Gas and Fuel Chp Wartsilar

December 26, 2017 | Author: Smart Lau | Category: Cogeneration, Internal Combustion Engine, Vehicle Parts, Mechanical Engineering, Engines
Share Embed Donate


Short Description

combined heat&power...

Description

Report Title:

Power Plants

Evaluation of ORC/steam turbine cycle and ? with KTH

DocID:

DAAB525315

Revision:

-.3

Created by:

Anders Ahnger / 16-Nov-2005

Status:

Draft

Draft by:

Anders Ahnger / 16-Nov-2005

Pages:

1 (1)

Project:

IN023 - WFI-P PPTECH

Description:

Projekt for KTH studenter 1) Organic Rankin Cycle (ORC) för gas motordrivna kraftvärmeanläggningar Bakgrund:

Wärtsilä levererar idag ca. 50 gasmotordrivna kraftverk per år. Gas motorerna som används är Wärtsilä 20V34SG på 8,7 MWe eleffekt eller Wärtsilä 18V50DF på 16,6 MWe eleffekt. Antalet motorer per kraftverk varierar i allmänhet mellan 1-6 st. och är beroende på kundens önskemål. För att öka kraftverksinvesteringens lönsamhet och i länder med högt el-pris evalueras ofta möjligheter till tilläggsgenerering av el med att utrusta motorkraftverket med en ångturbincykel, där motorernas avgas- och andra rest-energier utnyttjas. På senare tid har även Organic Rankin Cycle (ORC) tekniken kommit starkt in i bilden och leverantörer av denna teknik påstår att ORC:n är en bättre lösning än den konventionella ångturbincykeln speciellt för mindre kraftverk, typ Wärtsiläs gasmotorer med relativt låga temperaturer på motorns restvärmeflöden.

Frågeställning:

Wärtsilä bör veta mera om ORC tekniken, veta i vilka fall den kan användas, när den är konkurrenskraftig gentemot en ångturbincykel och veta i vilka fall denna teknik kan rekommenderas för kunder (ett klart ställningstagande i frågan). Wärtsilä skall även kunna offerera dylik teknik som en del av en kraftverksleverans samt veta vilka relevanta leverantörer finns på marknaden.

Utgångsläge:

Som bas för evalueringen tas två olika kraftverkalternativ, a) kraftverk med 2 stycken W20V34SG motorer b) kraftverk med 3 stycken W18V50DF. Tekniska data på motorerna finns på Wärtsiläs Internet sidor. Tekniska data på ångcykeln samt ORC:n måste sökas hos leverantörer för utrustningen. Evalueringen görs så att ORC tekniken jämförs tekniskt och ekonomiskt med den vanliga ångturbincykeln för de två alternativa kraftverken.

Målsättning:

Målsättningen för Wärtsilä är att få ett grepp på vilka är de kriterier som bör uppfyllas för att ORC tekniken kan föredras gentemot ångturbincykeln.

Wärtsilä-kontakt:

Thomas Stenhede, [email protected], Anders Ahnger, [email protected]

Gas Engine & CHP Plants Anders Ahnger General Manager Combined Heat & Power

© Wärtsilä

The Gas Engines

© Wärtsilä

2

Wärtsilä® 34SG Wärtsilä Gas Engine Portfolio 2004: Type

Output 50Hz Output 60 Hz

12V34SGA 18V34SGA (9R34SGB

3995 kWe 5993 kWe 3925 kWe

3821 kWe 5732 kWe 3800 kWe)

16V34SGB 20V34SGB

6984 kWe 8730 kWe

6752 kWe 8440 kWe

DF engines:

18V32DF 18V50DF

6080 kWe 16638 kWe

5819 kWe 16638 kWe

GD engines

12V32GD 16V32GD 18V32GD

4339 kWe 5808 kWe 6534 kWe

4282 kWe 5731 kWe 6447 kWe

SG engines:

SG = Spark Ignited, lean-burn (otto principle) & low pressure natural gas engine DF = Pilot Fuel Ignited, lean burn (otto principle) & low pressure natural gas engine GD = Dual Fuel Diesel engine (diesel principle) & high pressure gas © Wärtsilä

3

SG engine BMEP development

W34SGB 450 kW/cyl 345 kW/cyl 400 kW/cyl

W34SGA

315 kW/cyl

W25SG

© Wärtsilä

4

SG engine efficiency development

W34SGB W34SGA

W25SG

© Wärtsilä

5

Wärtsilä® 34SG Wärtsilä 20V34SG Engine Design Based on the new Wärtsilä 32 diesel engine Combustion technology same as the well proven 18V34SG Reliability and easy maintenance in focus Integrated channels for Lubricating Oil and Cooling Water On engine built Lubricating oil module ( pumps, heat exchanger, filters etc) Designed for modern manufacturing methods © Wärtsilä

6

Wärtsilä 18V34SG & 20V34SG Main technical data

W18V34SGA

W20V34SGB

Cylinder bore

340 mm

340 mm

Piston stroke

350 mm

400 mm

Engine speed

720/750 rpm

720/750 rpm

Mean piston speed

8.4/8.75 m/s

9.6/10.0 m/s

17.4 bar

19.8 bar

Mean effective pressure Engine output

© Wärtsilä

5940 / 6210 kW

7

8700 / 9000 kW

Wärtsilä 18V34SG & 20V34SG

!"

!"

** ****** * * *** ** * ** * *

© Wärtsilä

8

!"

Wärtsilä 18V34SG & 20V34SG Lean Burn Concept Ported gas admission Air/fuel mixture ignited by a spark plug in the pre-chamber Electrically controlled prechamber gas duration – W18V34SG Mechanically controlled prechamber gas duration – W20V34SG Electronically controlled gas valves for main gas duration Individual and cylinder wise control of combustion

© Wärtsilä

9

Prechamber gas admission #

#

%$& " !

'

"

"

Maintenace interval 1000 h (cleaning) © Wärtsilä

Maintenace interval > 4000 hours 10

Main gas valve location

W20V34SGB

W18V34SGA

© Wärtsilä

11

WECS - Engine control system

Sensors connected to IOM module(s)

cylinder control modules

Main cabinet

Ethernet (& profibus) to ext. systems CAN-bus IOM in/out module(s)

H:\PDFOL\W34SG\34-9625.PPT - UÅd 21.10.1996 (Updated 10.03.1998 UÅd) © Wärtsilä

12

Wärtsilä 18V34SG (

© Wärtsilä

)

13

Wärtsilä® 20V34SG (

)

Engine compression ratio 12.0:1 Heat rate at generator Electrical efficiency NOx ( as NO2) CO THC ( as CH4)

High efficiency

kJ/kWh % mg/m3N at 5 % O2, dry mg/m3N at 5 % O2, dry mg/m3N at 5 % O2, wet

Low NOx

8265 43.6 500 750 1500

8120 44.3 500 750 1500

8455 42.6 250 1200 2500

8510 42.3 500 750 1200

8300 43.4 500 750 1200

8710 41.3 250 1200 2200

8360 43.1 250 1200 2500

Engine compression ratio 11.0:1 Heat rate at generator Electrical efficiency NOx ( as NO2) CO THC ( as CH4) # $ !% &

© Wärtsilä

% $

'

' (

kJ/kWh % mg/m3N at 5 % O2, dry mg/m3N at 5 % O2, dry mg/m3N at 5 % O2, wet ) *

' $ *

+ , - . /

'

14

*

+

0

8550 42.1 250 1200 2200

Combined Heat & Power, CHP

*

" *

© Wärtsilä

+

, -

0,

0

15

.* + ,/ 0

1

Wärtsiläs CHP plants

2

(

*+ ,

+

((

3 -

4 0

0

"

-

0

1 (

5

((

0

((

6 "

&

7 " -

0( 7 8

( -

(

&

" (

-

(

7

' (

2 © Wärtsilä

-

1 (

5

1

16

0

(

)

Combined Heat & Power, CHP Power plant for pure power production Performance W18V34SG: Power output: 6000 kWe Electrical efficiency: 44%

© Wärtsilä

17

Combined Heat & Power, CHP Energy sources available for heat recovery The Customers requirements & needs - To be checked !

Engine heat balance

Exhaust gas at

~400 °C / 32 -33 %

Steam, hot water, chilled water, thermal oil or desalination? Heat load versus el-load ?

Jacket water at

~90 °C /

6,6 %

HT charge air at

~100 °C /

4,7 %

Lubrication oil at

~60 °C /

5,1 %

LT charge air at

~40 °C /

3,6 %

Intended running philosophy & Control Philosophy ?

Generator cooling at~35 °C /

1,5 %

Pressures, pressure variations ?

What kind of industrial process ? Existing boilers & equipment ?

Temperatures, temperature variations ?

The Heat Recovery System - Optimised to the customers process requirements © Wärtsilä

18

Can the engine low grade energy be used ? etc.

Combined Heat & Power, CHP CHP plant for power, steam Performance: W18V34SG % $

Power output: 6000 kWe *

Electrical efficiency: 43.4%

+ 2

Steam 9 bar sat: 3.6 ton/h Hot water 90/50 C: 2350 kWth

% $ 1

$*

Total efficiency: 77%

- 2

* * *

) # ) 4

© Wärtsilä

19

. * $ 3 * + 2

$

Combined Heat & Power, CHP CHP, Hot Water generation & District Heating !"# $ # %

Electricity output

&

' ! # $

Natural gas input Central heat exchanger Charge air first stage Lube oil Charge air second stage

Cooling radiator

© Wärtsilä

20

DHconsumers

Combined Heat & Power, CHP Optimal heat recovery of a hot water CHP plant

© Wärtsilä

21

Combined Heat & Power, CHP Engine Aux. Module with Heat recovery, EAM + CHP module Engine Auxilliary Module (EAM) CHP Module

Wärtsilä 20V34SG

© Wärtsilä

22

Combined Heat & Power, CHP Tri-Generation (CHP) $ "$ !! & *

! !% & " ' ! " +

" # " () $

! *

&

"$ " ! ,

- " # ( $ !" " ( * 0 % & " 1( 2 $ 3 & 42 3 $ * & 61 % "$ !! 7 5< , ; "$ !! & "$ !! & *

(% " ! %%! "

. "$ !! & * ) /" !" " & ($ * 5 1 % "$ !! # "" & 89 &" # & 1( <

: &

( %

% ;& (" %

& "

)

&4 # 2500 m

(25°C)

Gas feeding pressure

> 4,5 bar(g)

Exhaust gas back pressure & air inlet pressure drop

up to 7 kPa

Above values can vary according to the engine optimization, compression ratio and gas quality

© Wärtsilä

32

Gas Engines ”Hot & Dry conditions” •

Wärtsilä reciprocating engines offer stable output and high performance in hot and dry conditions. No water consumed for plant cooling! •

1.05

Derating due to cooling water temperature. Derating due to inlet air temperature starts at 40C

Derating factor

1

20V34SG (radiator cooling)

0.95

18V50DF (radiator cooling)

0.9 Aeroderivate Gas turbine

No water consumption with radiator cooling! 0.85

Industrial Gas turbine 0.8 15

20

Source: GE Ger-3567 Ger-3695; Wärtsilä perf

© Wärtsilä

25

30 Ambient temperature [C]

33

35

40

45

Gas Engines High Altitude •

Wärtsilä reciprocating engines offer stable output and high performance high altitudes as well. •

1.1

1.05 1 18V50DF (radiator cooling)

Derating factor

0.95

20V34SG (radiator cooling)

18V32GD (radiator cooling)

0.9 0.85 0.8

Industrial Gas turbine 0.75 0.7

Aeroderivate Gas turbine

0.65 0

500

Source: Termoflow calculation program; Wärtsilä perf

© Wärtsilä

1000

1500 Altitude [m]

34

2000

2500

3000

Gas Engines Part Load Performance •

The high part load efficiency of one unit if further improved in multi-unit installations. •

45% 40%

5 x 20V34SG

Electrical efficiency (%)

35%

Industrial GT

30% 25% 20% 15% 10% 5% 0% 0

5

Source: Alstom product broschure 01; Wärtsilä perf

© Wärtsilä

10

15

20

25

Plant Electrical Power (MW)

35

30

35

40

Gas Turbine vs. Gas Engine

Heat rate change

Gas turbine and gas engine ageing influence on performance %

3

Industrial gas turbine

2

GT Major overhaul

GT Hot section overhaul

GT Hot section overhaul

LM2500

1 Wärtsilä gas engine

0 0

10000

20000

40000

50000

60000

70000

80000

Gas engine overhaul

-1

Output change

30000

Output will remain unchanged for gas engines

-2 -3

LM2500

-4 -5 -6

© Wärtsilä

Industrial gas turbine Source: GE GER-3965/GER-4208; Wärtsilä

36

90000

Running hours [h]

Gas Engines Start-up times •

Every unit in a reciprocating engine plant has the flexibility to operate in peaking, back-up and reserve power markets, making fast production changes possible. •

100

1000

90

900

80

800

70

700

60

600

50

500

40

400

30

300

20

200

10

100

0

0 0

1

2

3

4

5

6

Time (min) Load

© Wärtsilä

37

Speed

7

8

9

10

Speed (rpm)

Load (%)

Typical start-up procedure with 20V34SG

Operations & Service

3

0

2 -0

© Wärtsilä

( 0

38

1

Service Products

Service Agreements

Field Service

Workshops

Technical Support

Training

O&M Systems

OEM Parts

Upgrades

© Wärtsilä

39

Lifecycle cost Levelised unit cost split Insurance cost Interest

Example case: 100 MW Power Plant over 15 years

ROE Fuel cost Loan repayment O&M cost

© Wärtsilä

40

Service schedules Job & Service times – 1 x Wärtsilä 34SG / 8000 hours/year Interval 50 50 500 500 1 000 1 000 1 000 1 000 2 000 2 000 2 000

Description Various interval 50h jobs Water cleaning of compressor Take oil Sample (engine) Check water quality Regrease prelubricating oil pump Cleaning of TC air filters Clean and check the condition of the ignition coil Replace spark plugs Regrease the drive shaft of turning device Change lubricating oil Check valve clearances

Men req.

Total time

No. of jobs

Tot. service time

1 1 1 1 1 1 1 1 1 1 1

1,50 0,38 0,75 1,50 0,15 3,00 1,50 1,50 0,15 9,00 7,50

2 400 2 400 240 240 120 120 120 120 60 60 60

3 600,0 900,0 180,0 360,0 18,0 360,0 180,0 180,0 9,0 540,0 450,0

:

:

:

:

:

:

48 000 48 000 64 000 96 000 96 000

Check flexible coupling, replace spring packs Check flexible elements of engine foundation Replace piston Replace cylinder head Replace cylinder liners

2 1 1 1 1

30,00 3,24 90,00 45,00 15,00

2 2 1 1 1

60,0 6,5 90,0 45,0 15,0

© Wärtsilä

41

Service schedules Maintenance costs – 1 x Wärtsilä 20V34SG / 8000 hours/year Labour Spare parts

Cost /Euro 1 000 000 900 000 800 000 700 000 600 000 500 000 400 000

1

300 000 200 000 100 000 0 1

2

3

4

5

6

7

8

9

10

11

12

Year

Costs are based upon standard technical specification and are for guidance only

© Wärtsilä

42

13

14

15

Service schedules Maintenance costs – 1 x Wärtsilä 20V34SG / 8000 hours/year

Year Start up: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Summary

Running hours 0 8 000 16 000 24 000 32 000 40 000 48 000 56 000 64 000 72 000 80 000 88 000 96 000 104 000 112 000 120 000

Spare part costs €

Labour costs €

Total costs €

Costs per MWh € /MWh

Costs / Rh/eng €

9 180 88 477 33 873 200 595 13 744 204 355 9 180 431 209 45 391 83 913 13 744 838 187 9 180 88 477 45 391

36 448 96 730 41 755 95 199 39 841 100 942 36 448 95 112 41 755 93 337 39 841 82 794 36 448 96 730 41 755

45 627 185 207 75 628 295 793 53 585 305 297 45 627 526 321 87 146 177 250 53 585 920 981 45 627 185 207 87 146

0,65 2,65 1,08 4,24 0,77 4,37 0,65 7,54 1,25 2,54 0,77 13,19 0,65 2,65 1,25

5,70 23,15 9,45 36,97 6,70 38,16 5,70 65,79 10,89 22,16 6,70 115,12 5,70 23,15 10,89

2 114 894

975 133

3 090 027

2,95

25,75

Costs are based upon standard technical specification and are for guidance only © Wärtsilä

43

O&M Reference Projects

Cementos Diamante, Colombia Main data: MW capacity Prime movers COD Term of O&M contract

25 MW 5 x 18V34SG October, 1998 15 years

Operational data in December 2004 Running hours Efficiency (gross) (net) Availability Reliability Utilisation factor Capacity factor Load factor © Wärtsilä

44

(COD) Commercial Operation Date

42000 h (mean value) 40,3 % 39,5 % 96,1 % 99,2 % 97,8 % 82,9 % 88,2 %

O&M Reference Projects Cementos Diamante, Colombia Since the start of operation, the power plant has provided the cement plant with substantial savings in energy costs. The power plant operates in parallel with the grid but has the ability to run independently should there be grid problems. Up to May 2004, the power plant has operated 574 times in island mode due the disturbances in grid supply. This reliability in energy supply ensures an uninterrupted cement production

© Wärtsilä

45

Wärtsilä 34SG references Owner: PG&E National Energy Group Location: Plains End, Colorado, USA Engine: 20 x Wärtsilä 18V34SG Output: 111 MWe COD of the project *) Terms of O&M contract

May 2002 5 years

*) (COD) Commercial Operation Date

© Wärtsilä

46

Plains End

99,9 99,8 99,7 99,6 99,5 99,4 99,3 99,2

© Wärtsilä

Jan Feb Mar Apr May Jun Jul Aug Sep Oct

47

Reference list – W18V34SG #

# First plant delivered 1995 to city of Gram, Denmark. 1 x W18V34SG Totally 72 Plants delivered with 184 engines, totally 1044 MWe 10 plants above 30 MWe size 43 CHP plants with 77 engines, 442 MWe Biggest plant delivered: Plains End in USA 20 x W18V34SG, 113,4 MWe (peaking)

© Wärtsilä

48

Reference list – W20V34SG #

# $% # # # # # # # # # # # # # / /

$

% +! -.

$ $ $ $ $ $ $ $ 7$ $ + $

. . . . . . . .

& ,

'

) ! ) ( ,! $( . !% & ( 6

! ' ! ( (

) (* ' -

) ( )0 & ) &!1 2 3! 4 5( ' 4$ ! 4 1 ,7+ 8 9 1 '! % + 4 % &+++

" #

/ #

First plant delivered 2001 to city of Ringköping,1Denmark. 1 x W20V34SG . & 1

(

/ /

Totally 28 plants with 78 engines, totally 662 MWe .

4 ! !: ! * ; ); =5 ) 0
View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF