Foundation Design - Programs for Isolated and Combined Footing Design with Estimate.xlsx
Short Description
Download Foundation Design - Programs for Isolated and Combined Footing Design with Estimate.xlsx...
Description
A
B
C
1
4
7
2
5
8
3
6
9
7
7
7
7
ISOLATED FOOTING DESIGN
C
D
4.5
E
G
F
I
H
10
13
16
19
22
25
11
14
17
20
23
26
12
15
18
21
24
27
4.5
4.5
4.5
4.5
4.5
J
1
31
28
7 2
32
29
7 33
30
4.5
4.5
3
COMBINED FOOTING DESIGN A
7
B
C
D
E
4
7
10
13
16
19
5
8
11
14
17
20
6
9
12
15
18
21
7
4.5
4.5
4.5
4.5
E
G
F
4.5
I
H
22
25
28
31
23
26
29
32
24
27
30
33
4.5
4.5
4.5
J
DEAD LOADS Component Ceiling Gypsum Board Mechanical Duct Allowance Wood Furring Suspension System Floor and Floor Finishes Cement Finish on Stone Concrete Fill Ceramic Quarry Tile Masonry For Plastering (both sides) LIVE LOADS Basic Floor Area
LOAD COMBINATIONS Load (kPa) 0.008 0.2 0.12 1.53 1.1 0.24
1.9
Load Case LC 1 LC 2 LC 3 LC 4 LC 5 LC 6 LC 7 LC 8
Modification F Dead 1.4 1.2 1.2 1.2 1.2 1.2 0.9 0.9
INATIONS Modification Factor Live Wind 1.4 1.2 1.2 0.8 1.2 1.3 1.2 1.2 0.9 0.9 1.3
Seismic
1 1 1
RESULT OF STRUCTURAL ANALYSIS IN THE GROUND FLOOR COLUMNS Column C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31 C32 C33 Maximum Axial
Axial (kN) 1042.397 1580.476 1042.397 1582.783 2402.135 1582.783 1388.76 2105.535 1388.76 1197.474 1818.538 1197.474 1195.571 1812.648 1195.571 1195.831 1813.151 1195.831 1195.836 1813.161 1195.836 1195.846 1813.187 1195.846 1196.437 1814.215 1196.437 1186.426 1794.995 1186.426 854.569 1294.073 854.569 2402.135
Bending (X; kNm) 0.001 0 0.001 0.002 0.001 0.002 2 0.001 2 0.002 0 0.002 0.001 0 0.001 0.001 0 0.001 0.001 0 0.001 0.002 0 0.002 0.002 0 0.002 0.002 0 0.002 0.02 0 0.02 0.001
Bending (Z; kNm) -10.713 -10.733 -10.713 0.29 0.356 0.29 5.386 5.224 5.386 0.133 0.049 0.133 0.022 0.024 0.022 0.004 0.003 0.004 0.043 0.038 0.043 0.082 0.079 0.082 0.128 0.14 0.128 0.369 0.641 0.369 4.518 4.9 4.518 0.356
EXTERNAL INTERNAL
ISOLATED FOOTING - GOVERNING COLUMN FOOTING 5, INTERIOR Given qallowable γconcrete γsoil Φbar cc
150 23.56 18 25 75
kPa kN/m3 kN/m3 mm mm
fy f'c
415 20.7
MPa MPa
hsoil P column
1 2402.135 0.55
m kN m
Part 1. Determine the effective bearing pressure on the footing *Assume the thickness of the footing qeff = qa - γconcrete(tfooting) - γsoil(hsoil)
RESULTS ttrial qeff
Part 2. Determine the required dimension of footing qeff = P/Areq, solve for A Set a value of B, then solve for L L = A/B, pick a larger length
A B L L(used)
Part 3. Check the bearing pressure qu = P/(LB) *If qu < qa, dimension is ok, else, redesign Part 4. Solve Depthof the Footing Considering Wide Beam Shear Vu = qu*Acritical Acritical is the shaded area Vc = ᴓVn, ᴓ = .75 Vn = .17*sqrt(f'c)*B*d Vu = Vc, solve for d
qu SAFE d
Wide Beam Shear Vu x quB Vc k d
x L
B
d/2
Considering Punchig Shear Vu = qu*Acritical Acritical is the shaded area Vn = .33*sqrt(f'c)*bo*d, bo is perimeter of punching Vu = Vc, solve for d
Punching Shear Vu Vc k d dgoverning
Part 5. Determine the longitudinal and
Transverse Reinforcement Critical Area
Punching Area
Critical transverse reinforcement Area Reinforcement at Transverse Solve moment in the critical area M = qu*(Bx)(x/2) k = ᴓ*f'c*B*(d^2) Mu = kω*(1-.59ω) solve for ω, ᴓ = .9 ω = ρ*fy/f'c, solve for ρ ρmin = 1.4/fy *Get the greater value between ρ and ρmin As = ρ*B*d Abar = pi()*(ᴓbar^2)/4 N = As/Abar Reinforcement in Longitudinal M = quL*x*x/2 k = ᴓ*f'c*L*(d^2) Mu = kω*(1-.59ω) solve for ω, ᴓ = .9 ω = ρ*fy/f'c, solve for ρ
Punching Area
x
x M k ω ρ ρmin ρ(governing) As Abar N Longitudinal Reinforcement x M k ω ρ ρmin ρ(governing) As
ρmin = 1.4/fy *Get the greater value between ρ and ρmin As = ρ*L*d β = L/Bb
β γ As' As''
γ = 2/(β+1)
Abar N' N'' Ntotal
*For Middle Part As' = γAs *For Sides As'' = .5*(As - As') N = As/Abar Then Get the Total N Part 6. Solve for the Development Length (Ld/db) = (9*fy*α*β*γ*λ)/(10*sqrt(fc')*(c+ktr/db)) c = steel cover ktr = 0 α = 1.3 β=1 γ = .8 λ=1 solve for Ld
Development Length c ktr (c + ktr)/db *** α*β*γ*λ Ld
ERIOR
P
RESULTS 1 108.44
m MPa
22.1517428993 4 5.5379357248 5.6
mm2 m m m
107.2381696429 SAFE
mPa
de Beam Shear qu*B*x L/2-d 428.9526785714 kd 2274.8626332155 0.4005841333
kN m kN m
nching Shear qu*((L^2)-(c+d)) kd 4549.7252664309 0.4854776683
kN kN
0.4854776683
m
ansverse Reinforcement
0.1885620135
m
0.0235702517 30.366232092 1.0235702517 0.5759272769 -0.5208436367 0.4854776683 -1.0481427867
1.725 893.4816199219 24588916754.4749 0.0371510819 0.0018530781 0.003373494 0.003373494 6551.0239574124 490.8738521234 13
m kNm
mm2 mm2 pcs
ngitudinal Reinforcement 2.525 1367.4207106585 24588916754.4749 0.0575664623 0.0028713874 0.003373494 0.003373494 9171.4335403774
mm2
1.4 0.8333333333 7642.8612836479 1528.5722567296
mm2 mm2
490.8738521234 16 4 37
mm2 pcs pcs pcs
m kNm
velopment Length 75 0 3 2.5 1.04 853.7658369529
0.59 -1 0.0363367622 1.6577641724 0.0371510819
mm
mm
0.59 -1 0.0556112628 1.6373487919 0.0575664623
COMBINED FOOTINGGOVERNING GRID - B
1582.783
R
2402.135
1
2
z 7
0.5
7
Given Column 1 2 3
b (mm) 0.55 0.5 0.55
qallowable
150
γconcrete
23.56
γsoil Φbar cc
18 25 75
d (mm) 0.55 0.55 0.55
P (kN) 1582.783 2402.135 1582.783
Mx (kN-m) 0 0 0
Mz (kN-m) 0 0 0
fy
415
MPa
f'c
20.7
MPa
hsoil
1
m
kPa kN/m3 kN/m
3
mm mm
Solution RESULTS Part 1. Determine the effective soil pressure on the footing Assume a trial thickness of the footing (t) then solve for d d = t - cc Determine the effective upward soil pressure qeff = qallow - (t*γconcrete) - (h*γsoil)
ttrial d qeff R
Part 2. Determine the required dimensions of the footing. Determine the required Area of the footing
Areq z 100
R = P1 + P2 + P 3 qeff = R/Areq, solve for Areq Determine the position of the Resultant, L and W zR = .5P1 + 7.5P2 + 14.5P3, solve for z L = 2z Areq = WL, solve for W x = L - 14.5
Check the ultimate upward pressure q_u=P/A±((M_x∗.5W)/I_x )_X±((M_z∗.5L)/I_z )_Z
L W x Ix Iz
qu1 qu2 qu3 qu4 qu Rectangular Uniform Pressure
get the highest value of qu Determine the shape of the pressure
qu' VA VB VC VD VE VF VG VH Vmax (+) Vmax (-) |Vmax(-)| Vmax
Part 3. Draw the Shear and Moment diagram Determine the upward pressure (longutidnal face) qu' = qu*W *Determine the shear at the sections and get the maximum shear (Vmax) *Determine the maximum positive and negative moment (+Mu)
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
101
MA MB MC MD ME MF MG MH MI MJ MK ML MM Mmax (+) Mmax (-) |Mmax(-)| Mmax Part 4. Check the Wide Beam Shear of the Footing Vu = Vmax - qu'*d Vc = ᴓVn, ᴓ = .75 Vn = .17*sqrt(f'c)*W*d If Vu < Vc, the dimension of the footing is ok, else, change d Part 5. Check the Punching Shear at all Columns Vu = Pu - qu*.5d Vc = ᴓVn, ᴓ = .75 Vn = .33*sqrt(f'c)*bo*d, bo is perimeter of punching area If Vu < Vc, the dimension of the footing is ok, else, change d
Wide Beam Shear Vu Vn Vc Remarks on Wide Beam Shear Punching Shear At Leftmost Column Vu bo Vn Vc Remarks on Punching Shear At Middle Column Vu bo Vn Vc Remarks on Punching Shear At rightmost Column Vu
102
bo Vn Vc Remarks on Punching Shear Part 6. Determine the longitudinal and transverse reinforcement Reinforcement at Longitudinal Mu = Mmax k = ᴓ*f'c*b*(d^2) Mu = kω*(1-.59ω) solve for ω, ᴓ = .9 ω = ρ*fy/f'c, solve for ρ ρmin = 1.4/fy *Get the greater value between ρ and ρmin As = ρ*W*d Abar = pi()*(ᴓbar^2)/4 N = As/Abar Reinforcement at Transverse (per Column) q = P/W let j = .5*(W - c), where c is column dimension Mu = .5*q*(j^2) Solve for ω,ρ, until N using the same process in longitudinal
Longitudinal Mu k ω ρ ρmin ρ(governing) As Abar N Transverse At leftmost q Mu k ω ρ ρmin ρ(governing) As Abar N At middle q Mu k ω ρ ρmin ρ(governing) As Abar N
103
Part 7. Length Development of Longitudinal Bars (Ld/db) = (9*fy*α*β*γ*λ)/(10*sqrt(fc')*(c+ktr/db)) c = steel cover ktr = 0 α = 1.3 β=1 γ = .8 λ=1 solve for Ld
At rightmost q Mu k ω ρ ρmin ρ(governing) As Abar N
c ktr (c + ktr)/db *** α*β*γ*λ Ld
104
SHEAR DIAGRAM
MOMENT DIAGRAM
105
1582.783
3
x
RESULTS 800 725 113.152
mm mm kPa
5567.701
kN
49.2055023331 7.775
m2 m 106
15.55 3.1643409861 0.8
m m m
41058112154880.7 991501123159187
mm4 mm4
Negligible
113.152 Rectangular Uniform Pressure 358.051511254 0 179.025755627 -1206.8289131833 1120.5059099679 -1102.6033344052 1224.731488746 -161.1231800643 27 1224.731488746 -1206.8289131833 1206.8289131833 1224.731488746
0.0710494165 0.4789505835 3.3705455088 3.1294544912 0.2520132361 0.2479867639 3.0794544912 3.4205455088 0.4860555251 0.0139444749
kPa kPa kPa kPa kPa
kN/m kN kN kN kN kN kN kN kN kN kN kN kN
mm mm mm mm mm mm mm mm mm mm
0.59 -1 0.0731690141 1.618281311 0.0766339432
107
0 49.2320827974 55.5919205367 -233.4137855305 -2267.2496721523 -513.9635459807 -372.772385734 -509.48790209 -2207.1962971523 -112.5714004823 185.072352974 183.9489639068 141.6541291399 185.072352974 -2267.2496721523 2267.2496721523 2267.2496721523
kNm kNm kNm kNm kNm kNm kNm kNm kNm kNm kNm kNm kNm kNm kNm kNm kNm
965.1441430868 1739.6232580824 1304.7174435618 emarks on Wide Beam Shear
kN kN kN OK
1379.00332 5.1 mm 5607.5363908761 4205.6522931571 Remarks on Punching Shear
kN
2213.27724 4.9 mm 5387.6330029986 4040.724752249 Remarks on Punching Shear
1379.00332
kN kN OK
0.59 2.5 0.0137911484 -0.0055236599
0.59 -1 0.0209303488 1.6737198508 0.0211954034
0.59 -1 0.0137911484 1.6810100262 0.0139052281
kN kN kN OK
kN
108
5.1 mm 5607.5363908761 kN 4205.6522931571 kN Remarks on Punching Shear OK
2267.2496721523 30986472894.7072 0.0766339432 0.0038224642 0.003373494 0.0038224642 8769.2954995252 490.8738521234 18
500.1935654139 427.3390465585 30986472894.7072 -0.0055236599 -0.0002755175 0.003373494 0.003373494 7739.2918092654 490.8738521234 16
759.1264691721 648.5576864325 30986472894.7072 0.0211954034 0.0010572165 0.003373494 0.003373494 7739.2918092654 490.8738521234 16
kNm
mm2 mm2 pcs
kPa kNm
mm2 mm2 pcs
kPa kNm
mm2 mm2 pcs
109
500.1935654139 427.3390465585 30986472894.7072 0.0139052281 0.0010572165 0.003373494 0.003373494 7739.2918092654 490.8738521234 16
kPa kNm
mm2 mm2 pcs
75 0 3 2.5 1.04
mm
853.7658369529
mm
110
111
112
113
114
115
116
117
APPENDIX B - FINAL ESTIMATE OF TRADEOFFS FINAL ESTIMATE OF VALUES FOR ISOLATED FOOTING ECONOMIC
Transverse Exterior Longitudinal Exterior Interior
Material Cement Sand Gravel
Quantity 6 18 9
Quantiity 3528.1558368 bags 147.006 cu. m 588.026 cu.m Rebars
Total Amount
L 4.9 4.9 5.6
Unit Price PHP 240 PHP 700 PHP 1,350 1050
Summary of Values B t 3 0.512779 3 0.513203 4 0.560478 Total
V 45.2271078 135.7935138 112.9923648 294.0129864
Amount PHP 846,757.40 PHP 102,904.55 PHP 793,835.06 PHP 1,080,450.00
PHP 2,823,947.01
CONSTRUCTABILITY Excavation (Assumed medium soil): Excavation Volume 294.0129864 cu.m. Item 1 cu.yd. 3/4 cu.yd 1/2 cu.yd
Duration .01hr/cu.yd 6 8.4 11.1
Total Duration 17.641 24.697 32.635
Duration hr/ton
Total Duration
5.12
100.47
15.7 0.0054
308.1 32.208
Excavation duration:
17.641
hrs
d N= L= Wt=
25 308.7 16.000 19.623
mm bars m tons
440.768
hrs
Rebarworks Item Fabricate cut &bend Place&tie Mesh
Rebar duration:
Formworks item Fabricate Erect Strip
Duration hr/sf 0.046 0.045 0.024
Total Duration 25.502 24.948 13.306
Area= 1 meter= Area=
0 sq.m. 3.281 ft 0.00 sq.ft
Formworks duration:
63.756
hrs
Duration hr/cu.yd. 0.57 0.7 0.94 0.82
Total Duration 167.587 205.809 276.372 241.091
Concreting duration:
167.587
hrs
Concreting: item Chute Buggies Crane Conveyor
TOTAL DURATION
689.752
SETTLEMENT COMPUTATION
qu B Es μs L/B αav
107.24 4 200000 0.4 1.4 1.1
KPa m Kpa
Se
8.836576
mm
hrs
FINAL ESTIMATE OF VALUES FOR COMBINED FOOTING ECONOMIC GRID A B C D E F G H I J K
Material Cement Sand Gravel
L 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55
Summary of Values B t 2.775 0.8 3.164 0.8 2.39 0.8 2.39 0.8 2.39 0.8 2.39 0.8 2.39 0.8 2.39 0.8 2.39 0.8 2.37 0.8 1.71 0.8 Total
Quantiity 5191.017936 bags 216.292 cu. m 865.170 cu.m Rebars
Total Amount
Unit Price PHP 240 PHP 700 PHP 1,350 2850
N of Bars (Φ25) V 34.521 30 39.36016 34 29.7316 26 29.7316 26 29.7316 26 29.7316 26 29.7316 26 29.7316 26 29.7316 26 29.4828 25 21.2724 19 432.584828 290 Amount PHP 1,245,844.30 PHP 151,404.69 PHP 1,167,979.04 PHP 826,500.00
PHP 3,391,728.03
CONSTRUCTABILITY Excavation (Assumed medium soil): Excavation Volume 432.584828 cu.m. Item 1 cu.yd. 3/4 cu.yd 1/2 cu.yd
Duration Total hr/100cu.yd Duration (hrs) 6 25.955 8.4 36.337 11.1 48.017
Excavation duration:
25.955
hrs
Rebarworks Item Fabricate cut &bend Place&tie Mesh
Duration Total duration hr/ton &hr/sf
d N= L= Wt=
25 377 16.000 23.965
mm bars m tons
313.871
hrs
5.12
122.70
15.7 0.0054
376.3 24.165
Duration hr/sf 0.046 0.045 0.024
Total Duration (hrs) 19.134 18.718 9.983
Formworks duration:
47.834
hrs
Duration hr/cu.yd. 0.57 0.7 0.94 0.82
Total Duration (hrs) 246.573 302.809 406.630 354.720
Concreting duration:
197.259
hrs
Rebar duration:
Formworks item Fabricate Erect Strip
Area= 1 meter= Area=
415.94695 sq.m. 3.281 ft 4477.22 sq.ft
Concreting: item Chute Buggies Crane Conveyor
TOTAL DURATION
584.919
SETTLEMENT COMPUTATION
qu B Es μs L/B αav
113.152 3.164 200000 0.4 4.8988621997 2.1
KPa m Kpa
hrs
Se
5.9430146048
mm
S
TING
Bars (Φ25) 29 29 37 95
88.2 264.6 201.6 554.4
Nbars(Total) 174 522 333 1029
43.15125 49.2002 37.1645 37.1645 37.1645 37.1645 37.1645 37.1645 37.1645 36.8535 26.5905 415.94695
APPENDIX G - ISOLATED FOOTING DESIGN ISOLATED FOOTING - TRANSVERSE EXTERIOR COLUMN FOUNDATION DESIGN (2)
P Given qallowable
150
kPa
γconcrete
23.56
kN/m
γsoil Φbar cc
18 25 75
fy
415
MPa
f'c
20.7
MPa
hsoil P column
1 1580.476 0.55
m kN m
3
kN/m3 mm mm
Part 1. Determine the effective bearing pressure on the footing
RESULTS
*Assume the thickness of the footing qeff = qa - γconcrete(tfooting) - γsoil(hsoil) Part 2. Determine the required dimension of footing qeff = P/Areq, solve for A Set a value of B, then solve for L L = A/B, pick a larger length Part 3. Check the bearing pressure qu = P/(LB) *If qu < qa, dimension is ok, else, redesign Part 4. Solve Depthof the Footing Considering Wide Beam Shear Vu = qu*Acritical Acritical is the shaded area Vc = ᴓVn, ᴓ = .75 Vn = .17*sqrt(f'c)*B*d Vu = Vc, solve for d Considering Punchig Shear Vu = qu*Acritical Acritical is the shaded area Vn = .33*sqrt(f'c)*bo*d, bo is perimeter of punching Vu = Vc, solve for d
d x L
B
d/2
ttrial qeff
1 108.44
A B L L(used)
14.574658797 3 4.8582195992 4.9
qu
107.51537415 SAFE
Wide Beam Shear Vu qu*B*x x L/2-d quB 322.54612245 Vc kd k 1706.1469749 d 0.3458077603 Punching Shear Vu qu*((L^2)-(c+d)) Vc kd k 3412.2939498 d 0.4377785923 dgoverning
0.4377785923
103
Part 5. Determine the longitudinal and transverse reinforcement Critical Area Reinforcement at Transverse Solve moment in the critical area M = qu*(Bx)(x/2) k = ᴓ*f'c*B*(d^2) Mu = kω*(1-.59ω) solve for ω, ᴓ = .9 ω = ρ*fy/f'c, solve for ρ ρmin = 1.4/fy *Get the greater value between ρ and ρmin As = ρ*B*d Abar = pi()*(ᴓbar^2)/4 N = As/Abar Reinforcement in Longitudinal M = quL*x*x/2 k = ᴓ*f'c*L*(d^2) Mu = kω*(1-.59ω) solve for ω, ᴓ = .9 ω = ρ*fy/f'c, solve for ρ ρmin = 1.4/fy *Get the greater value between ρ and ρmin As = ρ*L*d β = L/Bb γ = 2/(β+1) *For Middle Part As' = γAs *For Sides As'' = .5*(As - As') N = As/Abar Then Get the Total N Part 6. Solve for the Development Length (Ld/db) = (9*fy*α*β*γ*λ)/(10*sqrt(fc')*(c+ktr/db)) c = steel cover ktr = 0 α = 1.3 β=1 γ = .8 λ=1
Punching Area
x
Transverse Reinforcement x 1.225 M 395.28363292 k 17495162300 ω 0.0229033751 ρ 0.0011424093 ρmin 0.003373494 ρ(governing) 0.003373494 As 4430.5303314 Abar 490.87385212 N 9 Longitudinal Reinforcement x 2.175 M 762.92237526 k 17495162300 ω 0.0447913136 ρ 0.0022341691 ρmin 0.003373494 ρ(governing) 0.003373494 As 7236.5328746 β 1.6333333333 γ 0.7594936709 As' 5496.1009174 As'' 1740.4319572 Abar N' N'' Ntotal
490.87385212 12 4 29
Development Length c 75 ktr 0 (c + ktr)/db 3 *** 2.5 α*β*γ*λ 1.04 Ld 853.76583695
104
solve for Ld
ISOLATED FOOTING - LONGITUDINAL EXTERIOR FOUNDATION DESIGN (1,3,31,33)
P Given qallowable
150
γconcrete
23.56
γsoil Φbar cc
18 25 75
kPa
fy
415
MPa
f'c
20.7
MPa
hsoil P column
1 1582.783 0.55
m kN m
kN/m3 kN/m
3
mm mm
Part 1. Determine the effective bearing pressure on the footing *Assume the thickness of the footing qeff = qa - γconcrete(tfooting) - γsoil(hsoil)
RESULTS
Part 2. Determine the required dimension of footing qeff = P/Areq, solve for A Set a value of B, then solve for L L = A/B, pick a larger length Part 3. Check the bearing pressure qu = P/(LB) *If qu < qa, dimension is ok, else, redesign Part 4. Solve Depthof the Footing Considering Wide Beam Shear Vu = qu*Acritical Acritical is the shaded area Vc = ᴓVn, ᴓ = .75 Vn = .17*sqrt(f'c)*B*d Vu = Vc, solve for d Considering Punchig Shear Vu = qu*Acritical Acritical is the shaded area Vn = .33*sqrt(f'c)*bo*d, bo is perimeter of punching Vu = Vc, solve for d
d x L
B
d/2
ttrial qeff
1 108.44
A B L L(used)
14.595933235 3 4.8653110783 4.9
qu
107.67231293 SAFE
Wide Beam Shear Vu qu*B*x x L/2-d quB 323.01693878 Vc kd k 1706.1469749 d 0.3462321782 Punching Shear Vu qu*((L^2)-(c+d)) Vc kd k 3412.2939498 d 0.4382026979
105
dgoverning Part 5. Determine the longitudinal and transverse reinforcement Critical Area Reinforcement at Transverse Solve moment in the critical area M = qu*(Bx)(x/2) k = ᴓ*f'c*B*(d^2) Mu = kω*(1-.59ω) solve for ω, ᴓ = .9 ω = ρ*fy/f'c, solve for ρ ρmin = 1.4/fy *Get the greater value between ρ and ρmin As = ρ*B*d Abar = pi()*(ᴓbar^2)/4 N = As/Abar Reinforcement in Longitudinal M = quL*x*x/2 k = ᴓ*f'c*L*(d^2) Mu = kω*(1-.59ω) solve for ω, ᴓ = .9 ω = ρ*fy/f'c, solve for ρ ρmin = 1.4/fy *Get the greater value between ρ and ρmin As = ρ*L*d β = L/Bb γ = 2/(β+1) *For Middle Part As' = γAs *For Sides As'' = .5*(As - As') N = As/Abar Then Get the Total N Part 6. Solve for the Development Length (Ld/db) = (9*fy*α*β*γ*λ)/(10*sqrt(fc')*(c+ktr/db)) c = steel cover ktr = 0 α = 1.3 β=1
Punching Area
x
0.4382026979
Transverse Reinforcement x 1.225 M 395.86062323 k 17529076205 ω 0.0228922786 ρ 0.0011418558 ρmin 0.003373494 ρ(governing) 0.003373494 As 4434.8224848 Abar 490.87385212 N 9 Longitudinal Reinforcement x 2.175 M 764.036003 k 17529076205 ω 0.0447693128 ρ 0.0022330717 ρmin 0.003373494 ρ(governing) 0.003373494 As 7243.5433918 β 1.6333333333 γ 0.7594936709 As' 5501.4253608 As'' 1742.1180309 Abar N' N'' Ntotal
490.87385212 12 4 29
Development Length c 75 ktr 0 (c + ktr)/db 3 *** 2.5 α*β*γ*λ 1.04 Ld 853.76583695
106
γ = .8 λ=1 solve for Ld
107
2)
RESULTS m MPa mm2 m m m mPa SAFE
kN m
0.1890494355
kN m
u*((L^2)-(c+d)) kN m
0.0315082392 23.299797674 1.0315082392 0.5846590632 -0.453639875 0.4377785923 -1.00457878
m
108
m kNm
0.59 -1 0.022593882 1.6720118791 0.0229033751
mm2 mm2 pcs
m kNm
0.59 -1 0.0436076192 1.6501239406 0.0447913136
mm2
mm2 mm2 mm2 pcs pcs pcs
mm
mm
109
3)
RESULTS m MPa mm2 m m m mPa SAFE
kN m
0.1893253884
kN m
u*((L^2)-(c+d)) kN m
0.0315542314 23.368751889 1.0315542314 0.5847096545 -0.454302047 0.4382026979 -1.005026658
110
m
m kNm
0.59 -1 0.0225830853 1.6720229756 0.0228922786
mm2 mm2 pcs
m kNm
0.59 -1 0.0435867808 1.6501459415 0.0447693128
mm2
mm2 mm2 mm2 pcs pcs pcs
mm
mm
111
112
APPENDDIX H - COMBINED FOOTING DESIGN GRID - A
1388.76
R
2105.535
1
2
z 7
0.5
7
Given Column 1 2 3
b (mm) 0.55 0.55 0.55
d (mm) 0.55 0.55 0.55
qallowable
150
kPa
γconcrete Φbar cc
23.56 25 75
kN/m mm mm
γsoil
18
P (kN) 1388.76 2105.535 1388.76
Mx (kN-m) 0 0 0
Mz (kN-m) 0 0 0
fy
415
MPa
f'c hsoil
20.7 1
MPa m
3
kN/m3
Solution RESULTS Part 1. Determine the effective soil pressure on the footing Assume a trial thickness of the footing (t) then solve for d d = t - cc Determine the effective upward soil pressure qeff = qallow - (t*γconcrete)
ttrial d qeff R
Part 2. Determine the required dimensions of the footing. Determine the required Area of the footing
Areq z 106
R = P1 + P2 + P 3 qeff = R/Areq, solve for Areq Determine the position of the Resultant, L and W zR = .5P1 + 7.5P2 + 14.5P3, solve for z L = 2z Areq = WL, solve for W x = L - 14.5
Check the ultimate upward pressure q_u=P/A±((M_x∗.5W)/I_x q_u=P/A±((M_x∗.5W)/I_x )_X±((M_z∗.5L)/I_z )_X±((M_z∗.5L)/I_z )_Z )_Z
L W x Ix Iz
qu1 qu2 qu3 qu4 qu Rectangular Uniform Pressure
get the highest value of qu Determine the shape of the pressure
qu' VA VB VC VD VE VF VG VH Vmax (+) Vmax (-) |Vmax(-)| Vmax
Part 3. Draw the Shear and Moment diagram Determine the upward pressure (longutidnal face) qu' = qu*W *Determine the shear at the sections and get the maximum shear (Vmax) *Determine the maximum positive and negative moment (+Mu)
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
107
MA MB MC MD ME MF MG MH MI MJ MK ML MM Mmax (+) Mmax (-) |Mmax(-)| Mmax Part 4. Check the Wide Beam Shear of the Footing Vu = Vmax - qu'*d Vc = ᴓVn, ᴓ = .75 Vn = .17*sqrt(f'c)*W*d If Vu < Vc, the dimension of the footing is ok, else, change d Part 5. Check the Punching Shear at all Columns Vu = Pu - qu*.5d Vc = ᴓVn, ᴓ = .75 Vn = .33*sqrt(f'c)*bo*d, bo is perimeter of punching area If Vu < Vc, the dimension of the footing is ok, else, change d
Wide Beam Shear Vu Vn Vc Remarks on Wide Beam Shear Punching Shear At Leftmost Column Vu bo Vn Vc Remarks on Punching Shear At Middle Column Vu bo Vn Vc Remarks on Punching Shear At rightmost Column Vu
108
bo Vn Vc Remarks on Punching Shear Part 6. Determine the longitudinal and transverse reinforcement Reinforcement at Longitudinal Mu = Mmax k = ᴓ*f'c*b*(d^2) Mu = kω*(1-.59ω) solve for ω, ᴓ = .9 ω = ρ*fy/f'c, solve for ρ ρmin = 1.4/fy *Get the greater value between ρ and ρmin As = ρ*W*d Abar = pi()*(ᴓbar^2)/4 N = As/Abar Reinforcement at Transverse (per Column) q = P/W let j = .5*(W - c), where c is column dimension Mu = .5*q*(j^2) Solve for ω,ρ, until N using the same process in longitudinal
Longitudinal Mu k ω ρ ρmin ρ(governing) As Abar N Transverse At leftmost q Mu k ω ρ ρmin ρ(governing) As Abar N At middle q Mu k ω ρ ρmin ρ(governing) As Abar N At rightmost
109
q Mu k ω ρ ρmin Part 7. Length Development of Longitudinal Bars (Ld/db) = (9*fy*α*β*γ*λ)/(10*sqrt(fc')*(c+ktr/db)) c = steel cover ktr = 0 α = 1.3 β=1 γ = .8 λ=1 solve for Ld
ρ(governing) As Abar N
c ktr (c + ktr)/db *** α*β*γ*λ Ld
110
GRID - C
1197.474
R
1818.538
1
2
z 7
0.5
7
Given Column 1 2 3
b (mm) 0.55 0.55 0.55
d (mm) 0.55 0.55 0.55
qallowable
150
kPa
γconcrete Φbar cc
23.56 25 75
kN/m mm mm
γsoil
18
3
P (kN) 1197.474 1818.538 1197.474
Mx (kN-m) 0 0 0
Mz (kN-m) 0 0 0
fy
415
MPa
f'c hsoil
20.7 1
MPa m
kN/m3
111
Solution RESULTS Part 1. Determine the effective soil pressure on the footing Assume a trial thickness of the footing (t) then solve for d d = t - cc Determine the effective upward soil pressure qeff = qallow - (t*γconcrete)
ttrial d qeff R
Part 2. Determine the required dimensions of the footing. Determine the required Area of the footing R = P1 + P2 + P 3 qeff = R/Areq, solve for Areq Determine the position of the Resultant, L and W zR = .5P1 + 7.5P2 + 14.5P3, solve for z L = 2z Areq = WL, solve for W x = L - 14.5
Check the ultimate upward pressure q_u=P/A±((M_x∗.5W)/I_x q_u=P/A±((M_x∗.5W)/I_x )_X±((M_z∗.5L)/I_z )_X±((M_z∗.5L)/I_z )_Z )_Z
Areq z L W x Ix Iz
qu1 qu2 qu3 qu4 qu Rectangular Uniform Pressure
get the highest value of qu Determine the shape of the pressure
qu' VA VB VC VD VE VF VG VH Vmax (+) Vmax (-) |Vmax(-)| Vmax
Part 3. Draw the Shear and Moment diagram Determine the upward pressure (longutidnal face) qu' = qu*W
x1 x2 112
*Determine the shear at the sections and get the maximum shear (Vmax) *Determine the maximum positive and negative moment (+Mu)
x3 x4 x5 x6 x7 x8 x9 x10
MA MB MC MD ME MF MG MH MI MJ MK ML MM Mmax (+) Mmax (-) |Mmax(-)| Mmax Part 4. Check the Wide Beam Shear of the Footing Vu = Vmax - qu'*d Vc = ᴓVn, ᴓ = .75 Vn = .17*sqrt(f'c)*W*d If Vu < Vc, the dimension of the footing is ok, else, change d Part 5. Check the Punching Shear at all Columns Vu = Pu - qu*.5d Vc = ᴓVn, ᴓ = .75 Vn = .33*sqrt(f'c)*bo*d, bo is perimeter of punching area If Vu < Vc, the dimension of the footing is ok,
Wide Beam Shear Vu Vn Vc Remarks on Wide Beam Shear Punching Shear At Leftmost Column Vu bo Vn Vc Remarks on Punching Shear
113
else, change d At Middle Column Vu bo Vn Vc Remarks on Punching Shear At rightmost Column Vu bo Vn Vc Remarks on Punching Shear Part 6. Determine the longitudinal and transverse reinforcement Reinforcement at Longitudinal Mu = Mmax k = ᴓ*f'c*b*(d^2) Mu = kω*(1-.59ω) solve for ω, ᴓ = .9 ω = ρ*fy/f'c, solve for ρ ρmin = 1.4/fy *Get the greater value between ρ and ρmin As = ρ*W*d Abar = pi()*(ᴓbar^2)/4 N = As/Abar Reinforcement at Transverse (per Column) q = P/W let j = .5*(W - c), where c is column dimension Mu = .5*q*(j^2) Solve for ω,ρ, until N using the same process in longitudinal
Longitudinal Mu k ω ρ ρmin ρ(governing) As Abar N Transverse At leftmost q Mu k ω ρ ρmin ρ(governing) As Abar N At middle q Mu
114
k ω ρ ρmin ρ(governing) As Abar N
Part 7. Length Development of Longitudinal Bars (Ld/db) = (9*fy*α*β*γ*λ)/(10*sqrt(fc')*(c+ktr/db)) c = steel cover ktr = 0 α = 1.3 β=1 γ = .8 λ=1 solve for Ld
At rightmost q Mu k ω ρ ρmin ρ(governing) As Abar N
c ktr (c + ktr)/db *** α*β*γ*λ Ld
115
GRID - D
1195.571
R
1812.648
1
2
z 7
0.5
7
Given Column 1 2
b (mm) 0.55 0.55
d (mm) 0.55 0.55
P (kN) 1195.571 1812.648
Mx (kN-m) 0 0
Mz (kN-m) 0 0 116
3
0.55
qallowable
150
kPa
γconcrete Φbar cc
23.56 25 75
kN/m mm mm
γsoil
18
0.55
1195.571
0
0
fy
415
MPa
f'c hsoil
20.7 1
MPa m
3
kN/m3
Solution RESULTS Part 1. Determine the effective soil pressure on the footing Assume a trial thickness of the footing (t) then solve for d d = t - cc Determine the effective upward soil pressure qeff = qallow - (t*γconcrete)
ttrial d qeff R
Part 2. Determine the required dimensions of the footing. Determine the required Area of the footing R = P1 + P2 + P 3 qeff = R/Areq, solve for Areq Determine the position of the Resultant, L and W zR = .5P1 + 7.5P2 + 14.5P3, solve for z L = 2z Areq = WL, solve for W x = L - 14.5
Check the ultimate upward pressure q_u=P/A±((M_x∗.5W)/I_x q_u=P/A±((M_x∗.5W)/I_x )_X±((M_z∗.5L)/I_z )_X±((M_z∗.5L)/I_z )_Z )_Z
Areq z L W x Ix Iz
qu1 qu2 qu3 qu4 qu Rectangular Uniform Pressure
get the highest value of qu Determine the shape of the pressure
qu' VA VB VC VD VE VF VG 117
VH Vmax (+) Vmax (-) |Vmax(-)| Vmax Part 3. Draw the Shear and Moment diagram Determine the upward pressure (longutidnal face) qu' = qu*W *Determine the shear at the sections and get the maximum shear (Vmax) *Determine the maximum positive and negative moment (+Mu)
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
MA MB MC MD ME MF MG MH MI MJ MK ML MM Mmax (+) Mmax (-) |Mmax(-)| Mmax Part 4. Check the Wide Beam Shear of the Footing Vu = Vmax - qu'*d Vc = ᴓVn, ᴓ = .75 Vn = .17*sqrt(f'c)*W*d
Wide Beam Shear Vu Vn Vc
118
If Vu < Vc, the dimension of the footing is ok, else, change d Part 5. Check the Punching Shear at all Columns Vu = Pu - qu*.5d Vc = ᴓVn, ᴓ = .75 Vn = .33*sqrt(f'c)*bo*d, bo is perimeter of punching area If Vu < Vc, the dimension of the footing is ok, else, change d
Remarks on Wide Beam Shear Punching Shear At Leftmost Column Vu bo Vn Vc Remarks on Punching Shear At Middle Column Vu bo Vn Vc Remarks on Punching Shear At rightmost Column Vu bo Vn Vc Remarks on Punching Shear
Part 6. Determine the longitudinal and transverse reinforcement Reinforcement at Longitudinal Mu = Mmax k = ᴓ*f'c*b*(d^2) Mu = kω*(1-.59ω) solve for ω, ᴓ = .9 ω = ρ*fy/f'c, solve for ρ ρmin = 1.4/fy *Get the greater value between ρ and ρmin As = ρ*W*d Abar = pi()*(ᴓbar^2)/4 N = As/Abar Reinforcement at Transverse (per Column) q = P/W let j = .5*(W - c), where c is column dimension Mu = .5*q*(j^2) Solve for ω,ρ, until N using the same process
Longitudinal Mu k ω ρ ρmin ρ(governing) As Abar N Transverse At leftmost q Mu k ω ρ
119
in longitudinal
ρmin ρ(governing) As Abar N At middle q Mu k ω ρ ρmin ρ(governing) As Abar N
Part 7. Length Development of Longitudinal Bars (Ld/db) = (9*fy*α*β*γ*λ)/(10*sqrt(fc')*(c+ktr/db)) c = steel cover ktr = 0 α = 1.3 β=1 γ = .8 λ=1 solve for Ld
At rightmost q Mu k ω ρ ρmin ρ(governing) As Abar N
c ktr (c + ktr)/db *** α*β*γ*λ Ld
120
GRID - E
1195.831
R
1813.151
1
2
z 121
0.5
7
7
Given Column 1 2 3
b (mm) 0.55 0.55 0.55
d (mm) 0.55 0.55 0.55
qallowable
150
kPa
γconcrete
23.56
kN/m
Φbar cc
25 75
mm mm
γsoil
18
P (kN) 1195.831 1813.151 1195.831
Mx (kN-m) 0 0 0
Mz (kN-m) 0 0 0
fy
415
MPa
f'c
20.7
MPa
hsoil
1
m
3
kN/m3
Solution RESULTS Part 1. Determine the effective soil pressure on the footing Assume a trial thickness of the footing (t) then solve for d d = t - cc Determine the effective upward soil pressure qeff = qallow - (t*γconcrete)
ttrial d qeff R
Part 2. Determine the required dimensions of the footing. Determine the required Area of the footing R = P1 + P2 + P 3 qeff = R/Areq, solve for Areq Determine the position of the Resultant, L and W zR = .5P1 + 7.5P2 + 14.5P3, solve for z L = 2z Areq = WL, solve for W x = L - 14.5
Check the ultimate upward pressure q_u=P/A±((M_x∗.5W)/I_x )_X±((M_z∗.5L)/I_z )_Z
Areq z L W x Ix Iz
qu1 qu2 qu3 qu4 qu Rectangular Uniform Pressure 122
get the highest value of qu Determine the shape of the pressure
qu' VA VB VC VD VE VF VG VH Vmax (+) Vmax (-) |Vmax(-)| Vmax
Part 3. Draw the Shear and Moment diagram Determine the upward pressure (longutidnal face) qu' = qu*W *Determine the shear at the sections and get the maximum shear (Vmax) *Determine the maximum positive and negative moment (+Mu)
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
MA MB MC MD ME MF MG MH MI MJ MK ML MM
123
Mmax (+) Mmax (-) |Mmax(-)| Mmax Part 4. Check the Wide Beam Shear of the Footing Vu = Vmax - qu'*d Vc = ᴓVn, ᴓ = .75 Vn = .17*sqrt(f'c)*W*d If Vu < Vc, the dimension of the footing is ok, else, change d Part 5. Check the Punching Shear at all Columns Vu = Pu - qu*.5d Vc = ᴓVn, ᴓ = .75 Vn = .33*sqrt(f'c)*bo*d, bo is perimeter of punching area If Vu < Vc, the dimension of the footing is ok, else, change d
Wide Beam Shear Vu Vn Vc Remarks on Wide Beam Shear Punching Shear At Leftmost Column Vu bo Vn Vc Remarks on Punching Shear At Middle Column Vu bo Vn Vc Remarks on Punching Shear At rightmost Column Vu bo Vn Vc Remarks on Punching Shear
Part 6. Determine the longitudinal and transverse reinforcement Reinforcement at Longitudinal Mu = Mmax k = ᴓ*f'c*b*(d^2) Mu = kω*(1-.59ω) solve for ω, ᴓ = .9 ω = ρ*fy/f'c, solve for ρ ρmin = 1.4/fy
Longitudinal Mu k ω ρ ρmin ρ(governing) As Abar
124
*Get the greater value between ρ and ρmin As = ρ*W*d Abar = pi()*(ᴓbar^2)/4 N = As/Abar Reinforcement at Transverse (per Column) q = P/W let j = .5*(W - c), where c is column dimension Mu = .5*q*(j^2) Solve for ω,ρ, until N using the same process in longitudinal
N Transverse At leftmost q Mu k ω ρ ρmin ρ(governing) As Abar N At middle q Mu k ω ρ ρmin ρ(governing) As Abar N
Part 7. Length Development of Longitudinal Bars (Ld/db) = (9*fy*α*β*γ*λ)/(10*sqrt(fc')*(c+ktr/db)) c = steel cover ktr = 0 α = 1.3 β=1 γ = .8
At rightmost q Mu k ω ρ ρmin ρ(governing) As Abar N
c ktr
125
λ=1 solve for Ld
(c + ktr)/db *** α*β*γ*λ Ld
GRID - F
1195.836
1813.161
R 126
1195.836
1813.161
1
2
z 7
0.5
7
Given Column 1 2 3
b (mm) 0.55 0.55 0.55
d (mm) 0.55 0.55 0.55
qallowable
150
kPa
γconcrete Φbar cc
23.56 25 75
kN/m mm mm
γsoil
18
P (kN) 1195.836 1813.161 1195.836
Mx (kN-m) 0 0 0
Mz (kN-m) 0 0 0
fy
415
MPa
f'c hsoil
20.7 1
MPa m
3
kN/m3
Solution RESULTS Part 1. Determine the effective soil pressure on the footing Assume a trial thickness of the footing (t) then solve for d d = t - cc Determine the effective upward soil pressure qeff = qallow - (t*γconcrete)
ttrial d qeff R
Part 2. Determine the required dimensions of the footing. Determine the required Area of the footing R = P1 + P2 + P 3 qeff = R/Areq, solve for Areq Determine the position of the Resultant, L and W zR = .5P1 + 7.5P2 + 14.5P3, solve for z L = 2z
Areq z L W x Ix 127
Areq = WL, solve for W x = L - 14.5
Check the ultimate upward pressure q_u=P/A±((M_x∗.5W)/I_x )_X±((M_z∗.5L)/I_z )_Z
Iz
qu1 qu2 qu3 qu4 qu Rectangular Uniform Pressure
get the highest value of qu Determine the shape of the pressure
qu' VA VB VC VD VE VF VG VH Vmax (+) Vmax (-) |Vmax(-)| Vmax
Part 3. Draw the Shear and Moment diagram Determine the upward pressure (longutidnal face) qu' = qu*W *Determine the shear at the sections and get the maximum shear (Vmax) *Determine the maximum positive and negative moment (+Mu)
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
MA MB MC MD ME
128
MF MG MH MI MJ MK ML MM Mmax (+) Mmax (-) |Mmax(-)| Mmax Part 4. Check the Wide Beam Shear of the Footing Vu = Vmax - qu'*d Vc = ᴓVn, ᴓ = .75 Vn = .17*sqrt(f'c)*W*d If Vu < Vc, the dimension of the footing is ok, else, change d Part 5. Check the Punching Shear at all Columns Vu = Pu - qu*.5d Vc = ᴓVn, ᴓ = .75 Vn = .33*sqrt(f'c)*bo*d, bo is perimeter of punching area If Vu < Vc, the dimension of the footing is ok, else, change d
Wide Beam Shear Vu Vn Vc Remarks on Wide Beam Shear Punching Shear At Leftmost Column Vu bo Vn Vc Remarks on Punching Shear At Middle Column Vu bo Vn Vc Remarks on Punching Shear At rightmost Column Vu bo Vn Vc Remarks on Punching Shear
129
Part 6. Determine the longitudinal and transverse reinforcement Reinforcement at Longitudinal Mu = Mmax k = ᴓ*f'c*b*(d^2) Mu = kω*(1-.59ω) solve for ω, ᴓ = .9 ω = ρ*fy/f'c, solve for ρ ρmin = 1.4/fy *Get the greater value between ρ and ρmin As = ρ*W*d Abar = pi()*(ᴓbar^2)/4 N = As/Abar Reinforcement at Transverse (per Column) q = P/W let j = .5*(W - c), where c is column dimension Mu = .5*q*(j^2) Solve for ω,ρ, until N using the same process in longitudinal
Longitudinal Mu k ω ρ ρmin ρ(governing) As Abar N Transverse At leftmost q Mu k ω ρ ρmin ρ(governing) As Abar N At middle q Mu k ω ρ ρmin ρ(governing) As Abar N At rightmost q Mu k ω ρ
130
ρmin Part 7. Length Development of Longitudinal Bars (Ld/db) = (9*fy*α*β*γ*λ)/(10*sqrt(fc')*(c+ktr/db)) c = steel cover ktr = 0 α = 1.3 β=1 γ = .8 λ=1 solve for Ld
ρ(governing) As Abar N
c ktr (c + ktr)/db *** α*β*γ*λ Ld
131
GRID - G
1195.846
R
1813.187
1
2
z 7
0.5
7
Given Column 1 2 3
b (mm) 0.5 0.5 0.5
qallowable
150
γconcrete Φbar cc
23.56 25 75
γsoil
18
d (mm) 0.5 0.5 0.5
P (kN) 1195.846 1813.187 1195.846
Mx (kN-m) 0 0 0
Mz (kN-m) 0 0 0
fy
415
MPa
f'c hsoil
20.7 1
MPa m
kPa kN/m3 mm mm kN/m3
Solution RESULTS Part 1. Determine the effective soil pressure on the footing Assume a trial thickness of the footing (t) then solve for d d = t - cc Determine the effective upward soil pressure
ttrial d qeff 132
qeff = qallow - (t*γconcrete) R Part 2. Determine the required dimensions of the footing. Determine the required Area of the footing R = P1 + P2 + P 3 qeff = R/Areq, solve for Areq Determine the position of the Resultant, L and W zR = .5P1 + 7.5P2 + 14.5P3, solve for z L = 2z Areq = WL, solve for W x = L - 14.5
Check the ultimate upward pressure q_u=P/A±((M_x∗.5W)/I_x q_u=P/A±((M_x∗.5W)/I_x )_X±((M_z∗.5L)/I_z )_X±((M_z∗.5L)/I_z )_Z )_Z
Areq z L W x Ix Iz
qu1 qu2 qu3 qu4 qu Rectangular Uniform Pressure
get the highest value of qu Determine the shape of the pressure
qu' VA VB VC VD VE VF VG VH Vmax (+) Vmax (-) |Vmax(-)| Vmax
Part 3. Draw the Shear and Moment diagram Determine the upward pressure (longutidnal face) qu' = qu*W *Determine the shear at the sections and get the maximum shear (Vmax) *Determine the maximum positive and negative moment (+Mu)
x1 x2 x3 x4 x5 x6 x7 x8 133
x9 x10
MA MB MC MD ME MF MG MH MI MJ MK ML MM Mmax (+) Mmax (-) |Mmax(-)| Mmax Part 4. Check the Wide Beam Shear of the Footing Vu = Vmax - qu'*d Vc = ᴓVn, ᴓ = .75 Vn = .17*sqrt(f'c)*W*d If Vu < Vc, the dimension of the footing is ok, else, change d Part 5. Check the Punching Shear at all Columns Vu = Pu - qu*.5d Vc = ᴓVn, ᴓ = .75 Vn = .33*sqrt(f'c)*bo*d, bo is perimeter of punching area If Vu < Vc, the dimension of the footing is ok, else, change d
Wide Beam Shear Vu Vn Vc Remarks on Wide Beam Shear Punching Shear At Leftmost Column Vu bo Vn Vc Remarks on Punching Shear At Middle Column Vu bo Vn Vc
134
Remarks on Punching Shear At rightmost Column Vu bo Vn Vc Remarks on Punching Shear Part 6. Determine the longitudinal and transverse reinforcement Reinforcement at Longitudinal Mu = Mmax k = ᴓ*f'c*b*(d^2) Mu = kω*(1-.59ω) solve for ω, ᴓ = .9 ω = ρ*fy/f'c, solve for ρ ρmin = 1.4/fy *Get the greater value between ρ and ρmin As = ρ*W*d Abar = pi()*(ᴓbar^2)/4 N = As/Abar Reinforcement at Transverse (per Column) q = P/W let j = .5*(W - c), where c is column dimension Mu = .5*q*(j^2) Solve for ω,ρ, until N using the same process in longitudinal
Longitudinal Mu k ω ρ ρmin ρ(governing) As Abar N Transverse At leftmost q Mu k ω ρ ρmin ρ(governing) As Abar N At middle q Mu k ω ρ ρmin ρ(governing) As
135
Abar N
Part 7. Length Development of Longitudinal Bars (Ld/db) = (9*fy*α*β*γ*λ)/(10*sqrt(fc')*(c+ktr/db)) c = steel cover ktr = 0 α = 1.3 β=1 γ = .8 λ=1 solve for Ld
At rightmost q Mu k ω ρ ρmin ρ(governing) As Abar N
c ktr (c + ktr)/db *** α*β*γ*λ Ld
136
GRID - H
1195.846
R
1813.187
1
2
z 7
0.5
7
Given Column 1 2 3
b (mm) 0.55 0.55 0.55
qallowable
150
γconcrete Φbar
23.56 25
d (mm) 0.55 0.55 0.55
kPa kN/m3 mm
P (kN) 1195.846 1813.187 1195.846
Mx (kN-m) 0 0 0
Mz (kN-m) 0 0 0
fy
415
MPa
f'c hsoil
20.7 1
MPa m 137
cc
75
γsoil
18
mm kN/m3
Solution RESULTS Part 1. Determine the effective soil pressure on the footing Assume a trial thickness of the footing (t) then solve for d d = t - cc Determine the effective upward soil pressure qeff = qallow - (t*γconcrete)
ttrial d qeff R
Part 2. Determine the required dimensions of the footing. Determine the required Area of the footing R = P1 + P2 + P 3 qeff = R/Areq, solve for Areq Determine the position of the Resultant, L and W zR = .5P1 + 7.5P2 + 14.5P3, solve for z L = 2z Areq = WL, solve for W x = L - 14.5
Check the ultimate upward pressure q_u=P/A±((M_x∗.5W)/I_x q_u=P/A±((M_x∗.5W)/I_x )_X±((M_z∗.5L)/I_z )_X±((M_z∗.5L)/I_z )_Z )_Z
Areq z L W x Ix Iz
qu1 qu2 qu3 qu4 qu Rectangular Uniform Pressure
get the highest value of qu Determine the shape of the pressure
qu' VA VB VC VD VE VF VG VH Vmax (+) Vmax (-) |Vmax(-)| Vmax
138
Part 3. Draw the Shear and Moment diagram Determine the upward pressure (longutidnal face) qu' = qu*W *Determine the shear at the sections and get the maximum shear (Vmax) *Determine the maximum positive and negative moment (+Mu)
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
MA MB MC MD ME MF MG MH MI MJ MK ML MM Mmax (+) Mmax (-) |Mmax(-)| Mmax Part 4. Check the Wide Beam Shear of the Footing Vu = Vmax - qu'*d Vc = ᴓVn, ᴓ = .75 Vn = .17*sqrt(f'c)*W*d If Vu < Vc, the dimension of the footing is ok, else, change d Part 5. Check the Punching Shear at all Columns Vu = Pu - qu*.5d Vc = ᴓVn, ᴓ = .75
Wide Beam Shear Vu Vn Vc Remarks on Wide Beam Shear Punching Shear At Leftmost Column Vu bo
139
Vn = .33*sqrt(f'c)*bo*d, bo is perimeter of punching area If Vu < Vc, the dimension of the footing is ok, else, change d
Vn Vc Remarks on Punching Shear At Middle Column Vu bo Vn Vc Remarks on Punching Shear At rightmost Column Vu bo Vn Vc Remarks on Punching Shear
Part 6. Determine the longitudinal and transverse reinforcement Reinforcement at Longitudinal Mu = Mmax k = ᴓ*f'c*b*(d^2) Mu = kω*(1-.59ω) solve for ω, ᴓ = .9 ω = ρ*fy/f'c, solve for ρ ρmin = 1.4/fy *Get the greater value between ρ and ρmin As = ρ*W*d Abar = pi()*(ᴓbar^2)/4 N = As/Abar Reinforcement at Transverse (per Column) q = P/W let j = .5*(W - c), where c is column dimension Mu = .5*q*(j^2) Solve for ω,ρ, until N using the same process in longitudinal
Longitudinal Mu k ω ρ ρmin ρ(governing) As Abar N Transverse At leftmost q Mu k ω ρ ρmin ρ(governing) As Abar N
140
At middle q Mu k ω ρ ρmin ρ(governing) As Abar N
Part 7. Length Development of Longitudinal Bars (Ld/db) = (9*fy*α*β*γ*λ)/(10*sqrt(fc')*(c+ktr/db)) c = steel cover ktr = 0 α = 1.3 β=1 γ = .8 λ=1 solve for Ld
At rightmost q Mu k ω ρ ρmin ρ(governing) As Abar N
c ktr (c + ktr)/db *** α*β*γ*λ Ld
141
GRID - I
1196.437
1
0.5
R
1814.215
2
z 7
7
Given
142
Column 1 2 3
b (mm) 0.55 0.55 0.55
d (mm) 0.55 0.55 0.55
qallowable
150
kPa
γconcrete Φbar cc
23.56 25 75
kN/m mm mm
γsoil
18
P (kN) 1196.437 1814.215 1196.437
Mx (kN-m) 0 0 0
Mz (kN-m) 0 0 0
fy
415
MPa
f'c hsoil
20.7 1
MPa m
3
kN/m3
Solution RESULTS Part 1. Determine the effective soil pressure on the footing Assume a trial thickness of the footing (t) then solve for d d = t - cc Determine the effective upward soil pressure qeff = qallow - (t*γconcrete)
ttrial d qeff R
Part 2. Determine the required dimensions of the footing. Determine the required Area of the footing R = P1 + P2 + P 3 qeff = R/Areq, solve for Areq Determine the position of the Resultant, L and W zR = .5P1 + 7.5P2 + 14.5P3, solve for z L = 2z Areq = WL, solve for W x = L - 14.5
Check the ultimate upward pressure q_u=P/A±((M_x∗.5W)/I_x q_u=P/A±((M_x∗.5W)/I_x )_X±((M_z∗.5L)/I_z )_X±((M_z∗.5L)/I_z )_Z )_Z
Areq z L W x Ix Iz
qu1 qu2 qu3 qu4 qu Rectangular Uniform Pressure
get the highest value of qu Determine the shape of the pressure
qu' VA VB VC VD 143
VE VF VG VH Vmax (+) Vmax (-) |Vmax(-)| Vmax Part 3. Draw the Shear and Moment diagram Determine the upward pressure (longutidnal face) qu' = qu*W *Determine the shear at the sections and get the maximum shear (Vmax) *Determine the maximum positive and negative moment (+Mu)
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
MA MB MC MD ME MF MG MH MI MJ MK ML MM Mmax (+) Mmax (-) |Mmax(-)| Mmax Part 4. Check the Wide Beam Shear of the Footing
Wide Beam Shear
144
Vu = Vmax - qu'*d Vc = ᴓVn, ᴓ = .75 Vn = .17*sqrt(f'c)*W*d If Vu < Vc, the dimension of the footing is ok, else, change d Part 5. Check the Punching Shear at all Columns Vu = Pu - qu*.5d Vc = ᴓVn, ᴓ = .75 Vn = .33*sqrt(f'c)*bo*d, bo is perimeter of punching area If Vu < Vc, the dimension of the footing is ok, else, change d
Vu Vn Vc Remarks on Wide Beam Shear Punching Shear At Leftmost Column Vu bo Vn Vc Remarks on Punching Shear At Middle Column Vu bo Vn Vc Remarks on Punching Shear At rightmost Column Vu bo Vn Vc Remarks on Punching Shear
Part 6. Determine the longitudinal and transverse reinforcement Reinforcement at Longitudinal Mu = Mmax k = ᴓ*f'c*b*(d^2) Mu = kω*(1-.59ω) solve for ω, ᴓ = .9 ω = ρ*fy/f'c, solve for ρ ρmin = 1.4/fy *Get the greater value between ρ and ρmin As = ρ*W*d Abar = pi()*(ᴓbar^2)/4 N = As/Abar Reinforcement at Transverse (per Column) q = P/W
Longitudinal Mu k ω ρ ρmin ρ(governing) As Abar N Transverse At leftmost q Mu
145
let j = .5*(W - c), where c is column dimension Mu = .5*q*(j^2) Solve for ω,ρ, until N using the same process in longitudinal
k ω ρ ρmin ρ(governing) As Abar N At middle q Mu k ω ρ ρmin ρ(governing) As Abar N
Part 7. Length Development of Longitudinal Bars (Ld/db) = (9*fy*α*β*γ*λ)/(10*sqrt(fc')*(c+ktr/db)) c = steel cover ktr = 0 α = 1.3 β=1 γ = .8 λ=1 solve for Ld
At rightmost q Mu k ω ρ ρmin ρ(governing) As Abar N
c ktr (c + ktr)/db *** α*β*γ*λ Ld
146
GRID - J
1186.426
R
1794.995
1
2 147
z 7
0.5
7
Given Column 1 2 3
b (mm) 0.55 0.55 0.55
qallowable
150
γconcrete Φbar cc
23.56 25 75
γsoil
d (mm) 0.55 0.55 0.55
P (kN) 1186.426 1794.995 1186.426
Mx (kN-m) 0 0 0
Mz (kN-m) 0 0 0
fy
415
MPa
f'c hsoil
20.7 1
MPa m
kPa kN/m3 mm mm
18
kN/m3
Solution RESULTS Part 1. Determine the effective soil pressure on the footing Assume a trial thickness of the footing (t) then solve for d d = t - cc Determine the effective upward soil pressure qeff = qallow - (t*γconcrete)
ttrial d qeff R
Part 2. Determine the required dimensions of the footing. Determine the required Area of the footing R = P1 + P2 + P 3 qeff = R/Areq, solve for Areq Determine the position of the Resultant, L and W zR = .5P1 + 7.5P2 + 14.5P3, solve for z L = 2z Areq = WL, solve for W x = L - 14.5
Check the ultimate upward pressure
Areq z L W x Ix Iz
qu1 qu2 qu3 148
q_u=P/A±((M_x∗.5W)/I_x q_u=P/A±((M_x∗.5W)/I_x )_X±((M_z∗.5L)/I_z )_X±((M_z∗.5L)/I_z )_Z )_Z
qu4 qu Rectangular Uniform Pressure
get the highest value of qu Determine the shape of the pressure
qu' VA VB VC VD VE VF VG VH Vmax (+) Vmax (-) |Vmax(-)| Vmax
Part 3. Draw the Shear and Moment diagram Determine the upward pressure (longutidnal face) qu' = qu*W *Determine the shear at the sections and get the maximum shear (Vmax) *Determine the maximum positive and negative moment (+Mu)
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
MA MB MC MD ME MF MG MH MI MJ
149
MK ML MM Mmax (+) Mmax (-) |Mmax(-)| Mmax Part 4. Check the Wide Beam Shear of the Footing Vu = Vmax - qu'*d Vc = ᴓVn, ᴓ = .75 Vn = .17*sqrt(f'c)*W*d If Vu < Vc, the dimension of the footing is ok, else, change d Part 5. Check the Punching Shear at all Columns Vu = Pu - qu*.5d Vc = ᴓVn, ᴓ = .75 Vn = .33*sqrt(f'c)*bo*d, bo is perimeter of punching area If Vu < Vc, the dimension of the footing is ok, else, change d
Wide Beam Shear Vu Vn Vc Remarks on Wide Beam Shear Punching Shear At Leftmost Column Vu bo Vn Vc Remarks on Punching Shear At Middle Column Vu bo Vn Vc Remarks on Punching Shear At rightmost Column Vu bo Vn Vc Remarks on Punching Shear
Part 6. Determine the longitudinal and transverse reinforcement Reinforcement at Longitudinal Mu = Mmax k = ᴓ*f'c*b*(d^2) Mu = kω*(1-.59ω)
Longitudinal Mu k ω ρ ρmin
150
solve for ω, ᴓ = .9 ω = ρ*fy/f'c, solve for ρ ρmin = 1.4/fy *Get the greater value between ρ and ρmin As = ρ*W*d Abar = pi()*(ᴓbar^2)/4 N = As/Abar Reinforcement at Transverse (per Column) q = P/W let j = .5*(W - c), where c is column dimension Mu = .5*q*(j^2) Solve for ω,ρ, until N using the same process in longitudinal
ρ(governing) As Abar N Transverse At leftmost q Mu k ω ρ ρmin ρ(governing) As Abar N At middle q Mu k ω ρ ρmin ρ(governing) As Abar N
Part 7. Length Development of Longitudinal Bars (Ld/db) = (9*fy*α*β*γ*λ)/(10*sqrt(fc')*(c+ktr/db)) c = steel cover ktr = 0
At rightmost q Mu k ω ρ ρmin ρ(governing) As Abar N
151
α = 1.3 β=1 γ = .8 λ=1 solve for Ld
c ktr (c + ktr)/db *** α*β*γ*λ Ld
GRID - K
152
854.569
R
1294.073
1
2
z 7
0.5
7
Given Column 1 2 3
b (mm) 0.55 0.55 0.55
qallowable
150
γconcrete Φbar cc
23.56 25 75
γsoil
18
d (mm) 0.55 0.55 0.55
P (kN) 854.569 1294.073 854.569
Mx (kN-m) 0 0 0
Mz (kN-m) 0 0 0
fy
415
MPa
f'c hsoil
20.7 1
MPa m
kPa kN/m3 mm mm kN/m3
Solution RESULTS Part 1. Determine the effective soil pressure on the footing Assume a trial thickness of the footing (t) then solve for d d = t - cc Determine the effective upward soil pressure qeff = qallow - (t*γconcrete)
ttrial d qeff R
Part 2. Determine the required dimensions of the footing. Determine the required Area of the footing R = P1 + P2 + P 3 qeff = R/Areq, solve for Areq
Areq z L W 153
Determine the position of the Resultant, L and W zR = .5P1 + 7.5P2 + 14.5P3, solve for z L = 2z Areq = WL, solve for W x = L - 14.5
Check the ultimate upward pressure q_u=P/A±((M_x∗.5W)/I_x q_u=P/A±((M_x∗.5W)/I_x )_X±((M_z∗.5L)/I_z )_X±((M_z∗.5L)/I_z )_Z )_Z
x Ix Iz
qu1 qu2 qu3 qu4 qu Rectangular Uniform Pressure
get the highest value of qu Determine the shape of the pressure
qu' VA VB VC VD VE VF VG VH Vmax (+) Vmax (-) |Vmax(-)| Vmax
Part 3. Draw the Shear and Moment diagram Determine the upward pressure (longutidnal face) qu' = qu*W *Determine the shear at the sections and get the maximum shear (Vmax) *Determine the maximum positive and negative moment (+Mu)
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
MA MB
154
MC MD ME MF MG MH MI MJ MK ML MM Mmax (+) Mmax (-) |Mmax(-)| Mmax Part 4. Check the Wide Beam Shear of the Footing Vu = Vmax - qu'*d Vc = ᴓVn, ᴓ = .75 Vn = .17*sqrt(f'c)*W*d If Vu < Vc, the dimension of the footing is ok, else, change d Part 5. Check the Punching Shear at all Columns Vu = Pu - qu*.5d Vc = ᴓVn, ᴓ = .75 Vn = .33*sqrt(f'c)*bo*d, bo is perimeter of punching area If Vu < Vc, the dimension of the footing is ok, else, change d
Wide Beam Shear Vu Vn Vc Remarks on Wide Beam Shear Punching Shear At Leftmost Column Vu bo Vn Vc Remarks on Punching Shear At Middle Column Vu bo Vn Vc Remarks on Punching Shear At rightmost Column Vu bo Vn
155
Vc Remarks on Punching Shear Part 6. Determine the longitudinal and transverse reinforcement Reinforcement at Longitudinal Mu = Mmax k = ᴓ*f'c*b*(d^2) Mu = kω*(1-.59ω) solve for ω, ᴓ = .9 ω = ρ*fy/f'c, solve for ρ ρmin = 1.4/fy *Get the greater value between ρ and ρmin As = ρ*W*d Abar = pi()*(ᴓbar^2)/4 N = As/Abar Reinforcement at Transverse (per Column) q = P/W let j = .5*(W - c), where c is column dimension Mu = .5*q*(j^2) Solve for ω,ρ, until N using the same process in longitudinal
Longitudinal Mu k ω ρ ρmin ρ(governing) As Abar N Transverse At leftmost q Mu k ω ρ ρmin ρ(governing) As Abar N At middle q Mu k ω ρ ρmin ρ(governing) As Abar N At rightmost q Mu
156
k ω ρ ρmin Part 7. Length Development of Longitudinal Bars (Ld/db) = (9*fy*α*β*γ*λ)/(10*sqrt(fc')*(c+ktr/db)) c = steel cover ktr = 0 α = 1.3 β=1 γ = .8 λ=1 solve for Ld
ρ(governing) As Abar N
c ktr (c + ktr)/db *** α*β*γ*λ Ld
157
1388.76
3
x
RESULTS 800 725 113.152
mm mm kPa
4883.055
kN
43.1548271352 7.775
m2 m 158
15.55 2.7752300408 0.8
m m m
27697853325982.1 869578757362884
mm4 mm4
Negligible
113.152 Rectangular Uniform Pressure 314.022829582 0 157.011414791 -1059.0360289389 982.1123633441 -950.7100803859 1090.4383118971 -125.6091318328 39 1090.4383118971 -1059.0360289389 1059.0360289389 1090.4383118971
0.0710139054 0.4789860946 3.3724810083 3.1275189917 0.2794678847 0.2205321153 3.0275189917 3.4724810083 0.4931888757 0.0068111243
kPa kPa kPa kPa kPa
kN/m kN kN kN kN kN kN kN kN kN kN kN kN
mm mm mm mm mm mm mm mm mm mm
0.59 -1 0.0732506 1.6181916 0.0767236
159
0 43.1781390675 48.7531359461 -204.8786298232 -1990.6680771758 -454.8805430064 -317.6461106484 -422.4771631833 -1861.6235751662 31.6395892283
kNm kNm kNm kNm kNm kNm kNm kNm kNm kNm
300.5356117483 300.1078420418 267.1354449357 300.5356117483 -1990.6680771758 1990.6680771758 1990.6680771758
kNm kNm kNm kNm kNm kNm kNm
862.7717604502 1525.7062203045 1144.2796652284 emarks on Wide Beam Shear
kN kN kN OK
1184.98032 5.1 mm 5607.5363908761 4205.6522931571 Remarks on Punching Shear
kN
1901.75532 5.1 mm 5607.5363908761 4205.6522931571 Remarks on Punching Shear
1184.98032
kN kN OK
0.59 2.5 0.0113973 -0.004564 -4.232724
0.59 -1 0.0172797 1.6774557 0.0174595
0.59 -1 0.0113973 1.6834403 0.0114749
kN kN kN OK
kN
160
5.1 mm 5607.5363908761 kN 4205.6522931571 kN Remarks on Punching Shear OK
1990.6680771758 27176145306.8088 0.0767236102 0.0038269367 0.003373494 0.0038269367 7699.9565312264 490.8738521234 16
500.4125710515 309.7334092838 27176145306.8088 -4.2327243188 -0.2111262492 0.003373494 0.003373494 6787.6108227961 490.8738521234 14
758.688457897 469.5948428212 27176145306.8088 0.0174595234 0.0008708726 0.003373494 0.003373494 6787.6108227961 490.8738521234 14
kNm
mm2 mm2 pcs
kPa kNm
mm2 mm2 pcs
kPa kNm
mm2 mm2 pcs
161
500.4125710515 309.7334092838 27176145306.8088 0.011474941 0.0008708726 0.003373494 0.003373494 6787.6108227961 490.8738521234 14
kPa kNm
mm2 mm2 pcs
75 0 3 2.5 1.04
mm
853.7658369529
mm
162
1197.474
3
x
163
RESULTS 800 725 113.152
mm mm kPa
4213.486
kN
37.237397483 7.775 15.55 2.394687941 0.8
m2 m m m m
17794915454990.7 750341317074231
mm4 mm4
Negligible
113.152 Rectangular Uniform Pressure 270.9637299035 0 135.4818649518 -912.9620836013 848.3021607717 -821.2057877814 940.0584565916 -108.3854919614 34 940.0584565916 -912.9620836013 912.9620836013 940.0584565916
0.0710720166 0.4789279834
kPa kPa kPa kPa kPa
kN/m kN kN kN kN kN kN kN kN kN kN kN kN
mm mm 164
3.3693147195 3.1306852805 0.2794632927 0.2205367073 3.0306852805 3.4693147195 0.4931423867 0.0068576133
mm mm mm mm mm mm mm mm
0 37.2575128617 42.0719975397 -176.5495472669 -1714.577840556 -386.694296463 -268.1596389532 -358.7126491961 -1603.1207958615 27.5585244373
kNm kNm kNm kNm kNm kNm kNm kNm kNm kNm
259.3498599045 258.9782270096 230.5270353698 259.3498599045 -1714.577840556 1714.577840556 1714.577840556
kNm kNm kNm kNm kNm kNm kNm
743.6097524116 1316.4999778552 987.3749833914 emarks on Wide Beam Shear
kN kN kN OK
993.69432 5.1 mm 5607.5363908761 4205.6522931571 Remarks on Punching Shear
kN kN kN OK
0.59 -1 0.0731172 1.6183383 0.076577
0.59 2.5 0.0090706 -0.003631 -4.233657
0.59 -1 0.013775 1.6810264 0.0138888
0.59 -1 0.0090706
165
1.6857956 0.0091197
1614.75832 5.1 mm 5607.5363908761 4205.6522931571 Remarks on Punching Shear
993.69432 5.1 mm 5607.5363908761 4205.6522931571 Remarks on Punching Shear
1714.577840556 23449727226.9521 0.076576954 0.0038196216 0.003373494 0.0038196216 6631.43122261 490.8738521234 14
500.0542991353 212.7026966233 23449727226.9521 -4.2336567903 -0.2111727604 0.003373494 0.003373494 5856.8873738469 490.8738521234 12
759.4050017294 323.0199039912
kN kN kN OK
kN kN kN OK
kNm
mm2 mm2 pcs
kPa kNm
mm2 mm2 pcs
kPa kNm
166
23449727226.9521 0.0138888066 0.000692767 0.003373494 0.003373494 5856.8873738469 490.8738521234 12
500.0542991353 212.7026966233 23449727226.9521 0.0091196521 0.000692767 0.003373494 0.003373494 5856.8873738469 490.8738521234 12
mm2 mm2 pcs
kPa kNm
mm2 mm2 pcs
75 0 3 2.5 1.04
mm
853.7658369529
mm
167
1195.571
3
x
168
RESULTS 800 725 113.152
mm mm kPa
4203.79
kN
37.1517074378 7.775 15.55 2.3891773272 0.8
m2 m m m m
17672349892930.6 748614644810373
mm4 mm4
Negligible
113.152 Rectangular Uniform Pressure 270.340192926 0 135.170096463 -911.7137974277 845.4974565916 -818.463437299 938.7478167203 -108.1360771704
kPa kPa kPa kPa kPa
kN/m kN kN kN kN kN kN kN 169
34 938.7478167203 -911.7137974277 911.7137974277 938.7478167203
kN kN kN kN kN
0.0710141339 0.4789858661 3.3724685462 3.1275314538 0.2794678666 0.2205321334 3.0275314538 3.4724685462 0.4931886929 0.0068113071
mm mm mm mm mm mm mm mm mm mm
0 37.1717765273 41.9712701944 -176.3777412379 -1713.740793737 -391.580848955 -273.4361637493 -363.684907717 -1602.6468078046 27.2393254019
kNm kNm kNm kNm kNm kNm kNm kNm kNm kNm
258.7292297251 258.3609557074 229.9752354502 258.7292297251 -1713.740793737 1713.740793737 1713.740793737
kNm kNm kNm kNm kNm kNm kNm
742.7511768489 1313.4704712222 985.1028534166
kN kN kN
0.59 -1 0.07325 1.6181922 0.076723
0.59 2.5 0.0090437 -0.003621 -4.233668
0.59 -1 0.0137115 1.681091 0.0138243
170
emarks on Wide Beam Shear
OK
991.79132 5.1 mm 5607.5363908761 4205.6522931571 Remarks on Punching Shear
kN
1608.86832 5.1 mm 5607.5363908761 4205.6522931571 Remarks on Punching Shear
991.79132 5.1 mm 5607.5363908761 4205.6522931571 Remarks on Punching Shear
1713.740793737 23395765126.4034 0.0767230327 0.0038269079 0.003373494 0.0038269079 6628.7921423916 490.8738521234 14
500.4111609442 211.5846753037 23395765126.4034 -4.2336675552 -0.2111732973
kN kN OK
0.59 -1 0.0090437 1.6858228 0.0090925
kN kN kN OK
kN kN kN OK
kNm
mm2 mm2 pcs
kPa kNm
171
0.003373494 0.003373494 5843.4096074613 490.8738521234 12
758.6912781116 320.7911019253 23395765126.4034 0.0138242579 0.0006895473 0.003373494 0.003373494 5843.4096074613 490.8738521234 12
500.4111609442 211.5846753037 23395765126.4034 0.0090924942 0.0006895473 0.003373494 0.003373494 5843.4096074613 490.8738521234 12
mm2 mm2 pcs
kPa kNm
mm2 mm2 pcs
kPa kNm
mm2 mm2 pcs
75 0 3 2.5 1.04
mm
853.7658369529
mm
172
1195.831
3
173
x
RESULTS 800 725 113.152
mm mm kPa
4204.813
kN
37.1607483739 7.775 15.55 2.3897587379 0.8
m2 m m m m
17685254829054.8 748796821556034
mm4 mm4
Negligible
113.152 Rectangular Uniform Pressure
kPa kPa kPa kPa kPa
174
270.4059807074 0 135.2029903537 -911.9047202572 845.7341543408 -818.6935562701 938.945318328 -108.162392283 34 938.945318328 -911.9047202572 911.9047202572 938.945318328
kN/m kN kN kN kN kN kN kN kN kN kN kN kN
0.0710162326 0.4789837674 3.3723541094 3.1276458906 0.2794677005 0.2205322995 3.0276458906 3.4723541094 0.493187014 0.006812986
mm mm mm mm mm mm mm mm mm mm
0 37.1808223473 41.9816258503 -176.4121533762 -1714.0449687673 -391.4664926045 -273.2888029421 -363.5629892283 -1602.9200798606 27.2552374598
kNm kNm kNm kNm kNm kNm kNm kNm kNm kNm
258.7930563641 258.4246019293 230.031973955
kNm kNm kNm
0.59 -1 0.0732452 1.6181975 0.0767177
0.59 2.5 0.009047 -0.003622 -4.233666
175
258.7930563641 -1714.0449687673 1714.0449687673 1714.0449687673
kNm kNm kNm kNm
742.9009823151 1313.7901066683 985.3425800012 emarks on Wide Beam Shear
kN kN kN OK
992.05132 5.1 mm 5607.5363908761 4205.6522931571 Remarks on Punching Shear
kN
1609.37132 5.1 mm 5607.5363908761 4205.6522931571 Remarks on Punching Shear
992.05132 5.1 mm 5607.5363908761 4205.6522931571 Remarks on Punching Shear
1714.0449687673 23401458528.72 0.0767177295 0.0038266434 0.003373494 0.0038266434 6629.9469712154 490.8738521234
kN kN OK
0.59 -1 0.0137173 1.6810851 0.0138302
0.59 -1 0.009047 1.6858194 0.0090958
kN kN kN OK
kN kN kN OK
kNm
mm2 mm2
176
14
500.398212192 211.7129925566 23401458528.72 -4.2336662398 -0.2111732317 0.003373494 0.003373494 5844.8316118974 490.8738521234 12
758.717175616 321.0049113688 23401458528.72 0.0138301548 0.0006898415 0.003373494 0.003373494 5844.8316118974 490.8738521234 12
500.398212192 211.7129925566 23401458528.72 0.0090958128 0.0006898415 0.003373494 0.003373494 5844.8316118974 490.8738521234 12
75 0
pcs
kPa kNm
mm2 mm2 pcs
kPa kNm
mm2 mm2 pcs
kPa kNm
mm2 mm2 pcs
mm
177
3 2.5 1.04 853.7658369529
mm
1195.836 178
1195.836
3
x
RESULTS 800 725 113.152
mm mm kPa
4204.833
kN
37.1609251273 7.775 15.55 2.3897701046 0.8
m2 m m m m
17685507187563.3
mm4 179
748800383173740
Negligible
113.152 Rectangular Uniform Pressure 270.407266881 0 135.2036334405 -911.9083697749 845.7388649518 -818.6981382637 938.949096463 -108.1629067524 34 938.949096463 -911.9083697749 911.9083697749 938.949096463
mm4
kPa kPa kPa kPa kPa
kN/m kN kN kN kN kN kN kN kN kN kN kN kN
0.0710162792 0.4789837208 3.3723515654 3.1276484346 0.2794676968 0.2205323032 3.0276484346 3.4723515654 0.4931869766 0.0068130234
mm mm mm mm mm mm mm mm mm mm
0 37.1809991961 41.981828688 -176.4128032958 -1714.0506124739
kNm kNm kNm kNm kNm
0.59 -1 0.0732451 1.6181976 0.0767176
180
-391.4636939711 -273.2853476385 -363.5600406752 -1602.9251090173 27.2555734727
kNm kNm kNm kNm kNm
258.7943065179 258.4258483119 230.0330852894 258.7943065179 -1714.0506124739 1714.0506124739 1714.0506124739
kNm kNm kNm kNm kNm kNm kNm
742.9038279743 1313.7963556506 985.347266738 emarks on Wide Beam Shear
kN kN kN OK
992.05632 5.1 mm 5607.5363908761 4205.6522931571 Remarks on Punching Shear
kN
1609.38132 5.1 mm 5607.5363908761 4205.6522931571 Remarks on Punching Shear
992.05632 5.1 mm 5607.5363908761 4205.6522931571 Remarks on Punching Shear
kN kN OK
0.59 2.5 0.0090471 -0.003622 -4.233666
0.59 -1 0.0137174 1.681085 0.0138303
0.59 -1 0.0090471 1.6858194 0.0090959
kN kN kN OK
kN kN kN OK
181
1714.0506124739 23401569836.6831 0.0767176116 0.0038266375 0.003373494 0.0038266375 6629.9683181298 490.8738521234 14
500.3979243336 211.7154868715 23401569836.6831 -4.2336662143 -0.2111732304 0.003373494 0.003373494 5844.8594125706 490.8738521234 12
758.7177513327 321.0091215613 23401569836.6831 0.0138302713 0.0006898473 0.003373494 0.003373494 5844.8594125706 490.8738521234 12
500.3979243336 211.7154868715 23401569836.6831 0.0090958771 0.0006898473
kNm
mm2 mm2 pcs
kPa kNm
mm2 mm2 pcs
kPa kNm
mm2 mm2 pcs
kPa kNm
182
0.003373494 0.003373494 5844.8594125706 490.8738521234 12
mm2 mm2 pcs
75 0 3 2.5 1.04
mm
853.7658369529
mm
183
1195.846
3
x
RESULTS 800 725 113.152
mm mm kPa 184
4204.879
kN
37.1613316601 7.75 15.5 2.3975052684 0.75
m2 m m m m
17800375450720.7 744000827610943
mm4 mm4
Negligible
113.152 Rectangular Uniform Pressure 271.282516129 0 135.6412580645 -924.563483871 838.7728709677 -838.7728709677 924.563483871 -135.6412580645 0 924.563483871 -924.563483871 924.563483871 924.563483871
0.0639693696 0.4360306304 3.4081204239 3.0918795761 0.25 0.25 3.0918795761 3.4081204239
kPa kPa kPa kPa kPa
kN/m kN kN kN kN kN kN kN kN kN kN kN kN
mm mm mm mm mm mm mm mm
0.59 -1 185
0.4360306304 0.0639693696
mm mm
0 33.9103145161 38.248757404 -163.3202419355 -1738.8320882298 -442.139733871 -337.293125 -442.139733871 -1738.8320882298 -163.3202419355
kNm kNm kNm kNm kNm kNm kNm kNm kNm kNm
38.248757404 33.9103145161 -4.938272013533E-012 38.248757404 -1738.8320882298 1738.8320882298 1738.8320882298
kNm kNm kNm kNm kNm kNm kNm
727.8836596774 1318.0488274336 988.5366205752 emarks on Wide Beam Shear
kN kN kN OK
1006.98824 4.9 mm 5387.6330029986 4040.724752249 Remarks on Punching Shear
kN kN kN OK
0.0740643 1.6172963 0.0776189
0.59 2.5 0.0095619 -0.003828 -4.23346
0.59 -1 0.0144981 1.680291 0.0146243
0.59 -1 0.0095619 1.6852988 0.0096164
1624.32924 kN 4.9 mm 5387.6330029986 kN 4040.724752249 kN
186
Remarks on Punching Shear
OK
1006.98824 4.9 mm 5387.6330029986 4040.724752249 Remarks on Punching Shear
kN
1738.8320882298 23477315605.7888 0.0776189197 0.0038715943 0.003373494 0.0038715943 6729.5716183526 490.8738521234 14
498.7876422071 224.4872494671 23477315605.7888 -4.2334599254 -0.2111629409 0.003373494 0.003373494 5863.777945584 490.8738521234 12
756.2807155859 340.3760704969 23477315605.7888 0.0146242658 0.0007294513 0.003373494 0.003373494 5863.777945584
kN kN OK
kNm
mm2 mm2 pcs
kPa kNm
mm2 mm2 pcs
kPa kNm
mm2
187
490.8738521234 12
mm2 pcs
498.7876422071 224.4872494671 23477315605.7888 0.0096164397 0.0007294513 0.003373494 0.003373494 5863.777945584 490.8738521234 12
kPa kNm
mm2 mm2 pcs
75 0 3 2.5 1.04
mm
853.7658369529
mm
188
1195.846
3
x
189
RESULTS 800 725 113.152
mm mm kPa
4204.879
kN
37.1613316601 7.775 15.55 2.3897962482 0.8
m2 m m m m
17686087621243.2 748808574894464
mm4 mm4
Negligible
113.152 Rectangular Uniform Pressure 270.4102250804 0 135.2051125402 -911.9152636656 845.7511993569 -818.7101768489 938.9562861736 -108.1640900322 34 938.9562861736 -911.9152636656 911.9152636656 938.9562861736
kPa kPa kPa kPa kPa
kN/m kN kN kN kN kN kN kN kN kN kN kN kN
190
0.0710164883 0.4789835117 3.3723401672 3.1276598328 0.2794676802 0.2205323198 3.0276598328 3.4723401672 0.4931868094 0.0068131906
mm mm mm mm mm mm mm mm mm mm
0 37.1814059486 41.9823020918 -176.4138856109 -1714.0581219912 -391.4470946141 -273.2670317447 -363.5430590032 -1602.93101757 27.2567963022
kNm kNm kNm kNm kNm kNm kNm kNm kNm kNm
258.7972237729 258.428752492 230.0356788585 258.7972237729 -1714.0581219912 1714.0581219912 1714.0581219912
kNm kNm kNm kNm kNm kNm kNm
742.9088729904 1313.81072831 985.3580462325 emarks on Wide Beam Shear
kN kN kN OK
0.59 -1 0.0732446 1.6181982 0.0767171
0.59 2.5 0.0090472 -0.003622 -4.233666
0.59 -1 0.0137177 1.6810847 0.0138306
992.06632 kN 5.1 mm
191
5607.5363908761 4205.6522931571 Remarks on Punching Shear
kN kN OK
1609.40732 5.1 mm 5607.5363908761 4205.6522931571 Remarks on Punching Shear
kN
992.06632 5.1 mm 5607.5363908761 4205.6522931571 Remarks on Punching Shear
1714.0581219912 23401825844.9984 0.0767170834 0.0038266111 0.003373494 0.0038266111 6629.9952009231 490.8738521234 14
500.3966346013 211.7209582793 23401825844.9984 -4.2336661603 -0.2111732278 0.003373494 0.003373494 5844.9233541191 490.8738521234 12
0.59 -1 0.0090472 1.6858192 0.009096
kN kN OK
kN kN kN OK
kNm
mm2 mm2 pcs
kPa kNm
mm2 mm2 pcs
192
758.7203307974 321.019336252 23401825844.9984 0.0138305625 0.0006898618 0.003373494 0.003373494 5844.9233541191 490.8738521234 12
500.3966346013 211.7209582793 23401825844.9984 0.0090960134 0.0006898618 0.003373494 0.003373494 5844.9233541191 490.8738521234 12
kPa kNm
mm2 mm2 pcs
kPa kNm
mm2 mm2 pcs
75 0 3 2.5 1.04
mm
853.7658369529
mm
193
1196.437
3
x
194
RESULTS 800 725 113.152
mm mm kPa
4207.089
kN
37.1808629101 7.775 15.55 2.3910522772 0.8
m2 m m m m
17713988638270.5 749202133650974
mm4 mm4
Negligible
113.152 Rectangular Uniform Pressure 270.5523472669 0 135.2761736334 -912.3570353698 846.233221865
kPa kPa kPa kPa kPa
kN/m kN kN kN kN 195
-819.1779871383 939.4122700965 -108.2209389068 34 939.4122700965 -912.3570353698 912.3570353698 939.4122700965
kN kN kN kN kN kN kN kN
0.0710190311 0.4789809689 3.3722015151 3.1277984849 0.279467479 0.220532521 3.0277984849 3.4722015151 0.4931847751 0.0068152249
mm mm mm mm mm mm mm mm mm mm
0 37.2009477492 42.0045391434 -176.4962892283 -1714.8221777256 -391.398683119 -273.151350552 -363.4790438907 -1603.6319780472 27.2823757235
kNm kNm kNm kNm kNm kNm kNm kNm kNm kNm
258.9342902929 258.5655152733 230.1575188103 258.9342902929 -1714.8221777256 1714.8221777256 1714.8221777256
kNm kNm kNm kNm kNm kNm kNm
0.59 -1 0.0732388 1.6182046 0.0767107
0.59 2.5 0.0090545 -0.003625 -4.233663
0.59 -1
196
743.261818328 1314.5012408573 985.875930643 emarks on Wide Beam Shear
kN kN kN OK
992.65732 5.1 mm 5607.5363908761 4205.6522931571 Remarks on Punching Shear
kN
1610.43532 5.1 mm 5607.5363908761 4205.6522931571 Remarks on Punching Shear
992.65732 5.1 mm 5607.5363908761 4205.6522931571 Remarks on Punching Shear
1714.8221777256 23414125374.9296 0.0767106584 0.0038262907 0.003373494 0.0038262907 6632.9242407379 490.8738521234 14
500.3809458377 212.0034936828
kN kN OK
0.0137298 1.6810724 0.0138429
0.59 -1 0.0090545 1.6858118 0.0091034
kN kN kN OK
kN kN kN OK
kNm
mm2 mm2 pcs
kPa kNm
197
23414125374.9296 -4.2336632295 -0.2111730816 0.003373494 0.003373494 5847.9953285118 490.8738521234 12
758.7517083247 321.4710998504 23414125374.9296 0.0138428517 0.0006904748 0.003373494 0.003373494 5847.9953285118 490.8738521234 12
500.3809458377 212.0034936828 23414125374.9296 0.0091034071 0.0006904748 0.003373494 0.003373494 5847.9953285118 490.8738521234 12
mm2 mm2 pcs
kPa kNm
mm2 mm2 pcs
kPa kNm
mm2 mm2 pcs
75 0 3 2.5 1.04
mm
853.7658369529
mm
198
1186.426
3 199
x
RESULTS 800 725 113.152
mm mm kPa
4167.847
kN
36.8340550764 7.775 15.55 2.3687495226 0.8
m2 m m m m
17222911368961 742213883550077
mm4 mm4
Negligible
kPa kPa kPa 200
Negligible
113.152 Rectangular Uniform Pressure 268.0287459807 0 134.0143729904 -904.9958167203 837.1910321543 -810.3881575563 931.7986913183 -107.2114983923 34 931.7986913183 -904.9958167203 904.9958167203 931.7986913183
kPa kPa
kN/m kN kN kN kN kN kN kN kN kN kN kN kN
0.0709405027 0.4790594973 3.3764878965 3.1235121035 0.2794737094 0.2205262906 3.0235121035 3.4764878965 0.4932475979 0.0067524021
mm mm mm mm mm mm mm mm mm mm
0 36.8539525723 41.6074760653 -175.1659444534 -1703.0196552269 -395.5314942926 -278.5450526747 -367.9009998392 -1593.0102012879 26.6832348875
kNm kNm kNm kNm kNm kNm kNm kNm kNm kNm
0.59 -1 0.0734195 1.6180058 0.0769094
0.59 2.5 0.0089283 -0.003574 -4.233714
201
256.4869679776 256.1250004019 227.981982074 256.4869679776 -1703.0196552269 1703.0196552269 1703.0196552269
kNm kNm kNm kNm kNm kNm kNm
737.4778504823 1302.2401126298 976.6800844723 emarks on Wide Beam Shear
kN kN kN OK
982.64632 5.1 mm 5607.5363908761 4205.6522931571 Remarks on Punching Shear
kN
1591.21532 5.1 mm 5607.5363908761 4205.6522931571 Remarks on Punching Shear
982.64632 5.1 mm 5607.5363908761 4205.6522931571 Remarks on Punching Shear
1703.0196552269 23195728020.378 0.076909424 0.003836205 0.003373494
kN kN OK
0.59 -1 0.013508 1.6812978 0.0136174
0.59 -1 0.0089283 1.6859394 0.0089758
kN kN kN OK
kN kN kN OK
kNm
202
0.003836205 6588.0813586621 490.8738521234 13
500.8659584658 207.0986716913 23195728020.378 -4.2337137961 -0.2111756038 0.003373494 0.003373494 5793.4476275525 490.8738521234 12
757.7816830685 313.3285010549 23195728020.378 0.0136174325 0.000679231 0.003373494 0.003373494 5793.4476275525 490.8738521234 12
500.8659584658 207.0986716913 23195728020.378 0.0089758447 0.000679231 0.003373494 0.003373494 5793.4476275525 490.8738521234 12
mm2 mm2 pcs
kPa kNm
mm2 mm2 pcs
kPa kNm
mm2 mm2 pcs
kPa kNm
mm2 mm2 pcs
203
75 0 3 2.5 1.04
mm
853.7658369529
mm
204
854.569
3
x
RESULTS 800 725 113.152
mm mm kPa
3003.211
kN
26.5413868071 7.775 15.55 1.7068415953
m2 m m m 205
0.8
m
6443603388369.55 534814473619188
mm4 mm4
Negligible
113.152 Rectangular Uniform Pressure 193.1325401929 0 96.5662700965 -651.7798327974 603.5816784566 -584.2684244373 671.0930868167 -77.2530160772 24 671.0930868167 -651.7798327974 651.7798327974 671.0930868167
kPa kPa kPa kPa kPa
kN/m kN kN kN kN kN kN kN kN kN kN kN kN
0.0709717714 0.4790282286 3.3747799938 3.1252200062 0.2794712248 0.2205287752 3.0252200062 3.4747799938 0.4932225829 0.0067774171
mm mm mm mm mm mm mm mm mm mm
0 26.5557242765
kNm kNm
0.59 -1 0.0733475 1.6180851 0.0768302
206
29.9824639003 -126.1280054662 -1225.9347755141 -282.772007074 -198.4301515972 -262.8541516077 -1146.6244149032 19.3260011254
kNm kNm kNm kNm kNm kNm kNm kNm
184.825133938 184.5633459807 164.2844292604 184.825133938 -1225.9347755141 1225.9347755141 1225.9347755141
kNm kNm kNm kNm kNm kNm kNm
531.0719951768 938.3506234492 703.7629675869 emarks on Wide Beam Shear
kN kN kN OK
650.78932 5.1 mm 5607.5363908761 4205.6522931571 Remarks on Punching Shear
kN
1090.29332 5.1 mm 5607.5363908761 4205.6522931571 Remarks on Punching Shear
kN kN OK
0.59 2.5 0.0050111 -0.002005 -4.235283
0.59 -1 0.0075882 1.6872927 0.0076225
0.59 -1 0.0050111 1.6898893 0.005026
kN kN kN OK
650.78932 kN 5.1 mm 5607.5363908761 kN
207
4205.6522931571 Remarks on Punching Shear
1225.9347755141 16714064970.1891 0.076830192 0.0038322529 0.003373494 0.0038322529 4742.2603348902 490.8738521234 10
500.67270586 83.7551885985 16714064970.1891 -4.2352827624 -0.2112538631 0.003373494 0.003373494 4174.5643837188 490.8738521234 9
kN OK
kNm
mm2 mm2 pcs
kPa kNm
mm2 mm2 pcs
758.1681882801 126.8304000909 16714064970.1891 0.0076225245 0.0003802078 0.003373494 0.003373494 4174.5643837188 490.8738521234 9
kPa kNm
mm2 mm2 pcs
500.67270586 83.7551885985
kPa kNm
208
16714064970.1891 0.005025964 0.0003802078 0.003373494 0.003373494 4174.5643837188 490.8738521234 9
mm2 mm2 pcs
75 0 3 2.5 1.04
mm
853.7658369529
mm
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
View more...
Comments