Formula Sheet For Physics Halliday
December 20, 2022 | Author: Anonymous | Category: N/A
Short Description
Download Formula Sheet For Physics Halliday...
Description
Formula Sheet: Physics 121
A. Carmichael
Position, velocity and acceleration x/∆ ∆x/ ∆t = v = v av Area under v under v((t) = ∆x = s = s Area under a under a((t) = ∆v
v/∆t = a ∆v/∆ = a av x (t) = v( v (t) slope of x( v (t) = a( a(t) slope of v(
Uniformly accelerated linear motion motion (a=const.) v = u = u + at v 2 = u 2 + 2as 2as
s = ut = ut + 21 at2 s = u + v t 2
Friction (kinetic) Weight
−x )
0
x = x = x0 +
v0 t + 21 at2
x = x = x0 +
v0 + v 2
F nnet = ma et = ma f s f s,max = µ = µ s n
≤
f k = µ k n w = mg = mg
t
ay = g = const. const. vy (t) = v y (0) gt
−
y (t) = y(0) y (0) + vy (0)t (0)t
−
1 gt 2 2
Orbitall motion Orbita
x(t) = x(0) x (0) + vx (0)t (0)t
Kepler’s 2nd Law (K2) Orbit (circular) Escape velocity
−
− −
1 gt 2 2
v = GM/r v 2 = 2GM/r
ax = 0 = const. const. vx = v = v(0)cos (0)cos θ = const. const.
Constants related to gravity
x = x = x(0) (0) + v (0)t (0)t cos θ
Universal const. of gravitation G = 6.67
Earth surface gravity v 2 (y) = v 2 (0)
− 2g(y − y ) vy (y) = v y (0) − 2g (y − y ) 2
2
0
Earth mass & G & G
0
Solar mass & G & G
Trajectory and velocity equations for x for x(0) (0) = y = y(0) (0) = 0
−
R,, height h Range R Range height h,, flight time T time T 2
2
2
h = v = v y (0)/ (0)/2g
h = v θ/2g = v (0)sin θ/2
/g R = 2vx (0) (0)/g (0)vvy (0) T T = 2v (0)/g 2 vy (0)/g
R = v θ/g = v 2 (0)sin2 (0)sin2θ/g T T = 2v (0)sin θ/g
h =
R tan θ 4
Circular Circul ar motion
Centripetal acceleration
GM E 3 .98 E = 3.
N m2 /kg2
·
14
m3 /s2
20
m3 /s2
12
m3 /s2
× 10 GM = 1.33 × 10 GM = 4.91 × 10
Moon mass & G & G
Kinetic energy Work done, const. force Power Instantaneous Power Power Work-energy theorem Work done b y con. forces Mechanical energy
Spring (strain) P.E.
s = rθ = rθ v = rω = rω = 2πr/T at = rα
Mechanical energy
2
K = = 2 mv W = F s cos ϕ = F = F s P P = ∆E/ E/∆ ∆t = W/ = W/∆ ∆t P P = F v cos ϕ = F = F v W nnet et = W c + W nc nc = ∆K W c = ∆U E mech = K + + U mech = K = K f Conservation of mech. energy K i + U i + W nc nc = K f f + U f Work done by non-con. forces W nc nc = ∆E mech mech U U ((y ) = mgy mgy + U (0) GPE uniform field + U (0) GPE uniform field ∆U grav = mgh = mg = mg∆ ∆y grav. = mgh
ar = v 2 /r = /r = rω rω 2
version: versi on: Monday Monday 6 th Mar March, ch, 2017 14:07
11
g = 9.81 m/s2
1
−
× 10−
Work and energy
vy (0) 1 g x2 x vx (0) 2 vx2 (0) g 1 x2 y (x) = x tan θ 2 2 2 v (0)cos θ y (x) =
Arc length Tangential speed Tangetial acceleration
π2 /GM )r3 T 2 = (4 (4π
2
ay = g = const. const. v (0)sin θ gt vy = v(0)sin y = y = y(0) (0) + v (0) (0)tt sin θ
g = Gm/r = Gm/r2 U = Gmm /r V V = Gm/r
Gravity field of mass m Gravity mass m G.P.E. two masses m Grav. potential of m
ax = 0 = const. const. vx (t) = v x (0) = const. const.
v (0) and θ In terms of v(0) and θ
−
F = Gmm /r2
Force between masses
Projectile motion 2D 2D (uniform (uniform field g field g =const.)
−
Grav. fields due to point or spherical sources
v = v = v 0 + at
−
ω = 2πf πf = 2π/T f = 1/T at = 0, α = 0
Forces Newton’s 2nd Law Newton’s Friction (static)
Alternative form
v 2 = v 02 + 2a 2 a(x
Angular frequency Frequency and time period Uniform circular motion
Page 1
·
·
−
2 1 U spring spring = 2 kx
E mech + U total mech. = K + total
CalPoly Department of Physics
Formula Sheet: Physics 121
A. Carmichael
Substitutions for rotational dynamics
Momentum
Linear Momentum
p = p = m mv aavv = ∆ p/∆ F p/ ∆t
Newton’s second law Impulse for constant force
Impulse for variable force
s = u =
⇒ ∆θ ⇒ω v =⇒ ω a =⇒ α
= ∆ p = ∆t J p = F ∆ F = ∆ p = aavv ∆t J p = F
= F m =
⇒ Γ ⇒ I
0
K = = 21 mv2 = K r = 12 I ω2 p p = = m mv = L = I = I ω
⇒
⇒
Moments of inertia Theorems for variable forces = ∆ p = p = Area under F under F nnet Impulse-momentum J et (t)
Work-energy
W nnet F nnet Areaa under under F et = ∆K = Are et, (s)
Moment I = = M R2
Ob ject Unif Un ifor orm m ri ring ng/t /tube ube
Axis Thro Throug ugh h cent centre re
I = = 21 M R2
Uniform Unifor m disk/c disk/cylinde ylinderr
Through Through centre centre
Uniform rod
Through centre
Uniform rod
Through end
Uniform sphere
Through centre
Hollow sphere
Through centre
I = =
Centre of mass x-coordinate
y -coordinate
I = =
m1 x1 + m2 x2 + ... xcm = m1 + m2 + ... m1 y1 + m2 y2 + ... ycm = m1 + m2 + ...
I = = I = = I = =
Types of collision
1 M L2 12 1 M L2 3 2 M R2 5 2 M R2 3 1 M a2 3
ω = ω = ω0 + αt
• inelastic: Some loss of K.E., 0 < 0 < e < 1 • completely inelastic: v = v = v, v , e = e = 0 Max K.E. loss = v 1
2
Collision conservation laws (1D & 2D)
K.E. (elastic only)
m1 u1 + m2 u2 = m = m1v1 + m2v2 1 m1 u21 + 21 m2 u22 = 12 m1 v12 + 21 m2 v22 2
Newton’s collision law (1D only) Newton New ton’s ’s col collisi lision on la law w (1D) (1D)
m1
− em
(v2
− v ) = −e(u − u ) 1
2
u1
v2 =
2
(1 + e)m1
u1
m1 + m2
m1 + m2 loss of K.E.
Along edge (door)
∆K = (1 K i
− e ) m m + m
1
∆θ = ω = ω0 t + 21 αt2
ω 2 = ω02 + 2α 2 α∆θ
Hooke’s Law
Acceleration
Velocity
F F ((x) =
−kx a(x) = −ω x = −n x v (x) = ±ω A − x 2
Total energy x((t) Position x Position v((t) Velocity v Velocity
2
E = = 12 kA 2 = 12 mω2 A2 x(t) = A sin( ωt + ϕ) sin(ωt v (t) = Aω cos( ωt + ϕ) cos(ωt
a(t) =
Period, mass-spring
ωt + ϕ) Aω2 sin( sin(ωt
1 2π T T = = = 2π ω f
−
T = Period, Peri od, simple pendulum T
1 2π = = 2π f n
K r = 12 I ω2
T = Period, physical pendulum T
1 2π = = 2π f n
Moment of inertia Magnitude of torque Work done by a torque Rotational power N2 for rotation
I = = Σ mr2 rF sin Γ = rF sin ϕ = rF = rF ⊥ W = Γ ∆θ = ∆K r
Elasticity
P P = Γω Γω Γ = I α
Hooke’s law (cables) Tensile stress Tensile strain
Angular momentum Conservation of L Rolling without slipping
L = I = I ω I i ωi = I ff ωf vcm = Rω, acm = Rα = Rα
Young’s modulus Strain energy
1
2
Rotational motion Rotational K.E.
·
version: versi on: Monday Monday 6 th Mar March, ch, 2017 14:07
Page 2
2
U U ((x) = 21 kx2
a((t) Acceleration a Acceleration
2
2
2
t ∆θ = ω0 + ω 2
Simple harmonic motion (SHM)
SPE for a spring
1D collision, stationary target (u (u2 = 0) v1 =
Rotational motion with ( with (α α = con const. st.))
• totally elastic: No loss of K.E. , e = 1
Momentum
Slab width a width a
m k
l g I mgr
F = (Y δl = k k δl = δl = λδl/l λδl/l ( Y A/l) δl = stress = F /A strain = δl/l
·
·
Y Y = = stress/ stress/strain W = U U = 21 F δl = δl = 12 kx 2
· ·
CalPoly Department of Physics
Formula Sheet: Physics 121
A. Carmichael
Inverse trig functions where where α = principal value
Trigonometry sin θ =
opp. opp. adj. adj. opp opp.. sin θ cos θ = tan θ = = hyp.. hyp hyp.. hyp adj.. adj cos θ
θ(rad) 2π π π 2π = = 1 rpm rp m = rad/s = rad/s θ(deg) 360o 180o 60 30
cos θ = cos α sin θ = sin α tan θ = tan α
(1 + x)n = 1 + nx +
π/6) π/33 = sin(2π/ 6) = sin π/ sin(2π/3) 3) = 3/2 cos( π/ π/3) π/66 = sin(5π/ cos( π/ 3) = sin π/ sin(5π/6) 6) = 1/ 1 /2
2
2
a = b + c 2bc cos A a b c = = sin A sin B sin C
−
sin(θ sin(θ cos(θθ cos( sin(θ sin(θ cos(θθ cos( π sin(π sin( π cos(π cos(
Law of cosines cosines
Law of sines
sin θ + cos θ = 1 sin2θθ = 2 sin sin2 sin θ cos θ cos2θθ = cos2 θ cos2
2
± ±
± ∓
± ±
cos(ωt cos(ωt
π) =
±
n
C r =
n integer n integer
n! r !( n r)! !(n
n
−
P r =
n! (n r )!
−
√ b − 4ac x = − ± 2a x = −
max, min at
2
b 2a b/ b/22a
Roots at
− θ∓φ
± − θ
φ
− y = m = m((x − x ) y −y y − y = x −x y
1
1
1
2
1
2
1
(x
−x ) 1
Exponential behaviour y (t) = y0 e−t/τ = y0 e−λt T 1/2 = τ = τ ln 2
Exponential decay Half life
− e−t/τ
y (t) = ymax 1
Exponential growth
Percent difference between quantities A, B % diff (A, (A, B ) =
|A − B| × 100 = |A − B| × 200 av(A, B ) av(A,
A+B
Percent error % err error or =
|measured − true | × 100 true
Mathematical constants e = 2.71828 ... 71828...
π = 3.14159 14159... ...
... 434... log10 e = 0.434 ... ln10 = 2. 2.3025 3025... ln2 = 0. 0.693 693....
− − −
1 (in−radians) cos θ ≈ 1 − θ /2 tan θ ≈ θ
1o = 1.745
× 10− rad 1 = 2.9089 × 10− rad 1 = 4.8481 × 10− rad
6
1 ra rad d = 57. 57.296o π/6 ra rad d = 30o π/3 ra rad d = 60o
− e− ) = 0.632 632.... √ 3√ /2 = 0.866 ... 866...
π/4 ra rad d = 45o
1
... 707... 1/ 2 = 0.707
2
4
e−1 = 0.368 368.... (1
Small angle formulae for small θ
| | | 1
Quadratic equation equation y = ax = ax2 + bx + c
2cos θ cos ϕ = cos(θ cos(θ ϕ) + cos(θ cos(θ + ϕ) 2sin θ sin ϕ = cos(θ cos(θ ϕ) cos( cos(θθ + ϕ) 2sin θ cos ϕ = sin(θ sin(θ + ϕ) + sin(θ sin(θ ϕ)
≈θ
+ ... if x
Cominatorics
Product to sum
sin θ
2
C r an−r br
cos ωt
cos 2 2 θ φ θ + φ cos cos θ + cos φ = 2 cos cos 2 2 θ + φ θ + φ sin cos θ cos φ = 2sin 2 2
−
− 1) x 1)x
± −
r=0
∓
± π/2) π/2) = ± cos ωt ± π/ π/2) 2) = ∓ sin ωt sin(ωt ± π) = − sin ωt sin(ωt
Sum to product
−
1 n(n 2!
Given (x (x1 , y1 ), (x2 , y2 )
sin(ωt cos(ωt cos(ωt
θ
± sin φ = 2 sisinn
n n
m,, (x1 , y1 ) Given m Given
π/2) = cos θ sin(θθ π/2) sin( π/2) cos(θ π/ cos(θ 2) = sin θ sin(π/22 θ ) = cos θ sin(π/ cos(π/22 θ) = sin θ cos(π/
− sin
θ = α + 2nπ 2nπ θ = ( 1)n α + nπ θ = α = α + + nπ
Linear Equation Equation y = mx = mx + b
2
sin θ
(a + b)n =
±± φφ)) == sin θ cos φ ± cos θ sin φ cos θ cos φ ∓ sin θ sin φ
± π) = − sin θ ± π) = − cos θ ± θ) = ∓ sin θ ± θ) = − cos θ
2
⇒ ⇒ ⇒
Binomial formulae
√
±± √ π/4) π/44 = sin(3π/ cos(±π/ 4) = sin π/ sin(3π/4) 4) = 1/ 1/ 2 √ π/6) = sin(−π/3) π/3) = sin(−2π/3) π/3) = − 3/2 cos(±5π/6) π/3) = sin(−π/6) π/6) = sin(−5π/6) π/6) = −1/2 cos(±2π/3) √ π/4) = sin(−π/4) π/4) = sin(−3π/4) π/4) = −1/ 2 cos(±3π/4)
= = =
1 rp rpm m = 0.104 10477 rad/ rad/s 1rad//s = 9. 1rad 9 .549 rpm
2
version: versi on: Monday Monday 6 th Mar March, ch, 2017 14:07
Page 3
CalPoly Department of Physics
Formula Sheet: Physics 121
A. Carmichael
Let Lette terr Alpha Beta Gamma Delta Epsilon Zeta Eta Theta
Uppe Upperr A B Γ ∆ E Z H Θ
cas asee
Lower ca case se α β γ δ , ε ζ η θ
IKoatappa Lambd bdaa Mu Nu Xi Omic Om icrron Pi Rho Sigma Tau Upsilon Phi Chi Psi
I K Λ M N Ξ O Π P Σ T Y Φ X Ψ
ι κ λ µ ν ξ o π ρ σ τ υ φ, ϕ χ ψ
Omega
Ω
ω
Abbreviations used: SHM = Simple Harmonic Motion GPE = Gravitational Potential Energy SPE = Strain (Spring) Potential Energy EMF = ElectroMotive Force (voltage) EM or E&M = ElectroMagnetism PE = Potentia Potentiall Energy Energy PD = Potential Difference AC = Alternating Current DC = Direct Current (or Detective Comics) con. = conservative (force) STP = Standard Temperature and Pressure (20o C, 1 atm) N1,N2,N3= N1,N2,N 3= Newton’s Newton’s laws of motion motion T0,T1,T2,T3= the laws of thermal physics K1,K2,K3= K1,K2,K 3= Kepler’s Kepler’s laws of planetary planetary motion
Metric Prefixes tera
T
1012
giga
G
109
mega
M
106
kilo
k
103
hecto
h
102
deci
d
10−1
centi
c
10−2
milli
m
10−3
micro nano pico
µ n
10−6 10−9 10−12
p
SI units and derived units Quantity Mass Length Time Force
Energy Power
Sy Symbol m l t
Un U ni t kg m s
Name kilogram meter second
Basic Units kg m s
F
N
Newton
kg ms−2
E
J
Joule
k kgg m2 s−2
P
W = Js−1
Watt
kg m2 s−3
Pa = N.m2
Pascal
kg/ms2
Pressure p
version: versi on: Monday Monday 6 th Mar March, ch, 2017 14:07
Page 4
CalPoly Department of Physics
Formula Sheet: Physics 121
A. Carmichael
Unit Conversions Quantity Units Length in inch, cm Length foot, cm Length
mile, km
Conversion or value 1 in. = 2.54cm 1 ft = 30.48cm 1 mile = 1.609 609 km
Energy Energy
electron-volt, Joule calorie, Joule
1 eV eV = 1.602 10−19 J 1 ca cal = 4.1868J 1868J
En Ener ergy gy Energy Energy Power
Brit Britis ish h th ther erma mall unit unit,, Jo Joul ulee foot-pound, Joule kilowatt-hour, Joule horsepower, Watt
1 Btu Btu = 1055J 1055J 1 ft ft lb = 1. 1.356J 1 k W h = 3.600 600 MJ 1 hp h p = 746 W Waatt
Mass Force
atomic unit, kg pound, Newton
1 u = 1.6605 10−27 kg 1 lb lb = 4.442N
Density
g/cm3
Pressure Pressure
Pascal, psi atmosphere, Pascal
/m2 = 1.450 10−4 psi 1 Pa Pa = 1 N N/ 1atm 1atm = 101, 325Pa = 760Torr 760Torr = 14. 14.7psi
Pressure
psi, Pascal
1 ps psi = 6.895
Pressure
mm Hg
1 torr = 1 mm Hg = 0.0394inHg = 1. 1.333
→ kg kg//m
×
·
·
×
3
1 g/cm3 = 1000 1000 kg/ kg/m3
×
3
× 10
Pa
5
Pressure Volume Volume Volume Angle
bar lilitre quart (US) gallon (US) rev, rad rad,, deg
2
× 10
Pa
1 bar = 10 Pa 1 l = 103 cm3 = 10 −3 m3 = 1.057 057 qt (U (US) S) 1 qt qt (U (US) = 946 m mll 1 gal.(US) = 3. 3.758l o 1 rev = 360 = 2π 2 π rad
Astrophysical Data
Body Bod y surf surfac ace e g Mass 2
(m/ (m/s ) Sun Earth Moon
−− 9.81
1.62
3
1.99 5.97
× 10 × 10 7.36 × 10
2
(m /s )
kg
GM
30 24 22
1.33 3.98
× 10 × 10 4.91 × 10
version: versi on: Monday Monday 6 th Mar March, ch, 2017 14:07
20 14 12
Radiu adiuss
Orbit rbit Radiu adiuss
Orbit rbit Perio eriod d
m
m
Earth years
6.96 6.37
8
× 10 − − × 10 1.50 × 10 −− 1.74 × 10 6
11
6
Page 5
−−
1.00
−−
Sym Symbol bol
♁
CalPoly Department of Physics
Formula Sheet: Physics 121
A. Carmichael
Symbols used in mechanics:
Andrew Carmichael California Polytechnic University San Luis Obispo Monday 6th March, 2017 Updates on my profile at:
A Amplitude Amplitude for SHM A, A 1 , A 2 Cross sectional sectional area area of of pipe a Acceleration at Tangential component of acceleration ar Radial component of acceleration e Coefficient of resitution E Total energy F , F , F aavv Force, aver average age force f Frequency (rev/second or cycles/second) f Friction (force) G Universal gravitation constant g Gravitational field strength h depth or height height I Moment of inertia = ∆ p) p ) J Impulse (change in momentum J K Kinetic energy K r Rotational kinetic energy k Spring constant k wavenumber 2π/λ L Angular momentum l Length M , M , m Mass n P P aavv p r s T T U u v W W c W nc nc W nnet et Y α ∆ µk µs ω ω0 ∆θ θ0 Γ ρ
https://www.academia.edu https://calpoly.academia.ed https://calpo ly.academia.edu/AndrewCarmi u/AndrewCarmichael chael
Normal Power force Average power Momentum radius Displacement Time period/ time of fligh flightt tension Potential Potential energy velocity at time t time t = = 0 velocity at time t time t Work Work done by a con. force(s) force(s) Work done by non-con. force(s) Work done by net force Young’s modulus /s2 ) Angular acceleration (rad (rad/ change in... Coefficient of kinetic friction Coefficient of static friction t (rad /s) Angular Angular speed at time time t (rad/ t = Angular Angular speed at time time t = 0 (rad/ (rad/s) angular displacement ∆θ = θ = θ θ0 t = Angular Angular position position at time time t = 0 Torque density (mass/volume)
version: versi on: Monday Monday 6 th Mar March, ch, 2017 14:07
−
Page 6
CalPoly Department of Physics
View more...
Comments