Report Title:
Power Plants
Evaluation of ORC/steam turbine cycle and ? with KTH
DocID:
DAAB525315
Revision:
-.3
Created by:
Anders Ahnger / 16-Nov-2005
Status:
Draft
Draft by:
Anders Ahnger / 16-Nov-2005
Pages:
1 (1)
Project:
IN023 - WFI-P PPTECH
Description:
Projekt for KTH studenter 1) Organic Rankin Cycle (ORC) för gas motordrivna kraftvärmeanläggningar Bakgrund:
Wärtsilä levererar idag ca. 50 gasmotordrivna kraftverk per år. Gas motorerna som används är Wärtsilä 20V34SG på 8,7 MWe eleffekt eller Wärtsilä 18V50DF på 16,6 MWe eleffekt. Antalet motorer per kraftverk varierar i allmänhet mellan 1-6 st. och är beroende på kundens önskemål. För att öka kraftverksinvesteringens lönsamhet och i länder med högt el-pris evalueras ofta möjligheter till tilläggsgenerering av el med att utrusta motorkraftverket med en ångturbincykel, där motorernas avgas- och andra rest-energier utnyttjas. På senare tid har även Organic Rankin Cycle (ORC) tekniken kommit starkt in i bilden och leverantörer av denna teknik påstår att ORC:n är en bättre lösning än den konventionella ångturbincykeln speciellt för mindre kraftverk, typ Wärtsiläs gasmotorer med relativt låga temperaturer på motorns restvärmeflöden.
Frågeställning:
Wärtsilä bör veta mera om ORC tekniken, veta i vilka fall den kan användas, när den är konkurrenskraftig gentemot en ångturbincykel och veta i vilka fall denna teknik kan rekommenderas för kunder (ett klart ställningstagande i frågan). Wärtsilä skall även kunna offerera dylik teknik som en del av en kraftverksleverans samt veta vilka relevanta leverantörer finns på marknaden.
Utgångsläge:
Som bas för evalueringen tas två olika kraftverkalternativ, a) kraftverk med 2 stycken W20V34SG motorer b) kraftverk med 3 stycken W18V50DF. Tekniska data på motorerna finns på Wärtsiläs Internet sidor. Tekniska data på ångcykeln samt ORC:n måste sökas hos leverantörer för utrustningen. Evalueringen görs så att ORC tekniken jämförs tekniskt och ekonomiskt med den vanliga ångturbincykeln för de två alternativa kraftverken.
Målsättning:
Målsättningen för Wärtsilä är att få ett grepp på vilka är de kriterier som bör uppfyllas för att ORC tekniken kan föredras gentemot ångturbincykeln.
Wärtsilä-kontakt:
Thomas Stenhede,
[email protected], Anders Ahnger,
[email protected]
Gas Engine & CHP Plants Anders Ahnger General Manager Combined Heat & Power
© Wärtsilä
The Gas Engines
© Wärtsilä
2
Wärtsilä® 34SG Wärtsilä Gas Engine Portfolio 2004: Type
Output 50Hz Output 60 Hz
12V34SGA 18V34SGA (9R34SGB
3995 kWe 5993 kWe 3925 kWe
3821 kWe 5732 kWe 3800 kWe)
16V34SGB 20V34SGB
6984 kWe 8730 kWe
6752 kWe 8440 kWe
DF engines:
18V32DF 18V50DF
6080 kWe 16638 kWe
5819 kWe 16638 kWe
GD engines
12V32GD 16V32GD 18V32GD
4339 kWe 5808 kWe 6534 kWe
4282 kWe 5731 kWe 6447 kWe
SG engines:
SG = Spark Ignited, lean-burn (otto principle) & low pressure natural gas engine DF = Pilot Fuel Ignited, lean burn (otto principle) & low pressure natural gas engine GD = Dual Fuel Diesel engine (diesel principle) & high pressure gas © Wärtsilä
3
SG engine BMEP development
W34SGB 450 kW/cyl 345 kW/cyl 400 kW/cyl
W34SGA
315 kW/cyl
W25SG
© Wärtsilä
4
SG engine efficiency development
W34SGB W34SGA
W25SG
© Wärtsilä
5
Wärtsilä® 34SG Wärtsilä 20V34SG Engine Design Based on the new Wärtsilä 32 diesel engine Combustion technology same as the well proven 18V34SG Reliability and easy maintenance in focus Integrated channels for Lubricating Oil and Cooling Water On engine built Lubricating oil module ( pumps, heat exchanger, filters etc) Designed for modern manufacturing methods © Wärtsilä
6
Wärtsilä 18V34SG & 20V34SG Main technical data
W18V34SGA
W20V34SGB
Cylinder bore
340 mm
340 mm
Piston stroke
350 mm
400 mm
Engine speed
720/750 rpm
720/750 rpm
Mean piston speed
8.4/8.75 m/s
9.6/10.0 m/s
17.4 bar
19.8 bar
Mean effective pressure Engine output
© Wärtsilä
5940 / 6210 kW
7
8700 / 9000 kW
Wärtsilä 18V34SG & 20V34SG
!"
!"
** ****** * * *** ** * ** * *
© Wärtsilä
8
!"
Wärtsilä 18V34SG & 20V34SG Lean Burn Concept Ported gas admission Air/fuel mixture ignited by a spark plug in the pre-chamber Electrically controlled prechamber gas duration – W18V34SG Mechanically controlled prechamber gas duration – W20V34SG Electronically controlled gas valves for main gas duration Individual and cylinder wise control of combustion
© Wärtsilä
9
Prechamber gas admission #
#
%$& " !
'
"
"
Maintenace interval 1000 h (cleaning) © Wärtsilä
Maintenace interval > 4000 hours 10
Main gas valve location
W20V34SGB
W18V34SGA
© Wärtsilä
11
WECS - Engine control system
Sensors connected to IOM module(s)
cylinder control modules
Main cabinet
Ethernet (& profibus) to ext. systems CAN-bus IOM in/out module(s)
H:\PDFOL\W34SG\34-9625.PPT - UÅd 21.10.1996 (Updated 10.03.1998 UÅd) © Wärtsilä
12
Wärtsilä 18V34SG (
© Wärtsilä
)
13
Wärtsilä® 20V34SG (
)
Engine compression ratio 12.0:1 Heat rate at generator Electrical efficiency NOx ( as NO2) CO THC ( as CH4)
High efficiency
kJ/kWh % mg/m3N at 5 % O2, dry mg/m3N at 5 % O2, dry mg/m3N at 5 % O2, wet
Low NOx
8265 43.6 500 750 1500
8120 44.3 500 750 1500
8455 42.6 250 1200 2500
8510 42.3 500 750 1200
8300 43.4 500 750 1200
8710 41.3 250 1200 2200
8360 43.1 250 1200 2500
Engine compression ratio 11.0:1 Heat rate at generator Electrical efficiency NOx ( as NO2) CO THC ( as CH4) # $ !% &
© Wärtsilä
% $
'
' (
kJ/kWh % mg/m3N at 5 % O2, dry mg/m3N at 5 % O2, dry mg/m3N at 5 % O2, wet ) *
' $ *
+ , - . /
'
14
*
+
0
8550 42.1 250 1200 2200
Combined Heat & Power, CHP
*
" *
© Wärtsilä
+
, -
0,
0
15
.* + ,/ 0
1
Wärtsiläs CHP plants
2
(
*+ ,
+
((
3 -
4 0
0
"
-
0
1 (
5
((
0
((
6 "
&
7 " -
0( 7 8
( -
(
&
" (
-
(
7
' (
2 © Wärtsilä
-
1 (
5
1
16
0
(
)
Combined Heat & Power, CHP Power plant for pure power production Performance W18V34SG: Power output: 6000 kWe Electrical efficiency: 44%
© Wärtsilä
17
Combined Heat & Power, CHP Energy sources available for heat recovery The Customers requirements & needs - To be checked !
Engine heat balance
Exhaust gas at
~400 °C / 32 -33 %
Steam, hot water, chilled water, thermal oil or desalination? Heat load versus el-load ?
Jacket water at
~90 °C /
6,6 %
HT charge air at
~100 °C /
4,7 %
Lubrication oil at
~60 °C /
5,1 %
LT charge air at
~40 °C /
3,6 %
Intended running philosophy & Control Philosophy ?
Generator cooling at~35 °C /
1,5 %
Pressures, pressure variations ?
What kind of industrial process ? Existing boilers & equipment ?
Temperatures, temperature variations ?
The Heat Recovery System - Optimised to the customers process requirements © Wärtsilä
18
Can the engine low grade energy be used ? etc.
Combined Heat & Power, CHP CHP plant for power, steam Performance: W18V34SG % $
Power output: 6000 kWe *
Electrical efficiency: 43.4%
+ 2
Steam 9 bar sat: 3.6 ton/h Hot water 90/50 C: 2350 kWth
% $ 1
$*
Total efficiency: 77%
- 2
* * *
) # ) 4
© Wärtsilä
19
. * $ 3 * + 2
$
Combined Heat & Power, CHP CHP, Hot Water generation & District Heating !"# $ # %
Electricity output
&
' ! # $
Natural gas input Central heat exchanger Charge air first stage Lube oil Charge air second stage
Cooling radiator
© Wärtsilä
20
DHconsumers
Combined Heat & Power, CHP Optimal heat recovery of a hot water CHP plant
© Wärtsilä
21
Combined Heat & Power, CHP Engine Aux. Module with Heat recovery, EAM + CHP module Engine Auxilliary Module (EAM) CHP Module
Wärtsilä 20V34SG
© Wärtsilä
22
Combined Heat & Power, CHP Tri-Generation (CHP) $ "$ !! & *
! !% & " ' ! " +
" # " () $
! *
&
"$ " ! ,
- " # ( $ !" " ( * 0 % & " 1( 2 $ 3 & 42 3 $ * & 61 % "$ !! 7 5< , ; "$ !! & "$ !! & *
(% " ! %%! "
. "$ !! & * ) /" !" " & ($ * 5 1 % "$ !! # "" & 89 &" # & 1( <
: &
( %
% ;& (" %
& "
)
&4 # 2500 m
(25°C)
Gas feeding pressure
> 4,5 bar(g)
Exhaust gas back pressure & air inlet pressure drop
up to 7 kPa
Above values can vary according to the engine optimization, compression ratio and gas quality
© Wärtsilä
32
Gas Engines ”Hot & Dry conditions” •
Wärtsilä reciprocating engines offer stable output and high performance in hot and dry conditions. No water consumed for plant cooling! •
1.05
Derating due to cooling water temperature. Derating due to inlet air temperature starts at 40C
Derating factor
1
20V34SG (radiator cooling)
0.95
18V50DF (radiator cooling)
0.9 Aeroderivate Gas turbine
No water consumption with radiator cooling! 0.85
Industrial Gas turbine 0.8 15
20
Source: GE Ger-3567 Ger-3695; Wärtsilä perf
© Wärtsilä
25
30 Ambient temperature [C]
33
35
40
45
Gas Engines High Altitude •
Wärtsilä reciprocating engines offer stable output and high performance high altitudes as well. •
1.1
1.05 1 18V50DF (radiator cooling)
Derating factor
0.95
20V34SG (radiator cooling)
18V32GD (radiator cooling)
0.9 0.85 0.8
Industrial Gas turbine 0.75 0.7
Aeroderivate Gas turbine
0.65 0
500
Source: Termoflow calculation program; Wärtsilä perf
© Wärtsilä
1000
1500 Altitude [m]
34
2000
2500
3000
Gas Engines Part Load Performance •
The high part load efficiency of one unit if further improved in multi-unit installations. •
45% 40%
5 x 20V34SG
Electrical efficiency (%)
35%
Industrial GT
30% 25% 20% 15% 10% 5% 0% 0
5
Source: Alstom product broschure 01; Wärtsilä perf
© Wärtsilä
10
15
20
25
Plant Electrical Power (MW)
35
30
35
40
Gas Turbine vs. Gas Engine
Heat rate change
Gas turbine and gas engine ageing influence on performance %
3
Industrial gas turbine
2
GT Major overhaul
GT Hot section overhaul
GT Hot section overhaul
LM2500
1 Wärtsilä gas engine
0 0
10000
20000
40000
50000
60000
70000
80000
Gas engine overhaul
-1
Output change
30000
Output will remain unchanged for gas engines
-2 -3
LM2500
-4 -5 -6
© Wärtsilä
Industrial gas turbine Source: GE GER-3965/GER-4208; Wärtsilä
36
90000
Running hours [h]
Gas Engines Start-up times •
Every unit in a reciprocating engine plant has the flexibility to operate in peaking, back-up and reserve power markets, making fast production changes possible. •
100
1000
90
900
80
800
70
700
60
600
50
500
40
400
30
300
20
200
10
100
0
0 0
1
2
3
4
5
6
Time (min) Load
© Wärtsilä
37
Speed
7
8
9
10
Speed (rpm)
Load (%)
Typical start-up procedure with 20V34SG
Operations & Service
3
0
2 -0
© Wärtsilä
( 0
38
1
Service Products
Service Agreements
Field Service
Workshops
Technical Support
Training
O&M Systems
OEM Parts
Upgrades
© Wärtsilä
39
Lifecycle cost Levelised unit cost split Insurance cost Interest
Example case: 100 MW Power Plant over 15 years
ROE Fuel cost Loan repayment O&M cost
© Wärtsilä
40
Service schedules Job & Service times – 1 x Wärtsilä 34SG / 8000 hours/year Interval 50 50 500 500 1 000 1 000 1 000 1 000 2 000 2 000 2 000
Description Various interval 50h jobs Water cleaning of compressor Take oil Sample (engine) Check water quality Regrease prelubricating oil pump Cleaning of TC air filters Clean and check the condition of the ignition coil Replace spark plugs Regrease the drive shaft of turning device Change lubricating oil Check valve clearances
Men req.
Total time
No. of jobs
Tot. service time
1 1 1 1 1 1 1 1 1 1 1
1,50 0,38 0,75 1,50 0,15 3,00 1,50 1,50 0,15 9,00 7,50
2 400 2 400 240 240 120 120 120 120 60 60 60
3 600,0 900,0 180,0 360,0 18,0 360,0 180,0 180,0 9,0 540,0 450,0
:
:
:
:
:
:
48 000 48 000 64 000 96 000 96 000
Check flexible coupling, replace spring packs Check flexible elements of engine foundation Replace piston Replace cylinder head Replace cylinder liners
2 1 1 1 1
30,00 3,24 90,00 45,00 15,00
2 2 1 1 1
60,0 6,5 90,0 45,0 15,0
© Wärtsilä
41
Service schedules Maintenance costs – 1 x Wärtsilä 20V34SG / 8000 hours/year Labour Spare parts
Cost /Euro 1 000 000 900 000 800 000 700 000 600 000 500 000 400 000
1
300 000 200 000 100 000 0 1
2
3
4
5
6
7
8
9
10
11
12
Year
Costs are based upon standard technical specification and are for guidance only
© Wärtsilä
42
13
14
15
Service schedules Maintenance costs – 1 x Wärtsilä 20V34SG / 8000 hours/year
Year Start up: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Summary
Running hours 0 8 000 16 000 24 000 32 000 40 000 48 000 56 000 64 000 72 000 80 000 88 000 96 000 104 000 112 000 120 000
Spare part costs €
Labour costs €
Total costs €
Costs per MWh € /MWh
Costs / Rh/eng €
9 180 88 477 33 873 200 595 13 744 204 355 9 180 431 209 45 391 83 913 13 744 838 187 9 180 88 477 45 391
36 448 96 730 41 755 95 199 39 841 100 942 36 448 95 112 41 755 93 337 39 841 82 794 36 448 96 730 41 755
45 627 185 207 75 628 295 793 53 585 305 297 45 627 526 321 87 146 177 250 53 585 920 981 45 627 185 207 87 146
0,65 2,65 1,08 4,24 0,77 4,37 0,65 7,54 1,25 2,54 0,77 13,19 0,65 2,65 1,25
5,70 23,15 9,45 36,97 6,70 38,16 5,70 65,79 10,89 22,16 6,70 115,12 5,70 23,15 10,89
2 114 894
975 133
3 090 027
2,95
25,75
Costs are based upon standard technical specification and are for guidance only © Wärtsilä
43
O&M Reference Projects
Cementos Diamante, Colombia Main data: MW capacity Prime movers COD Term of O&M contract
25 MW 5 x 18V34SG October, 1998 15 years
Operational data in December 2004 Running hours Efficiency (gross) (net) Availability Reliability Utilisation factor Capacity factor Load factor © Wärtsilä
44
(COD) Commercial Operation Date
42000 h (mean value) 40,3 % 39,5 % 96,1 % 99,2 % 97,8 % 82,9 % 88,2 %
O&M Reference Projects Cementos Diamante, Colombia Since the start of operation, the power plant has provided the cement plant with substantial savings in energy costs. The power plant operates in parallel with the grid but has the ability to run independently should there be grid problems. Up to May 2004, the power plant has operated 574 times in island mode due the disturbances in grid supply. This reliability in energy supply ensures an uninterrupted cement production
© Wärtsilä
45
Wärtsilä 34SG references Owner: PG&E National Energy Group Location: Plains End, Colorado, USA Engine: 20 x Wärtsilä 18V34SG Output: 111 MWe COD of the project *) Terms of O&M contract
May 2002 5 years
*) (COD) Commercial Operation Date
© Wärtsilä
46
Plains End
99,9 99,8 99,7 99,6 99,5 99,4 99,3 99,2
© Wärtsilä
Jan Feb Mar Apr May Jun Jul Aug Sep Oct
47
Reference list – W18V34SG #
# First plant delivered 1995 to city of Gram, Denmark. 1 x W18V34SG Totally 72 Plants delivered with 184 engines, totally 1044 MWe 10 plants above 30 MWe size 43 CHP plants with 77 engines, 442 MWe Biggest plant delivered: Plains End in USA 20 x W18V34SG, 113,4 MWe (peaking)
© Wärtsilä
48
Reference list – W20V34SG #
# $% # # # # # # # # # # # # # / /
$
% +! -.
$ $ $ $ $ $ $ $ 7$ $ + $
. . . . . . . .
& ,
'
) ! ) ( ,! $( . !% & ( 6
! ' ! ( (
) (* ' -
) ( )0 & ) &!1 2 3! 4 5( ' 4$ ! 4 1 ,7+ 8 9 1 '! % + 4 % &+++
" #
/ #
First plant delivered 2001 to city of Ringköping,1Denmark. 1 x W20V34SG . & 1
(
/ /
Totally 28 plants with 78 engines, totally 662 MWe .
4 ! !: ! * ; ); =5 ) 0