Fundamentos Fisicos PDF

July 18, 2022 | Author: Anonymous | Category: N/A
Share Embed Donate


Short Description

Download Fundamentos Fisicos PDF...

Description

 

 undamentos físicos  y equipos



2.ª edición revisada y aumentada

 

Consulte nuestra página web:  www  www.sintesis.com .sintesis.com En ella encontrará el catálogo completo y comentado

 



 undamentos físicos  y equipos Ignacio López Moranchel Patricia Irene Maurelos Castell

2.ª edición revisada y aumentada

 

  Ha colaborado en la elaboración de este este libro Lidia Sánchez González

© Ignacio LóMaurelos pez Moranchel Moranchel Patricia IreneLópez Castell © EDITORIAL SÍNTESIS, SÍNTESIS, S. A.  Vallehermoso,  Vallehermos o, 34. 28015 Madrid Madrid Teléfono: 91 593 20 98  www.sintesis.com  www .sintesis.com ISBN: 978-84-9077-368-0 Depósito Legal: M-17.964-2017 Impreso en España - Printed in Spain Reservados todos los derechos. Está prohibido, bajo las sanciones penales y el resarcimiento civil previstos en las leyes, reproducir, registrar o transmitir esta publicación, íntegra o parcialmente, cualquier sistema demagnético, recuperación y por cualquier seapor mecánico, electrónico, electroóptico, por medio, fotocopia o por cualquier otro, sin la autorización previa por escrito de Editorial Síntesis, S. A.

 

Í 

ndice

PRESENTACIÓN 

...............................................................................................................................................................

13

1. CARACTERIZACIÓN DE LAS RADIACIONES Y LAS ONDAS  .......................................................

15

Objetivos  ....................................................................................................................................................................  Mapa conceptual  ..................................................................................................................................................  Glosario  .......................................................................................................................................................................  1.1. Introducción a la física radiológica  ............................................................................................ 

Resumen  .....................................................................................................................................................................  Ejercicios propuestos.........................................................................................................................................  .........................................................................................................................................   Supuesto práctico................................................................................................................................................  ................................................................................................................................................    Actividades de autoevaluación  ................................................................................................................... 

15 16 16 17 18 20 20 22 23 25 26 27 28 30 31 33 35 35 36 37

2. FUNDAMENTOS DEL ELECTROMAGNETISMO  ....................................................................................

39

Objetivos  ....................................................................................................................................................................  Mapa conceptual  ..................................................................................................................................................  Glosario  .......................................................................................................................................................................

39 40 40

1.1.1. 1.1.2. 1.1.3. 1.2.

1.3. 1.4.

Estructura física de la materia: el átomo..........................................................................   Modelos atómicos  ...................................................................................................................  Energía en el átomo  ................................................................................................................ 

Radiación electromagnética y de partículas.........................................................................  

1.2.1. 1.2.2. 1.2.3.

Energía  ..........................................................................................................................................  Dualidad onda-corpúsculo  ..................................................................................................  Espectro electromagnético  .................................................................................................. 

1.3.1.

Interacciones de la radiación con la materia.................................................................  

Radiación ionizante y no ionizante............................................................................................   Ondas materiales y ultrasonidos  .................................................................................................. 

1.4.1. 1.4.2.

Caracterización de las ondas periódicas  .......................................................................  Comportamiento de las ondas  ........................................................................................... 

NDICE Í NDICE

 

6

FUNDAMENTOS FÍSICOS  Y   Y  EQUIPOS

Resumen  ..................................................................................................................................................................... 

41 43 44 49 51 56 58 63

 .........................................................................................................................................   Ejercicios propuestos......................................................................................................................................... Supuestos prácticos  ...........................................................................................................................................   Actividades de autoevaluación  ................................................................................................................... 

63 65 65

2.1.

Magnetismo  ...............................................................................................................................................

2.1.1. 2.1.2. 2.2.

Materiales magnéticos  ............................................................................................................  Campos y fuerzas magnéticas  ............................................................................................. 

Electricidad. Electric idad. Conceptos y aplicaciones en el diagnóstico por imagen  ................. 

2.2.1. 2.2.2. 2.2.3.

Corriente eléctrica continua y alterna  ...............................................................................  Inducción electromagnética  ................................................................................................  Generadores, transformadores y rectificadores de corriente.................................  

3. APLICACIONES DEL ELECTROMAGNETISMO EN LA OBTENCIÓN DE IMÁGENES DIAGNÓSTICAS  ................................................................................................................... Objetivos  ....................................................................................................................................................................  Mapa conceptual  ..................................................................................................................................................  Glosario  .......................................................................................................................................................................  3.1. Aplicación de las radiaciones ionizantes en radioterapia e imagen para el diagnóstico  ......................................................................................................... 

3.1.1. 3.1.2. 3.2.

Aplicación de las radiaciones no ionizantes y las ondas materiales .................... 

3.2.1. 3.2.2. 3.3.

Radiaciones ionizantes en radioterapia  ...........................................................................  Radiaciones ionizantes para el diagnóstico  ..................................................................  Aplicación de radiaciones no ionizantes y ondas materiales en radioterapia ................. ................................... ................................... ................................... .................................... .................................... .................................... ..................... ...   Aplicación de radiaciones no ionizantes y ondas materiales en diagnóstico por imagen  .................................................................................................. 

Unidades y magnitudes de uso en radioterapia e imagen para el diagnóstico  ............................................................................................................................... 

67 68 69 69 70 71 75 76 76

 Actividades de autoevaluación  ................................................................................................................... 

78 78 80 85 85 86 86

4. CARACTERIZACIÓN DE LOS LOS EQUIPOS EQUIPOS DE RADIOLOGÍA RADIOLOGÍA CONVENCIONAL ....................

89

Objetivos  ....................................................................................................................................................................  Mapa conceptual  ..................................................................................................................................................  Glosario  .......................................................................................................................................................................  4.1. Producción de los rayos X   ............................................................................................................... 

89 90 90 91 93 94 96 97 103 105 105 107

3.3.1. 3.3.2.

Unidades fundamentales y derivadas de medida ......................................................  Unidades de medida en radiodiagnóstico  ................................................................... 

Resumen  .....................................................................................................................................................................  Ejercicios propuestos.........................................................................................................................................  .........................................................................................................................................   Supuestos prácticos  ........................................................................................................................................... 

4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.2.

Interacción entre electrones proyectil y capas exteriores de la diana ...............  Radiación de frenado  .............................................................................................................  Radiación característica  .........................................................................................................  Espectro de emisión de rayos X   ........................................................................................ 

Interacción de los rayos X con la materia  .............................................................................. 

4.2.1. 4.2.2. 4.2.3.

Í NDICE NDICE

67

Dispersión clásica o coherente  ..........................................................................................  Dispersión o efecto Compton  ............................................................................................  Efecto fotoeléctrico o absorción fotoeléctrica ............................................................ 

 

FUNDAMENTOS FÍSICOS  Y   Y  EQUIPOS 4.2.4. 4.2.5. 4.3.

Producción de pares  ..............................................................................................................  Fotodesintegración (desintegración fotónica)  ............................................................. 

Formación de la imagen radiológica  ......................................................................................... 

4.3.1.

Características técnicas del haz de radiación: factores para el estudio del haz de rayos X   .................................................................. 

7

109 110 110

 Actividades de autoevaluación  ................................................................................................................... 

112 114 114 115 116

5. COMPONENTES Y FUNCIONAMIENTO DE LOS EQUIPOS DE RADIOLOGÍA CONVENCIONAL  ............................................................................................................

119

Resumen  .....................................................................................................................................................................  Ejercicios propuestos.........................................................................................................................................  .........................................................................................................................................   Supuestos prácticos  ........................................................................................................................................... 

Radiografía computarizada  ..................................................................................................  Radiografía digital directa  ..................................................................................................... 

119 120 120 121 122 125 130 131 133 134 135 136 137 139 143 143 144 145 146 146 147

5.6. Consola de mandos  .............................................................................................................................  5.7. Uso eficiente de los recursos  .........................................................................................................  Resumen  .....................................................................................................................................................................  Ejercicios propuestos.........................................................................................................................................  .........................................................................................................................................   Supuestos prácticos  ...........................................................................................................................................   Actividades de autoevaluación  ................................................................................................................... 

148 149 150 151 152 152

6. PROCESADO Y TRA TRATTAMIENTO DE LA IMAGEN EN RADIOLOGÍA CONVENCIONAL .....

155

Objetivos  ....................................................................................................................................................................  Mapa conceptual  ..................................................................................................................................................  Glosario  .......................................................................................................................................................................  6.1. Imagen en radiología convencional  ........................................................................................... 

155 156 156 157 158 160 161

Objetivos  ....................................................................................................................................................................  Mapa conceptual  ..................................................................................................................................................  Glosario  .......................................................................................................................................................................  5.1. Componentes y funcionamiento del tubo de rayos X  ...................................................  ................................................... 

5.1.1. 5.1.2. 5.2.

Principios de funcionamiento del tubo de rayos X   ......................................................... 

5.2.1. 5.2.2. 5.2.3. 5.2.4. 5.3.

Dispositivos restrictores del haz de radiación  .............................................................  Rejillas antidifusoras  ................................................................................................................ 

Mesas, dispositivos murales y exposímetros.........................................................................  

5.4.1. 5.4.2. 5.4.3. 5.5.

Refrigeración, carga y valores nominales del tubo de rayos X  ...............................  Efecto anódico o efecto talón  ............................................................................................  Generador y componentes electrónicos del equipo de rayos X ............................. .............................  Fallos del tubo de rayos X   .................................................................................................... 

Radiación dispersa. Rejillas y restrictores del haz de rayos X .................................... ....................................  

5.3.1. 5.3.2. 5.4.

Estructura externa: soporte, carcasa y envoltura ..........................................................  Estructura interna: conjuntos de ánodo y cátodo ....................................................... 

Mesas de exploración radiográfica  ...................................................................................  Dispositivos murales  ...............................................................................................................  Exposímetros automáticos  ................................................................................................... 

Receptores de imagen  ....................................................................................................................... 

5.5.1. 5.5.2.

6.1.1. 6.1.2. 6.1.3.

Estructura y tipos de películas radiográficas .................................................................  Pantallas de refuerzo y chasis. Luminiscencia y fluoroscopia.................................  .................................   Intensificadores de imagen para fluoroscopia o radioscopia  ............................... 

Í NDICE NDICE

 

8

FUNDAMENTOS FÍSICOS  Y   Y  EQUIPOS

Resumen  .....................................................................................................................................................................  Ejercicios propuestos.........................................................................................................................................  .........................................................................................................................................   Supuestos prácticos  ...........................................................................................................................................   Actividades de autoevaluación  ................................................................................................................... 

163 163 164 169 173 173 174 175

7. CARACTERIZACIÓN Y FUNCIONAMIENTO DE LOS EQUIPOS DE TOMOGRAFÍA COMPUTARIZADA   ...............................................................................................................

177

6.2.

Registro de la imagen  .......................................................................................................................... 

6.2.1. 6.2.2. 6.2.3.

Identificación y marcado de la imagen  ...........................................................................  Registro de imagen digital  ....................................................................................................  Factores que condicionan la calidad de la imagen radiográfica .......................... 

Objetivos  ....................................................................................................................................................................  Mapa conceptual  ..................................................................................................................................................  Glosario  .......................................................................................................................................................................  7.1. Introducción  .............................................................................................................................................  7.2. Imagen tomográfica  .............................................................................................................................. 

7.2.1. 7.3.

Tomografía computarizada convencional, helicoidal y multicorte ........................ 

7.3.1.

Tomografía Tom ografía computarizada convencional  ...................................................................... 

7.3.2. 7.3.3.

Tom Tomografía ografía Tomografía Tom ografía computarizada computarizada helicoidal multicorte   ............................................................................. ............................................................................  

7.9. Uso eficiente de recursos  ................................................................................................................  Resumen  .....................................................................................................................................................................  Ejercicios propuestos.........................................................................................................................................  .........................................................................................................................................   Supuestos prácticos  ...........................................................................................................................................   Actividades de autoevaluación  ................................................................................................................... 

187 189 191 192 195 196 197 198 200 202 203 205 208 209 210 211 212 213 213

8. CARACTERIZACIÓN DE LOS LOS EQUIPOS EQUIPOS DE RESONANCIA RESONANCIA MAGNÉTICA   .............................

217

Objetivos  ....................................................................................................................................................................  Mapa conceptual  ..................................................................................................................................................  Glosario  .......................................................................................................................................................................  8.1. Introducción  ............................................................................................................................................. 

217 218 218 219 221 221 223

7.4.

Componentes de un equipo de tomografía computarizada .................................... 

7.4.1. 7.4.2. 7.5.

7.6.

Medidas técnicas para optimizar la dosis de radiación  ..........................................  Representación de la imagen  .............................................................................................. 

Calidad de la imagen en tomografía computarizada ...................................................... 

7.8.1.

8.2.

Tomografía computarizada en radioterapia  ..................................................................  Tomografía Tomografía Tom ografía por emisión de positrones  ........................................................................... 

Representación de la imagen en tomografía computarizada ................................... 

7.7.1. 7.8.

Consola de adquisición y control y equipo informático  ......................................... 

Seguridad en exploraciones de tomografía computarizada ..................................... 

7.6.1. 7.7.

Gantry  y  y mesa de exploración  ............................................................................................ 

Usos diagnósticos y terapéuticos de la tomografía computarizada ..................... 

7.5.1. 7.5.2.

Í NDICE NDICE

Evolución de las técnicas tomográficas  .......................................................................... 

177 178 178 179 181 184 185 186

Artefactos  .................................................................................................................................... 

................... ...............   Comportamiento del espín nuclear en un campo magnético ..................................

8.2.1. 8.2.2.

Estructura del átomo y concepto de espín   ...................................................................  Comportamiento del espín nuclear en un campo magnético ............................... 

 

FUNDAMENTOS FÍSICOS  Y   Y  EQUIPOS

9

Resumen  .....................................................................................................................................................................  Ejercicios propuestos.........................................................................................................................................  .........................................................................................................................................   Supuestos prácticos  ...........................................................................................................................................   Actividades de autoevaluación  ................................................................................................................... 

225 225 226 226 229 234 235 236 239 242 243 244 244 245 246 247 248

9. PROTOCOLOS DE ACTUACIÓN EN RESONANCIA MAGNÉTICA  .............................................  .............................................

251

Objetivos  .................................................................................................................................................................... 

251

Mapa conceptual  ..................................................................................................................................................  Glosario  .......................................................................................................................................................................  9.1. Usos diagnósticos y terapéuticos de la resonancia magnética ................................  9.2. Seguridad en las exploraciones de resonancia magnética ......................................... 

252 252 253 254 255 256 256 257 258 259 259

8.2.3. 8.2.4. 8.3.

Frecuencia de precesión nuclear: ecuación de Larmor  ............................................  Componentes longitudinal y transversal de la resonancia ....................................... 

Generación de la señal de resonancia magnética  ........................................................... 

8.3.1. 8.3.2.

Excitación: pulsos de radiofrecuencia  ............................................................................  Potenciación en RM  ................................................................................................................. 

8.4. 8.5. 8.6.

Sala de exploración de resonancia magnética  ...................................................................  Equipos de resonancia abiertos y cerrados  .........................................................................  Clasificación de los imanes  .............................................................................................................. 

8.7.

Emisores y receptores de resonancia magnética .............................................................. 

8.8.

Consola de mandos y planificación de la exploración .................................................. 

8.7.1. 8.8.1. 8.8.2.

9.2.1. 9.2.2. 9.2.3. 9.2.4. 9.2.5. 9.2.6. 9.3. 9.4.

9.5.

Secuencia eco de gradiente  ...............................................................................................  Técnica de saturación-recuperación. Secuencia de inversión-recuperación..

Reconstrucción en 2D y 3D  ............................................................................................................. 

Selección del plano de corte  .............................................................................................  Reconstrucción 2D  ...................................................................................................................  Reconstrucción 3D  ................................................................................................................... 

Artefactos en resonancia magnética.........................................................................................  .........................................................................................  

9.7.1. 9.7.2. 9.7.3. 9.8.

Influencia del campo magnético estático  ......................................................................  Influencia del campo magnético de gradientes ..........................................................  Influencia de los campos de radiofrecuencia  ..............................................................  Exposición al ruido  .................................................................................................................  Exposición a líquidos criogénicos  ....................................................................................  Dispositivos incompatibles con la resonancia magnética ....................................... 

Secuencias de adquisición espín eco y eco de gradiente .....................   9.5.1. Secuencia espín eco  clásicas: ..............................................................................................................

9.6.1. 9.6.2. 9.6.3. 9.7.

Consola de mandos  ................................................................................................................  Planificación de la exploración  .......................................................................................... 

Captura de señal: señal: transformada transformada de Fourier Fourier,, espacio espacio K y matriz matriz de datos ........  Tiempo de repetición, tiempo de eco, tiempo de inversión  y tiempo de adquisición  ................................................................................................................... 

9.5.2. 9.5.3. 9.6.

Bobinas de gradiente: selección del plano y grosor de corte .............................. 

Artefactos originados por la física molecular de los tejidos ..................................  Artefactos de origen fisiológico.........................................................................................   Artefactos originados por defectos de la técnica o el equipo ............................. .................. ...........  

Técnicas Técn icas emergentes en resonancia magnética  ................................................................. 

9.8.1. 9.8.2. 9.8.3. 9.8.4.

Resonancia magnética funcional  ........................................................................................  Resonancia magnética intervencionista  ...........................................................................  Resonancia magnética en simulación radioterápica ...................................................  Espectroscopia por resonancia magnética  ................................................................... 

262 264 265 266 267 267 268 268 271 271 272 273 275 275 277 277 279 Í NDICE NDICE

 

10

FUNDAMENTOS FÍSICOS  Y   Y  EQUIPOS

  9.9. Uso eficiente de los recursos  .........................................................................................................  Resumen  .....................................................................................................................................................................  Ejercicios propuestos.........................................................................................................................................  .........................................................................................................................................   Supuestos prácticos  ...........................................................................................................................................   Actividades de autoevaluación  ................................................................................................................... 

280 280 281 282 283 284

10. CARACTERIZACIÓN DE LOS EQUIPOS DE ULTRASONIDO  ........................................................

287

Objetivos  ....................................................................................................................................................................  Mapa conceptual  ..................................................................................................................................................  Glosario  .......................................................................................................................................................................    10.1. Ondas mecánicas: características y rangos rangos sonoros  ....................................................... 

10.10. Uso eficiente de los recursos  .........................................................................................................  Resumen  .....................................................................................................................................................................  Ejercicios propuestos.........................................................................................................................................  .........................................................................................................................................   Supuestos prácticos  ........................................................................................................................................... 

287 288 288 289 290 294 296 296 298 299 301 301 301 303 304 305 306 307 308 310 311 313 314 315 316 317

 Actividades de autoevaluación  ................................................................................................................... 

317

11. GESTIÓN DE LA IMAGEN DIAGNÓSTICA   ..............................................................................................

321

Objetivos  ....................................................................................................................................................................  Mapa conceptual  ..................................................................................................................................................  Glosario  .......................................................................................................................................................................    11.1. Sistemas de información sanitaria  ............................................................................................... 

321 322 322 323 324 326 328 328 329

  9.8.5. Resonancia magnética y medicina nuclear   .................................................................... 

10.1.1. Características y rangos sonoros.........................................................................................     10.2. Producción y recepción de ultrasonidos: efecto piezoeléctrico ..........................    10.3. Interacciones de los ultrasonidos con el medio  ............................................................... 

10.3.1. Propagación de ultrasonidos ultrasonidos en medios homogéneos homogéneos y no homogéneos ......    10.4. Transductores: componentes componentes y tipos   ....................................................................................... 

10.4.1. Tipos de sonda  .........................................................................................................................  10.4.2. Modos de funcionamiento  ..................................................................................................    10.5. Elementos de control y dispositivos accesorios del ecógrafo .................................  10.5.1. Consola y mesa de control  ...................................................................................................  10.5.2. Dispositivos de salida: monitores e impresoras  ..........................................................    10.6. Usos diagnósticos y terapéuticos de las imágenes de ultrasonidos .....................    10.7. Imagen digitalizada estática y en movimiento: 2D, 3D y 4D ....................................... 

10.7.1. Ecogenicidad  ............................................................................................................................  10.7.2. Resolución de la imagen  .......................................................................................................    10.8. Ecografía Doppler   .................................................................................................................................. 

10.8.1. Sistemas Doppler   .....................................................................................................................    10.9. Artefactos en ecografía  ..................................................................................................................... 

10.9.1. Artefactos en imágenes Doppler   ....................................................................................... 

11.1.1. Redes de comunicación comunicación y bases de datos....................................................................  ....................................................................     11.2. Telem Telemedicina edicina  ............................................................................................................................................. 

11.2.1. Telerradio Telerradiología logía  ..............................................................................................................................    11.3. Estandarización de la gestión y planificación de los servicios  ................................. 

11.3.1. Estandarización de la imagen médica: Dicom  .............................................................  11.3.2. Gestión y planificación de la actividad hospitalaria: hospital information system  .................................................................................................  11.3.3. Gestión del sistema de imagen médica: radiology information system ............  11.3.4. Picture archiving archiving and communication communication system y modalidades de adquisición....

Í NDICE NDICE

330 330 332

 

FUNDAMENTOS FÍSICOS  Y   Y  EQUIPOS

11

11.5. Requerimientos de la protección de datos  .........................................................................  Resumen  .....................................................................................................................................................................  Ejercicios propuestos.........................................................................................................................................  .........................................................................................................................................   Supuestos prácticos  ...........................................................................................................................................   Actividades de autoevaluación  ................................................................................................................... 

335 336 337 338 339 340 341 341

12. FUNDAMENTOS FÍSICOS Y EQUIPOS DE RADIOTERAPIA  ..........................................................   ..........................................................

345

Objetivos  ....................................................................................................................................................................  Mapa conceptual  ..................................................................................................................................................  Glosario  .......................................................................................................................................................................  12.1. Introducción a la radioterapia  ......................................................................................................  12.2. Radiactividad  ............................................................................................................................................ 

345 346 346 347 348 349 352 352 354 356

11.4. Integración HIS, RIS y PACS PACS  .............................................................................................................. 

11.4.1. Software  de  de gestión HIS y RIS  .............................................................................................  11.4.2. Software  de  de gestión de las imágenes médicas  ........................................................... 

12.2.1. Reacciones de desintegración radiactiva  .......................................................................  12.3. Clasificación de la radioterapia.....................................................................................................  .....................................................................................................  

12.3.1. Braquiterapia  ..............................................................................................................................  12.3.2. Equipos de braquiterapia automática  .............................................................................  12.3.3. Telete Teleterapia rapia o radioterapia de haces externos ............................................................... 

12.4. Elementos de una instalación de radioterapia  ...................................................................  Resumen  .....................................................................................................................................................................  Ejercicios propuestos.........................................................................................................................................  .........................................................................................................................................   Supuestos prácticos  ...........................................................................................................................................   Actividades de autoevaluación  ................................................................................................................... 

358 359 367 368 369 370 371 372 373 373

13. FUNDAMENTOS FÍSICOS Y EQUIPOS DE MEDICINA NUCLEAR   ..............................................

377

Objetivos  ....................................................................................................................................................................  Mapa conceptual  ..................................................................................................................................................  Glosario  .......................................................................................................................................................................  13.1. Introducción a la medicina nuclear  nuclear   ........................................................................................... 

13.3. Medicina nuclear y terapia  ..............................................................................................................  Resumen  ..................................................................................................................................................................... 

377 378 378 379 380 382 385 387 388 388 389 390 392 392

 .........................................................................................................................................   Ejercicios propuestos......................................................................................................................................... Supuesto práctico................................................................................................................................................  ................................................................................................................................................    Actividades de autoevaluación  ................................................................................................................... 

393 394 394

12.3.4. 12.3.5. 12.3.6. 12.3.7. 12.3.8.

Equipos de radioterapia de haces externos  .................................................................   Aceleradores lineales  ............................................................................................................. Equipos de radiocirugía: Cyberknife® y Gamma knife®.............................................   Radioterapia guiada por imagen  ........................................................................................  Terapia con protones  ............................................................................................................. 

13.1.1. Isótopos radioactivos  .............................................................................................................  13.1.2. Desintegración nuclear ...........................................................................................................  ...........................................................................................................   13.1.3. Radionúclidos y radiofármacos  ..........................................................................................  13.2. Equipos de medicina nuclear   ........................................................................................................ 

13.2.1. 13.2.2. 13.2.3. 13.2.4.

Activímetros  ...............................................................................................................................  Gammacámaras  .........................................................................................................................  SPECT (tomografía computarizada por emisión de fotón fotón único) ......................... ................. ........  PET (tomografía por emisión de positrones)  ................................................................ 

Í NDICE NDICE

 

2 Fundamentos del electromagnetismo

Objetivos 3 

Entender los conceptos de magnetismo y electricidad, sus magnitudes e implicaciones en el ámbito del diagnóstico por imagen. 3  Conocer los fundamentos de los fenómenos electromagnéticos y valorar su importancia en el desarrollo de las técnicas de imagen.

 

FUNDAMENTOS FÍSICOS  Y   Y  EQUIPOS

40

 Mapa conceptual Mapa

+ ELECTRICIDAD

MAGNETISMO

– Oersted, Faraday, Maxwell

V I

Ley de Ohm

Polo N Imanes

Campo magnético variable

R Campo eléctrico

Polo S Se genera como

ELECTROMAGNETISMO Corriente continua

Permanentes

Naturales y artificiales

Temporales

Artificiales, electroimán

Inducción

Propagación del campo EM



+ Corriente alterna

Radiación EM –

+

Espectro EM

 Glosario Glosario Campo magnético.  magnético.  Magnitud vectorial que representa la intensidad de la fuerza magm agnética generada por una corriente eléctrica o un imán sobre una región del espacio. Carga eléctrica.  eléctrica.  Propiedad física intrínseca de algunas partículas subatómicas que se manifiesta mediante fuerzas de atracción y repulsión entre ellas por la mediación de campos electromagnéticos. Dipolo.  Conjunto de dos polos magnéticos o eléctricos de signos opuestos y cercanos Dipolo.  entre sí.

C APÍTULO 2

 

FUNDAMENTOS DEL  ELECTROMAGNETISMO

41

Ecografía.   Procedimiento diagnóstico que emplea el ultrasonido para crear imágenes. Ecografía. Electricidad.  Conjunto de fenómenos físicos relacionados con la presencia y flujo de Electricidad.  cargas eléctricas. Electroimán.  Tipo de imán en el que el campo magnético se produce mediante el flujo Electroimán.  de una corriente eléctrica, desapareciendo en cuanto cesa dicha corriente. Electromagnetismo.  Rama de la física que estudia y unifica los fenómenos eléctricos y Electromagnetismo.  magnéticos en una sola teoría. Imán.  Objeto con un magnetismo significativo, que atrae a otros imanes o metales Imán.  ferromagnéticos. Puede ser natural o artificial. Inducción electromagnética.  electromagnética.  Fenómeno que origina la producción de una fuerza electromotriz (o tensión) en un medio o cuerpo expuesto a un campo magnético variable, o bien en un medio móvil respecto a un campo magnético estático no uniforme. Magnetismo.  Fenómeno físico por el cual los objetos ejercen fuerzas de atracción o Magnetismo.  repulsión sobre otros materiales. Radioterapia. Radioterapia.    Forma de tratamiento basada el empleo radiaciones (rayos X o radiactividad, la que incluye losen rayos gamma de y las partículas ionizantes alfa). Resonancia magnética.  magnética.  Técnica no invasiva que utiliza el fenómeno de la resonancia magnética nuclear para obtener información sobre la estructura y composición del cuerpo. Tomografía computarizada.  computarizada.  Técnica de imagen médica que utiliza radiación X para obtener cortes o secciones de objetos anatómicos con fines diagnósticos.  

 2.1. Magnetismo 2.1. El magnetismo es una de las fuerzas fundamentales de la naturaleza, un fenómeno físico que se caracteriza por la existencia de fuerzas de atracción y repulsión que se dan entre algunos cuerpos. Las propiedades magnéticas de diferentes materiales son conocidas desde la Antigüedad. Las primeras referencias nos remiten a la región de Magnesia (área geográfica de Asia Menor), de ahí el término magnetismo. Los habitantes de esta zona se dieron cuenta de las capacidades que tenían ciertas piedras (véase figura 2.1) para atraer el hierro. Estas piedras eran fragmentos de magnetita, un mineral de hierro constituido por óxido ferroso-diférrico ferroso-difér rico (Fe3O4), muy abundante en estado natural en esa zona.

C APÍTULO 2

 

FUNDAMENTOS FÍSICOS  Y   Y  EQUIPOS

42

Figura 2.1 Muestras de magnetita en su estado natural

Los materiales que presentan magnetismo se llaman imanes, por lo que las piedras de magnetita se consideran imanes naturales. Todos los imanes son considerados dipolos magnéticos, es decir, tienen un polo norte y un polo sur separados por una distancia. Según esta idea, se considera el planeta Tierra como un gigantesco imán con sus polos y su campo magnético.

Figura 2.2 Representación esquemática de las líneas del campo magnético terrestre

Es bien conocido el fenómeno de que los polos opuestos se atraen y los polos iguales se repelen; esto se debe a la estructura del material mater ial y particular mente a la configuración electrónica, donde cada electrón se comporta como un diminuto imán en el que, además del momento moment o magnético intrínseco del electrón (espín),alrededor hay quedel considerar también el campo magnético debido al movimiento orbital del electrón núcleo. Los conceptos de “campo magnético” y sus manifestaciones físicas se analizarán en el apartado siguiente. El magnetismo ocupa un lugar importantísimo importantí simo en la técnica de exploración por resonancia magnética, que utiliza potentes campos magnéticos para generar imágenes de los diferentes tejidos. El estudio y análisis detallado de la técnica de resonancia magnética se expone en los capítulos 8 y 9 de este libro.

 TOMA  NOTA  La capacidad magnética de unos objetos para atraer a otros se debe a la configuración electrónica de los materiales, donde cada electrón se comporta como un diminuto imán. Cuando existe un predominio en la orientación de estos electrones se produce una fuerza magnética.

C APÍTULO 2

 

FUNDAMENTOS DEL  ELECTROMAGNETISMO

2.1.1.

43

Materiales magnéticos

Se podrían definir los imanes como aquellos materiales con un magnetismo significativo que les capacita para atraer a otros imanes o metales. Los imanes pueden ser naturales o artificiales. Los imanes naturales mantienen su campo ca mpo magnético continuo, es decir, son imanes permanentes a menos que sufran golpes de gran magnitud, se les apliquen cargas magnéticas opuestas o altas temperaturas (por encima de la temperatura de Curie). Existen también imanes artificiales  que se fabrican para determinadas aplicaciones domésticas o industriales. Estos imanes están disponibles en multitud de formas for mas y tamaños, generalmente en forma de herradura o barra (figura 2.3).

Figura 2.3 Imán artificial tradicional de herradura

Actividad propuesta 2.1 Recopila algunas aplicaciones del magnetismo a la industria, la medicina y la vida diaria. Analiza qué papel juegan los imanes en estas aplicaciones.

Un tercer tipo de imán serían los electroimanes, usados en múltiples aplicaciones tecnológicas  y en la industr ia pesada. Emplean el pr incipio de inducción electromagnética, que permite su activación y desactivación en función de las necesidades.

Figura 2.4 Grúa cuyo funcionamiento se basa en el electroimán para elevar grandes cargas Fuente: www.directindustry.it

Todos los materiales mater iales pueden clasificarse clasificar se en función de su interacción inte racción con los campos magnéticos. Estos campos inducen en mayor o menor medida variaciones en la estructura electrónica de los objetos sobre los que actúan. Se clasifican en tres tipos:

a) Diamagnéticos. Estos materiales no pueden ser magnetizados de forma artificial, ni son atraídos por un imán. Presentan lo que se conoce como susceptibilidad magnética negativa  derivada de su configuración atómica (sus capas electrónicas están completas y no presentan momento magnético neto); entre estos materiales están la madera, el vidrio, el oro…

C APÍTULO 2

 

FUNDAMENTOS FÍSICOS  Y   Y  EQUIPOS

44

b) Paramagnéticos. Son escasamente atraídos por los imanes, presentando poca afectación por los campos magnéticos magnéti cos externos. exter nos.Tienen una pequeña susceptibilidad suscept ibilidad magnética positiva que les permite imantarse levemente. Estos materiales suelen presentar electrones desapareados en sus capas exter nas; ejemplos serían ser ían el aluminio, el platino o el ion gadolinio 3+ Gd  usado como contraste en la resonancia magnética. mater iales son intensamente atraídos por los imanes. Su susceptibic) Ferromagnéticos. Estos materiales lidad magnética es alta, por lo que pueden ser magnetizados de forma permanente por exposición a un campo magnético. magnéti co. El hierro hier ro,, el cobalto y el níquel son s on buenos ejemplos de materiales ferromagnéticos. En estos casos, las propiedades magnéticas se deben al gran número de electrones presentes en los materiales más que a un comportamiento atómico específico.

Líneas de campo magnético

Comportamiento diamagnético

Comportamiento ferromagnético

Figura 2.5 Comportamiento de un material diamagnético y otro ferromagnético al exponerlos a un campo magnético

R ECUERDA  ECUERDA  3 

Todos los materiales pueden clasificarse por su susceptibilid susceptibilidad ad magnética en diamagnéticos, paramagnéticos y ferromagnétic ferromagnéticos. os. Los tejidos corporales también muestran ciertos niveles de susceptibilidad que es aprovechada para elaborar imágenes diagnósticas por los equipos de resonancia magnética.

La susceptibilidad magnética de los tejidos corporales puede utilizarse en resonancia magnética para proporcionar una señal útil para el diagnóstico, diagnósti co, por ejemplo, una hemorragia hemor ragia altera al tera el campo magnético del tejido a nivel local, puesto que la susceptibilidad suscepti bilidad magnética de la l a sangre oxigenada y desoxigenada es diferente, por lo que la señal captada capta da por el equipo e quipo de resonancia magnética será útil para obtener imagen funcional del riego al tejido.

2.1.2.

Campos y fuerzas magnéticas

Un imán o una corriente eléctrica pueden influir en otros materiales magnéticos sin tocarlos físicamente, porque alrededor de estos se produce un campo magnético. Los campos magnéticos

C APÍTULO 2

 

FUNDAMENTOS DEL  ELECTROMAGNETISMO

45

se representan mediante líneas de campo o líneas de fuerza en dirección norte-sur, como las que aparecen en las figuras 2.6 y 2.7, con una magnitud de campo mayor cuanto mayor es la proximidad entre las líneas. Es importante destacar que las líneas de campo magnético no comienzan en el polo norte  y terminan en el polo sur, sur, sino que manifiestan ese sentido de flujo, flujo, formando un circuito continuo sin principio ni fin. En el sentido de estas líneas de campo y en su fuerza radica el efecto de atracción entre polos opuestos y repulsión entre ent re los polos iguales al a l aproximar dos imanes, tal y como ilustra ilus tra la figura 2.7. El concepto de campo hace pensar en un gradiente de energías y fuerzas, lo que implica que aquellos materiales susceptibles de imantarse experimentarán cambios al introducirse en el campo magnético. Faraday describió el campo magnético como un estado de tensión, constituido por líneas de fuerza uniformemente repartidas. El número de líneas de fuerza por unidad de superficie se denomina densidad de flujo. Cuanto mayor sea la intensidad del campo magnético, más juntas se situarán las líneas de fuerza.

Figura 2.6

Figura 2.7

Líneas de campo magnético que se hacen evidentes al aproximar un imán a limaduras

Líneas de fuerza de estos imanes: parten del polo norte y se dirigen al polo sur 

de hierro esparcidas por una superficie

IMPORTANTE Los polos iguales de un imán se repelen porque las líneas de fuerza del campo

magnético entre ambos polos es opuesta. Recuerda que el sentido es norte-sur.

En última instancia, el magnetismo es un fenómeno asociado al espín de los electrones y a su comportamiento orbital, por lo que se puede afirmar que tiene un origen electrónico. Esta interacción (electromagnética) no se conoció hasta la segunda década del siglo 󰁸󰁩󰁸, cuando el físico danés Christian Oersted descubrió la relación entre la electricidad y el magnetismo con un sencillo experimento, en el que se aproxima un hilo conductor de corriente a la aguja imantada de una brújula. Al hacer pasar la corriente por el conductor, la brújula modificaba su orientación.

C APÍTULO 2

 

FUNDAMENTOS FÍSICOS  Y   Y  EQUIPOS

46

Esta observación puso de manifiesto que electricidad y magnetismo forman parte de una misma interacción fundamental: la interacción electromagnética.

Figura 2.8 Ilustración del experimento de Oersted para determinar la influencia de la corriente eléctrica sobre objetos magnéticos Fuente: Agustin

 A)

Privat-Deschanel, 1876 Privat-Deschanel, 1876

Aspectos característicos de los campos electromagnéticos  electromagnéticos 

El estudio de los campos electromagnéticos permite diferenciar dos conceptos clave con importantes aplicaciones:   Electromagnetismo:  la producción de un campo magnético por el paso de una corriente eléctrica. l  Inducción electromagnética:  la producción de electricidad al someter un conductor a un campo magnético variable (o bien por mover el conductor respecto a un campo magnético estacionario). l

Figura 2.9 Comportamiento del campo magnético (en azul) ante el flujo de corriente

 TOMA  NOTA  Fue James Clerk Maxwell quien sintetizó las leyes que rigen el comportamiento electromagnético. Integró armónicamente los resultados experimentales de Ampère, Coulomb, Far Faraday aday y Oersted.

C APÍTULO 2

 

FUNDAMENTOS DEL  ELECTROMAGNETISMO

47

La figura 2.9 recoge tres tipos de conductores (de izquierda a derecha): conductor rectilíneo, conductor circular y en una espira o bobina. Se puede observar cómo en la espira las líneas de fuerza se representan como un flujo magnético total que pasa por el interior de la espira y cuya intensidad de campo puede calcularse mediante la ley de Ampere, que se expresa:  = μ 0 ∙ n ∙ I , B  = donde B   es la intensidad del campo magnético, µ0 la permeabilidad del vacío que (en m · kg/ C2), I  es  es la intensidad de corriente (en A) y n el número de espiras por unidad de longitud. Este principio es uno de los fundamentales en la generación de campos magnéticos en equipos de resonancia. El comportamiento entre los campos magnéticos y las cargas eléctricas tiene algunas consideraciones: si la carga eléctr ica está en reposo y el campo magnético magnéti co es estático (en el espacio es pacio y en el tiempo), la interacción entre carga eléctrica y campo magnético es nula. Si la carga eléctri eléctrica ca se mueve y atraviesa un campo magnético, magnéti co, aparece una fuerza magnétimagnéti ca que afecta a la trayectoria de la carga eléctrica y que depende de la velocidad de la partícula con carga, del valor del campo magnético y del ángulo que forma for ma la trayectoria de la partícula par tícula con el campo magnético, m agnético, tal y como com o representa la figura 2.10. La expresión que define esta fuerza es:

F = q · v · B · sen

α,

donde q es la carga de la partícula, v  su  su velocidad, B  el   el campo magnético y α  el   el ángulo entre trayectoria de la partícula y el campo. Si la carga se mueve paralela al campo magnético, α   = = 180°, por lo que sen α  =  = 0 y el valor de la fuerza magnética será también 0. La influencia de la fuerza magnética sobre las cargas en movimiento es de gran importancia en los aceleradores lineales usados en radioterapia; radioter apia; en ellos, los electrones son desviados de su trayectoria hacia la diana por estas fuerzas magnéticas para generar fotones. La carga q  de la figura 2.10 se desplaza en dirección v   y está sometida al campo magnético B  (que,   (que, como sabemos, va de N a S). Los vectores v  y  y B  son  son perpendiculares, por lo que α = 90°. En este caso, el vector F, que representaría la fuerza magnética, se saldría del papel e iría hacia el lector, por lo que no se puede representar en el dibujo di bujo.. La fuerza magnética entre los polos de un imán se puede calcular multiplicando sus intensidades individuales y dividiéndolas por el cuadrado de la distancia que las separa, según la expresión:

Fm

=

Polo N



q  α 



Polo S

Figura 2.10 Sentido y dirección de la fuerza magnética de una carga eléctrica en movimiento

k Q1 2Q 2 . d  ⋅

C APÍTULO 2

 

FUNDAMENTOS FÍSICOS  Y   Y  EQUIPOS

48

La variación de la intensidad en función del cuadrado de la distancia se produce en multitud de fenómenos físicos: intensidad sonora, intensidad de luz, radiación, así como en teoría de campos: gravitación y campo electrostático. La expresión matemática de esta ley permite comparar fuerzas a diferentes distancias:

I2

=

I 1  



d 12 d 2 2

,

donde I 1  e I 2  son las intensidades en cada uno de los puntos, y d 1  y y d 2  son las distancias entre los puntos y la fuente de radiación. La ley inversa al cuadro (representada en el apartado 1.4.1) dice, básicamente, que si la distancia se divide entre dos, la fuerza magnética se multiplica por cuatro. Este aspecto es importante cuando se accede a un área en la que hay equipos de resonancia magnética, donde las altas intensidades de campo magnético hacen que las fuerzas sobre los objetos metálicos aumenten enormemente, hasta el punto de poder absorber literalmente objetos pesados a medida que nos aproximamos a él (en la figura 2.11 se muestra cómo cuatro adultos tratan de arrancar  un  un taburete absorbido por una resonancia magnética de 3 teslas). Por este motivo deben señalizarse adecuadamente los accesos acces os a estas zonas con avisos como los que aparecen en la figura 2.12.

Figura 2.11  Ta  Taburete burete absorbido por aproximación a un equipo de resonancia de 3 T

Figura 2.12 de advertencia Señalización a la entrada de una sala de resonancia magnética

La unidad en el sistema internacional inter nacional para el campo magnético es el tesla tesl a (T), que se expresa en (newton × segundo)/(culombio × metro), o lo que es lo mismo: 1 T = 1 N · s · m−1 · C−1).

 TOMA  NOTA  Los equipos de resonancia magnética de 3 teslas son los de mayor potencia admitida actualmente por los organismos médicos internacionales para el estudio morfológico del cuerpo humano.

C APÍTULO 2

 

FUNDAMENTOS DEL  ELECTROMAGNETISMO

49

Un aspecto importante respecto al magnetismo es que no existe una unidad mínima de carga magnética. Esto se constata observando que al partir un imán en dos se obtienen dos imanes, independientemente de las veces que se fraccione: cada nuevo pedazo tendrá siempre un polo negativo y otro positivo. positivo. Hasta el momento no se ha logrado separar los dos polos. La figura 2.13 ilustra esta manifestación bipolar constante de un imán. De momento los físicos físi cos no han conseguido el monopolo magnético, que daría darí a equivalencia práctica a los fenómenos eléctrico y magnético. Como se verá en el apartado siguiente, esto no ocurre con la carga eléctrica que tiene sus unidades mínimas mínima s positiva y negativa negat iva (protón y electrón, respectivamente) con unos valores concretos de carga (–1,6 · 10 –19 C para el electrón y el mismo mism o valor con signo positivo para el protón).

Figura 2.13 Manifestación bipolar constante de un imán

Actividades propuestas 2.2. 

Recopila información información sobre las biografías biografías de los grandes grandes investigadores investigadores del fenómeno electromagnético en los siglos XVIII  y XIX (Coulomb, Ampère, Faraday, Maxwell…) y analiza sus aportaciones. Puedes comentar también cómo dichas aportaciones han contribuido a facilitar nuestras vidas. 2.3.  Revisa el artículo del diario Daily Echo disponible en el QR adjunto. ¿Puedes justificar físicamente físicamente el fenómeno del que se habla?

2.2. Electricidad. Electri cidad. Conceptos y aplicaci aplicaciones ones en el diagnóstico diagnóstico por imagen ima gen La electricidad electr icidad es una forma for ma de energía muy versátil, con innumerables aplicaciones que directa o indirectamente están en la base del funcionamiento de casi ca si todas las máquinas. Se puede definir la electricidad como el conjunto de fenómenos físicos relacionados con la presencia y flujo de cargas eléctricas, cuyas manifestaciones se encuentran en una gran variedad de fenómenos, tanto naturales (los rayos durante una tormenta) como artificiales (los trenes de alta velocidad o la producción de ray rayos os X). La electrostática se encarga del estudio de cargas eléctricas cuando estas no están en movimiento, es decir, de los efectos que generan por su sola presencia, como los que se pueden observar en la figura 2.15. En la electrostática se basaron los primeros experimentos llevados a cabo con la electricidad. De estos experimentos se obtuvieron una serie de datos imprescindibles para entender el comportamiento de la electricidad:

C APÍTULO 2

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF