Fluids 16
Short Description
Download Fluids 16...
Description
CE 319 F Daene McKinney
Elementary Mechanics of Fluids Flow in
Pipes
Reynolds Experiment •
Reynolds Number
•
Laminar flow: Fluid moves moves in smooth smooth streamlines
•
Turbulent flow: Violent mixing, fluid velocity at a point varies randomly with time
•
Transition to turbulence in a 2 in. pipe p ipe is at =2 ft/s, so most pipe flows are turbulent V =2
Laminar
Turbulent
2000 Laminar flow VD Re 2000 4000 Transition flow Turbulent f low 4000
h f V h f V 2
Shear Stress in Pipes •
Steady, uniform flow in a pipe: momentum flux is zero and pressure distribution across pipe is hydrostatic, equilibrium exists between pressure, gravity and shear forces F s 0 pA ( p dp
0 0
ds
D
4
0
[
•
ds
sA As d ds
(
p
s ) A W sin 0 ( D)s dz ds
0 ( D )s
z )]
D dh
4 ds 4 L 0
h1 h2 h f
•
dp
D
Since h is constant across the cross-section of the pipe (hydrostatic), and – dh/ ds>0, then the shear stress will be zero at the center ( r = 0) and increase linearly to a maximum at the wall. Head loss is due to the shear stress.
•
Applicable to either laminar or turbulent flow
•
Now we need a relationship for the shear stress in terms of the Re and pipe roughness
Darcy-Weisbach Equation 0
V
D
e
ML-1T-2
ML
LT-1
ML-1T-1
L
L
-3
0 F ( , V , , D, e) h f
4 F ( 1 , 2 ) Repeating variables : ,V , D 1 Re; 2 0 V
2
F (Re, 2
e D e
D
0 V F (Re,
; 3
) e
D
)
0 V
2
4 L D
4 L D
0
2 V F (Re,
e D
)
2
L V e 8F (Re, ) D 2 g D h f f
L V 2 D 2 g
Darcy-Weisbach Eq.
f 8F (Re,
e D
)
Friction factor
Laminar Flow in Pipes •
Laminar flow -- Newton’s law of viscosity is valid: dV dy dV dr
dy
dV V
dV
r dh
2 ds
dV dr
r dh
2 ds r dh
2 ds 2
r dh
4 ds
dr
C
C
r 2 1 V 4 ds r 0
2
r 0 dh
4 ds
2
r 0 dh
r 2 V V max 1 r 0
•
Velocity distribution in a pipe (laminar flow) is parabolic with maximum at center.
Discharge in Laminar Flow V
dh
4 ds
( r 02 r 2 )
dh 2 Q VdA 0r 0 ( r 0 r 2 )( 2 rdr ) 4 ds
r 2 2 0
2
dh ( r r 0 )
4 ds
Q
V
4
r 0 dh
8 ds 4 D dh
128 ds
Q A
V
2 D dh
32 ds
2
0
Head Loss in Laminar Flow V dh ds
2 D dh
32 ds
V
32 D
dh V h2 h1 V
32 2 D
32 2 D
32 LV 2 D
2
h1 h2 h f
h f
h f
32 LV D
32 LV V 2 / 2 D
ds
( s2 s1 )
2
2
2 V / 2
L )( ) V 2 / 2 V D D
64(
64 L ( ) V 2 / 2 Re D
h f f
L V D
2
2
f
64 Re
Nikuradse’s Experiments •
In general, friction factor f F (Re,
–
•
D
)
Function of Re and roughness f
Laminar region f
–
•
e
64
k
Re1 / 4
Rough
Blausius
Re
Independent of roughness
Turbulent region –
Smooth pipe curve •
–
f
64 Re
Rough pipe zone •
f
All curves coincide @ ~Re=2300 All rough pipe curves flatten out and become independent of Re
Blausius OK for smooth pipe
0.25
5.74 e log10 3.7 0.9 D Re
2
Laminar
Transition
Turbulent
Smooth
Moody Diagram
Pipe Entrance •
Developing flow – Includes boundary layer and core, – viscous effects grow inward from the wall
•
Fully developed flow – Shape of velocity profile is same at all points along pipe Pressure
0.06 Re Laminar flow 1/6 Turbulent flow D 4.4Re
Le
Fully developed flow region
Entrance length Le
Entrance pressure drop
Region of linear pressure drop
Le
x
Entrance Loss in a Pipe •
In addition to frictional losses, there are minor losses due to – – – –
•
•
Entrances or exits Expansions or contractions Bends, elbows, tees, and other fittings Valves
Losses generally determined by experiment and then corellated with pipe flow characteristics Loss coefficients are generally given as the ratio of head loss to velocity head K
h L V
2
or
h L K
V
2
2g
2g
•
K – loss coefficent – – –
K ~ 0.1 for well-rounded inlet (high Re) K ~ 1.0 abrupt pipe outlet K ~ 0.5 abrupt pipe inlet
Abrupt inlet, K ~ 0.5
Elbow Loss in a Pipe •
A piping system may have many minor losses which are all correlated to V 2 /2g
•
Sum them up to a total system loss for pipes of the same diameter h L h f hm m
•
V 2
L K m f 2 g D m
Where, h L Total head loss
h f Frictionalhead loss hm Minor head loss for fitting m K m Minor head loss coefficien t for fitting m
EGL & HGL for Losses in a Pipe •
Entrances, bends, and other flow transitions cause the EGL to drop an amount equal to the head loss produced by the transition.
•
EGL is steeper at entrance than it is downstream of there where the slope is equal the frictional head loss in the pipe.
•
The HGL also drops sharply downstream of an entrance
Ex(10.2) Liquid in pipe has = 8 kN/m3. Acceleration = 0. D = 1 cm, = 3x10-3 N-m/s2.
Given: Find:
Is fluid stationary, moving up, or moving down? What is the mean velocity?
Solution:
1
V 12
2g
Energy eq. from z = 0 to z = 10 m
200,000 8000 90
p1
z1 h L 2
h L
110,000 8000
V 22
2g
p2
2
z 2
10
h L
10 8 h L 1.25 m (moving upward) h L
32 μLV
V h L
γD
2
γD
2
32 μL
V 1.25
2 8000*( 0.01 )
32*3 x10-3*10 V 1.04 m / s
1
Ex (10.4) •
Given: Oil (S = 0.97, m = 10 -2 lbf-s/ft2) in 2 in pipe, Q = 0.25 cfs.
•
Find: Pressure drop per 100 ft of horizontal pipe.
•
Solution:
V
Q A
Re Δp
0.25
2
11.46 ft / s
( 2 / 12) / 4
VD
32 μLV D
2
0.97 * 1 / 94 * 11.46 * ( 2 / 12) 2
10 32*10-2*100*11.46 ( 2 / 12 )
2
360 (laminar)
91.7 psi/100 ft
Ex. (10.8) Given: Kerosene (S=0.94, =0.048 N-s/m2). Horizontal 5cm pipe. Q=2x10-3 m3 /s. Find: Pressure drop per 10 m of pipe. Solution: 2
α1
V 1
2g
h L
p1 γ
z1 h L α2
γD
2 2g
p2 γ
z 2
2
32 μLV γD
2g
2g
32 μLV
0 0 0.5 α2
2
V 2
V 22 2 V 2
32 μL γD
2
2
α2
V 22
2g
00
V 0.5 0
32 * 4 * 10 5 * 10
0.8 * 62.4 * (1 / 32) 2
V 0.5 0
V 22 8.45V 16.1 0 V 1.60 f t / s
Re
0.8 * 1.94 * 1.6 * (0.25 / 12) 4 * 10 5
1293(laminar)
Q V * A 1.6 * * (0.25/12)2 / 4 1.23 * 10 3 cf s
Ex. (10.34) Given: Glycerin@ 20oC flows commercial steel pipe. Find: h Solution: 12,300 N / m, 0.62 Ns / m2 2
2
V p V p α1 1 1 z1 h L α2 2 2 z2 2g 2g γ γ p1
γ
z1 h L
h
p1
Re
VD
γ
p2
z1 (
z2
p2
VD
γ
z2 ) h L 0.6 * 0.02
23.5 (laminar) 4 5.1 * 10 32 μLV 32(0.62)(1)(0.6) h h L 2.42 m 2 12,300 * (0.02) 2 γD
γ
Ex. (10.43) Given: Figure Find: Estimate the elevation required in the upper reservoir to produce a water discharge of 10 cfs in the system. What is the minimum pressure in the pipeline and what is the pressure there? Solution:
2 2 V p V p α1 1 1 z1 h L α2 2 2 z2 2g 2g γ γ
2 2 V p V p α1 1 1 z1 h L αb b b zb 2g 2g γ γ
0 0 z1 h L 0 0 z 2
2 V p 0 0 z1 h L 1 * b b zb 2g γ
2
L V h L K e 2 K b K E f D 2 g
K e 0.5; K b 0.4 (assumed); K E 1.0; f V
Q A
10 2 / 4 * 1
L D
0.025 *
12.73 f t / s
z1 100 0.5 2 * 0.4 1.0 10.75
12.732 2 * 32.2
133 f t
430 1
pb
10.75
γ
z1 zb
2
2
L V K e K b f 2 g D 2 g
V b
2
300 12.73 133 110.7 1.0 0.5 0.4 0.025 1 2 * 32.2 1.35 f t pb 62.4 * ( 1.53) 0.59 psig Re
VD
12.73 * 1 9 * 105 5 1.14 * 10
Ex. (10.68) Given: Commercial steel pipe to carry 300 cfs of water at 60oF with a head loss of 1 ft per 1000 ft of pipe. Assume pipe sizes are available in even sizes when the diameters are expressed in inches (i.e., 10 in, 12 in, etc.). Find: Diameter.
1.22 x105 ft 2 / s; k s 1.5 x104 ft
Solution:
Assume f = 0.015 h f f
L V
1
D D 8.06 f t
1.5 x10 4 8.06
0.00002
VD Q
( / 4) D 2
D
Q
( / 4) D
300 ( / 4)(8.06)1.22 x10
1000 (Q /( / 4) D 2 ) 2
33,984 5
Re
Re 2g
Get better estimate of f
2
D
k s D
D 2 g
1 0.015 *
Relative roughness:
f=0.010
1
22,656
D 5 D 7.43 ft 89 in.
Use a 90 in pipe
5
3.9 x106
Ex. (10.81) Given: The pressure at a water main is 300 kPa gage. What size pipe is needed to carry water from the main at a rate of 0.025 m3/s to a factory that is 140 m from the main? Assume galvanized-steel pipe is to be used and that the pressure required at the factory is 60 kPa gage at a point 10 m above the main connection. Find: Size of pipe. Solution: h f f
Assume f = 0.020 1 / 5
fL Q 2 D 8 h f 2 g
1 / 5
0.02 140 (0.025) 2 8 2 14.45 9.81 Relative roughness:
2
L V
D 2 g
f
2 2
k s D
0.15 100
0.100 m
0.0015
L (Q /( / 4) D ) D
2g
Friction factor:
f 0.022
1 / 5
fL Q 2 D 8 h f 2 g
1 / 5
0.022 D 0.100 0.020
2
2
V p V p α1 1 1 z1 h L α2 2 2 z2 2g 2g γ γ
300,000
h f
9810 h f 14.45 m
60,000 9810
10
Use 12 cm pipe
0.102 m
Ex. (10.83) Given: The 10-cm galvanized-steel pipe is 1000 m long and discharges water into the atmosphere. The pipeline has an open globe valve and 4 threaded elbows; h1=3 m and h2 = 15 m. Find: What is the discharge, and what is the pressure at A, the midpoint of the line? Solution: 2
α1
V 1
2g
p1
γ
z1 h L α2
2
V 2
2g
p2
γ
z2 2
L V 0 0 12 (1 K e K v 4 K b f ) 00 D 2 g
D = 10-cm and assume f = 0.025 24 g (1 0.5 10 4 * 0.9 0.025 2
V
1000 0.1
2
p A
)V 2
24 g
265.1 V 0.942 m / s
2
V p V p α A A A z A h L α2 2 2 z2 2g γ 2g γ
γ p A
γ
15 (2 K b f
L V 2 ) D 2 g
( 2 * 0.9 0.025
500 (0.942) 2 ) 15 9.6 m 0.1 2g
p A 9810 * ( 9.26) 90.8 kP a
Q VA 0.942( / 4)(0.10) 2 0.0074 m 3 / s
Re
VD
0.942 * 0.1 7 x104 6 1.31 x10
So f = 0.025
Near cavitation pressure, not good!
Ex. (10.95) Given: If the deluge through the system shown is 2 cfs, what horsepower is the pump supplying to the water? The 4 bends have a radius of 12 in and the 6-in pipe is smooth. Find: Horsepower Solution: 2
α1
V 1
2g
p1
γ
z1 h p α2
0 0 30 h p V 2 V 2
2g
Q A
2
V 2
2g
p2
γ
2 V 2 0 60 (1 0.5 4 K b
2g
2 ( / 4)(1 / 2) 2
10.18 f t / s
VD
10.18 * (1 / 2) 1.22 x10
5
f
So f = 0.0135 L D
)
h p 60 30 1.611(1 0.5 4 * 0.19 0.0135
107.6 f t p
1.611 f t
Re
z2 h L
4.17 x105
Q h p
550
24.4 hp
1700 (1 / 2)
)
View more...
Comments