Geometría III Parabola
September 8, 2022 | Author: Anonymous | Category: N/A
Short Description
Download Geometría III Parabola...
Description
[`evkrsedhd Hfekrth ^hrh Hductis
Hsea`hturh: Akimktríh EEE-KDM 6>5
Tkmh: Ch phrèfich Lhgecethdir: Jiså Ck÷` Vkyks ^hrtegeph`tk: Jucei Gkshr Vidreaukz
Mht. 6>82->6>, Wh`tehai dk cis Ghfhcckris, Vkpúfcegh Dime`egh`h
E`triduggei`
Chs phrèfic phrèfichs hs hphrkgk hphrkgk` ` k` del delkrk` krk`tks tks setuhge setuhgei`ks i`ks dk ch vedh vedh gitede gitedeh`h. h`h. Wk pukdk pukdk hprkgehr gchrhmk`tk guh`di ch`zhmis u` fhc÷` fimfkhdi i aicpkhmis u`h pkcith dk tk`es. K` ch gurvh quk dksgrefk ch pkcith k` su mivemek`ti sk pukdk vkr quk sk trhth dk u`h trhykgtireh phrhf÷cegh. Hc defujhr kstk dkspchzhmek`ti, pidkmis gi`sedkrhr ksth phrèfich gimi ch rkprksk`thge÷` arèlegh dk u`h lu`ge÷` quk hsea`h h ghdh dkspchzhmek`ti birezi`thc nx' ch hcturh ny' hcgh`zhdh pir ch pkcith. [`h vkz se [`h setu tuhdh hdh ch phrèf phrèfic ich h k` ks kstk tk mhrg mhrgi, i, quk quk ks u` se sest stkm kmh h dk giird giirdk`h k`hdh dhs s ghrtkseh`hs, si` vesefcks dis pripekdhdks lu`dhmk`thcks: tek`k u` pu`ti kxtrkmi, quk girrkspi`dk hc e`sth`tk k` kc quk ch pkcith hcgh`zh ch hcturh mèxemh. Kstk pu`ti ks kc vårtegk vårteg k dk ch phrèfich? y ch skau`dh, k` ch quk chs hcturhs h chs quk cckah ch pkcith si` chs mesmhs k` pisegei`ks birezi`thcks kquedesth`tks dk ch hfsgesh dkc vårtegk. ^ir th`ti, ch rkgth phrhckch hc kjk dk irdk`hdhs quk phsh pir kc vårtegk ks kc kjk dk semktríh dk ch phrèfich.
HGTE\E DHD EEE. ^hrèfi ch
8. Bhcchr ch kguhge÷` dk ch phrèfich y gi`struer ch gurvh k` ghdh ghsi. h) \ (6, 7), L (;, 7) 6
( y ∖ o ) =4 p ( x ∖b ) 6
( y ∖ 7) = 4.7 ( x ∖6 ) 6
( y ∖ 7) = 86 ( x ∖6)
f) \ (7, 8), Derkgtrez y = 7, L (7,-8), ^=-6 6
( x ∖b ) =∖4 p ( y ∖o ) 6
( x ∖7 ) =4∑∖6 ( x ∖ 8) 6
( x ∖7 ) =∖2 ( y ∖8 )
g) \ (-4, -7), Derkgtrez x = 6
( y ∖ o ) =∖4 p ( x ∖o ) 6
( x ∖7 ) =4∑8> ( x + 4 ) 6
( x ∖7 ) =∖4> ( y + 4 )
d) \ (4, -6), chdi rkgti = 2, derkgge÷` IR― ^=6 L (>,4) Derkgtrez Derkgtrez y = -4 6
( x ∖b ) = 4 p ( y ∖o ) 6
( x ∖ 4 ) = 2 ( x + 6) 6
( x ∖ 4 ) =2 ( y + 6)
k) ch hfsgesh dkc ligi ks \ (8, -8) y kc kjk dk semktríh ks phrhckci h R9 L (>,>.;) Derkgtrez y=>.; y
6
=6 px 6
(∖8 ) =6 p (8) =6 p
8
p=
8 6
p= >.; 6
( x ∖b ) = 4 p ( y ∖o ) 6
( x ∖8 ) =6 ( x + 8 ) 6
( x ∖8 ) =6 ( y + 8 )
GI@GC[WEI@ Tidh lu`ge÷` guhdrètegh l(x) = hx6 + fx + g , rkprksk`th u`h phrèfich thc quk:
Wu lirmh dkpk`dk kxgcusevhmk`tk dkc giklegek`tk h dk x6.
Cis giklegek`tks f y g trhschdh` ch phrèfich h ezquekrdh, dkrkgbh, hrrefh i hfhji.
We h 0 > , chs rhmhs vh` bhgeh hrrefh y se h 3 > , bhgeh hfhji.
Guh`ti mès arh`dk skh kc vhcir hfsicuti dk h, mès gkrrhdh ks ch phrèfich.
Kxestk u` ú`egi pu`ti dk girtk gi` kc kjk U, quk ks kc (>, y) i (>, g).
Cis girtks gi` kc kjk R sk iftek`k` rksicvek`di ch kguhge÷` hx6 + fx + g=> , pudek`di igurrer quk ci girtk k` dis pu`tis, k` u`i i k` `e`au`i. Ch premkrh giirdk`hdh dkc vårtegk ks Rv = -f/6h.
View more...
Comments