Prof.: Carlos Figueroa M. Agosto de 2012 FORMULARIO DE LÍMITES Y DERIVADAS LÍMITES ESPECIALES: 1 = 0, k > 0. x→∞ xk 1 − cos x 1 = 4. lim x →0 x2 2 x a −1 7. lim = ln a x→0 x 1. lim
1 − cos x =0 x→0 x ex −1 6. lim =1 x→0 x x 1 9. lim 1 + = e x → +∞ x
sin x =1 x →0 x tan x =1 5. lim x →0 x 2. lim
3. lim
1
8. lim(1 + x) x = e x→0
DERIVADAS FUNDAMENTALES: (Suponga que z es una función de x). 1. (k )' = 0 , k constante.
2. ( z n )' = nz n −1 z '
4. (e )' = (e ) z '
5. (a )' = (a ) z ' ln a
z' z ln a 10. (tan z )' = (sec2 z ) z '
8. (sin z )' = (cos z ) z '
2 z z' 6. (ln z )' = z (cos z )' = (− sin z ) z ' 9.
11. (cot z )' = (− csc 2 z ) z '
12. (sec z )' = (sec z tan z ) z '
z
z
7. (log a z )' =
13. (csc z )' = (− csc z cot z ) z ' −1 16. (tan z )' =
−1 19. (csc z )' =
z' 1 + z2 − z' z z2 −1
z
3. ( z )' =
z
−1 14. (sin z )' =
z'
1− z − z' −1 17. (cot z )' = 1 + z2 dy dy dz = 20. : R-Cadena. dx dz dx 2
z'
−1 15. (cos z )' = −1 18. (sec z )' =
− z' 1 − z2 z' z z2 −1
21. ( f ± g )' = f '± g ' '
22. (kf )' = kf ' , k constante.
23. ( fg )' = f ' g + fg '
f f ' g − fg ' 24. = g2 g
RELACIONES TRIGONOMÉTRICAS BÁSICAS: 1. sin 2 x + cos 2 x = 1 4. sec x =
1 cos x
7. 1 + cot 2 x = csc2 x 2 tan x 10. tan(2 x) = 1 − tan 2 x 1 − cos(2 x ) 2 13. tan x = 1 + cos(2 x )
sin x cos x 1 5. csc x = sin x 2. tan x =
8. sin( 2 x) = 2 sin x cos x 1 − cos(2 x ) 2 11. sin x = 2 2 tan x 14. sin( 2 x) = 1 + tan 2 x
3. cot x =
cos x sin x
6. 1 + tg 2 x = sec2 x 9. cos(2 x ) = cos 2 x − sin 2 x 1 + cos( 2 x ) 12. cos2 x = 2 1 − tan 2 x 15. cos(2 x ) = 1 + tan 2 x
Thank you for interesting in our services. We are a non-profit group that run this website to share documents. We need your help to maintenance this website.