FORMULE TRIGONOMETRIE

October 25, 2017 | Author: Macelaru E Imba | Category: N/A
Share Embed Donate


Short Description

Download FORMULE TRIGONOMETRIE...

Description

FORMULE TRIGONOMETRIE CLASA a IX-a INFO FORMULE FUNDAMENTALE 1. sin 2 α + cos 2 α = 1 2. tgα ctgα = 1 FORMULE PRIMUL CADRAN π π 3. sin( − α ) = cos α 4. cos( − α ) = sin α 2 2 π π 5. tg ( − α ) = ctgα 6. ctg ( − α ) = tgα 2 2 7. VALORI FUNCŢII TRIGONOMETRICE ÎN CERCUL TRIGONOMETRIC π π π π 3π π 2π 0 6 4 3 2 2 sin

0

1 2

cos

1

tg

0

ctg

/

3 2 3 3 3

2 2 2 2 1

3 2 1 2

1

0

-1

0

0

-1

0

1

3

/

0

/

0

1

3 3

0

/

0

/

DEFINIŢII ÎN TRIUNGHIUL DREPTUNGHIC: cat.op. cat.alat. cat.op. 8. sin α = 9. cos α = 10. tg α = ipot ipot cat.alat cat.alat. sin α cos α 11. ctg. α = 12. tgα = 13. ctgα = cat.op cos α sin α REDUCERE LA PRIMUL CADRAN 14. sin(π − α ) = sin α 15. cos(π − α ) = − cos α 16. tg (π − α ) = −tgα 17. ctg (π − α ) = −ctgα 18. sin(π + α ) = − sin α 19. cos(π + α ) = − cos α 20. tg (π + α ) = tgα 21. ctg (π + α ) = ctgα 22. sin(2π − α ) = − sin α 23. cos(2π − α ) = cos α 24. tg (2π − α ) = −tgα 25. ctg (2π − α ) = −ctgα PARITATE/IMPARITATE 26. sin(−α ) = − sin α 27. cos(−α ) = cos α 28. tg ( −α ) = −tgα 29. ctg (−α ) = −ctgα FORMULE PTR. FUNCŢII TRIGONOMETRICE DE SUME/DIFERENŢE 30. sin(α + β ) = sin α cos β + sin β cos α 31. sin(α − β ) = sin α cos β − sin β cos α 32. cos(α + β ) = cos α cos β − sin α sin β 33. cos(α − β ) = cos α cos β + sin α sin β tgα + tg β tgα − tg β 34. tg (α + β ) = 35. tg (α − β ) = 1 − tgα tg β 1 + tgα tg β c tgα ctg β − 1 c tgα ctg β + 1 36. ctg (α + β ) = 37. ctg (α − β ) = ctg β + ctgα ctg β − ctgα

TRANSFORMAREA SUMELOR/DIFERENŢELOR ÎN PRODUS α +β α −β cos 38. sin α + sin β = 2sin 2 2 α −β α +β cos 39. sin α − sin β = 2sin 2 2 α +β α −β cos 40. cos α + cos β = 2 cos 2 2 α +β β −α α +β α −β sin = −2sin sin 41. cos α − cos β = 2sin 2 2 2 2 sin(α + β ) sin(α − β ) 42. tgα + tg β = 43. tgα − tg β = cos α cos β cos α cos β sin(α + β ) sin( β − α ) 44. ctgα + ctg β = 45. ctgα − ctg β = sin α sin β sin α sin β FORMULE PENTRU ARCUL DUBLU/TRIPLU 46. sin(2α ) = 2sin α cos α 47. sin(3α ) = sin α (3 − 4sin 2 α ) 48. cos(2α ) = cos 2 α − sin 2 α = 2 cos 2 α − 1 = 1 − 2sin 2 α 49. cos(3α ) = cos α (4 cos 2 α − 3) 2tgα ctg 2α − 1 tg (2 α ) = 50. 51. ctg (2α ) = 1 − tg 2α 2ctgα TRANSFORMAREA PRODUSELOR ÎN SUMĂ/DIFERENŢĂ 1 52. sin α cos β = [ sin(α + β ) + sin(α − β ) ] 2 1 53. cos α cos β = [ cos(α + β ) + cos(α − β ) ] 2 1 54. sin α sin β = [ cos(α − β ) − cos(α + β )] 2 FORMULE PENTRU ARCUL DUBLU ÎN FUNCŢIE DE TANGENTA ARCULUI PE JUMĂTATE 2tgα 1 − tg 2α cos 2 α = 55. sin 2α = 56. 1 + tg 2α 1 + tg 2α 2tgα 1 − tg 2α ctg 2 α = 57. tg (2α ) = (identică cu formula 50.) 58. 1 − tg 2α 2tgα PERIOADA PRINCIPALĂ PENTRU FUNCŢIILE TRIGONOMETRICE (T) 59. sin.......T = π 60. cos......T = 2π 61. tg....... T = π 62. ctg......T = π FORMULE PENTRU JUMĂTĂŢI DE ARC α 1 − cos α 63. sin = ± 2 2 α 1 + cos α 64. cos = ± 2 2 α sin α 1 − cos α 1 − cos α 65. tg = = =± 2 1 + cos α sin α 1 + cos α

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF