SAVIJANJE KRUZNE CILINDRICNE LJUSKE PRI ROTACIONO SIMETRICNOM OPTERECENJU -uslovi ravnoteze-
(1)dM − Tx = 0 Nϕ dT (2) + +Z =0 a dx
-deformacijad 2w du ε xz = − z+ 2 dx dx εϕz = −
DJ :
d 4w Z + 4β 4 w = 4 K dx
imamo sile:
Mx, Tx, Nϕ , Mϕ Nϕx = Tϕ = Nϕ = Mϕ
w a
d 2w w Mx = − K 2 ; Nϕ = − Eh a dx dMx Tx = dx w = w0 + e βx (C1cos β x + C 2 sin β x) + e − βx (C 3 cos βx + C 4 sin β x)
-duga cilindricna ljuska-(β·l>=5) 3(1 − υ 2 ) a 2ha 1 w = w0 − e − βx [(To + Moβ ) cos βx − Mo sin β x ] 3 2β K dw 1 = e − βx [2 β Mo cos βx + To(cos β x + sin β x)] 2 dx 2 β K β =4
d 2w 1 − βx =− e [β Mo(cos βx + sin β x) + To sin β x ] 2 βK dx d 3 w 1 − βx = e [2 β Mo sin βx − To(cos β x − sin β x)] K dx 3 Z ( x)a 2 w0 = − Eh
PDF created with FinePrint pdfFactory Pro trial version http://www.pdffactory.com
DJ=>j-na sa konstantnim koeficijentima m>1: Wm = Am ⋅ r m + Bm ⋅ r − m + Cm ⋅ r m+ 2 + Dm ⋅ r − m+ 2 1 r m=0: W0 = A0 + B0 ⋅ r 2 + C 0 ⋅ ln r + D0 ⋅ r 2 ln r
m=1: W1 = A1 ⋅ r + B1 ⋅ r 3 + C1 ⋅ + D1 ⋅ r ln r
PDF created with FinePrint pdfFactory Pro trial version http://www.pdffactory.com
PDF created with FinePrint pdfFactory Pro trial version http://www.pdffactory.com
STANjE: P ≠ 0 Z = ... Y = ... ϕ
P(ϕ ) = ∫ (.........) 0
P(ϕ ) 2πa sin 2 ϕ 0 Nϕ Nθ (3) + + Z = 0 ⇒ Nθ a a Eδ 10 = 0 − zaopterecenje _ u _ radijal . pravcu Eδ 10 = E ⋅ ∆R0 = E ⋅ ε θ ⋅ R0 N (ϕ ) = −
εθ =
1 (Nθ − υN ϕ ) Eh
PDF created with FinePrint pdfFactory Pro trial version http://www.pdffactory.com
DIFERENCNI POSTUPAK -pravougaone ploceDJ:
d 4w d 4w d 4 w z ( x, y ) + 2 + = K dx 4 dx 2 dy 2 dy 4
w k +1 − w k −1 dw ≈ 2 Sx dx k d 2w w − 2 w k + w k −1 ≈ k +1 2 Sx 2 dx k d 3w w − 2 w k + 1 + 2 w k −1 − w k − 2 ≈ k +2 3 2 Sx 3 dx k d 4w w − 4 w k +1 + 6 w k − 4 w k −1 + w k − 2 ≈ k +2 4 Sx 4 dx k dw w − wi ≈ l 2 Sy dy k d 2w w − 2 wk + wi 2 ≈ l Sy 2 dy k d 3w w − 2 wl + 2 wi − wh 3 ≈ m 2 Sy 3 dy k d 4w w − 4 wl + 6 wk − 4 wi + wh 4 ≈ m Sy 4 dy k d 2w w − wl −1 − wi +1 + wi −1 ≈ l +1 4 SxSy dxdy k d 3w w − 2 wl + wl −1 − wi +1 + 2 wi + wi −1 2 ≈ l +1 2Sx 2 Sy dx dy k d 3w w − 2 wk +1 + wi +1 − wl −1 + 2 wk −1 − wi −1 ≈ l +1 2 2 Sy 2 Sx dxdy k d 4w 4 wk − 2( wl + wi + wk +1 + wk −1 ) + wl +1 + wl −1 + wi +1 + wi −1 2 2 ≈ Sx 2 Sy 2 dx dy k
PDF created with FinePrint pdfFactory Pro trial version http://www.pdffactory.com
Nϕ = − Z ⋅ R dNϕ ⋅ x + C1(ϕ ) Nϕx = − Y + Rdϕ dNϕ x 2 1 dC1(ϕ ) 1 d Nx = Y + − ⋅ x + C 2(ϕ ) R dϕ Rdϕ 2 R dϕ
-kruzna cilindricna ljuskaR=const=a -opterecenje razvijamo u red ∞
∞
∞
n =1
n =1
n =1
X = ∑ Xn cos nϕ ; Y = ∑ Yn sin nϕ ; Z = ∑ Zn cos nϕ ;
PDF created with FinePrint pdfFactory Pro trial version http://www.pdffactory.com
-zadrzavamo samo n-te clanove: Nϕ = − Zn ⋅ a Nϕx = − sin nϕ ∫ (Yn + n ⋅ Zn ) ⋅ dx + C1(ϕ )
[
]
1 1 dC1(ϕ ) cos nϕ ∫ aXn − n ∫ (Yn + n ⋅ Zn ) ⋅ dx ⋅ dx − + C 2(ϕ ) a a dϕ -specijalan slucajNx =
C1 = A1sin nϕ zaXn ≡ 0; Yn, Zn = f (ϕ ) ⇒ C 2 = A2 cos nϕ Nϕ = − Zn ⋅ a Nϕx = −[(Yn + n ⋅ Zn ) ⋅ x + A1] ⋅ sin nϕ n x2 Nx = (Yn + n ⋅ Zn ) − A1 ⋅ x + A2 cos nϕ 2 a
PDF created with FinePrint pdfFactory Pro trial version http://www.pdffactory.com
NAPREZANJE U RAVNI U POLARNIM KOORDINATAMA Nr =
1 d 2 F 1 dF + ; r 2 dϕ 2 r dr
d 2F ; dr 2 1 dF 1 d 2 F = 2 − r dϕ r drdϕ
Nϕ = N rϕ
ROTACIONO SIMETRICNO OPTERECENJE: 1 dF 1 du ; Nr = A 2 + 2 B + C (1 + 2 ln r ); ε r = r dr dr r 2 d F 1 u Nϕ = ; N ϕ = − A 2 + 2 B + C (3 + 2 ln r ); ε ϕ = 2 r dr r N rϕ = 0; γ rϕ = 0
Nr =
F=D+Alnr+Br2+Cr2lnr D=0(ne utice na naprezanje) C=0(za kruzni prsten uz uslov kompatibilnosti) ε r = εϕ + r
dε ϕ
dr
A i C=0 za ploce koje 'imaju centar' Uticaji od temperature: U=εϕ⋅r
εϕ =
1 (Nϕ − υNr ) + αt ⋅ t ulazi u prelazne uslove (UI=UII)npr. Eh
(
) (
1 b − M = ∫ − A ⋅ 2 + 2 B + C (3 + 2 ln r ) ⋅ rdr = −1 ln + (B + C ) b 2 − a 2 + C b 2 ln b − a 2 ln a a r a b
PDF created with FinePrint pdfFactory Pro trial version http://www.pdffactory.com
)
NAVIER-OVO RESENJE ∞
∞
w( x, y ) = ∑∑ Amn ⋅ sin( m =1 n =1
mπx nπy ) sin( ) a b
Zmn
Amn
4 n
Kπ
2
b2
+
2
2
a
m
2
⌠ a ⌠ b nπy mπx Zmn := Z( x, y ) sin ⋅ sin dx dy b a⋅ b a ⌡0 ⌡0 4
MORIS-LEVY W=W1+W0 nπy nπy nπy nπy Yn( y ) = An + Bn ch + Cn + Dn sh a a a a ∞ nπx W1 = ∑ Yn( y ) ⋅ sin a n =1 ∞
Wo = ∑ Won ⋅ sin n =1
Won =
nπx a
Zn ⋅ a 4 Kn 4π 4
2 nπx Zn = ⋅ ∫ Z ( x )sin dx a 0 a a
W ( x, y ) = W 0 + W 1 =
Zn ⋅ a 4 nπy nπx nπy nπy nπy 4 4 + An + ⋅ sin Bn ch + Cn + Dn sh ∑ a a a a a n =1 Kn π ∞
- simetricno opterecenje An i Dn - antimetricno opterecenje Bn i Cn (g.u. Y=+-b/2)
PDF created with FinePrint pdfFactory Pro trial version http://www.pdffactory.com
PLOCA OSLONJENA NA GREDU Y = (1) w p = w g ⇒
dWpl dWgr dWpl d 2Wpl dϕg Mt = ////( 2 ) = ⇒ = =θ = ϕ g 4 4 dy dxdy dx GIt dx dx
___
d 4Wpl Ty − K d 3Wpl d 3Wpl ( ) (1) ⇒ = = + 2 − ⋅ υ EIg EIg dy 3 dx 4 dx 2 dy d 2Wpl d d 2Wpl dMt d 2Wpl = = My = − K + (2) ⇒ GIt ⋅ υ 2 dx dxdy dx dx 2 dy
SILE U PRESEKU d 2W d 2W Mx = − K 2 + υ dy 2 dx
d 2W d 2W My = − K 2 + υ dx 2 dy d 2W Mxy = − K (1 − υ ) dxdy
___ d 3W d 3W Tx = − K 3 + (2 − υ ) dxdy 2 dx ___ d 3W d 3W Ty = − K 3 + (2 − υ ) 2 dx dy dy
PDF created with FinePrint pdfFactory Pro trial version http://www.pdffactory.com
PLOCE NAPREGNUTE U SVOJOJ RAVNI - naponska f-ja F: - Nxy = −
d 2F dxdy
; Nx =
d 2F d 2F ; Ny = ; ako su X i Y=0 dy 2 dx 2
DJ:za plocu opterecenu silama po konturi: d 4F d 4F d 4F + 2 ⋅ + = 0 (za plocu opterecenu silama po konturi) dx 4 dx 2 dy 2 dy 4
- konturni uslovi: cos α =
dy dx ; sin α = − ds ds
dF = p nx ds = Qx dy ∫s dF = − ∫ p ny ds = −Qy dx s s
s
dF dF dF = dx + dy ⇒ F = ∫ p ny ( x − x s )ds + ∫ p nx ( y s − y )ds = M dx dy 0 0 dF dF dF = cos α + (− sin α ) dn dx dy
-Naponska f-ja mora da zadovolji DJ. -opterecenje po konturi na osnovu F(x,y): p nx = Nx
dy dx d 2F d 2F + Nxy ⇒ p nx = cos α + sin α ds ds dxdy dy 2
p ny = Ny
dx dy d 2F d 2F + Nxy ⇒ p ny = − 2 sin α − cos α ds ds dxdy dx
PDF created with FinePrint pdfFactory Pro trial version http://www.pdffactory.com
-SILE U PRESEKU: du dv Nx = D + υ dy dx dv du Ny = D + υ dx dy Nx =
D=
Eh (1 − υ 2 )
1 (1 − υ )D du + dv 2 dy dx
PDF created with FinePrint pdfFactory Pro trial version http://www.pdffactory.com
POLURAVAN -opterecenje(periodicno) razvijamo u sin ili cos red sa periodom L. -parno opterecenje:
p( x) = a0 = an =
a0 ∞ nπx + ∑ a n cos 2 n =1 a
4 L
L/2
4 L
L/2
∫ p( x)dx 0
∫
p ( x) cos
0
nπx dx a
naponska f-ja: F=
Ao 2 ∞ nπx x + ∑ Yn( y ) cos 2 a n =1
-neparno opterecenje
∞
p ( x) = ∑ bn sin n =1
4 L
bn =
nπx a
L/2
∫
p ( x) sin
0
nπx dx a
naponska f-ja: ∞
F = ∑ Yn( y ) sin n =1
nπx a
nπy − Bn e Yn( y ) = An + a
nπy a
nπy + Cn + Dn e a
nπy a
Cn i Dn=0 za poluravan GRANICNE USLOVE POSTAVLJAMO PO SILAMA: Nx =
d 2F d 2F d 2F ; Ny = ; Nxy = − ; dxdy dy 2 dx 2
PDF created with FinePrint pdfFactory Pro trial version http://www.pdffactory.com
Thank you for interesting in our services. We are a non-profit group that run this website to share documents. We need your help to maintenance this website.