Folleto Tecnico Central Termica de La Meirama
Short Description
Download Folleto Tecnico Central Termica de La Meirama...
Description
Central Térmica
MEIRAMA
La Central Térmica de MEIRAMA
La Central Térmica de Meirama es propiedad de UNION FENOSA generación, está situada al S.S.W. de la ciudad A Coruña y a una distancia de 34 km de la misma, coordenadas UTM 29TNH473806 equivalente a 43º 10´ Norte y 8º 25´Oeste, ocupa una extensión de 42 Ha. y su altitud media es de 412 m. sobre el nivel del mar. Está ubicada en el municipio de Cerceda, en el límite con los ayuntamientos de Ordes y Carral. La elección de este emplazamiento está directamente relacionada con la proximidad a un yacimiento de lignito pardo que se utiliza como combustible de la Central.
A CORUÑA
El yacimiento es propiedad de Lignitos de Meirama, participada al 100% por UNION FENOSA y se encuentra situado en el valle de Meirama, coincidiendo su eje con
ALVEDRO
el del valle en dirección N.W., tiene una
N-550
CERCEDA
MESÓN DO BENTO
CT. MEIRAMA
A-9
ORDENES
longitud de 3 km, una anchura de 400 m y una profundidad de 300m. La extracción del yacimiento es a cielo abierto y el transporte del lignito se realiza desde la mina hasta el parque de almacenamiento por medio de
N-550
SANTIAGO DE COMPOSTELA
N-547
LAVACOLLA
A LUGO>
una cinta transportadora de 6.000 m de longitud y 2.880 t/h de capacidad. Se dispone de una segunda cinta de emergencia.
La Central consta de un generador de vapor, fabricado por Balcke - Dürr y
17
16 1
2
14
15
9
13 11
11
12
10
La Central Térmica de MEIRAMA
1
Torre de refrigeración
10 Electrofiltros
2
Bombas de agua de circulación
11 Precalentadores de aire
3
Turbinas
12 Molinos de lignito
4
Condensadores
13 Hogar
5
Alternador
14 Serpentines sobrecalentadores
6
Circuitos de condensado y de agua de alimentación
7
Transformadores de máquina 19/220 kV.
15 Salida de gases
8
Parque de transformación
16 Alimentadores de carbón
9
Chimenea
17 Almacenamiento de carbón
y recalentadores
Edificio principal
Edificio Principal
Consiste en una nave metálica de 79,90 metros de longitud por 44,50 metros de anchura, en cuya planta baja están situadas las turbobombas de agua de alimentación, bombas de condensado, compresores, cabinas de 10 kV., condensador, equipo de purificación de condensado, etc. En la primera planta están situados el tanque de almacenamiento de condensado, las bombas de vacío, el sistema de excitación y regulación de tensión del alternador, centro de control de motores, sala de cuadros de distribución, sala de baterías, etc. Sobre la primera planta se han colocado una serie de plataformas con diversos equipos auxiliares, calentadores, válvulas, etc. En la segunda planta esta situado el turboalternador, los armarios de barras, la sala de control y la sala electrónica. Dispone de un puente grúa Thomas de 150 toneladas y luz entre ejes de carriles de 32,50 metros. La tercera planta incluye el equipo de aire acondicionado y el laboratorio químico. En las zonas anexas al edificio principal se encuentran los tres transformadores monofásicos de salida de máquina Westinghouse 19/220 kV de 227.000 kVA cada uno, el transformador auxiliar Westinghouse 19/10 – 6,6 kV de 75.000 kVA y el trasformador de arranque Westinghouse 220/10 – 6,6 kV de 75.000 kVA.
Zona de Caldera Entre el edificio principal y la caldera va instalada una torre para los ascensores, que sirve a su vez como apoyo para las tuberías que unen la caldera con la turbina. Desde el parque de almacenamiento se alimentan mediante cintas 8 tolvas de lignito dispuestas a ambos lados de la caldera en dos grupos de 4. En la parte Oeste, paralelamente a las tolvas de lignito está situado un edificio con 2 tolvas de hulla en la parte alta y 2 molinos de hulla en la parte baja. Entre la caldera y la chimenea se encuentran situados los ventiladores y el precipitador electrostático.
Zona de Caldera
Caldera
Caldera
Es de circulación forzada, tipo Benson, sin calderín, de paredes acuotubulares, hogar equilibrado y recalentamiento intermedio. La caldera se encuentra colgada del techo a través de anclajes soporte y juegos de muelles de disco, y desde allí a través de columnas al fundamento, pudiéndose dilatar libremente hacia abajo. Su construcción es en forma de torre con las paredes de la cámara de combustión constituidas por tubos arrollados en forma de espiral, hasta llegar a la zona en que se sitúan los sobrecalentadores y recalentadores en la que los tubos se hacen verticales. El aire necesario para la combustión se aspira de la intemperie por dos ventiladores axiales de tiro forzado, con una capacidad de 460 m 3/s, que lo impulsan a través de dos precalentadores regenerativos tipo Ljungström, compuestos por una serie cestas chapas onduladas, con una superficie de 48.850 m2, en donde absorben calor de los gases de combustión que abandonan la caldera hacia los precipitadores electroestáticos. El agua de alimentación entra en la caldera a través del economizador, situado en la zona más elevada del tiro de la caldera. Baja desde aquí a la parte inferior del hogar e inicia un recorrido ascendente a través de los tubos arrollados en espiral que constituyen las paredes del hogar. En ella se produce el calentamiento a la temperatura de evaporación y la evaporación misma. Posteriormente el vapor va a los separadores de humedad en los que se produce la separación de la mezcla agua- vapor para cargas
inferiores al 35 por 100. De aquí pasa al sobrecalentador primario situado en la zona de convección y al sobrecalentador final situado en la zona de radiación en los que adquiere la temperatura de servicio. Para controlar esta temperatura se utilizan atemperadores situados en la tuberías de entrada a cada uno de dichos sobrecalentadores. El vapor sale del sobrecalentador final a la presión y temperatura de servicio hacia la turbina, en donde expansiona y regresa otra vez a la caldera para elevar nuevamente su temperatura en los recalentadores primario y secundario situados en la zona de convección y radiación respectivamente. Entre ellos existen atemperadores de emergencia, ya que la temperatura final del vapor recalentado se controla por recirculación de gases.Para vencer las resistencias en el recorrido de humos, están dispuestos, a continuación de los precipitadores, dos ventiladores axiales de tiro inducido. Los humos de recirculación para la regulación de temperatura de vapor recalentado se extraen antes de la entrada a los ventiladores de tiro inducido y se impulsan mediante dos ventiladores radiales a la cámara de combustión. Existe un pequeño calderín (botella de arranque) y dos bombas de recirculación que se utilizan solamente con cargas inferiores al 35 por 100.
Precipitadores electrostáticos Para eliminar las cenizas volantes de los gases de combustión la Central Térmica de Meirama dispone de dos precipitadores electrostáticos B.S.H. de dos cuerpos independientes situados delante de los ventiladores de tiro inducido. Están constituidos por un conjunto de electrodos y placas que forman entre sí un intenso campo eléctrico que ioniza las partículas de cenizas contenidas en los gases, que son atraidas por las placas depositándose sobre ellas, y de las que mediante una secuencia de golpeo caen compactadas en los tolvines de la parte baja del electrofiltro de donde son extraídas y aspiradas al silo de cenizas.
Precipitadores Electrostáticos
Chimenea
Chimenea
Para asegurar la dispersión de los contaminantes a la atmósfera, la Central dispone de una chimenea de 200 m de altura, con un diámetro de 18 m en su base y 11 m en su coronación, lleva un fuste exterior de hormigón y un conducto interior de ladrillo refractario, entre los que se encuentra una zona visitable para inspección, con iluminación interior y balizamiento en cinco niveles, accesibles desde la cámara interior visitable. Se ha previsto con una velocidad elevada de salida de gases para mejorar la sobrelevación del penacho de humos.
Almacenamiento de combustible
Almacenamiento de Combustible
La Central dispone para su funcionamiento de: • Gasóleo para arranques: Tres tanques subterráneos de 50.000 l. y uno aéreo de 100.000 l. • Fuel-oil para arranques y apoyo: Dos tanques de 8.000 toneladas cada uno.
Equipos de molienda La Central dispone de dos equipos de molienda bien diferenciados, uno para el lignito y otro para la hulla. El primero consiste en ocho molinos pulverizadores Backcock tipo DGS, con una potencia nominal cada uno de ellos de 1.722 kW y con
Equipos de Molienda
una capacidad de molienda de 127 toneladas/ hora de lignito. El segundo consta de dos molinos tipo MPS de Babcock con una potencia nominal cada uno de ellos de 430 kW y una capacidad de molienda de 30t/h equivalentes al 25% de la carga térmica de la caldera.
Equipo de combustión Las tolvas de lignito tienen, cada una de ellas, tres tolvines de los que se extrae el lignito mediante transportadores de cadena con rascadores dispuestos en batería. Cada batería alimenta una cinta de banda de goma y cada cinta, a su vez, uno de los ocho molinos pulverizadores. Tanto los alimentadores como las cintas
Equipo de Combustión
disponen de regulación continua mediante variadores de velocidad.
Turbina La turbina con una capacidad de producción de 563 MWh consta de cuatro cilindros en tándem, uno de alta presión de flujo único, uno de media presión de doble flujo y dos de baja presión de doble flujo que evacúan a un condensador. La entrada de vapor a la turbina de alta tiene unas características de 174 bar de presión a una temperatura de 538ºC. El vapor sale de la turbina de alta con unas características de 50 bares y 350º C. Siendo recalentado en la caldera otra vez a 538 ºC antes de entrar en turbina de media.
Turbina
De la turbina de media pasa a las dos de baja y de estas sale al condensador en forma de vapor saturado húmedo con una presión de 0, 068 bares. Hay cuatro válvulas de parada y control de vapor principal, situadas por parejas a ambos lados del cuerpo de alta presión y otros cuatro de parada e intercepción del vapor recalentado situadas de idéntica forma en el cuerpo de posición intermedia. La turbina consta de una etapa de acción y las restantes de reacción. El cuerpo de alta presión esta formado por 15 etapas o escalonamientos. La primera etapa es la de acción y las 14 restantes de reacción. El cuerpo de presión intermedia está formado por dos grupos de 14 escalones de reacción y cada uno de los dos cuerpos de baja presión, por dos grupos de 5 escalonamientos de reacción. Para facilitar el arranque en frío y caliente y para condiciones de disparo con paradas de corta duración, se ha previsto un sistema de by-pass de alta y baja presión de la turbina con capacidad a plena carga del 100 por 100 para el by-pass de alta y del 35 por 100 para el by-pass de baja presión, siendo la diferencia rechazada a la atmósfera. Estos dos by-pass
Alternador El alternador está diseñado para cumplir con las normas IEC para funcionamiento permanente, con hidrógeno gaseoso y agua como medios
Alternador
refrigerantes.En los terminales del devanado del estátor están montados los transformadores de intensidad necesarios para los relés de protecciones y medidas. En el otro extremo del devanado está el cierre de la estrella formando el punto neutro, unido a tierra por medio de una resistencia. A los terminales del generador se conectan las barras de fase aislada por las que la energía generada fluye hasta el transformador principal.
Sistema de condensado y agua de alimentación El vapor de escape de la turbina, una vez condensado, es aspirado por medio de cuatro bombas y, a través de los calentadores de baja presión, es enviado al desgasificador donde entra una temperatura de 137ºC y una presión de 10 bares. El desgasificador se considera la frontera entre el sistema de condensado y el de agua de alimentación. El agua es aspirada por las bombas de agua de alimentación que la impulsa, a través de los calentadores de alta presión, a la entrada del economizador de caldera en donde entra con unas características de 260 ºC y 240 bares. Turbinas de accionamiento de un solo cilindro con escape al condensador de la turbina principal, accionadas por vapor a 9 bares de presión y 327º C procedente de la 5ª extracción de turbina. También disponen de una alimentación de emergencia y arranque procedente de vapor sobrecalentado.
Sistema de Condensado y Agua de Alimentación
Sistema de agua de circulación
Sistema de Agua de Circulación
Este sistema se utiliza para condensar el vapor de escape de la turbina y consiste en un circuito cerrado compuesto de una torre de refrigeración de tiro natural y dos bombas que impulsan el agua contenida en la cántara de la torre de enfriamiento, a través de los tubos del condensador y retorna a la torre para caer en forma de finas gotas de lluvia a la cántara anteriormente citada. El agua que circula por este sistema extrae el calor del vapor de escape de la turbina y lo condensa. Este calor cedido al agua de circulación es enviado a la atmósfera en la torre de refrigeración de tiro natural. El agua de circulación es impulsada por bombas de tipo 65 APH, verticales y etapa única con una capacidad de 18.168 m 3/h y 1,6 bares de presión de descarga. La torre de refrigeración está construida con una lámina hiperbólica de hormigón armado de 108 m de altura y de 48 m de diámetro en el borde superior, 71,80 m en el borde inferior y 45,50 m en el borde más estrecho, con un espesor de lámina que oscila entre 0,70 y 0,15 m. Dicha lámina es soportada por 27 diagonales dobles de apoyo de 60/60 cm ubicadas en una cántara de 12.000 m 3 de capacidad.
Suministro de agua a la central
Suministro de Agua a la
El suministro de agua a la torre de refrigeración, caldera, sistema de cenizas, planta de tratamiento de agua potable, riegos y limpieza de filtros, supone un consumo máximo de 0,5 m3/seg, para cuya captación y envío a la Central se han
Sistema de depuración y neutralización de efluentes Existen dos plantas de tratamiento principales, denominadas "Sistema de Neutralización de Drenajes" y "Planta de Agua de Escorrentía". Dispone también de una planta de tratamiento de aguas negras y un separador API para el tratamiento de la aguas que puedan arrastrar aceites. El Sistema de Neutralización de Drenajes recibe los efluentes de la Central que presentan un pH marcadamente ácido o básico y arrastran sólidos en suspensión. Una vez tratados en el sistema, estos efluentes se conducen a la piscina de aporte al desescoriador, que también recibe la purga de la torre de refrigeración. Una parte del agua que llega a esta piscina se reutiliza en la Central, para la refrigeración del descoriador y humectación de cenizas. El agua sobrante pasa por rebose a un colector general. Previo a este colector esta instalada una balsa de salvaguarda tras el separador API como elemento de seguridad ante posibles anomalías de las características del efluente. Al colector general llegan también las aguas clarificadas en las balsas de decantación de lodos, las aguas tratadas en la planta de agua negras y en el separador API, las escorrentías del parque de hulla y las aguas recogidas en la red de pluviales. Esta conducción vierte a una balsa de regulación del Sistema de Depuración de Lignitos de Meirama, que también recibe el resto de las aguas recogidas por la red de captación de escorrentías de la escombrera y de su parque de lignito. De la balsa de regulación el agua pasa a la Planta Depurada de aguas de Escorrentía, donde se trata antes de su vertido al río. Se observa, por tanto, que todos los efluentes son tratados en la Planta Depuradora de Aguas de Escorrentía, incluso aquellos que previamente reciben un tratamiento en el Sistema de Neutralización de Drenajes de la Central. De esta manera se garantiza la calidad del agua que finalmente se vierte al río.
Sistema de Depuración y Neutralización de Efluentes
Transformadores de potencia
Transformadores de Potencia
La Central dispone de un transformador principal, un transformador auxiliar y un transformador de arranque, habiéndose instalado un interruptor de generación que permite separar el alternador y sus sistemas de excitación y regulación de tensión del resto de la Central y de la Red. El transformador principal esta constituido por tres unidades monofásicas formando un banco trifásico con refrigeración OFAF y 65ºC de calentamiento. El grupo de conexión es YND11 según IEC con el neutro de la estrella unido rígidamente a tierra. Lleva regulación en carga de la tensión en el lado de alta, con margen de variación de ±8% En condiciones normales de funcionamiento, la energía necesaria para los servicios auxiliares se toma directamente de barras por medio de un transformador trifásico con doble arrollamiento secundario, refrigeración ONAN/ ONAF y 65ºC de calentamiento, con regulación de tensión en carga y en vacío. Para el arranque de la Central se toma energía del parque de 230 kV a través de los transformadores descritos anteriormente cuando el interruptor de generación está abierto, o bien, como fuente alternativa, a través de un transformador de arranque trifásico con doble arrollamiento secundario, refrigeración ONAN/ONAF, 65ºC de calentamiento y regulación de tensión en carga en el lado de alta.
La Central y el Medio Ambiente Los principios de eficiencia, seguridad y rentabilidad se han dado la mano con los de preservación del medio ambiente y se han plasmado en la Política Medioambiental que rige la forma de actuar de la planta. Así, la Central Térmica de Meirama ha implantado un Sistema de Gestión Medioambiental y obtenido su certificación por AENOR en octubre de 1997 de acuerdo a la norma internacional ISO-14001, siendo la primera central de carbón nacional en conseguirlo. Todo ello garantiza que la operación de la instalación se realiza siempre conforme a unos valores y procedimientos que respetan el medio ambiente, más allá incluso de los requerimientos legales, y supone asumir la mejora continua de los principales parámetros de gestión medioambiental.
CIMA+: Control Integral del Medio Ambiente
AGUAS RESIDUOS
BASE DE DATOS
CECOMA
MEDIDAS SO2 NOx PARTíCULAS
AIDA
CIMA+
MODEM
CARBÓN FUEL OIL
INFORMES
MODEM
REPETIDOR
AIDA
CASETA MEDIDAS SO2 NOx PARTíCULAS
Como consecuencia del proceso de combustión se emiten a la atmósfera óxidos de azufre, óxidos de nitrógeno y partículas. Los ratios de emisión dependen básicamente del tipo y características del combustible y de las condiciones en que
La Central y el Medio Ambiente
La Central y el Medio Ambiente
Pretende dar cobertura general a la zona potencialmente influida por los gases emitidos, poniendo especial interés en muestrear los lugares más sensibles (zonas pobladas, de vegetación y cultivo). • Red de control de emisión Efectuados los estudios pertinentes, se definió la ubicación de los puntos de instalación de los equipos de medición de emisiones en continuo y de captación de muestras manuales. Medidas manuales de emisiones. Consiste en la extracción de la muestra desde la chimenea, según la suma de muchos puntos individuales de muestreo para obtener una integración aproximada del volumen de muestra y la masa de partículas en la sección completa de la chimenea. El muestreo se realiza con una sonda isocinética, para conseguir que la velocidad del gas muestreado en la boquilla coincida con la velocidad del gas en cada punto de la sección. Tras eliminar las partículas en un filtro de fibra de vidrio, se hace pasar el gas filtrado a través de una serie de borboteadores enfriados, en los que se absorben el vapor de agua y los gases a determinar (óxidos de azufre y nitrógeno) en diferentes disoluciones. Los procedimientos de muestreo y análisis se basan en métodos de la Agencia de Protección Medioambiental de U.S.A. (E.P.A.). Este tipo de mediciones se llevan a cabo trimestralmente, previa comunicación al Laboratorio Regional de Medio Ambiente de la Xunta de Galicia. Medidas automáticas de emisiones. Se optó por la instalación de monitores "in situ" para control de óxidos de nitrógeno y de azufre, oxígeno, partículas y monóxido de carbono, ya que no requieren extracción ni transporte de la muestra, evitando así su posible alteración. Estos equipos de medida se encuentran ubicados en los conductos que conectan los precipitadores, situados a la salida de la caldera,
• Red de control de inmisión En la atmósfera, la concentración de los componentes emitidos depende de su distribución según un proceso de difusión que principalmente es función de tres factores: características del compuesto (tamaño, peso, etc.), tipo de foco emisor (velocidad, temperatura y altura de emisión) y meteorología (frecuencia y dirección del viento, gradiente de temperatura, humedad, pluviometría, etc…). Antes de realizar determinaciones analíticas de los niveles de contaminantes en la atmósfera, debe plantearse si estos datos son realmente significativos y si explican el estado general de la calidad del aire del entorno. Con este objeto se configuró la red de estaciones de muestreo en base a una evaluación previa de la dispersión atmosférica de las emisiones, realizada a partir de diversos datos entre los que destaca la matriz de estabilidad climatológica de la zona de la Central correspondiente al período de julio de 1977 a enero de 1981. Para evaluar los posibles efectos de la C.T. de Meirama se utilizó el modelo de dispersión gaussiano de Pasquill-Gifford, con corrección topográfica y las fórmulas de Briggs para el cálculo de la sobreelevación del penacho de humos. Se establecieron una serie de círculos concéntricos al propio foco, situando las unidades de detección en las direcciones predominantes de los vientos locales, pero procurando tener también alguna referencia del resto de direcciones. Las unidades se sitúan en lugares elevados y no cercanos a impedimentos geográficos que puedan conducir de una manera forzada a las corrientes que transportan a los contaminantes. Del análisis de los datos de niveles de inmisión previsibles calculados con el modelo de difusión se definieron los puntos de muestreo. Con esta información y la obtenida de la red de calidad del aire formada por doce estaciones manuales, durante la etapa preoperacional, se estableció la ubicación definitiva de las 8 estaciones de inmisión
La Central y el Medio Ambiente
En las estaciones automáticas (Cerceda-CE, Xalo-XA, Sobreira-SO, Paraxón-PA, Vilagudín-VI, San Vicente de Vigo-SV, Galego-GA y Mesón do Bento-ME), se analizan de forma continua la corriente de aire ambiente exterior. Es posible disponer de los datos instantáneos de concentración de dióxido de azufre, óxidos de nitrógeno y partículas en suspensión, en tiempo real, o bien obtener valores promedios de medida referidos a períodos de tiempo tan cortos como se desee Los equipos automáticos unen a su capacidad de muestreo y de análisis
SITUACION Y TIPO DE CASETAS DE INMISION EN EL ENTORNO DE LA C.T. DE MEIRAMA ESTACION MUNICIPIO Vilagudín Ordes San Vicente de Vigo Cambre Galegos Frades Mesón do Bento Carral Cerceda Cerceda Xalo Carral Sobreira Ordes Paraxón Cesuras
LATITUD 43º05´42"N 43º14´06"N 43º02´47"N 43º09´58"N 43º11´45"N 43º13´32"N 43º02´03"N 43º10´43"N
LONGITUD 08º29´41"W 08º19´20"W 08º20´02"W 08º21´25"W 08º28´11"W 08º24´15"W 08º25´58"W 08º11´30"W
ALTITUD 270 m 160 m 320 m 440 m 340 m 470 m 260 m 380 m
DISTANCIA 10 km S.O. 12 km N.E. 15 km S.E. 4 km E. 6 km O. 8 km N. 14 km S. 18 km E.
TIPO Automática + Manual Automática + Manual Automática + Manual Automática + Manual Automática Automática Automática Automática
prácticamente continuo de la muestra (cada pocos segundos), la capacidad para adquirir, promediar, almacenar los datos medidos y suministrarlos a un sistema de telecomunicación, para su procesado y almacenamiento en un centro de control
PLANO DE SITUACION DE LAS CASETAS DE INMISION
situado en la Central. Estos analizadores suministran los datos de nivel de contaminación, expresados en la unidad de medida legalmente establecida. Físicamente se ubican en el interior de casetas aisladas y termostatizadas a fin de facilitar el correcto funcionamiento de los componentes electrónicos de los equipos y de los sistemas locales de supervisión, adquisición y procesado de datos. Analizan
Datos Técnicos Caldera Fabricante
Balcke- Dür
Tipo
Benson
Producción de Vapor
1.750 t/h
Temperatura del vapor salida sobrecalentador
540 º C
Presión del vapor salida sobrecalentador
186 kg/cm2
Número de calderines
4 botellas y separadora
Tipo de estructura
Metálica
Número de quemadores
8x3 lignito+2x4 hulla/ 8 fuel-oil/8 gas-oil
Número de molinos
8 lignito y 2 hulla
Número de precalentadores
2
Número de ventiladores: Tiro forzado
2
Tiro inducido
2
Recirculación de gases
2
Altura
120 m
Cámara de combustión volumen
21.000 m3
Cámara de combustión superficie
11.810 m2
Economizador
28.460 m2
Paredes membrana
2.580 m2
Sobrecalentador primario
17.200 m2
Sobrecalentador final
3.600 m2
Recalentador primario
8.410 m2
Recalentador final
5.400 m2
Turbina Fabricante
B.B.C
Modelo
Reacción con etapa inicial acción. 1 corona de acción
Velocidad
3.000 r.p.m.
Número de extracciones
7
Temperatura del vapor
538ºC
Datos Técnicos
Datos Técnicos
Datos Técnicos
Lignito Pardo Humedad
50,81%
Cenizas
13,22%
Volátiles
19,86%
Carbono fijo
16,11%
P.C.S.
2.282 Kcal/kg
P.C.I.
1.912 Kcal/kg
Condensador Tipo
de doble cuerpo
Materiales de los tubos
Latón almirantazgo, Cu-Ni 70-30
Nº de tubos
22.980
Superficie de enfriamiento
27.816 m2
Extracción de incondensables
Bombas de vacío de anillo líquido
Bombas de Condensado Tipo
de eje vertical y multietapas
Caudal
561 m3/h
Presión de descarga
32 kg/cm2
Motores
de 655 kW a 6.300 V
Calentadores De superficie y horizontales. Cuatro de baja presión y dos de alta presión. Calentador
Nº
1
2
3
4
6
7
Bares
0.31
0.79
2.19
3.74
23.68
46.71
Temperatura Vapor
ºC
70.2
91.1
164.6
215.6
444.3
351.7
Temp. Entrada Agua
ºC
46.7
66.4
88.7
120.5
185.0
219.7
Temp. Salida de Agua
ºC
66.4
88.7
120.5
138.6
219.7
259.4
Presión Vapor
Desgasificador Tipo
de bandejas
Bombas de agua de alimentación Dos turbobombas cada una de: Capacidad Presión de descarga Temperatura de descarga Velocidad de giro Potencia Regulación de caudal por variación de velocidad
996 t/h 250 bares 180 ºC 5.975 rpm 9.600 KW
Motobomba Caudal nominal Presión de descarga Velocidad Potencia del motor
996 t/h 260 bares 6.075 rpm 10.080 KW
Torre de refrigeración Tipo Diámetro Altura Caudal de agua Temperatura del agua caliente Temperatura del agua fría Salto térmico Temperatura de aire seco Humedad relativa del aire
tiro natural 72 m. 108m. 36.355 toneladas/hora 39,06 ºC 22,50 ºC 16,56 ºC 13,2 ºC 81,7 %
Transformador de Generación Tipo Relación de tensión Regulación Potencia
Intemperie monofásico acorazado 238 ± 8 % 19 kV. En carga tipo Jansen 681 MVA.
Interruptor de Generación Tensión nominal
24 kV.
Nuestro entorno natural
HISTORIA Y PATRIMONIO
período en el que la romanización impuso
El territorio del ayuntamiento de Cerceda
otras formas de vida que determinaron el
está en el eje de dos espacios geográficos
abandono de los castros. En el territorio del
bien diferenciados: el de Ordes y el
Tambre (Ordes y Tordoia) se han localizado
Bergantiñán y Mariñán. Mientras los ríos de
43 castros y en el de Cerceda 5 castros y en
las parroquias de Rodís, Queixas y Xesteda
territorio de Corral otros 5. La coincidencia
confluyen en el Lengüelle, río tributario del
de la ubicación de los antiguos castros con
Tambre, situando a estas tres parroquias en
las actuales unidades poblacionales
su cuenca, las parroquias de Cerceda y As
permite sostener la hipótesis de una
Encrobas vierten sus aguas al Barcés, río
perfecta continuidad de las unidades
que toma otra dirección porque descienda
poblacionales desde, al menos, el siglo VII
regando el bellísimo valle de Barcia para
a.c. hasta hoy.
unirse más tarde al Mero y con él tributar
En la población rural gallega no hay saltos
sus aguas en A Coruña.
inexplicables, no hay invasiones, todo es una
De la época megalítica (3000-2500 a.c.) se
pura continuidad. Vinieron los suevos y se
conserva el dolmen de Cavaleiras, en
entremezclaron, luego vinieron los árabes y
Tordoia, uno de los monumentos
se marcharon. Ya no hubo más invasiones.
megalíticos mejor conservados de Galicia.
La misma raza, la misma sangre que pobló
la Iglesia Compostelana, como tierra del
los Pazos de Boedo, Gontón, Lavandeiras y
señorío del Arzobispo de Santiago. El
Meirama en Cerceda, los Pazos de Codeseda,
territorio de As Encrobas es poseido a
Parada y Vidueiro en Ordes y los Pazos de
mediados del siglo XV por J uan Becerra, por
Esperanto, Ribeira, Valbén y Vilasuso en
cesión del arzobispo de Santiago Lope de
Carral.
Mendoza.
Todas las iglesias rurales tienen un encanto y
Los Reyes Católicos obligaron a los nobles a
están ubicadas en conjuntos naturales de
embarcarse en la aventura contra los
extraordinaria belleza que las hacen
musulmanes para retirarlos de Galicia. Pero
visitables. Es preciso distinguir la iglesia
no volvieron a su tierra, lo que propició la
parroquial de As Encrobas del siglo XII y la
aparición de una nueva clase social: la
también románica de Buscás.
hidalguía, que se forma como clase social diferenciada a partir del siglo XVI. Desde sus
FLORA Y FAUNA
pazos, en las suntuosas casas que
Cerceda está cercado por las elevadas
levantaron, los hidalgos gallegos llevaron con
montañas del Xalo y Montemaior. Son pocas
pulso firme los destinos de este pueblo. La
las masas de bosque natural que resisten la
familia Becerra, con varios y dilatados
ocupación del territorio, aunque pueden
linajes, se enseñoreó en la Comarca de
verse pequeños robledales o carballeiras, en
Nuestro entorno natural
bosques de aliso al que acompañan
los humedales del entorno de Meirama y en
abedules y sauces. Aunque no existen
el embalse de Cecebre.
grandes extensiones continuas salvo en el
Especial interés tiene la liebre ibérica, la
área norte de este territorio, el arbolado se
ardilla roja, o especies de hábitos acuáticos
compone mayoritariamente de pino
como la nutria y el visón americano. La
marítimo y eucalipto. Humedales, lagunas y
gineta marta y gato montés tienen
corrientes fluviales son los hábitats locales
preferencia por los medios forestales. Los
que tienen más valor. El espacio protegido
únicos ungulados localizados en esta zona
más cercano de Meirama es el embalse de
son los jabalíes y los corzos, aunque estos
Cecebre, en el municipio de Cambre, que
son muy escasos.
constituye una cita obligada para todos los
En cualquier época del año un recorrido por
ornitólogos y amantes de la observación de
los ecosistemas de Galicia nos abre una
las aves acuáticas.
ventana de oportunidades para el disfrute de
La fauna vertebrada del entorno está
su fauna, para asomarse a esta riqueza nos
representada por casi 200 especies, siendo
bastará recorrer las corredoiras con
las aves el número más relevante, seguido
nuestros prismáticos, una guía de campo y
de mamíferos, anfibios y reptiles.
la curiosidad de estar dispuesto a encontrar
Cercetas, anades, chorlitos, avefrías, fochas,
algo nuevo en cada rincón de este territorio
EDITA: UNION FENOSA generación DISEÑO Y MAQUETACIÓN: GLOBAL DISEÑA IMPRESIÓN: GLOBAL PRINT
DEPÓSITO LEGAL: M-27294-2002
AENOR
Net
AVDA. SAN LUIS, 77 28033 MADRID www.unionfenosa.es
View more...
Comments