bù trừ của cơ thể vượt qua bởi các liều cao

§¸p øng B

A

§¸p øng toµn bé

B

C

LiÒu (mg/kg/ngµy) Hình 1.8. Quan hệ liều lượng-đáp ứng biểu thị các đặc trưng của lưỡng tác.

§¸p øng (%)

§¸p øng A

của chất độc ở liều ngưỡng “giả” mà ở trên nó quan hệ liều lượng-đáp ứng chuẩn xảy ra

100 -

50 I

II

III

0LiÒu ng-ìng thùc

LiÒu

l-ìng t¸c

LiÒu ng-ìng "gi¶"

Hình 1.9. Quan hệ liều lượng-đáp ứng khác thường bao gồm đáp ứng tiếp theo là đáp ứng bù trừ. (I) Sự khởi đầu thực của các ảnh hưởng quay trở lại mức 0%. (II) Đáp ứng âm do sự bù trừ quá mức tiếp theo là sự phục hồi về mức ảnh hưởng 0%. (III) Quạn hệ liều lượng-đáp ứng dạng S chuẩn. 11

1.2.2. Sự đánh giá quan hệ liều lượng - đáp ứng So sánh các đáp ứng liều Hình 1.10 miêu tả đường biểu diễn liều lượng - đáp ứng nhảy cách giả thiết đối với ảnh hưởng mong muốn (có ích) của liều hiệu quả hóa chất (ED) như sự gây mất cảm giác (gây tê, gây mê trong phẫu thuật), liều độc (TD) như gây tổn thương gan, và liều chết (LD). Như được mô tả trên hình, sự song song thấy rõ giữa đường biểu diễn hiệu quả (ED) và đường biểu diễn sự chết (LD) nói lên có sự đồng nhất về cơ chế, có nghĩa là có thể kết luận rằng sự chết là sự tăng cường đơn giản ảnh hưởng trị bệnh. Kết luận này có thể chứng tỏ cơ bản là đúng trong bất kì trường hợp riêng, tuy nó không được đảm bảo chỉ trên cơ sở của hai đường song song. Sự cảnh báo tương tự cũng được áp dụng đối với

-

6-

-

ED

-

TD

5-

LD

-

4-

-

3 -. . . . . . . . . . . . . . . . . . . . . . .20

100

200

800

98 90 80 70 60 50 40 30 20 10 5 2

100 §¸p øng chÕt (%)

7-

§¸p øng (%)

§¸p øng (®¬n vÞ con sè)

cặp các đường biểu diễn hiệu quả song song hoặc bất kì cặp nào khác của sự độc hoặc sự chết. Đối với các hóa chất là thuốc chữa bệnh người ta luôn quan tâm đến ba liều này.

B C 50 -

0-

LiÒu (mg/kg)

Hình 1.10. So sánh liều hiệu quả (ED), liều độc (TD) và liều chết )LD)

A

LiÒu (mg/kg), thang log

Hình 1.11. Các đường biển diễn liều lượng-đáp ứng đối với 3 chất A, B, C

Biên an toàn Hình 1.11 trình bày sự đa dạng khác nhau của các độ dốc có thể có khi các dữ kiện liều lượng - đáp ứng của những chất khác nhau (ở đây là các chất A, B, C) được vẽ đồ thị trên các hệ tọa độ.Độ dốc của đường biểu diễn liều lượng - đáp ứng là một chỉ số của “biên an toàn”. Biên an toàn là độ lớn của khoảng liều tính từ liều không ảnh hưởng đến liều chết (liều dưới ngưỡng đến liều ngưỡng). Từ đồ thị ta thấy đường biểu diễn của chất C có độ dốc nhỏ, độ lớn của khoảng liều này là lớn hơn chất B có độ dốc lớn hơn, còn đối với chất A có độ dốc lớn nhất khoảng liều này rất nhỏ (giữa liều không ảnh hưởng và liều chết không còn khác biệt mấy). Nói cách khác, hợp chất C có biên an toàn lớn hơn chất B và chất A. 12

Đối với các hóa chất là thuốc chữa bệnh người ta thường đặc biệt quan tâm đến mức độ an toàn và độc hại của chúng. Thuốc chữa bệnh thường là các hóa chất độc (thậm chí rất độc). Trong dược học biên an toàn là khoảng liều giữa liều gây chết và liều hiệu quả (hình 1.10). Biên an toàn này liên quan tới chỉ số trị bệnh (chỉ số điều trị) và nhận được bằng thực nghiệm như sau: Hai đường biểu diễn liều lượng - đáp ứng nhận được đối với một hệ sinh vật thích hợp như chuột. Một trong số hai đường biểu diễn này biểu thị các dữ liệu nhận được đối với ảnh hưởng trị bệnh của thuốc (đường ED hình 1.10) và đường biểu diễn thứ hai biểu thì các dữ liệu nhận được đối với ảnh hưởng chết của thuốc (đường LD hình 1.10). Biên an toàn hoặc chỉ số trị bệnh (TI) được biểu thị bằng tỉ số. TI = LD50 / ED50 Chỉ số trị bệnh của thuốc là sự biểu lộ gần đúng về sự an toàn tương đối của thuốc. Tỉ số càng lớn, độ an toàn tương đối của thuốc càng lớn. Như chỉ ra ở hình 1.10, ED50 là xấp xỉ 20, LD50 xấp xỉ 200 và TI = 10, biên an toàn lớn. Hình 1.10 chỉ ra nếu như đường chết LD được dịch về phía trái để tiền gần đến đường hiệu quả ED thì chỉ số trị bệnh trở thành tỉ số nhỏ hơn (dưới 10), biên an toàn sẽ giảm, chất như vậy được nói là tăng tính độc. Việc sử dụng các liều trung bình để tính chỉ số trị bệnh có thiếu sót vì các liều trung bình không nói được gì về độ dốc của các đường biểu diễn liều lượng - đáp ứng đối với các ảnh hưởng trị bệnh và độc (chết). Để khắc phục thiếu sót này người ta sử dụng ED99 đối với ảnh hưởng mong muốn và LD 1 đối với ảnh hưởng không mong muốn và tỉ số LD1/ ED99 là sự đánh giá tiêu chuẩn nhất biên an toàn. Hiệu lực đối đầu hiệu quả Hiệu lực (ý nói là lượng hóa chất), hiệu quả (ý nói là đáp ứng gây ra). Để so sánh các ảnh hưởng độc của hai hoặc nhiều hơn hóa chất, liều lượng - đáp ứng đối với các ảnh hưởng của mỗi hóa chất phải được thiết lập. Sau đó người ta có thể so sánh hiệu lực và hiệu quả cực đại của hai hóa chất. Hình 1.12 biểu diễn các đường liều lượng - đáp ứng của bốn hóa chất khác nhau đối với sự thường xảy ra ảnh hưởng độc riêng (đặc thù) như sự tạo khối u. Chất A được nói là có hiệu lực hơn (có tác dụng mạnh hơn) so với chất B vì vị trí tương đối của chúng đọc theo trục liều. Cũng như vậy C có hiệu lực hơn D. Hiệu quả cực đại phản ảnh giới hạn của quan hệ liều lượng - đáp ứng trên trục đáp ứng. Chất A và B có hiệu quả cực đại bằng nhau, trong khi đó hiệu quả cực đại C nhỏ hơn so với hiệu quả cực đại của D. 13

A

B

D

5,0 -

C

§¸p øng (%)

§¸p øng (®¬n vÞ con sè)

7,0 -

3,0 LiÒu (mg/kg), thang log

Hình 1.12. Sơ đồ biểu thị đường biểu diễn liều lượng-đáp ứng của bốn hoá chất (A-D) miêu tả sự khác nhau giữa hiệu lực và hiệu quả. Tiêu chuẩn được sử dụng để đánh giá hiệu lực (độc tính so sánh) của hai chất là quan hệ của liều cần thiết để xẩy ra ảnh hưởng bằng nhau. Thường người ta sử dụng giá trị của liều LD50 làm căn cứ để đánh giá so sánh (bảng 1.1) Bảng 1.1. Các liều LD50 gần đúng của một số tác nhân hóa học đại diện STT

Tác nhân

Động vật

Đường xâm nhập

LD50,mg/kg

1

Etanol

Chuột nhắt

Miệng

10.000

2

NaCl

Chuột nhắt

Màng bụng

4.000

3

FeSO4

Chuột

Miệng

1.500

4

Morphin sunfat

Chuột

Miệng

900

5

Phenobarbital,muối natri

Chuột

Miệng

150

6

DDT

Chuột

Miệng

100

7

Picrotoxin

Chuột

Dưới da

5

8

Stricnin sunfat

Chuột

Màng bụng

2

9

Nicotin

Chuột

Tĩnh mạch

1

10

d- Tubocumarin

Chuột

Tĩnh mạch

0,5

11

Hemicholinium - 3

Chuột

Tĩnh mạch

0,2

12

Tetrođotoxin

Chuột

Tĩnh mạch

0,1

13

Đioxin (2,3,7,8 - TCDD)

Chuột lang

Tĩnh mạch

0,001

14

Botulinum toxin

Chuột

Tĩnh mạch

0,00001

và để phân loại chất theo mức độ độc ta có:

14

STT

Mức độ

LD50, mg/kg

1

Độc đặc biệt

 1

2

Độc cao

1-50

3

Độc vừa

50-500

4

Độc nhẹ

500-5000

5

Thực tế không độc

5000-15000

6

Không độc

> 15000

Hệ số độc tương đương Để đánh giá độ độc của hỗn hợp chất mà mỗi chất thành phần có độ độc khác nhau (chẳng hạn, đioxin/furan có tới 210 chất đồng phân, đồng loại và tương tự; PCB có 209 chất đồng phân và đồng loại) người ta phải thực hiện sự quy đổi nhờ sử dụng hệ số gọi là “hệ số độc tương đương” (bảng 1.2). Bảng 1.2. Hệ số độc tương đương của một số đồng phân, đồng loại và tương tự của đioxin/furan TT

Tên gọi

Kí hiệu

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

2,3,7,8- Tetraclo đibenzo-p-đioxin 1,2,3,7,8- Pentaclo 1,4,2,3,7,8- Hexaclo 1,6,2,3,7,8- Hexaclo 1,9,2,3,7,8- Hexaclo 1,4,6,2,3,7,8-Heptaclo 1,4,6,9,2,3,7,8-Octaclo 2,3,7,8- Tetraclo đibenzofuran 1,2,3,7,8- Pentaclo 4,2,3,7,8- Pentaclo 1,4,2,3,7,8- Hexaclo 1,6,2,3,7,8- Hexaclo 1,9,2,3,7,8- Hexaclo 4,6,2,3,7,8- Hexaclo 1,4,9,2,3,7,8- Heptaclo 1,4,6,2,3,7,8- Heptaclo 1,4,6,9,2,3,7,8- Octaclo -

2,3,7,8- TeCDD 1,2,3,7,8- PeCDD 1,4,2,3,7,8- HxCDD 1,6,2,3,7,8- HxCDD 1,9,2,3,7,8- HxCDD 1,4,6,2,3,7,8- HPCDD 1,4,6,9,2,3,7,8-OCDD 2,3,7,8- TeCDF 1,2,3,7,8- PeCDF 4,2,3,7,8- PeCDF 1,4,2,3,7,8- HxCDF 1,6,2,3,7,8- HxCDF 1,9,2,3,7,8- HxCDF 4,6,2,3,7,8- HxCDF 1,4,9,2,3,7,8-HpCDF 1,4,6,2,3,7,8- HpCDF 1,4,6,9,2,3,7,8- OCDF

15

Hệ số độc tương đương (đối với người, đ.v.có vú) 1 1 0.1 0.1 0.1 0.01 0.0001 0.1 0.05 0.5 0.1 0.1 0.1 0.1 0.01 0.01 0.0001

Hệ số này được thiết lập bằng cách lựa chọn một chất trong số các chất thành phần làm chuẩn so sánh (thí dụ chọn chất độc nhất, trường hợp ở đây là 2, 3, 7, 8 – TCDD hoặc 1, 2, 3, 7, 8 – PeCDD) và gán cho giá trị 1 (hệ số độc tương đương là 1). Như vậy, hệ số độc tương đương của các chất còn lại sẽ là phân tử số của độc tính quy cho chất chuẩn. Độ độc của hỗn hợp được xem là tổng số độ độc của từng cấu tử thành phần và được gọi là tổng độ độc tương đương: Tổng độ độc tương đương =

n

C F i 1

i

i

Ci và Fi là nồng độ (mg/kg) và hệ số độc tương đương của cấu tử thành phần thứ i. 1.3. Các đặc điểm của phơi nhiễm Các ảnh hưởng độc trong hệ thống sinh học không xẩy ra bởi hóa chất trừ khi tác nhân hóa học hoặc các sản phẩm trao đổi chất của nó (sinh chuyển hóa) đạt tới các vị trí thích hợp ở trong cơ thể với một nồng độ và độ dài thời gian đủ để tạo ra sự biểu lộ độc. Nhiều hóa chất có tính độc tương đối thấp ở dạng ban đầu của nó, nhưng khi bị tác động bởi các enzim trong cơ thể được chuyển hóa thành dạng những chất trung gian cản trở các quá trình sinh lý và sinh hóa bình thường của tế bào. Như vậy, sự đáp ứng độc xẩy ra phụ thuộc vào các tính chất lí, hoá của tác nhân, vào tình trạng phơi nhiễm, vào sự tác nhân được trao đổi chất như thế nào ở trong cơ thể và hơn tất cả là tính nhạy cảm của hệ thống sinh học hoặc đối tượng. 1.3.1. Đường và vị trí phơi nhiễm Các đường chủ yếu để các tác nhân độc đạt tới các vị trí trong cơ thể là đường dạ dày - ruột (tiêu hóa), phổi (hô hấp), da (tầng trên da, biểu mô) và các con đường lây nhiễm cha mẹ khác. Các tác nhân độc nói chung ảnh hưởng lớn nhất và đáp ứng nhanh nhất là được đưa (tiêm) trực tiếp vào dòng máu (đường nội ven). Trật tự giảm dần gần đúng về tính hiệu quả đối với các đường khác nhau có thể là: thở, nội màng bụng, dưới da, nội cơ, nội bì, miệng và da. Các “tá dược lỏng” (vật liệu trong đó hóa chất được hòa tan) và các yếu tố diễn đạt khác có thể làm thay đổi đáng kể sự hấp thụ sau khi ăn, thở hoặc nhiễm qua da. Ngoài ra, đường tiếp nhận có thể ảnh hưởng đến độc tính của tác nhân. Ví dụ, một tác nhân được khử độc ở gan có thể hi vọng ít độc hơn (hoặc độc hơn) khi được đưa vào qua cổng phân phối (miệng) so với khi được đưa vào qua sự lan truyền toàn hệ thống (thở). Sự phơi nhiễm nghề nghiệp chất độc hầu hết là qua đường hô hấp và hoặc qua con đường tiếp xúc da, trong khi đó nhiễm độc tai nạn và tự sát hầu hết thường qua đường miệng.

16

Sự so sánh liều chết của chất độc theo các đường phơi nhiễm khác nhau thường cung cấp những thông tin có ích về qui mô và phạm vi của sự hấp thu. Trong những trường hợp khi liều chết theo đường miệng hoặc da tương tự liều chết theo đường nội ven thì có thể giả thiết là chất độc này được hấp thụ dễ dàng và nhanh. Ngược lại trong các trường hợp liều chết theo đường da cao hơn vài bậc độ lớn so với liều chết miệng, điều đó có lẽ chắc da cung cấp một rào cản hiệu quả đối với sự hấp thụ của chất độc. 1.3.2. Độ dài thời gian và tần suất phơi nhiễm. Các nhà độc học thường chia sự phơi nhiễm các động vật thí nghiệm đối với hóa chất thành bốn loại: nhiễm cấp, cận cấp, cận mãn và mãn (trường diễn). Sự phân loại này dựa vào độ dài thời gian và tần suất phơi nhiễm. Nhiễm cấp: Nhiễm cấp được định nghĩa là sự phơi nhiễm đối với hóa chất trong khoảng thời gian ít hơn 24 giờ (qua các đường nhiễm nội màng bụng, nội ven, tiêm dưới da; trực tiếp miệng, da). Nhiễm cấp thường là sự tiếp nhận liều đơn, sự phơi nhiễm lặp trong vòng 24 giờ cũng được chấp nhận đối với một số hóa chất độc nhẹ hoặc thực tế không độc. Sự nhiễm cấp theo đường hô hấp đối với sự phơi nhiễm liên tục trong vòng ít hơn 24 giờ, hầu hết thường 4 giờ. Sự phơi nhiễm lặp gồm ba loại nhiễm còn lại. Sự nhiễm cận cấp xem là sự nhiễm lập đối với hoá chất kéo dài trong vòng 1 tháng hoặc ít hơn, sự phơi nhiễm cận mãn là từ 1 đến 3 tháng và sự nhiễm mãn là trên 3 tháng. Sự phơi nhiễm mãn tính (nhiễm mãn) là sự nhiễm lặp kéo dài, nên còn gọi là sự nhiễm trường diễn. Đối với người thì độ dài thời gian và tần suất của sự nhiễm không được xác định rõ ràng như trong nghiên cứu đối với động vật. Các sự nhiễm ở nơi làm việc hoặc môi trường được mô tả như là nhiễm cấp (xẩy ra từ vụ việc hoặc tình tiết đơn lẻ), cận mãn (sự nhiễm lặp xẩy ra trong vài tuần hoặc 1 tháng), mãn (sự nhiễm lặp xẩy ra trong nhiều tháng hoặc nhiều năm). Một yếu tố liên quan đến thời gian quan trọng khác của sự phơi nhiễm lặp là tần suất phơi nhiễm. Quan hệ giữa tốc độ đào thải và tần suất phơi nhiễm được chỉ ra ở hình 1.13. Hóa chất A gây ra các ảnh hưởng nghiêm trọng với liều đơn có thể không có ảnh hưởng nếu liều tổng tương tự được chia nhỏ cho nhiễm cách quãng. Hóa chất B có thời gian bán thải (thời gian cần thiết để 50% hóa chất được đào thải khỏi máu) gần bằng tần suất liều, nồng độ độc lý thuyết 2 đơn vị không đạt được cho đến liều thứ tư, trong khi đó nồng độ này đạt được với chỉ hai liều đối với hóa chất A mà chất này có tốc độ đào thải chậm hơn so với khoảng cách thời gian áp liều (thời gian giữa mỗi liều lặp). Ngược lại

17

đối với hóa chất C tốc độ đào thải ngắn hơn nhiều so với khoảng cách thời gian áp liều, nồng độ độc ở vị trí ảnh hưởng độc không khi nào đạt được.

Nång ®é ë vÞ trÝ môc tiªu

LiÒu ®¬n A

LiÒu lÆp Kho¶ng nång ®é ®¸p øng ®éc

A

432-

B

1-

C

B

C Thêi gian

Thêi gian

Hình 1.13. Hình ảnh biểu đồ quan hệ giữa liều và nồng độ ở vị trí mục tiêu dưới những điều kiện khác nhau của tần suất liều và tốc độ đào thải Đường A: hóa chất A có sự đào thải rất thấp (thời gian bán thải 1 năm). Đường B: hóa chất B có tốc độ đào thải bằng tần suất áp liều (ví dụ, 1 ngày). Đường C: tốc độ đào thải nhanh hơn với tần suất áp liều (ví dụ, 5 giờ). 1.4. Tính độc Tính độc về bản chất là ảnh hưởng không mong muốn gây ra cho loài sinh vật bởi hóa chất. Tính độc liên quan chặt chẽ với sự phơi nhiễm hóa chất của loài sinh vật và đặc tính của tác nhân hóa chất. 1.4.1. Tính độc cấp Tính độc cấp (hoặc độc cấp) có thể định nghĩa là tính độc được biểu hiện tức thời sau sự nhiễm thời gian ngắn hóa chất. Theo định nghĩa trên độc cấp bao gồm hai thành tố đi liền nhau: sự nhiễm cấp và ảnh hưởng cấp, nên tính độc cấp còn có thể định nghĩa là tính độc được biểu hiện như là kết quả của sự nhiễm thời gian ngắn đối với chất độc. Đặc điểm của độc cấp là ảnh hưởng tức thời, thời gian nhiễm ngắn, liều nhiễm đơn (cũng có thể là liều nhiễm lặp đối với một số trường hợp như là các hóa chất độc nhẹ hoặc thực tế không độc) và cao. Phạm vi tác động ảnh hưởng của độc cấp nói chung liên quan với tai nạn (như nổ nhà máy hóa chất, đổ tàu hỏa chở hóa chất…), sử dụng thiếu thận trọng thuốc nông dược, 18

ăn uống phải chất độc, vv… Độ độc cấp của hóa chất được đánh giá định lượng bằng các liều LD50 (LC50), ví dụ được nêu trong bảng 1.3. Bảng 1.3. Sự đánh giá độ độc cấp của một số hóa chất đối với cá và động vật hoang dã Cá LC50 (mg/L)

Chim/động vật có vú LD50 (mg/kg)

Hạng độc

Chất ô nhiễm

>100

>5.000

Tương đối không độc

Bari

10-100

500-5.000

Độc vừa

Catmi

1-10

50-500

Rất độc

1,4-Điclobenzen

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF