Fluid Mechanics - Buoyancy

May 13, 2019 | Author: wiggly18 | Category: Buoyancy, Classical Mechanics, Quantity, Physics & Mathematics, Physics
Share Embed Donate


Short Description

Fluid mechanics for students...

Description

BUOYANCY; PRINCIPLE OF ARCHIMEDES W

L.S. (γ,

 N  m3

)

Body of volume, V

F b submerged ged in a liquid liquid of specifi specificc weight weight γ is buoyed buoyed Principle of Archimedes: “ a body submer up by a force force equal to the weight of the displaced liquid,”

F b V γ  where where:: V = volum volume e of of the submer submerged ged body body or volum volume e displa displaced ced liquid liquid γ = spec specifi ificc weig weight ht of the liquid liquid Note: F  b is called the “ buoyant force” and its direction is vertically upward.

Actual Weight of a Body ( Weight in Air )

W V  B γ b V  B  s B γ w  where:

volume of the body V   B  γ  B  specific weight of the body s B  specific gravity of the body γ w  specific weight of water

Apparent Weight of a Body (Weight in Liquid) W’ = W - Fb

Flotation; Flotation; Stability of Floating Bodies W G O

 Bo 

F b

(a) The body is in in Uprigh Uprightt Positi Position on W   F b  V   γ 

G = Center of gravity gravity of the body  Bo = Center Center of buoyancy buoyancy ( centroid centroid of the submerg submerged ed portion )

( b) The body is in Tilted  M (Metacenter)

Position

W x

B A

G



A’ B’

O

 B

 B1

o

F b

θ r

 B1 = new center of Buoyancy

r = horizontal shifting of  Bo x = moment arm of W or F b

θ = angl angle e of of tilt tilt

(b) Tilted Position M (Metacenter)  W x G

O

B A

 B1

The Righting or Overturning Couple, C

 _____   C   W  x  W  MG sin θ     

A’ B’

 Bo

 

θ r

NOTE: C is a righting moment if M falls above G, an overturning moment if M falls below G. MG is known as the “metacentric height”.

M (Metacenter)



W

x

 F b

G O

B A

 B1

 F b

A’ B’

 Bo

 

F b

θ r S

The shifting of the original upward buoyant force F b in the wedge A’OB’ to F b in the wedge AOB causes a shift in F b from  Bo to  B1 , a horizontal distance r Hence,

F b  r   F b  S 

 γ V  r   γν  S  

 ν

r  



 S 

_____

Also,

_____

Then,

Note:

r   MBo sin θ

_____

 ν

 MBo sin θ  _____

 MBo 



 S 

 ν  S 

r  MBo sinθ

an d   F b  ν  γ 

Where ν is the additional volume AOB. S is the distance between the centroids of AOB and A’OB’.

V sin θ

For small angle θ, _____

 MBo 

where:

 (approximat e y ) V θ

ν = volume of the wedge A’OB’ V = volume of the submerged body S = horizontal distance between the centroid of A’OB’ and AOB θ = angle of tilt

______

Metacentric Height,  MG _____

_____

_____

 MG   MBo  GBo



+ if Bo is above G - if Bo is below G

_____

NOTE: GB o is   usually a   known value _____

If θ is ne li ible  MB is iven as _____

 MBo 

 I o V 

Where:  I o is the moment of inertia of the waterline section relative to a line through O.

_____

Derivation of   MB o



 I o M (Metacenter) W



Consider now a small prism of the wedge AOB, dA at a distance x from O, having a horizontal area dA. For small angles the length of this prism = xθ x (approximately). The buoyant force produced G O B By this immersed prism is γ  x θ d A , an d  A 2 The moment of this force about O is γ  x θ d A .  B  B1 The sum of all these moments for both wedges   o  F b Must be e ual to νS or

γθ



 x 2 d A  γν S   γ Vr 

 F b A’ B’

F b

_____

But for small angles r   MBo θ ( approximat ely ) Hence _____

θ

      x d A V   MBo  2

r S



2  x d A is the moment of inertia, I o , of the water-line section about the longituBut dinal axis through O (approximately constant for small angles of heel). Therefore

_____

 MB o 

 I o V 

,

 

The metacentric height

_____

_____

_____

 MG   MBo  GBo

VESSEL WITH RECTANGULAR SECTION (B/2) (cosθ)

M (Metacenter)



 F b

x

 B A

(B/2)(secθ)

G O

B A’ B’



A

B/2 __

 B1

 F b

 Bo

 

θ r S

 x 

Recall: _____

B

O

θ

 MBo  where:



2

 ν  S  V sin θ

V   BDL 1   B   B   v    tan θ  L 2   2    2   1 2 v   B  L tan θ 8

Considering triangle AOB

Multiplying both sides by 2 we obtain,

(B/2) (cosθ) (B/2)(secθ) B



O

θ B/2

 x  



cos θ  secθ 

3  B   1   s   cos θ   3   cosθ  

A __

B

s

s

 B  cos θ  1  2

 3   cosθ

  

Then from the formula, From geometry, the centroid of the triangle is defined by the coordinates of the vertices: __

 x 

s

2

_____

 MBo 

 x1   x2   x3



0

3  B

2

cos θ  3

B

2

sec θ

_____

 MBo 

 ν  S  V sin θ

2 cos θ  1   1 2   B      B  L tan θ    8   3   cosθ  

 BDL sin θ

_____

 MBo 

2 cos θ  1   1 2   B      B  L tan θ    8   3   cosθ  

 BDL sin θ

_____

 MBo  _____

3

 B  L sin θ _____

 MBo  2 4 _____

 MBo  _____

 MBo  _____

 MBo 

 B





2 cos θ  1

cosθ cosθ  BDL sin θ



1     1    2 2 4 D   cos θ   2

2 4 D

 MBo 

1  sec θ  2

2

2 4 D  B

2

2



θ 1

 2  tan θ  2

2 4 D  B

1  tan

2

12 2  D

 2  tan θ  2

2 2  B   tan θ   1    MBo  12 D   2   _____

2

 B

_____

cos  1

2 4 D cos2 θ  B

 MBo 

 B

SAMPLE CALCULATIONS  Position of weight on the mast M  _____ _____ G (center of gravity)  MB  GB  __

Y   h

Y 1



__



O

 MB

h

2 h

 B

h

_____

2

Sketch showing various distances on the pontoon

DETERMINATION OF THEORETICAL METACENTRIC HEIGHT FROM THE GEOMETRY OF THE PONTOON:

 I o 

 Lb 3

12



 400mm  2 00mm3 12

Displaced Volume

V 



ρ g

2 . 52 kg 

 1, 000

kg m3

0. 40m0. 2 0m3  2 . 67 x104 m4  12

9 . 81 N  kg

 9 . 81

m s2

 2 . 52  x10  3 m 3

_____



 MB

 I  V 



2 . 67  x 10

4

2 . 52  x 10

3

m

4

m

3

 0 . 1059 m  106 mm

Depth of displaced water 3 4 2 . 52  x10  m



 0 . 0315 m  h   Lb 0. 4m  0. 2 0m

_____

The center of buoyancy force below the water surface and the distance OB will be _____

OB 

h   0 . 0315 m



 0 . 01575 m  15 . 75 mm _____

The Metacenter is above the water surface and distance  MO is _____

_____

____

 MO   MB  OB

 106  15 . 75

 90 . 2 5 mm

In the case when the height of the mast, Y 1

 100__mm an d  th e

height of the center of gravity ( by experiment) , Y   69 mm _____

Thus, the theoretical metacentric height  MGth _____

_____

_____

Position of weight on the mast   M (Metacenter) _____ _____  G (center of gravity)  MB  GB

 MGth  MB GB

 __ h    MGth  MB  Y      2   _____

_____

.

 106   69   2      37. 02 mm _____

__



Y   h



__



h

 B

h

2 h 2

 Because MG th is positive, this shows that the pontoon is stable.

_____

 MB

Determination of Metacentric Height by Experiment  M x

 G w O

 G d

w

 

 B 1 

 B

θ

F b W 

_____

The metacentric height is determined experimentally as shown in the figure above. When shifting the jockey weight w to the left side of the pontoon at a distance x, the pontoon tilts to a small angle θ causing the metacentric height to rotate slightly around the longitudinal axis of the pontoon . Likewise, the buoyancy force F b shifted a horizontal distance d from G. Hence, the moment produced by w must be equal to _____ moment of F b , w   x  MG

 wcosθ  x  d  W 

  _____      MG sin θ W     

 MG 



W  tan θ

w W 



 x

θ

(For small angle of tilt)

METACENTRIC HEIGHT APPARATUS

Mast Vertical scale

Vertical sliding weight oc ey we g Balancing weight

Tilt angle scale Plumb bob

Pontoon

_____

DETERMINATION OF METACENTRIC HEIGHT,  MG BY EXPERIMENT Typical Data: In the case of vertical sliding weight on the mast is at the height, Y 1

 100 mm .

Distance of jockey weight w  from center of pontoon , x = 80 mm Angle of tilt, θ = 6.80˚ Convert angle of tilt into radian 6. 80  

π 180 

 6. 80   0. 11868radian

Then, From equation (2), the experimental metacentric height is,

 x

θ



80 mm 0 . 11868 radian

_____

 MG

ex p



w W 



 x

θ



 674 . 06 mm 0 . 2 0 kg 2 . 52 kg

 674 . 06 mm  53 . 49 mm

_____

 MG ex p is positve, this shows that the pontoon at that tilt angle is stable.

TEST PROCEDURES: Data recording: - Pontoon weight,

W = 2.50 kg

- Jockey weight,

w = 0.20 kg

- Adjustable vertical weight

= 0.40 kg

- Pontoon width,

D = 200 mm

- Pontoon length,

L = 400 mm

Determining the Center of Gravity of the Pontoon

Center of gravity ( CG)

Scale



Adjustable vertical weight Mast

Procedures: 1. Tilt the pontoon as shown in figure. 2. Attach the plum bob on the angle scale. 3. Move or adjust the vertical weight to a required distance and record that distance from the scale on the mast. 4. Place knife edge support under the mast and move it to a position of equilibrium and record the height ( center of gravity) where the knife edge is position on the scale.

Taking Readings with the Pontoon in a Water Tank 1. Initial Set Up When placing the pontoon in the water ensure that the position of  the jockey weight horizontal adjustments is in the middle of the pontoon and the pontoon is sitting level in the water. The pontoon should be in a vertical position and have no angle of tilt ( zero degrees in the tilt angle scale). If not, adjust the balancing weight until the angle of tilt is “0”.

2. The jockey weight can change the position of the pontoon in the water and in order to take some experimental readings we move the jockey weight in steps from its central position horizontally and record the tilt angle of the pontoon from the scale on the pontoon in degrees.

3. Each time we move the jockey weight from its central position we must record on the data sheets supplied the distance measured from its central position and the angle of tilt. 4. We also change the adjustable vertical weight height on the mast and record its measurement along with the jockey weight distance from its central position, the angle of tilt at different values and record all the data on the sheets provided. 5. Step (3) and (4) can be repeated many times to obtain a satisfactory conclusion.

SAMPLE DATA SHEET METACENTRIC HEIGHT APPARATUS Position of jockey weight in a horizontal position (cm.) 2

4

6

8

10

12

14

16

18

Distance x of the jockey weight measured from the center of the pontoon (mm) 80

Height of  weight on the Tilt Angle mast, θ  ____mm. (degrees)

x/θ

Height of  (mm/rad.) center of  Metacentr gravity, ic Height (mm)  ____mm.

60

40

20

0

20

40

60

80

Example 1. An iceberg weighing 8.95 kN/m3 floats in sea water, γ = 10.045 kN/m3, with a volume of 595 m 3 above the surface. What is The total volume of the iceberg? Solution:    

W

kN   

kN       V  8 . 95   3  m 3   m    

V s  10 . 045

bu t  W.S.



3

  .  

1 . 095 V 

Let Vs = volume submerged Fb V = total volume (a) ∑Fv = 0, Fb = W Vsx γw = V x γi where: γw = specific weight of sea water γi = specific weight of iceberg

kN  m3

V s  V   595  m kN   m 3  

 .

3

kN  m3

 5 , 976 . 775 kN 

3 V   5 , 458 . 2 42 m

Example 2. A sphere 0.90 m in diameter floats half submerged in a tank of oil ( s=0.80). (a) What is the total vertical pressure on the sphere? (b) What is the minimum weight of an anchor weighing 24 kN/m3 that will be required to submerge the sphere completely? Solution: O.S.

W

W 0.45 m



0.45 m

O.S.

Wa

Figure (a)

Figure (b)

Fb F ba

(a) Consider Figure (a)

 F v  0 , F v  W   0 F v  W   V γ 

kN      2 3     π  0 . 45 m    0 . 80  x 9 . 81 3  m     3    

W   

W   1 . 498 kN 

O.S.

W V a  0 . 093 m 3

0.45 m

therefore Fb Wa

W a  V a γ a

Figure (b)

F ba



 

W a  0 . 093 m  2 4 3

 

kN    3



m  

W a  2 . 2 32 kN 

(b) Consider Figure (b),

 F v  0, F b  F b a  W   W a  0,

V γ   V a γ   1. 498 kN   V a γ a  0 kN    kN      4     kN    3      π  0 . 45 m    0 . 80  x 9 . 81 3   V a  0 . 80  x 9 . 81 3   1 . 498 kN   V a  2 4 3   0 m   m   m     3        

16 . 152

kN  m

3

V a  1 . 498 kN 

Example 3. A cylinder weighing 500 N and having a diameter of 0.90 m floats in salt water ( s=1.03) with its axis vertical as shown in the figure. The anchor consists of 0.30 m 3 of concrete weighing 24 kN/m3. What rise in tide r, will be required to lift the anchor off the bottom? W

Solution: new W.S.

r

Fb Wa

F ba

0.30 m

 F v 0, F b  F ba  W  W a 0

V γ   V aγ   500 N   V aγ a  0

W

new W.S.

r

Fb

0.30 m

Wa

F ba V γ   V aγ   500 N   V aγ a  0

π 4

 0. 90 m  2  0. 30 m  r  1. 03 x9810  

 N   

 N    3   0 . 3 1 . 03 9810  m  x     3  m 3   m    

 N       500  N    0 . 3m 3  2 4 , 000 3   0 m     r   0 . 42 6 m

Example 4. Timber AC hinged at A having a length of 10 ft., cross sectional area of  3 in.2 and weighing 3 lbs. Block attached to the end C having a volume of 1 ft.3, and weighing 67 lbs. Required: Angle θ for equilibrium. (2) Buoyant force on the block, csc θ A

F b B  V γ w  1 62 . 4  62 . 4lb

10 – csc θ

 1’

10’ WT

θ

5cosθ 1   10  10  csc θ 2  

C B=

bT    cos θ  

 10  csc θ     cos θ 2    

F b B

10cosθ

Solution: (1) Buoyant force on the timber,

F bT   V γ w 

3

10  cscθ 62 . 4

144 F bT  1. 310  cscθ



s

csc θ

csc2 θ  6. 15

A 10 – csc θ

 1’

cscθ  2 . 48 WT

5cosθ

θ

F bT 

1     10  10  csc θ   cos θ 2      10  csc θ  cos  2   

sin θ  0. 40

C

θ  2 3. 8

WB=67 lbs

b B

10cosθ

(3) ∑MA = 0,

 10  cscθ    cosθ  F b 10 cosθ   0   2    10  cscθ   35  6710  1. 310  cscθ    62 . 410  0   2   15  670  0. 65100  csc2 θ   62 4  0

W T  5 cosθ   W  B 10cosθ   F bT  

 B

Example 5. A vessel going from salt into fresh water sinks two inches, then after burning 112,500 lb of coal, rises one inch. What is the original weight of the vessel? W

W

W – 112,500 lb

d + 2/12

d + 1/12

d

Fb (a) Salt water ( γ = 64 lb/ft3)

Fb

Fb

(b) Fresh water (γ = 62.4 lb/ft3)

(c ) Fresh water after losin 112 500 lb

Solution: 1. In figure (a), submerged volume is, Va = Axd ft3 where: A = cross-sectional area of the vessel ( ft2 ) 2. In figure (b), submerged volume is Vb = Va + (2/12)(A) 3. In figure (c), submerged volume is Vc = Va + (1/12)(A)

W

W

W – 112,500 lb

d + 2/12

d + 1/12

d

Fb (a) Salt water ( γ = 64 lb/ft3)

Fb

Fb

(b) Fresh water (γ = 62.4 lb/ft3)

(c ) Fresh water after losing 112,500 lb

4. In salt water, W = F W = Va ( 64 )

( 1)

5. In fresh water, W = Fb W = [Va + (2/12)(A)](62.4) 6. In fresh water after losing 112,500 lb, W – 112,500 = [Va +(1/12)(A)](62.4)

(2)

(3)

 W  1    A 62 . 4  0. 975W   10 . 4 A 64 6     (4) 0. 02 5W   10 . 4 A

7. Substitute eq. 1 to eq. 2 and eq. 3, W   

 W  1    A 62 . 4  0. 975W   5 . 2 A  64 12  

W   112 , 500  

0 . 02 5 W   5 . 2 A  112 , 500

8. Solve eqs. (4) and (5) simultaneously, we obtain W   9 x10 lb 6

(5)

Example 6. A ship of 4,000 tons displacement floats in sea water with its axis of symmetry vertical when a weight of 50 tons is midship. Moving the weight 10 feet towards one side of the deck causes a plumb bob, suspended at the end of a string 12 feet long, to move 9 inches. Find the metacentric height. Solution:

9 1. Solve the angle of tilt, θ  A rc tan 12 12



 3. 58

12’

2. Righting Moment = W (MG x sinθ)     θ

50 x10  4050 MGxsin 3. 58  9”

 MG  1 . 977  ft 

Example 7. A ship with a horizontal sectional area at the waterline of 76,000 ft2 has a draft of 40.5 ft. in sea water (γs =64 lb/ft3). In fresh water it drops 41.4 ft. Find the weight of the ship. With an available depth of 41 ft. in a river above the sills of a lock, how many long tons of the cargo must the ship be relieved off so that it will pass the sills with a clearance of 0.60 ft.? Solution: W

W’

W original fresh W.S

sea W.S

fresh W.S

1 ft

ΔV

ΔV1 0.90 ft 40.5 ft

41.4 ft

41 ft

41.4 ft

sills

F bs (a) SEA WATER

F b f  (b) FRESH WATER

F b ' f 

0.60 ft

(c) SHIP IN THE LOCK

W – original weight of the ship (including cargo) W’ – new weight of the ship when part of the cargo has been disposed F bs - buoyant force in sea water, F b f  - buoyant force in fresh water

W

W’

W original fresh W.S

sea W.S

fresh W.S

ΔV2

1 ft

ΔV1 0.90 ft 41.4 ft

40.5 ft

41 ft

41.4 ft

sills

F bs F b ' f   W '

(a) SEA WATER

F b f 

F b ' f 

0.60 ft

(b) FRESH WATER

(c) SHIP IN THE LOCK

ΔV1 = additional submerged volume = 0.90(76,000) = 68,400 f t3 ΔV2 = volume of the ship at the waterline which rose up when it was relieved off the cargo = 1 (76,000) = 76,000 ft 3 V = original volume submerged ( in sea water ) (1) Using position (a); (2) Using position (b)

F bs  W 

F b f   W 

V γ s   W 

V    V 1 γ  f   W 

V  64   W 

(1)

V   68, 400 62 . 4  W 

(2)

(3) Solve equations (1) and (2) simultaneously, 64V   62 . 4V   68, 400  V   2 , 667, 600 ft 

3

and

The ship’s displacement in sea water

V    V 1  2 , 736, 000 ft 

3

Therefore,

W   64V 

The ship’s displacement in fresh water W’

 1. 7072 6 x10 lb 8

original fresh W.S

or

W   62 . 4V    V 1   1 . 7072 6 x10

8

ΔV2

1 ft

lb

41.4 ft

(4) Using position (c);

41 ft

W '  F b ' f   V    V 1   V 2 62 . 4

  2 , 736, 000  76, 000 62 . 4

sills

 1 . 65984  x10 lb 8

0.60 ft

(5) Weight of disposed cargo = W – W’

(c) SHIP IN THE LOCK

W   W '  0 . 04742  x10 8 lb

 4 , 742 , 000 lb  4 , 742 , 000 lbx

1 LT  2 , 2 00 lb

F b ' f 

 2 ,155 . 5 LONG TONS

Example 8.

W.S

W G

A

4’

A

Bo

9’

8’

4’ 15’

Fb

W.S

A’

Required : Righting or overturning moment when one side, as shown, is at the point of submergence

15’

M

A

G O Bo

Given: Rectangular scow 50’ x 30’ x 12’ as shown with the given draft and center of gravity.

C   W   MG sin θ

where: W   V γ 

A’ θ A



4’

W   50  30  8  62 . 4  W   748 , 800 lb

  4    14 . 93    15   MG  MBo  GBo θ   A rc tan 

 MG  MBo  5

 MBo 

vS  V sinθ

2 15 450  30  2  3    MBo  50308 sin14. 93

S 

W.S

G O

A’

Bo

Then,

C   748 , 800 ( 4 . 7 sin 14 . 93  ) C   906 , 600  ft   lb

30'

Θ = 14.93°

A’ A

4’

8’

 MBo  9. 7 ft 

 MG  9. 7 ft   5 ft   4. 7 ft 

3

A

1

Therefore,

2

30’

Example 9. A rectangular scow 10 m wide, 16 m long, and 4.0 m high has a draft in sea water (s = 1.03) of 2.5 m. Its center of gravity is 2.80 m above the bottom of the scow. Determine the following: (a) The initial metacentric height, (b) The righting or overturning moment when the scow tilts until one side is just at the point of submergence. Solution:

 MBo  3. 333m G

S.W.

GBo  2 . 80m  1. 2 5m .

Bo

2.5 m

2.8 m 1.25 m

GBo  1. 55 m The initial metacentric height , MG

10 m

 MG  MBo  GBo

(a) Initial Metacentric Height 2 2  B   tan θ   1    MBo  12 D   2  

where θ = 0

  tan2 0  1    MBo  12 2 . 5   2   102

 MG  3. 333  1. 55

 MG 1. 783m

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF