FUNDICION BLANCA

August 1, 2017 | Author: invercarr | Category: Crystalline Solids, Chemistry, Manmade Materials, Chemical Elements, Materials
Share Embed Donate


Short Description

Download FUNDICION BLANCA...

Description

FUNDICIÓN BLANCA Son aquellas en las que todo el carbono se encuentra combinado bajo la forma de cementita. Todas ellas son aleaciones hipoeutécticas y las transformaciones que tienen lugar durante su enfriamiento son análogas a las de la aleación de 2,5 % de carbono. La figura 1 muestra la microestructura típica de las fundiciones blancas, la cual está formada por dendritas de austenita transformada (perlita), en una matriz blanca de cementita. Observando la misma figura con más aumentos, vemos que las áreas oscuras son perlita (fig. 2). face="Arial Narrow"Fig.1, x100

face="Arial Narrow"Fig.2, x400

Estas fundiciones se caracterizan por su dureza y resistencia al desgaste, siendo sumamente quebradiza y difícil de mecanizar. Esta fragilidad y falta de maquinabilidad limita la utilización industrial de las fundiciones " totalmente blancas ", quedando reducido su empleo a aquellos casos en que no se quiera ductilidad como en las camisas interiores de las hormigoneras, molinos de bolas, algunos tipos de estampas de estirar y en las boquillas de extrusión. También se utiliza en grandes cantidades, como material de partida, para la fabricación de fundición maleable.

FUNDICIONES Las fundiciones son aleaciones de hierro-carbono que pueden estar aleados con otros metales, resultantes de la búsqueda del mejoramiento de sus características. Los elementos añadidos corrientemente son: el níquel, el cromo, vanadio, molibdeno, magnesio, silicio, tungsteno, cobalto, aluminio, etc. Clasificación de las fundiciones:

Ordinaria: unicamente lleva hierro y carbono. Existen tre tipos.

Fundicion blanca. Es muy dura y fragil, se utiliza para fabricar aleaciones maleables.

Fundicion gris. Su color es gris porque el carbono esta en forma de grafito.

Fundicion atruchada. Tiene propiedades compartidas entre las dos primeras.

Aleada: Contiene otros compuestos quimicos, ademas del hierro y el carbono, que mejoran sus propiedades.

Especial: utiliza como materia prima a las fundiciones ordinarias, y las somete a un tratamiento termico. Existen cuatro tipos:

Maleable de corazon blanco. Se moldea la pieza en fundicion blanca y se recubre con mineral de hierro, se deja enfriar hasta temperatura ambiente.

Maleable de corazon negro. Se moldea la pieza en funcion blanca y se recubre con arena y se deja enfriar.

Maleable prelitica. Se moldea en fundicion blanca al igual que la de corazon

negro, pero esta se deja enfriar durante menos dias.

Maleable nodular. A la fundicion gris se le añade cerio y magnesio, se vierte en un molde y se deja enfriar.

FUNDICIÓN MALEABLE La tendencia que presenta la cementita a dejar en libertad carbono, constituye la base de la fabricación de la fundición maleable. La reacción de descomposición se ve favorecida por las altas temperaturas, por la presencia de impurezas sólidas no metálicas, por contenidos de carbono más elevados y por la existencia de elementos que ayudan a la descomposición del Fe3C. La maleabilización tiene por objeto transformar todo el carbono que en forma combinada contiene la fundición blanca, en nódulos irregulares de carbono de revenido (grafito) y en ferrita. Industrialmente este proceso se realiza en dos etapas conocidas como primera y segunda fases de recocido. En la primera fase del recocido, la fundición blanca se calienta lentamente a una temperatura comprendida entre 840 y 980ºC. Durante el calentamiento, la perlita se transforma en austenita al alcanzar la línea crítica inferior y, a medida que aumenta la temperatura, la austenita formada disuelve algo más de cementita. La segunda fase del recocido consiste en un enfriamiento muy lento al atravesar la zona crítica en que tiene lugar la reacción eutectoide. Esto permite a la austenita descomponerse en las fases estables de ferrita y grafito. Una vez realizada la grafitización, la estructura no

sufre ninguna nueva modificación durante el enfriamiento a temperatura ambiente, quedando constituida por nódulos de carbono de revenido (rosetas) en una matriz ferrítica (Fig. 1 y 2). Este tipo de fundición se denomina normal o ferrítica (Fig. 2). Bajo la forma de rosetas, el carbono revenido no rompe la continuidad de la matriz ferrítica tenaz, lo que da lugar a un aumento de la resistencia y de la ductilidad. face="Arial Narrow"Fig.1, x100 pulida

face="Arial Narrow"Fig.2, x100

Si durante el temple al aire se consigue que el enfriamiento a través de la región eutectoide se realice con la suficiente rapidez, la matriz presentará una estructura totalmente perlítica. face="Arial Narrow"Fig.3 x50

face="Arial Narrow"Fig.4 x200

Si el enfriamiento en la región eutectoide no se realiza a la velocidad necesaria para que todo el carbono quede en forma combinada, las

zonas que rodean los nódulos de carbono de revenido estarán totalmente grafitizadas mientras que las más distantes presentarán una estructura totalmente perlítica, debido al aspecto que presenta estas estructuras al microscopio, se conocen como estructura de ojo de buey (Fig. 3 y 4). Este tipo de fundición también puede obtenerse a partir de la fundición maleable ferrítica mediante un calentamiento de esta última por encima de la temperatura crítica inferior, seguido de un enfriamiento rápido.

FUNDICIÓN GRIS

La mayoría de las fundiciones grises son aleaciones hipoeutécticas que contienen entre 2,5 y 4% de carbono. El proceso de grafitización se realiza con mayor facilidad si el contenido de carbono es elevado, las temperaturas elevadas y si la cantidad de elementos grafitizantes presentes, especialmente el silicio, es la adecuada. Para que grafiticen la cementita eutéctica y la proeutectoide, aunque no la eutectoide, y así obtener una estructura final perlítica hay que controlar cuidadosamente el contenido de silicio y la velocidad de enfriamiento. El grafito adopta la forma de numerosas laminillas curvadas (Fig.1-4), que son las que proporcionan a la fundición gris su característica fractura grisácea o negruzca. face="Arial Narrow"Fig.1, x100 pulida

face="Arial Narrow"Fig.2, x100

Si la composición y la velocidad de enfriamiento son tales que la cementita eutectoide también se grafitiza presentará entonces una estructura totalmente ferrítica (Fig. 1, x100 pulida). Por el contrario, si se impide la grafitización de la cementita eutectoide, la matriz será totalmente perlítica (Fig. 2, x400). La fundición gris constituida por mezcla de grafito y ferrita es la más blanda y la que menor resistencia mecánica presenta; la resistencia a la tracción y la dureza aumentan con la cantidad de carbono combinada que existe, alcanzando su valor máximo en la fundición gris perlítica. Las figuras 3 y 4 muestran la microestructura de una fundición gris cuya matriz es totalmente perlítica. Además, en la micrografía a 200

aumentos –igual que en la Fig. 2- se observan como unos granos blancos, los cuales resueltos a mayores aumentos (Fig. 4, x400) son, en realidad, esteadita. face="Arial Narrow"Fig.3, x200

face="Arial Narrow"Fig.4, x400

La mayoría de las fundiciones contienen fósforo procedente del mineral de hierro en cantidades variables entre 0,10 y 0,90%, el cual se combina en su mayor parte con el hierro formando fosfuro de hierro (Fe3P). Este fosfuro forma un eutéctico ternario con la cementita y la austenita (perlita a temperatura ambiente) conocida como esteatita (Fig. 4), la cual es uno de los constituyentes normales de las fundiciones. La esteadita, por sus propiedades físicas, debe controlarse con todo cuidado para obtener unas características mecánicas óptimas.

CLASIFICACIÓN DE LAS FUNDICIONES. Por ser muchos y muy diferentes los factores que hay que tener en cuenta para la calificación y selección de las fundiciones, es difícil establecer una clasificación simple y clara de las mismas. La más antigua y conocida de las clasificaciones establece cuatro grupos: fundición blanca, gris, atruchada y maleable. A estos cuatro grupos se añade en la actualidad otro grupo, el de las funciones especiales, en el que se pueden incluir las fundiciones aleadas que contienen elementos especiales, las fundiciones nodulares, aciculares, inoculadas, etc... Clasificación de las funciones por su micro estructura: Las fundiciones que se obtienen en los altos hornos y en los cubilotes se pueden clasificar de acuerdo con la microestructura en tres grandes grupos:  Fundiciones en las que todo el carbono se encuentra combinado, formando cementita y que al romperse presentan fractura de fundición blanca.  Fundiciones en las que todo el carbono ser encuentra en estado libe, formando grafito. Son fundiciones ferríticas.  Fundiciones en las que parte del carbono se encuentra combinado formando cementita y parte

libre en forma de grafito. A este grupo que es el más importante de todos pertenece la mayoría de las fundiciones que se fabrican y utilizan normalmente, como son las fundiciones grises, atruchadas, perlíticas, etc... Es interesante señalar que en la práctica es muy difícil encontrar fundiciones en las que todo el carbono aparezca en forma de grafito. Con un criterio amplio, también se podrían incluir en este segundo grupo, auque no encajan exactamente en él, las fundiciones maleables, cuya matriz es de ferrita y en las que el grafito se presenta en forma de nódulos. La fundición maleable se obtiene en dos etapas: primero se fabrica la fundición blancas y hierro nodular. PRINCIPALES CONSTITUYENTES MICROSCOPICOS DE LAS FUNDICIONES. Los más importantes son la ferrita, la cementita, la perlita (formada por ferrita y cementita), el grafito y la steadita. También aparecen en ocasiones, la sorbita, la troostita, la bainita y la martencita. También se pueden señalar las inclusiones no metálicas de sulfuro de manganeso, y como menos importante los silicatos complejos de hierro y manganeso. El grafito es una forma elemental del carbono. Es blando, untuoso, de color gris oscuro, con peso específico = 2,25, que es aproximadamente 1/3 del que tiene el acero. Se presenta en estado libre en algunas clases de fundiciones, ejerciendo una influencia muy importante en sus propiedades y características. Estas dependen fundamentalmente de la forma del grafito, de su tamaño, cantidad y de la forma en que se encuentre distribuido. En las fundiciones grises, que son las de mayor aplicación industrial, se presentan en forma de láminas u hojuelas. En las fundiciones maleables se presentan en forma de nódulos, y en otras especiales en forma esferoidal. En el caso de fundiciones grises, la presencia de grafito en cantidad importante, baja la dureza, la resistencia y el módulo de elasticidad, en comparación con los valores que corresponderían a las mismas microestructuras sin grafito, es decir, a la matriz que se puede considerar como un acero. El grafito, además reduce casi a cero su ductilidad, su tenacidad y su plasticidad. En cambio, el grafito mejora su resistencia al desgaste y a la corrosión. Disminuye el peligro de los agarrotamientos por roces de mecanismos y piezas de máquinas y motores, ya que en cierto modo actúa como un lubricante. También mejoran la maquinabilidad y reduce las contricciones durante la solidificación. Cuando se presenta en forma de nódulos o esferoidal, la reducción de la resistencia y de la tenacidad es menor. Por ello estas fundiciones tienen mayores resistencia y alargamiento que las fundiciones grises ordinarias. La steadita es un compuesto de naturaleza eutéctica, duro y frágil de bajo punto de fusión ( 960 º c) que aparece en las fundiciones de alto contenido en fósforo ( en general se presentan cuando el P> 0.15%). La steadita tiene un 10 % de fósforo y su peso especifico es próximo al del hierro. Las principales características de la ferrita se señalan al estudiar el acero. Cuando se presenta en las fundiciones suele tener en disolución cantidades muy importantes de silicio que elevan su dureza y resistencia. Perlita . Aquí conviene señalar que, debido a la presencia de silicio, el contenido de carbono de la perlita de las fundiciones es menor al de los aceros. Al variar en las fundiciones el silicio de 0.5 a 3 %, varia el % de carbono de la perlita de 0.8 a 0.5 %. Ledeburita. Es el constituyente eutéctico que se forma en el enfriamiento de las fundiciones a 1145º C aproximadamente, en el momento en el que termina la solidificación. Está formada por 52% de cementita y 48% de austenita saturada. La ledeburita no existe a temperatura ambiente en las fundiciones ordinarias, debido a que en el enfriamiento se transforma en cementita y perlita. Sin embargo, en las fundiciones se puede conocer las zonas donde existió la ledeburita, por el aspecto eutéctico con que quedan esas agrupaciones de perlita y cementita.

Fundición gris

Este artículo o sección necesita referencias que aparezcan en una publicación acreditada, como revistas especializadas, monografías, prensa diaria o páginas de Internet fidedignas. Puedes añadirlas así o avisar al autor principal del artículo en su página de discusión pegando: {{subst:Aviso referencias|Fundición gris}} ~~~~ Puente construido con piezas de hierro fundido. El hierro fundido,hierro colado, mas conocida como fundición gris es un tipo de aleación conocida como fundición, cuyo tipo más común es el conocido como hierro fundido gris. El hierro gris es uno de los materiales ferrosos más empleados y su nombre se debe a la apariencia de su superficie al romperse. Esta aleación ferrosa contiene en general más de 2% de carbono y más de 1% de silicio, además de manganeso, fósforo y azufre. Una característica distintiva del hierro gris es que el carbono se encuentra en general como grafito, adoptando formas irregulares descritas como “hojuelas”. Este grafito es el que da la coloración gris a las superficies de ruptura de las piezas elaboradas con este material. Las propiedades físicas y en particular las mecánicas varían dentro de amplios intervalos respondiendo a factores como la composición química, rapidez de enfriamiento después del vaciado, tamaño y espesor de las piezas, práctica de vaciado, tratamiento térmico y parámetros microestructurales como la naturaleza de la matriz y la forma y tamaño de las hojuelas de grafito. Un caso particular es el del grafito esferoidal, que comienza a utilizarse en los años 1950, a partir de entonces ha desplazado otros tipos de hierro maleable y hierro gris. Entre los primeros usos de este material se dieron, en Europa occidental, en el año 1313, específicamente en la fabricación de cañones, y presumiblemente en la misma época se comenzaron a utilizar también en la construcción de tuberías. Se tienen registros de que en 1455 la primera tubería de hierro fundido fue instalada en Alemania, en el Castillo Dillenberg. El proceso de fabricación de los tubos de hierro fundido ha tenido profundas modificaciones, pasando del método antiguo de foso de colada hasta el proceso moderno por medio de la centrifugación. 

Estructura La composición típica para obtener una microestructura grafitica es de 2.5 a 4% de carbono y de 1 a 3% de silicio, el silicio juega un papel importante en diferenciar a la fundición gris de la fundición blanca, esto es debido a que el silicio es un estabilizador de grafito, esto significa que ayuda a precipitar el grafito desde los carburos de hierro. Otro factor importante que ayuda a la formación de grafito es la velocidad de solidificación de la colada, una velocidad lenta tenderá a producir mas grafito y una matriz ferritica, una velocidad moderada tenderá a producir una mayor matriz perlitica, para lograr una matriz 100% ferritica, se debe someter la fundición a un tratamiento térmico de recocido. Un enfriamiento veloz suprimirá parcial o totalmente la formación de grafito y en cambio propiciará la formación de cementita, lo cual se conoce como Fundición Blanca.

Clasificaciones En los Estados unidos la clasificación mas difundida para el hierro gris es la ASTM International A48, esta clasifica a la fundición gris dentro de clases dependiendo de su resistencia a la tracción (Tensile

strength), la unidad que se maneja son miles de libras por pulgada cuadrada (ksi), que es una unidad derivada de la psi a la cual se le multiplica 1000. Ejemplo: La fundición gris clase 20 tiene una resistencia a la tracción mínima de 20000 psi (aproximadamente 1407.8 kg/cm2o 140,000 kPa). la clase 20 tiene alto carbono equivalente y una matriz ferritica. Las fundiciones con alta resistencia a la tracción, encima de la clase 40, tienen bajo carbono equivalente y una matriz perlitica-ferritica . El hierro gris por encima de la clase 40 requiere de aleación para lograr el fortalecimiento de la solución sólida y de tratamiento térmico para modificar la matriz, la clase 80 es la clase mas alta posible, pero es en extremo frágil. La norma ASTM A247 es también comúnmente usada para describir la estructura de grafito, otras normas que tratan a la fundición gris son las ASTM A126, ASTM A278, and ASTM A319. En la industria automotriz las norma SAE J431 es usada para designar grados en lugar de la clases anteriores. Estos grados son una medida de la relación que existe entre la resistencia a la tracción con la dureza dada en Dureza Brinell Propiedades según la ASTM A48 para las clases de Fundiciones Propiedades según la SAE J431 para los grados Grises de Fundiciones Grises Modulo de Grado tracción Dureza Brinell t/h† Resistencia a Resistencia a Descripción Clase 6 la tracción [ksi] la compresión[ksi] (E) [10 psi] 120–187 G1800 135 Ferritica-Perlitica 20 22 33 10 G2500 170–229 135 Ferritica-Perlitica 30 31 109 14 G3000 187–241 150 Perlitica 40 57 140 18 G3500 207–255 165 Perlitica 60 62.5 187.5 21 G4000 217–269 175 Perlitica †t/h = Resistencia a la tracción/Dureza Brinell

Ventajas y Desventajas La Fundición gris es una aleación común en la ingeniería debido a su relativo bajo costo y buena maquinabilidad, lo que es resultado de las bandas de grafito que lubrican el corte y la viruta. También tiene buena resistencia al desgaste, debido a que las "hojuelas" de grafito sirven de autolubricante. El grafito provee también a la fundición gris de una excelente tenacidad debido a que este absorbe la energía, esta también experimenta una menor contracción por la solificación que otras fundiciones que no forman una estructura grafitica. El silicio promueve una buena resistencia a la corrosión e incrementa la fluidez de la colada de fundición, la fundición gris es considerada, generalmente, fácil de soldar. Comparada con otras aleaciones de hierro modernas, el hierro gris tiene una baja resistencia a la tracción y ductibilidad; por lo tanto su resistencia al impacto es casi inexistente.

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF