Fluent Tutorial for Wing
Short Description
Download Fluent Tutorial for Wing...
Description
APROCEDUREFORNUMERICALLYANALYZINGAIRFOILSAND WINGSECTIONS AThesis PresentedTo TheFacultyoftheDepartmentofMechanical& TheFacultyoftheDep artmentofMechanical&AerospaceEngineering AerospaceEngineering UniversityofMissouriColumbia By NathanLogsdon Dr.GarySolbrekkenThesisAdvisor December2006
December2006 TheundersignedhavereadandapprovedthisHo Theundersignedhaver eadandapprovedthisHonorsProjectentitled: norsProjectentitled: APROCEDUREFORNUMERICALLYANALYZINGAIRFOILSAND WINGSECTIONS PresentedbyNathanLogsdon Writteninfulfillmentoftherequirements forsixcredithoursinMAE4995 Dr.GarySolbrekkenDr.CraigKluever AssistantProfessorProfessor HonorsAdvisorSecondReader DateDate
Acknowledgements IwouldliketothankDr.GarySolbrekkenfor Iwouldliketothank Dr.GarySolbrekkenforhisinfinitepatience,gu hisinfinitepatience,guidancean idancean dsupport withoutwhichthisprojectwouldneverhavebe withoutwhichthispro jectwouldneverhavebeencompleted.Also,myfa encompleted.Also,myfatherand therand motherandtherestofmyfamilywhohavealwa motherandtherestof myfamilywhohavealwayssupportedmeineveryt yssupportedmeineverythingIha hingIha ve chosentopartake.
Abstract Thepurposeofthisprojectistodevelopapr Thepurposeofthispr ojectistodevelopaproceduretonumericallymo oceduretonumericallymodelairfl delairfl owover airfoilsusingGambitandFLUENT.Theprocedur airfoilsusingGambit andFLUENT.Theprocedureistobeusedasanint eistobeusedasanintroduction roduction to numericalanalysistoolsbystudentswhowill numericalanalysistoo lsbystudentswhowilltakeMAE4440/7440,Aerod takeMAE4440/7440,Aerodynamics. ynamics. Twoandthreedimensionalmodelsfortheairfo Twoandthreedimensio nalmodelsfortheairfoil0012werecreated,dra il0012werecreated,drawnandme wnandme shed inGambitusinggeometrydatagatheredbythe inGambitusinggeomet rydatagatheredbytheNationalAdvisoryCommitt NationalAdvisoryCommitteefor eefor Aeronautics.ThosemodelswerereadintoFLUEN Aeronautics.Thosemod elswerereadintoFLUENTwhereflowboundarycon Twhereflowboundaryconditions ditions wereappliedandthediscretizedNavier-Stokes wereappliedandthed iscretizedNavier-Stokesequationsweresolvednu equationsweresolvednumerically merically .The airfoilsectionliftcoefficientfromthenume airfoilsectionliftc oefficientfromthenumericsimulationwascompar ricsimulationwascomparedwith edwith experimentaldatafromtheliteratureandshow experimentaldatafrom theliteratureandshowntoagreewithin10%for ntoagreewithin10%forangleso angleso fattack below10°.Accurateliftcoefficientscouldno below10°.Accurateli ftcoefficientscouldnotbegeneratedforangles tbegeneratedforanglesofattack ofattack greater than10°.Anattemptwasmadetodemonstratew than10°.Anattemptw asmadetodemonstratewingtipvorticesfroma3ingtipvorticesfroma3-Dmodel. Dmodel. Unfortunately,dototheinabilitytodevelop Unfortunately,dotot heinabilitytodevelopareliablemeshthistask areliablemeshthistaskwasnot wasnot successfully completed.
TABLEOFCONTENTS Acknowledgement3 Abstract...................................... Abstract.............. ................................................. .................................. ......... ................................................4 1.Introduction........................................................ 1.Introduction............................... .................................. ......... ...........................................6 2.Four-digitAirfoils..7 3.Gambit9 3.1CoordinateFormat...10 3.2CreatingtheAirfoilGeometry.12 3.3CreatingMeshBoundary.15 3.4Meshing2D.........22 3.5Creating3DWing..............31 3.6Meshing3D.........33 4.FLUENTProcedure..36 5.Conclusion.43 5.1Comparisonof2-Dand3-DFLUENTModels..43 5.2Comparisonof2-DNumericalResultstoNACAEmpiricalData..43 5.3WingtipVorticesModel.46 6.References..49 Appendix:Four-digitAirfoilCalculatorM-file.......50
1.Introduction Flighthasbeenamajorpartoftheworldsinc Flighthasbeenamajo rpartoftheworldsinceitwasfirstdemonstrat eitwasfirstdemonstratedbythe edbythe Wright brothersin1902.However,indepthstudiesin brothersin1902.Howe ver,indepthstudiesintotheeffectsofairflow totheeffectsofairflowoverwin overwin gsdidnt occuruntilWorldWarI(Anderson).Inanatte occuruntilWorldWar I(Anderson).Inanattempttobetterunderstand mpttobetterunderstandwhatmade whatmade a goodwing,theNationalAdvisoryCommitteefor goodwing,theNationa lAdvisoryCommitteeforAeronautics,henceforth Aeronautics,henceforthreferred referred toas theNACA,wasfounded.In1933theNACAtested theNACA,wasfounded. In1933theNACAtested78airfoilshapesinthe 78airfoilshapesintheirwind irwind tunnelswiththedatabeingpublishedinTechn tunnelswiththedata beingpublishedinTechnicalReportNo.460,"The icalReportNo.460,"TheCharacte Characte ristics of78RelatedAirfoilSectionsfromTestsint of78RelatedAirfoil SectionsfromTestsintheVariable-DensityWind heVariable-DensityWindTunnel." Tunnel." This reportalsoresultedinthecreationofthefo reportalsoresultedi nthecreationofthefour-digitschemefordefin ur-digitschemefordefiningtheb ingtheb asic geometryoftheairfoil.Thissamenamingsche geometryoftheairfoi l.Thissamenamingschemewasthenusedtodefin mewasthenusedtodefinetheoth etheoth er airfoilfamilies,suchasthefive-digitairfo airfoilfamilies,such asthefive-digitairfoils.In1939alow-turbul ils.In1939alow-turbulencetwoencetwodimensional windtunnelwasconstructedforthesolepurpo windtunnelwasconstr uctedforthesolepurposeofairfoiltesting(U. seofairfoiltesting(U.S.Centen S.Centen nial). ThisreportoutlinesthenumericproceduretoanalyzetheNACAairfoil Thisreportoutlinesthenumericprocedureto analyzetheNACAairfoil0012with 0012with a chordlengthofonemeterandtheReynoldsnum chordlengthofoneme terandtheReynoldsnumbersof3x106,6x106,and bersof3x106,6x106,and9x106.B 9x106.B otha twoandthreedimensionalmodelwerecreatedt twoandthreedimensio nalmodelwerecreatedtocompareFLUENT'saccura ocompareFLUENT'saccuracyinthe cyinthe twodimensionalanalysisandanactualsealedwingsectionthreedimens twodimensionalanalysisandanactualsealed wingsectionthreedimensionalana ionalana lysis. Thenumericalprocessusedforthisairfoilwi Thenumericalprocess usedforthisairfoilwillbeusedasatutorial llbeusedasatutorialforstude forstude ntstaking MAE4440/7440,Aerodynamics,wheretheywillb MAE4440/7440,Aerodyn amics,wheretheywillberequiredtonumerically erequiredtonumericallyanalyze analyze an airfoiloftheirowndesign.Onceaprocedure airfoiloftheirownd esign.OnceaproceduretoreplicatetheNACAemp toreplicatetheNACAempiricalda iricalda tawas found,anattempttomakeamodelshowingthe found,anattempttom akeamodelshowingthewingtipvorticesphenomen wingtipvorticesphenomenonwas onwas
constructed.Unfortunately,asuitablemeshco constructed.Unfortuna tely,asuitablemeshcouldnotbefoundforthe uldnotbefoundforthecomplicat complicat ed airfoilgeometry. 2.Four-digitAirfoils AlltheairfoilsintheNACAfour-digitairfoi Alltheairfoilsinth eNACAfour-digitairfoilfamilyaredefinedbya lfamilyaredefinedbyaserieso serieso ffour numericaldigits,i.e.2412.Thefirstdigiti numericaldigits,i.e. 2412.Thefirstdigitisthemaximumvalueofth sthemaximumvalueofthemeanli emeanli nein hundredthsofthechordandisrepresentedin hundredthsofthechor dandisrepresentedinthefollowingequationsw thefollowingequationswiththel iththel etterm. Thesecondnumberrepresentsthepositionont Thesecondnumberrepr esentsthepositiononthechordofthemaximumm hechordofthemaximummeanline eanline in tenthsofthechordandisrepresentedwithth tenthsofthechordan disrepresentedwiththeletterp.Thelasttwo eletterp.Thelasttwonumbersd numbersd esignate themaximumthicknessoftheairfoilinhundre themaximumthickness oftheairfoilinhundredthsofthechordandis dthsofthechordandisrepresent represent edbyt. Therefore,theairfoil2412tellsusthatthe Therefore,theairfoil 2412tellsusthattheairfoilhasamaximummea airfoilhasamaximummeanlineva nlineva lueoftwo hundredthsofthechordlengthatapositionf hundredthsofthechor dlengthatapositionfourtenthsthechordfrom ourtenthsthechordfromthefron thefron tofthe airfoilandamaximumthicknessoftwelvehund airfoilandamaximum thicknessoftwelvehundredthsthechordlength, redthsthechordlength,seefigur seefigur e1. Fig.1.Diagramdisplayingthechordlength,m Fig.1.Diagramdispla yingthechordlength,maximumchamber,position aximumchamber,positionofmaxch ofmaxch amberandmax thicknessoftheairfoilgeometry. TheNACAfour-digitwingsectionsarebaseduponasetofgeometricequ TheNACAfour-digitwingsectionsarebasedup onasetofgeometricequationswh ationswh ich makesthisfamilyofairfoilseasytoderiveb makesthisfamilyofa irfoilseasytoderivebyfindingasetofcoordi yfindingasetofcoordinatestha natestha tdefinethe upperandlowersurfacesoftheairfoil.These upperandlowersurfac esoftheairfoil.Theseequationswilldefineth equationswilldefinethecoordin ecoordin atesofthe
surfacesforagivenairfoilaspercentagesof surfacesforagivena irfoilaspercentagesofthechord.Whenananaly thechord.Whenananalysisisto sisisto be conductedonanairfoilwithachordlengthsn conductedonanairfoi lwithachordlengthsnotequaltoone,thecoor otequaltoone,thecoordinatesf dinatesf orthe airfoilmustfirstbefoundforachordlength airfoilmustfirstbe foundforachordlengthofoneandthenmultiply ofoneandthenmultiplythecoor thecoor dinates, bothxandy,bythedesiredchordlength.The bothxandy,bythed esiredchordlength.Thecoordinatesfortheuppe coordinatesfortheuppersurface rsurface canbe foundwiththefollowingequations: xu=x-ytsin. (1) y=y+ycos. uct Likewisethelowersurfacecoordinatescanbefoundusingtheequations Likewisethelowersurfacecoordinatescanbe foundusingtheequationsbelow: below: x=x+ysin. lt(2) y=y-ycos. lct wherexisthepositionalongthechord,ytis wherexisthepositio nalongthechord,ytisthecorrespondingthickn thecorrespondingthicknessdistr essdistr ibutionand .istheanglebetweenthepreviouspointand .istheanglebetween thepreviouspointandthecurrentpoint.WhenN thecurrentpoint.WhenNACAfirst ACAfirst began tryingtodeterminethebestgeometryforwing tryingtodetermineth ebestgeometryforwings,theylookedattheCla s,theylookedattheClarkYand rkYand Göttingen398whichweretwoofthemostsucce Göttingen398whichwe retwoofthemostsuccessfulwingdesignsatthe ssfulwingdesignsatthetime.They time.They foundthatwhenthechamberwasremoved,thattheeffectivethicknessd foundthatwhenthechamberwasremoved,that theeffectivethicknessdistributi istributi onofthe twowingswasnearlythesame.Therefore,the twowingswasnearlyt hesame.Therefore,thethicknessdistributionfo thicknessdistributionforthefou rthefou r-digit wingsectionswasdefinedoffthegeometryof wingsectionswasdefi nedoffthegeometryofthosecurrentwingsectio thosecurrentwingsectionsandis nsandis defined bytheequation: 234 ±yt=t(0.29690x-0.12600x-0.35160x+0.2 ±yt=t(0.29690x-0 .12600x-0.35160x+0.28430x-0.10150x)(3) 8430x-0.10150x)(3) 0.20 Theleadingedgeradiusofthefour-digitairf Theleadingedgeradiu softhefour-digitairfoilsisdefinedbytheeq oilsisdefinedbytheequation: uation: rt=1.1019t2(4) wherethecenterofthecirclethisradiusdef wherethecenterofth ecirclethisradiusdefinesislocatedat0.05p inesislocatedat0.05percentof ercentof thechordon themeanline,seefigure2.
Fig.2.Visualdefinitionoffourdigitairfoi Fig.2.Visualdefinit ionoffourdigitairfoilgeometry.(Aerospaceweb lgeometry.(Aerospaceweb.org) .org) Thechamberofanairfoilisdefinedbytheam Thechamberofanairf oilisdefinedbytheamountofcurveinthemean ountofcurveinthemeanline.Th line.Th emean lineisdefinedbytwoparabolicarcstangent lineisdefinedbytwo parabolicarcstangenttothepositionofthema tothepositionofthemaximummea ximummea n-line ordinate.Theequationsthatdefinethemeanlineare: m yc=2(2px-x2)forwardofmaximumordinate(5) p m yc=2[(1-2p)+2px-x2]aftofmaximumordinate(6) (1-p) Throughtheuseofequations1-6anynumberof Throughtheuseofequ ations1-6anynumberoffour-digitairfoilcoord four-digitairfoilcoordinatesfo inatesfo rthe upperandlowersurfacescanbedefined. 3.Gambit Gambitisamodelingsoftwarethatiscapable Gambitisamodelings oftwarethatiscapableofcreatingmeshedgeomet ofcreatingmeshedgeometriesthat riesthat canbe readintoFLUENTandotheranalysissoftware. readintoFLUENTando theranalysissoftware.AnoutlinefortheGambit AnoutlinefortheGambitgeometry geometry creationprocesscanbeseeninfigure3.
Fig.3.Gambitoverviewdiagram. 3.1CoordinateFormat Sincetheairfoilgeometryisdefinedbysets Sincetheairfoilgeom etryisdefinedbysetsofcoordinatepoints,the ofcoordinatepoints,themorepoi morepoi ntsdefined willincreasetheaccuracyofthemodel.Anai willincreasetheaccu racyofthemodel.Anairfoilgeometrydefinedby rfoilgeometrydefinedbyonehund onehund red pointsforboththetopandbottomsurfacewil pointsforboththeto pandbottomsurfacewillresultinagooddefini lresultinagooddefinition.The tion.The listof coordinatesseeninfigure2werederivedbys coordinatesseeninfi gure2werederivedbyscriptingequations1-6in criptingequations1-6intoaMatl toaMatl abM-file, whichcanbefoundintheAppendix,whichthen whichcanbefoundin theAppendix,whichthensuppliedthecorrespondi suppliedthecorrespondingx,y, ngx,y, andz coordinateforeachofthehundredpointsalon coordinateforeachof thehundredpointsalongtheupperandlowersur gtheupperandlowersurfaceoft faceoft heairfoil. Withthecoordinatesdefined,theymustbelis Withthecoordinatesd efined,theymustbelistedinatextdocumentin tedinatextdocumentinthefoll thefoll owing format:
Fig.4.Propercoordinateformatforreadingc Fig.4.Propercoordin ateformatforreadingcoordinatesintoGambit. oordinatesintoGambit. Thetoptwonumbers,100and2,tellGambitth Thetoptwonumbers,1 00and2,tellGambitthatitisgoingtoreadin atitisgoingtoreadintwosets twosets ofone hundredcoordinatesonerightaftertheother. hundredcoordinateson erightaftertheother.Thecolumnonthelefti Thecolumnontheleftisthexsthexcoordinates.Thecentralcolumnisthey-coord coordinates.Thecentr alcolumnisthey-coordinatesandtherightcolu inatesandtherightcolumnisthe mnisthe zcoordinates.Theremustbenoemptylinesbetw coordinates.Theremus tbenoemptylinesbetweentherowsofcoordinat eentherowsofcoordinatesandat esandat least onespaceseparatingthecolumnsofcoordinate onespaceseparatingt hecolumnsofcoordinatesfromoneanother.Thec sfromoneanother.Thecoordinate oordinate s shouldalsobelistedverticallymovingfromt shouldalsobelisted verticallymovingfromthenoseoftheairfoilto henoseoftheairfoiltowardthe wardthe tailforthe uppersurfacefirstandthenthelowersurface uppersurfacefirstan dthenthelowersurface.Anoteofinterest,by .Anoteofinterest,byusingequ usingequ ations1-6, thetwocoordinatesthatdefinethetailofth thetwocoordinatesth atdefinethetailoftheairfoildonotbringth eairfoildonotbringthegeometr egeometr ytoasingle point,seefigure5. Fig.5.Airfoiltailgapcreatedbyequations1-6.
Thisminorgapinthetailoftheairfoilisu Thisminorgapinthe tailoftheairfoilisusefulwhen3-Dgeometries sefulwhen3-Dgeometriesarebein arebein gdefined inGambitsothegapwillbemaintained.Once inGambitsothegapw illbemaintained.Onceproperlyformattedthedo properlyformattedthedocumentsh cumentsh ould besavedasa*.txtdocument. 3.2CreatingtheAirfoilGeometry LaunchGambit.OnceGambitisopenmakecertai LaunchGambit.OnceGa mbitisopenmakecertainthesolverissetfort nthesolverissetfortheapprop heapprop riate output,i.e.FLUENT5/6,byselectingSolver. output,i.e.FLUENT5/ 6,byselectingSolver.FLUENT5/6.Thecoordina FLUENT5/6.Thecoordinate te documentmustnowbeimportedintoGambit.Thi documentmustnowbei mportedintoGambit.ThisisdonebyselectingFi sisdonebyselectingFile.Impo le.Impo rt .ICEMInputs Fig.6.Gambitcoordinateimportprocess.
ThiswillopentheICEMimportwindow.Makece ThiswillopentheICE Mimportwindow.Makecertaintheedgecommandis rtaintheedgecommandisselected selected andthatthefacecommandisdeselected,asca andthatthefacecomm andisdeselected,ascanbeseeninfigure7. nbeseeninfigure7. Fig.7.ICEMimportwindow. Oncethedesiredcoordinatefiletobeimporte Oncethedesiredcoord inatefiletobeimportedislistedintheFileN dislistedintheFileNametext ametext box,accept thesettings.SincethetextfiletoldGambit thesettings.Sinceth etextfiletoldGambittoreadintwosetsofon toreadintwosetsofonehundred ehundred coordinates,eachsetofonehundredcoordinateswillbedefinedbyone coordinates,eachsetofonehundredcoordinat eswillbedefinedbyoneedgeres edgeres ultingin Gambitwindownowdisplayingtheupperandlow Gambitwindownowdisp layingtheupperandlowersurfaceoftheairfoil ersurfaceoftheairfoil. .
Fig.8.Importedairfoilgeometry. Nexttheupperandlowersurfaceoftheairfoi Nexttheupperandlow ersurfaceoftheairfoilmustbesplitatthree lmustbesplitatthreetenthsof tenthsof thechord lengthsincethefirstthirtypercentofthea lengthsincethefirst thirtypercentoftheairfoilwillbemeshedwit irfoilwillbemeshedwithanon-u hanon-u niformgrid andthelastseventypercentoftheairfoilwi andthelastseventyp ercentoftheairfoilwithauniformgrid.Thisi thauniformgrid.Thisisdoneby sdoneby selecting theGeometryCommandunderoperation. EdgeCommand. Split/mergeEdges. Startbyselectingtheuppersurfaceoftheai Startbyselectingthe uppersurfaceoftheairfoil.Thisedgecaneith rfoil.Thisedgecaneitherbesel erbesel ectedfrom thepopupmenubyselectingtheuparrownext thepopupmenubysele ctingtheuparrownexttotheedgeboxorbyshi totheedgeboxorbyshiftleft-c ftleft-c licking thedesirededge.SinceGambitcreatedthetwo thedesirededge.Sinc eGambitcreatedthetwocurrentedgesinexisten currentedgesinexistencetheyw cetheyw illbe representedbytherandomnamesedge.1andedg representedbytheran domnamesedge.1andedge.2.Thefirstsurfaceim e.2.Thefirstsurfaceimportedis portedis definedasedge.1,whichistheuppersurface, definedasedge.1,whi chistheuppersurface,andedge.2isthelower andedge.2isthelowersurface. surface. Also, anytimeanentityisselectedinGambitthatp anytimeanentityiss electedinGambitthatpartofthemodelwillbe artofthemodelwillbedisplayed displayed ina differentcolor.Oncetheedgeisselected,en differentcolor.Once theedgeisselected,enteravalueof0.3c,wher teravalueof0.3c,wherecisth ecisth echord
length,fortheglobalx-coordinate.Thiswill length,fortheglobal x-coordinate.Thiswillplaceamarkerontheed placeamarkerontheedgewhere gewhere thesplit isgoingtooccur.Thisprocesscanbeseenfo isgoingtooccur.Thi sprocesscanbeseenfora0012airfoilinthef ra0012airfoilinthefigure9. igure9. Fig.9.Edgesplitprocess. Repeatthisprocessforthelowersurface. 3.3CreatingMeshBoundary Theoutermeshgeometrymustnowbecreated.T Theoutermeshgeometr ymustnowbecreated.Thisisdonebyselecting hisisdonebyselectingtheVerte theVerte x CommandbuttonundertheGeometryOperation.B Commandbuttonundert heGeometryOperation.ByselectingtheCreateVe yselectingtheCreateVertex rtex buttonanotherwindowwithbothglobalandloc buttonanotherwindow withbothglobalandlocalcoordinateoptionsis alcoordinateoptionsisopened,s opened,s ee figure10. 15
Fig.10.VertexwindowwithvaluesforpointA. Usingtheglobalcoordinates,itispossiblet Usingtheglobalcoord inates,itispossibletocreatetheoutlinefor ocreatetheoutlineforaC-mesh aC-mesh profile aroundtheairfoilgeometry.Thiswillallowf aroundtheairfoilgeo metry.Thiswillallowforagoodquickmeshtob oragoodquickmeshtobecreated ecreated .By fillingintheglobalcoordinatepositionswit fillingintheglobal coordinatepositionswiththevaluesinTable1, hthevaluesinTable1,theoutli theoutli neofthe meshboundarywillbedefinedbyninevertices meshboundarywillbe definedbyninevertices.Namingallgeometriesc .Namingallgeometriescreatedis reatedis highly recommendedtoeasetheprocessoffindingpoi recommendedtoeaseth eprocessoffindingpointslaterinthepopupme ntslaterinthepopupmenu. nu. Table1.Globalcoordinatesofverticestocreateouterboundaryofmes Table1.Globalcoordinatesofverticestocre ateouterboundaryofmeshwherec hwherec isthechordlength oftheairfoil.Allplottedpointscanbeseeninfigure11. Labelx-coordinatey-coordinatez-coordinate Ac9*c0 B14.4*c9*c0 C14.4*cUT0 D14.4*c00 E14.4*cLT0 F14.4-9*c0 GC-9*c0 HC00 I-8*c00 They-coordinatesUTandLTcorrespondtothey-coordinatesfortheupp They-coordinatesUTandLTcorrespondtothe y-coordinatesfortheupperandlo erandlo wer surfacetailsoftheairfoil,refertofigures surfacetailsofthea irfoil,refertofigures5and11.Thesevaluesa 5and11.Thesevaluesareeasies reeasies tfoundby
referringtotheairfoilcoordinatetextfile. referringtotheairfo ilcoordinatetextfile.Oncetheseverticeshave Oncetheseverticeshavebeencre beencre atedthe workframeshouldappearasfollows: Fig.11.Resultingverticeslocations. Thisdisconnectedtailisimportantfortheprocessinwhich3Dgeometr Thisdisconnectedtailisimportantforthepr ocessinwhich3Dgeometriesarec iesarec reatedin Gambitsodon'thavetheairfoilcometoapoi Gambitsodon'thavet heairfoilcometoapointatthetail.Thesever ntatthetail.Theseverticesmus ticesmus tnowbe connectedtocreateaframeforthefacesthat connectedtocreatea frameforthefacesthataretobemeshed.Fora aretobemeshed.Forafacetob facetob ecreated later,alltheframesmustbecompletelyenclo later,alltheframes mustbecompletelyenclosed.Startbyselectingt sed.StartbyselectingtheGeomet heGeomet ry Operation.EdgeCommand.CreateEdgeCommand Operation.EdgeComma nd.CreateEdgeCommand.Thecreateedgecommand .Thecreateedgecommand mustbesettocreateastraightedge.Nowsel mustbesettocreate astraightedge.Nowselecttwoverticesbetween ecttwoverticesbetweenwhichan whichan edge needstobecreated.Straightedgesneedtobe needstobecreated.S traightedgesneedtobecreatedbetweenalloft createdbetweenallofthefollow hefollow ingpoint pairs:AB,BC,CD,DE,EF,FG,GLT,LTH,HUT, pairs:AB,BC,CD,DE, EF,FG,GLT,LTH,HUT,UTAandDH,ascanbesee UTAandDH,ascanbeseenin nin figure12.
Fig.12.Straightedgeconnections. Twoarcedgesaregoingtobecreatedforthe Twoarcedgesaregoin gtobecreatedforthefrontofthemeshboundar frontofthemeshboundary.Thisi y.Thisi sdone byright-clickingtheCreateEdgeiconwhicho byright-clickingthe CreateEdgeiconwhichopensadropdownmenu.Se pensadropdownmenu.Selectthe lectthe Arc Edgebutton,seefigure13.
Fig.13.Edgecreationdropdownlist. Thefirstthingthatmustbedoneistoselect Thefirstthingthatm ustbedoneistoselectthecenterpointofthe thecenterpointofthearc.For arc.For botharcsthis isgoingtobepointH,seefigure14andrefe isgoingtobepointH ,seefigure14andrefertofigure11forvertex rtofigure11forvertexdefiniti definiti on.
Fig.14.Arcdefinitionwindow.
TheendpointsaregoingtobeAandIandGa Theendpointsaregoi ngtobeAandIandGandI.Thefinalmeshoute ndI.Thefinalmeshouterboundar rboundar y shouldappearasfollows: Fig.15.Outermeshboundary. Eachenclosedareawillnowbeturnedintoafacewhichcanbemeshed. Eachenclosedareawillnowbeturnedintoaf acewhichcanbemeshed.Startby Startby selectingGeometryOperations.FaceCommand. selectingGeometryOpe rations.FaceCommand.FormFaceWireframe.In FormFaceWireframe.In totaltherewillbefourfacescreated.Fromf totaltherewillbefo urfacescreated.Fromfigure15thetoprightre igure15thetoprightrectanglew ctanglew illbeface ABCDH.Thelowerrightrectanglewillbeface ABCDH.Thelowerright rectanglewillbefaceDEFGHandthelefthalfc DEFGHandthelefthalfcirclewil irclewil lbe faceAIGH.Thelastfacewillbetheareaoft faceAIGH.Thelastfa cewillbetheareaoftheairfoil.Thefirstfac heairfoil.Thefirstfacemention emention edis createdbypickingtheedgesAB,BC,CD,DH,H createdbypickingthe edgesAB,BC,CD,DH,HUT,andUTA,seefigure1 UT,andUTA,seefigure16. 6.
Fig.16.FaceABCDHdefinition. Thesecondrectangularfaceiscreatedwithth Thesecondrectangular faceiscreatedwiththeedgesDE,EF,FG,GLT, eedgesDE,EF,FG,GLT,LTH,and LTH,and HD. Theairfoilismadeintoafacebyselectingt Theairfoilismadein toafacebyselectingtheimportededges,these heimportededges,thesemostlike mostlike lyhavethe genericnamesedge.1,edge.2,edge.3,andedge genericnamesedge.1, edge.2,edge.3,andedge.4,andtheedgesHUTand .4,andtheedgesHUTandLTH.The LTH.The finalfaceiscreatedbyselectingtheedgesUTA,AI,GI,GLT,LTH,and finalfaceiscreatedbyselectingtheedgesU TA,AI,GI,GLT,LTH,andHUT.In HUT.In order tosaveprocessingtimetheairfoilfacedoesn tosaveprocessingtim etheairfoilfacedoesn'tneedtobemeshed.The 'tneedtobemeshed.Therefore,t refore,t heairfoil canbesubtractedfromthehalfcirclefaceAI canbesubtractedfrom thehalfcirclefaceAIGHbyselectingGeometry GHbyselectingGeometryOperation Operation . FaceCommand. rightclickBooleanOperation.Subtract,seefigure17.
Fig.17.Booleanoperationsubtractwindow. IntheupperFaceboxselectthehalfcirclef IntheupperFacebox selectthehalfcirclefaceAIGH.IntheSubtract aceAIGH.IntheSubtractFacebox Facebox select theairfoilfaceandthenselectapply.Donot theairfoilfaceandt henselectapply.Donotselecttheretainoption selecttheretainoptionsorelse sorelse multiple edgeswillexistontopofeachother.(Fora edgeswillexistonto pofeachother.(Fora3Dairfoilanalysesgoto 3Dairfoilanalysesgotosection section 3.5atthis point.) 3.4Meshing2D Theprocesstomeshthefacescannowbegin.S Theprocesstomeshth efacescannowbegin.Sincetheareaofinterest incetheareaofinterestisaroun isaroun dthe airfoil,thisistheregionthatthemeshshou airfoil,thisisther egionthatthemeshshouldbethedensest.Start ldbethedensest.Startbyselect byselect ingMesh
Operation.EdgeCommand.MeshEdge.Thiswillallowthedefiningoft Operation.EdgeCommand.MeshEdge.Thiswil lallowthedefiningoftheface heface meshthroughdefinededgemeshes.Tomeshane meshthroughdefinede dgemeshes.Tomeshanedge,selecttheedgebye dge,selecttheedgebyeitherthe itherthe popup menuorbyshiftleft-clickingtheedge.Start menuorbyshiftleftclickingtheedge.StartbyselectingedgeAB,ma byselectingedgeAB,makingcert kingcert ainthe arrowispointingfromlefttoright,seefigure18. Fig.18.Edgemeshlabelsandarrowindication. Thearrowdirectioncanbechangedbyselectin Thearrowdirectionca nbechangedbyselectingReverseatthetopoft gReverseatthetopoftheedgem heedgem esh window.Forthisedge,aFirstLengthtypemes window.Forthisedge, aFirstLengthtypemeshisdesired,seefigure hisdesired,seefigure19.This 19.This will placemoreelementsclosertothetailofthe placemoreelementscl osertothetailoftheairfoil,whichisanarea airfoil,whichisanareaofinter ofinter est,andfewer elementstothefarrightwheretheflowwill elementstothefarri ghtwheretheflowwillonceagainbeuniform.Se onceagainbeuniform.SetLength tLength to0.1 andtheIntervalCountoptioninthespacebox andtheIntervalCount optioninthespaceboxtofortyfortheinitial tofortyfortheinitialmesh,se mesh,se efigure
19.Whendecidingonthedensityofthemesh, 19.Whendecidingont hedensityofthemesh,weighthecostandbenefi weighthecostandbenefitsofcal tsofcal culation timeversusaccuracy.Startingoutwithaless timeversusaccuracy. Startingoutwithalessdensemeshisusuallybe densemeshisusuallybestsince stsince the densitycanalwaysbeincreasedinFLUENTand densitycanalwaysbe increasedinFLUENTandthiswillreducecalculat thiswillreducecalculationtimes iontimes for preliminaryresults.Thisprocesswillberepe preliminaryresults.T hisprocesswillberepeatedforedgesDHandFG, atedforedgesDHandFG,againwi againwi ththe arrowpointingfromlefttoright,refertofigure18. Fig.19.MeshEdgesoptions. TheverticaledgesUTA,BC,EF,andGLTwillb TheverticaledgesUTA ,BC,EF,andGLTwillbemeshedwithaSuccessiv emeshedwithaSuccessiveRatioo eRatioo f ratio1.15andanIntervalCountof30,refer ratio1.15andanInte rvalCountof30,refertofigure19foredges.E tofigure19foredges.EdgesUTA dgesUTA andBC shouldhavetheirarrowspointingupandedges shouldhavetheirarro wspointingupandedgesGLTandEFwiththeirar GLTandEFwiththeirarrowspoin rowspoin ting downinordertoplacethedensestmesharound downinordertoplace thedensestmesharoundtheairfoil.Thesmalle theairfoil.ThesmalledgesLTH, dgesLTH, HUT, CD,andDEwillallbemeshedwithaSuccessiv CD,andDEwillallbe meshedwithaSuccessiveRatioofratio1andan eRatioofratio1andanInterval Interval Size of0.02cwiththeirarrowspointingawayfrom of0.02cwiththeirar rowspointingawayfromthecenter.Therewon thecenter.Therewon tbeanynotab le
changealongthesesmalledges.Duetotheear changealongthesesma lledges.Duetotheearlierlinesplitconducted lierlinesplitconductedonthet onthet opand bottomsurfaces,theairfoilgeometryisnowr bottomsurfaces,thea irfoilgeometryisnowrepresentedbyfoursepara epresentedbyfourseparatelines. telines. When theseedgesaremeshedtheirarrowsshouldpoi theseedgesaremeshed theirarrowsshouldpointtowardsthetailofth nttowardsthetailoftheairfoil eairfoil ,seefigure 20. Fig.20.Airfoilarrowdirection. Thefrontedgesoftheairfoilwillbemeshed Thefrontedgesofthe airfoilwillbemeshedwithaLastLengthtypea withaLastLengthtypeataLengt taLengt hof 0.02c,wherecisthechordlength,andInterv 0.02c,wherecisthe chordlength,andIntervalCountofforty.There alCountofforty.Therearedges aredges ofthe airfoilwillbemeshedwithaSuccessiveRatio airfoilwillbemeshed withaSuccessiveRatioofoneandIntervalSize ofoneandIntervalSizeof0.02c of0.02c .These smallintervalswillcreateadensemeshright smallintervalswillc reateadensemeshrightaroundtheairfoilgeome aroundtheairfoilgeometry.Tod try.Tod etermine thenumberofmeshelementsontherearedges thenumberofmeshele mentsontherearedgesoftheairfoilselectMes oftheairfoilselectMeshOperati hOperati on. EdgeCommand.SummarizeEdgeMeshesandchoos EdgeCommand.Summari zeEdgeMeshesandchooseeithertheupperorlow eeithertheupperorlowerrear errear edge.Selecttheelementsoptionandclickapp edge.Selecttheeleme ntsoptionandclickapply.Thenumberofelement ly.Thenumberofelementsonthe sonthe line willbeprintedintheGambittranscriptwindo willbeprintedinthe Gambittranscriptwindow,seefigure21. w,seefigure21.
Fig.21.SummarizeEdgeCommand(right)andresults(bottom). Knowingthenumberofelementsonthetopand Knowingthenumberof elementsonthetopandbottomsurfacesoftheai bottomsurfacesoftheairfoil,an rfoil,an edge meshcannowbegeneratedforthearcsAIand meshcannowbegenera tedforthearcsAIandGIwiththeirarrowspoin GIwiththeirarrowspointingtowa tingtowa rd vertexI,seefigures18.Theselineswillbe vertexI,seefigures 18.TheselineswillbemeshedwithaFirstLengt meshedwithaFirstLengthtypeme htypeme sh, Length0.02cwithanIntervalCountequivalent Length0.02cwithanI ntervalCountequivalenttothenumberofelement tothenumberofelementsonthe sonthe correspondingtopandbottomsurfacesofthew correspondingtopand bottomsurfacesofthewingsectiongeometry.The ingsectiongeometry.Theinterval interval count forthe0012airfoilinthisprocedureis75. forthe0012airfoili nthisprocedureis75.Seefigure22foraview Seefigure22foraviewofallth ofallth emeshed edges.
Fig.22.Alledgesmeshed. ThefacescannowbemeshedbyselectingtheM Thefacescannowbem eshedbyselectingtheMeshOperation.MeshFace eshOperation.MeshFace Command.MeshFace.Allthefacescanbemesh Command.MeshFace.A llthefacescanbemeshedatoncebyselectingt edatoncebyselectingthethree hethree previouslydefinedfacegeometriesfromthepo previouslydefinedfac egeometriesfromthepopupwindoworshiftleftpupwindoworshiftleft-clicking clicking the facesedges.Theelementsopt sedges.TheelementsoptionshouldbesettoQua ionshouldbesettoQuad,typetoMap,andsmoot d,typetoMap,andsmoother her to None.Allotherdefaultvaluescanbekeptand None.Allotherdefaul tvaluescanbekeptandtheapplybuttonselecte theapplybuttonselected.Theco d.Theco mpleted facemeshcanbeseeninfigure23.(For3Dmo facemeshcanbeseen infigure23.(For3Dmodelsgotosection3.6to delsgotosection3.6tocontinue continue .)
Fig.23.CompletedMesh. Theboundarytypescannowbedefinedsinceth Theboundarytypescan nowbedefinedsincethemeshingiscomplete.Th emeshingiscomplete.Thisisdon isisdon eby selectingZoneOperation.SpecifyBoundaryTy selectingZoneOperati on.SpecifyBoundaryTypes.Thetypeoptionis pes.Thetypeoptionis automaticallysettoWallsodefinetheairfoi automaticallysettoW allsodefinetheairfoil'sboundaryfirst.Thee l'sboundaryfirst.Theentityopt ntityopt ionshould besettoEdgesandthenselectallsixedges besettoEdgesandth enselectallsixedgesthatdefinetheairfoilg thatdefinetheairfoilgeometry, eometry, seefigure 24.Itisagoodideatogiveallzonesandboundaryconditionsuseful 24.Itisagoodideatogiveallzonesandbo undaryconditionsusefulnamesso namesso when importedintoFLUENTlocatingthedesiredzone importedintoFLUENTl ocatingthedesiredzoneswillbeeasier. swillbeeasier.
Fig.24.Airfoilboundarydefinition. Forthisproceduretheairfoilboundarywillb Forthisprocedurethe airfoilboundarywillbenamedairfoil.Next,th enamedairfoil.Next,thetypene etypene edstobe changedtoPressure-far-field.Theedgesthat changedtoPressure-fa r-field.Theedgesthatmakeupthisboundarycon makeupthisboundaryconditionar ditionar eall theouteredgesofthemesh.Thisconsistsof theouteredgesofthe mesh.ThisconsistsofedgesAB,BC,CD,DE,EF, edgesAB,BC,CD,DE,EF,FG,GI, FG,GI, and AI,refertofigure18.Thisboundaryconditio AI,refertofigure18 .Thisboundaryconditionwillbelabeledfarfiel nwillbelabeledfarfield.Thela d.Thela stentity thatmustbedefinedistheairflowregion.T thatmustbedefinedi stheairflowregion.Thisisdonebyselecting hisisdonebyselectingZoneOper ZoneOper ation.
ContinuumType.Thetypewillbefluidandall ContinuumType.Thety pewillbefluidandallthreefacesshouldbese threefacesshouldbeselectedfo lectedfo rentity. Thiscontinuumwillbecalledair,seefigure25. Fig.25.Continuumboundarydefinition. ThemeshcannowbeexportedtoaformatFLUEN Themeshcannowbeex portedtoaformatFLUENTcanread.Thisisdone Tcanread.Thisisdonebyselect byselect ing File.Export.Mesh.Thisopenstheexportwi File.Export.Mesh. Thisopenstheexportwindow,seefigure26. ndow,seefigure26.
Fig.26.Meshexportwindow. Makecertaintheexport2-Dmeshoptionissel Makecertaintheexpor t2-Dmeshoptionisselectedandthatthemeshf ectedandthatthemeshfileisgo ileisgo ingwhere desiredbycheckingwiththebrowsebutton.Th desiredbycheckingwi ththebrowsebutton.Thenselectacceptandthe enselectacceptandthe2Dmeshi 2Dmeshi sready tobereadintoFLUENT. 3.5Creating3DWing Thissectioncontinuesfromtheendofsection Thissectioncontinues fromtheendofsection3.3.Inordertocreate 3.3.Inordertocreatethewing thewing sectionthe threefacesthatwerepreviouslycreatedhave threefacesthatwere previouslycreatedhavetobeextruded.Thisisd tobeextruded.Thisisdonebyse onebyse lecting GeometryOperation.VolumeCommand. right-clickFormVolume.Sweep Face.Theextrusionwillconsistofextruding Face.Theextrusionwi llconsistofextrudingallthefacesintheposi allthefacesinthepositivez-di tivez-di rectionbya magnitudeofone.Selectthefacesthrougheit magnitudeofone.Sele ctthefacesthrougheithershiftleft-clickingt hershiftleft-clickingthemorel hemorel sethrough thepopupwindow.Theextrusionpathwillbev thepopupwindow.The extrusionpathwillbeviaavectorsoselectthe iaavectorsoselectthevectorp vectorp ath option.Tochangethemagnitudeoftheextrusi option.Tochangethe magnitudeoftheextrusionclickthedefinebutto onclickthedefinebuttonunderp nunderp athand setthemagnitudetothedesiredvalue.Leave setthemagnitudetot hedesiredvalue.Leavethevalueatoneinthep thevalueatoneinthepositivez ositivez -direction forthisprocedure,seefigure27.
Fig.27.Sweepfacesetupandvectordefinition. Sweptvolumescanbelabelediftheyareextru Sweptvolumescanbel abelediftheyareextrudedseparately.Oncethe dedseparately.Oncethevector vector magnitudeanddirectionaresetclickapplyto magnitudeanddirectio naresetclickapplytoextrudethefaces.Atth extrudethefaces.Atthispoint ispoint alarge numberoffaceswillhavebeencreatedwithge numberoffaceswillh avebeencreatedwithgenericlabelssincevolume nericlabelssincevolumesaredef saredef inedby faceswhichGambithascreatedthroughtheswe faceswhichGambithas createdthroughthesweepingprocess.Theeasies epingprocess.Theeasiestmethod tmethod to selectadesiredfaceistocontinuallyshift selectadesiredface istocontinuallyshiftleft-clickanedgeofthe left-clickanedgeofthefaceunt faceunt ilthedesired faceishighlightedandthenthroughthepopup faceishighlightedan dthenthroughthepopupwindowremovethefaces windowremovethefacesthatshou thatshou ldnot havebeenselected.The3Dwinggeometryisno havebeenselected.Th e3Dwinggeometryisnowcreatedandameshfor wcreatedandameshforthevolum thevolum es canbecreated.
3.6Meshing3D Allthefacesthatexistedinthe2Dmeshproc Allthefacesthatexi stedinthe2Dmeshprocessandtheirreplicaswi essandtheirreplicaswillbemes llbemes hedinthe samefashionasdescribedinsection3.4.Ther samefashionasdescri bedinsection3.4.Thereforerefertosection3. eforerefertosection3.4forthe 4forthe face meshingofthe3Dgeometry.Refertofigure28 meshingofthe3Dgeom etry.Refertofigure28forwhatafacemeshedg forwhatafacemeshedgeometrys eometrys hould looklikeatthecompletionofsection3.4.Fo looklikeatthecompl etionofsection3.4.Foreachvolumetwoopposit reachvolumetwooppositefacess efacess hould nowbeidenticallymeshed. Fig.28.Allfacesandtheirreplicasthatwerepresentinsection3.4aremeshed . InordertomeshthevolumesaCoopermeshwil Inordertomeshthev olumesaCoopermeshwillbeused.Thisisdoneb lbeused.Thisisdonebyselecti yselecti ng MeshOperation.VolumeCommand.MeshVolume. MeshOperation.Volum eCommand.MeshVolume.Thisopensthevolume Thisopensthevolume meshwindow.Thevolumemeshwillbeahexele meshwindow.Thevolum emeshwillbeahexelementmeshandtypeCooper mentmeshandtypeCooper.The .The Coopermeshwilltaketwofacespre-meshedfac Coopermeshwilltake twofacespre-meshedfaces,theSources,andthen es,theSources,andthenreplicat replicat ethe meshonthosefacesatadesiredintervalspac meshonthosefacesat adesiredintervalspacingforthevolumebetwee ingforthevolumebetweenthefac nthefac es.The Coopermeshwillnotworktryingtomeshalong Coopermeshwillnotw orktryingtomeshalongasinglelineconnecting asinglelineconnectingtwopoin twopoin tsof anyonevolumetogether.Thisiswhythegapa anyonevolumetogethe r.Thisiswhythegapattheendoftheairfoil ttheendoftheairfoilisnecess isnecess ary.Also,
fortheCoopermeshtosucceed,bothoftheen fortheCoopermeshto succeed,bothoftheendfacesmustbeidentical dfacesmustbeidentical.Theset .Theset tings usedforthevolumemeshinthisprocedureare usedforthevolumeme shinthisprocedureareseeninfigure29. seeninfigure29. Fig.29.Volumemeshsettings. Thus,usingtheCoopermeshprocess,meshall Thus,usingtheCooper meshprocess,meshallthevolumes.Thespacing thevolumes.Thespacingvaluewil valuewil l determinethedensityofthevolumesmesh.Thespacingvaluewillbe0.1forthis procedure.Thesmallerthespacingvaluethedenserthemesh.Remember procedure.Thesmallerthespacingvaluethed enserthemesh.Rememberthatwhil thatwhil ea densermeshgivesbetterresults,thecomputat densermeshgivesbett erresults,thecomputationtimeisalsoincrease iontimeisalsoincreased.Nowth d.Nowth e boundaryconditionsforthewingsectioncanb boundaryconditionsfo rthewingsectioncanbecreated.Thisisdoneb ecreated.Thisisdonebyselecti yselecti ngZone Operation.SpecifyBoundaryType.Sincetheb Operation.SpecifyBo undaryType.Sincetheboundarytypeofwallisd oundarytypeofwallisdefaultth efaultth e wingssurfacescanbedefinedfirst,seefigure30.Dontforgetthetwothinfaces atthe tailofthewingsection.
Fig.30.Thefacesthatdefinethewingsection. Thewingsectionisthenon-meshedportionof Thewingsectionisth enon-meshedportionofthevolumeandisdefined thevolumeandisdefinedbysixf bysixf ace entities.Thenextboundarytodefineistheo entities.Thenextbou ndarytodefineistheouterverticalfacesthat uterverticalfacesthatwillbed willbed efinedas symmetry,seefigure31.Thiswillpreventflo symmetry,seefigure3 1.Thiswillpreventflowdistortionsalongthee wdistortionsalongtheedgesoft dgesoft he volume. Fig.31.Facestobedefinedassymmetry.
Thelastboundarylayerwillbedefinedasap Thelastboundarylaye rwillbedefinedasapressure-far-field.There ressure-far-field.Therewillbee willbee ightfaces aspartofthiszone,seefigure32.Dontforgetthetwosmallfacesinthemiddl ebackof themeshvolumes. Fig.32.Facestobedefinedaspressure-far-field. Thefinalzonethatmustbedefinedistheflu Thefinalzonethatmu stbedefinedisthefluidvolume.Thisisdoneb idvolume.Thisisdonebyselecti yselecti ngZone Operation.SpecifyContinuumType.Theentity Operation.SpecifyCo ntinuumType.Theentityisallthevolumesandt isallthevolumesandtheywill heywill be definedasafluidtypeandnamedair.The3D definedasafluidtyp eandnamedair.The3Dgeometryisnowreadyto geometryisnowreadytobeexport beexport edinto ameshfile.ThisisdonebyselectingFile. ameshfile.Thisisd onebyselectingFile.Export.Mesh,seefigure Export.Mesh,seefigure26.Make 26.Make certaintheexport2-D(X-Y)meshoptionisnotselected. 4.FLUENTProcedure ThedesiredmeshcannowbereadintoFLUENTw Thedesiredmeshcann owbereadintoFLUENTwhichwillthenrunthege hichwillthenrunthegeometry ometry throughthenumericalanalysis.OpenFLUENTan throughthenumerical analysis.OpenFLUENTandselectthe2Ddoublepr dselectthe2Ddoubleprecision ecision
operation(2ddp)fortwodimensionaloperation operation(2ddp)fort wodimensionaloperationsand3Ddoubleprecision sand3Ddoubleprecision(3ddp)f (3ddp)f or threedimensionaloperations.TheGambitmesh threedimensionaloper ations.TheGambitmeshisreadintoFLUENTbyse isreadintoFLUENTbyselectingF lectingF ile .Read.Caseandselectingtheappropriatemeshfile.Makecertainthe .Read.Caseandselectingtheappropriateme shfile.MakecertaintheFLUENT FLUENT windowdoesn'tdisplayanyerrormessagesafte windowdoesn'tdisplay anyerrormessagesafterreadinginthemeshfil rreadinginthemeshfile.First e.First themesh shouldbecheckedbyselectingGrid.Check.T shouldbecheckedbys electingGrid.Check.Thiswillconductathorou hiswillconductathoroughcheck ghcheck of themeshtomakecertainnoerrorsarepresent themeshtomakecerta innoerrorsarepresent.Thesolvertobeusedo .Thesolvertobeusedonthegeo nthegeo metry canbechangedbygoingtoDefine.Models.S canbechangedbygoin gtoDefine.Models.Solver.Forthisanalysis olver.Forthisanalysisasegrega asegrega ted solverwillbeusedsomakecertainthatoptio solverwillbeusedso makecertainthatoptionisselected.Next,the nisselected.Next,theviscousm viscousm odelmust besetbyselectingDefine.Models.Viscous. besetbyselectingDe fine.Models.Viscous.Twodifferentviscosity Twodifferentviscositymodelswe modelswe re tested.Thefirstistheinviscidmodelwhich tested.Thefirstist heinviscidmodelwhichassumesnoviscosity.The assumesnoviscosity.Thesecondi secondi sthe Spalart-Allmaras(SA)modelwhichisaturbule Spalart-Allmaras(SA) modelwhichisaturbulenteddyviscositymodel. nteddyviscositymodel.Insteado Insteado f solvingforthekineticenergyofturbulencet solvingforthekineti cenergyofturbulencetheSpalart-Allmarasmodel heSpalart-Allmarasmodelsolvesd solvesd irectly fortheeddyviscosityfromatransportequati fortheeddyviscosity fromatransportequation.TheSpalart-Allmaras on.TheSpalart-Allmarasmodelwas modelwas designedforaerospaceapplicationsinvolvingwall-boundedflows.After designedforaerospaceapplicationsinvolving wall-boundedflows.Afterrunning running both viscositymodelsoverarangeofanglesofatt viscositymodelsover arangeofanglesofattackof0-20°theresults ackof0-20°theresultsconcludedt concludedt hatthe inviscidmodelgaveagreateraccuracy.Theref inviscidmodelgavea greateraccuracy.Therefore,selecttheviscousm ore,selecttheviscousmodelofi odelofi nviscid. Thefollowingprocedureisthesameforbotht Thefollowingprocedur eisthesameforboththeinviscidandSpalart-A heinviscidandSpalart-Allmaras. llmaras. Maintainalldefaultvaluesandclosethewind Maintainalldefaultv aluesandclosethewindow.Thefluidmaterialth ow.Thefluidmaterialthatisto atisto beusedin thisanalysisisairandthefluidproperties thisanalysisisaira ndthefluidpropertiescanbesetbyselectingD canbesetbyselectingDefine.M efine.M aterials. Airshouldbethedefaultsetting.Thedensity Airshouldbethedefa ultsetting.Thedensityoftheairshouldbecha oftheairshouldbechangedfrom ngedfrom constant toidealgasandviscosity(appliesonlyforS toidealgasandvisco sity(appliesonlyforSAmodel)shouldbechange Amodel)shouldbechangedtothe dtothe Sutherlandthreecoefficientequation.Thedef Sutherlandthreecoeff icientequation.ThedefaultSutherlandvaluessh aultSutherlandvaluesshouldbe ouldbe maintained.Bychangingthesetwopropertiest maintained.Bychangin gthesetwopropertiesthedensityandviscosity hedensityandviscositywillnow willnow be
dependentonthetemperatureofthefluid.Bec dependentonthetempe ratureofthefluid.Becausetemperatureneedsto ausetemperatureneedstobemonit bemonit ored now,FLUENTwillautomaticallyturnontheene now,FLUENTwillautom aticallyturnontheenergyequation.Withthese rgyequation.Withthesevaluesse valuesse t clickChange/Createandclosethematerialswi clickChange/Createan dclosethematerialswindow.Theoperatingcondi ndow.Theoperatingconditionsnee tionsnee dto besetnext.ThisisdonebyselectingDefine besetnext.Thisisd onebyselectingDefine.OperatingCondition.Th .OperatingCondition.Thisopens isopens a newwindowwheretheoperatingpressurecanbe newwindowwheretheo peratingpressurecanbeset.Theoperatingpress set.Theoperatingpressureshoul ureshoul dbe keptatthedefaultstandardatmosphericpress keptatthedefaultst andardatmosphericpressure.Thenextstepisto ure.Thenextstepistosettheb settheb oundary conditionsfortheboundariesthatweredefine conditionsforthebou ndariesthatweredefinedinGambit.Thisisdone dinGambit.Thisisdonebyselec byselec ting Define.BoundaryConditions.Theonlyboundar Define.BoundaryCond itions.Theonlyboundaryconditionthatneedsto yconditionthatneedstobe be modifiedisthepressure-far-fieldcondition. modifiedisthepressu re-far-fieldcondition.Byselectingfarfield,wh Byselectingfarfield,whichisth ichisth enamethat wasgiventothisboundaryzoneinGambit,und wasgiventothisboun daryzoneinGambit,underthezonemenuandthen erthezonemenuandthenclickth clickth eset button.Thisbringsupthepressure-far-field button.Thisbringsup thepressure-far-fieldwindow.ForaReynoldsnu window.ForaReynoldsnumberof3 mberof3 x106 theMachnumbershouldbesetto0.1261,fora theMachnumbershould besetto0.1261,foraReynoldsnumberof6x106 Reynoldsnumberof6x106theMach theMach numbershouldbesetto0.2522,andforaReynoldsnumberof9x106the numbershouldbesetto0.2522,andforaReyn oldsnumberof9x106theMachnum Machnum ber shouldbesetto0.3783,asseeninfigure33. shouldbesetto0.378 3,asseeninfigure33.TheseMachnumbervalues TheseMachnumbervalueswerefou werefou nd usingtheReynoldsequation,Eq.7,foraflat usingtheReynoldsequ ation,Eq.7,foraflatplatetofindthefrees platetofindthefreestreamflo treamflo wvelocity. .V8c Re=(7) withanassumeddensity,.,of1.225kg/m3,vi withanassumeddensit y,.,of1.225kg/m3,viscosity,,of1.789x10-5 scosity,,of1.789x10-5kg/m·s,and kg/m·s,and the chordlength,c,ofoneandV8 isthefreestreamvelocity.TheMachnumberisthen foundwiththeequation: V8 M=(8) a 8 whereMistheMachnumberanda8isthespeed whereMistheMachnu mberanda8isthespeedofsoundequalto347.51 ofsoundequalto347.51m/sat m/sat standardtemperatureandpressure.
Fig.33.Pressure-far-fieldwindowsetup. Theflowdirectionswillbeadjustedtoaccoun Theflowdirectionswi llbeadjustedtoaccountfortheangleofattack tfortheangleofattack.Ifthe .Ifthe angleof attackis10°thenthex-componentwouldbeth attackis10°thenthe x-componentwouldbethecos(10°)=0.9848andt ecos(10°)=0.9848andthey-componen hey-componen t wouldbethesin(10°)=0.17365.Fora3Dmode wouldbethesin(10°) =0.17365.Fora3Dmodelaz-componentflowdire laz-componentflowdirectioncanb ctioncanb e set,however,forthe3Dprocedureconductedh set,however,forthe 3Dprocedureconductedherethez-componentwill erethez-componentwillremainze remainze ro. Forexternalflowstheturbulentviscosityrat Forexternalflowsthe turbulentviscosityratioshouldbesetbetween ioshouldbesetbetween1and10 1and10 sothe defaultvalueoftenwillbekept.Thesolutio defaultvalueoftenw illbekept.Thesolutioncontrolscannowbeset ncontrolscannowbeset.Thisis .Thisis doneby firstselectingSolve.Control.SolutionThesolutionrelaxationforeach parametercanbechangedinthiswindow.Gener parametercanbechang edinthiswindow.Generallytheonlytimethese allytheonlytimetheserelaxatio relaxatio n parametersneedtobechangedisifrepetitive parametersneedtobe changedisifrepetitiveoscillationsbeginstoo oscillationsbeginstooccuront ccuront he coefficientofliftanddragplots.Thediscre coefficientofliftan ddragplots.Thediscretizationschemescanbem tizationschemescanbemodified. odified. Startby changingthepressurediscretizationvalueto changingthepressure discretizationvaluetoPrestoandleaveallthe Prestoandleavealltheotherval otherval uessetto theirdefaultsettings.Selectingmorecomplic theirdefaultsettings .Selectingmorecomplicateddiscretizationschem ateddiscretizationschemes,such es,such assecond orderupwindandpowerlaw,willaffecttheca orderupwindandpower law,willaffectthecalculationtimeandconver lculationtimeandconvergencesta gencesta bility. Nextthesolvermustbeinitializedbyselecti Nextthesolvermustb einitializedbyselectingSolve.Initialize.I ngSolve.Initialize.Initialize nitialize Inthe computefromdropdownlistchoosefarfield.Th computefromdropdown listchoosefarfield.Thiswillautomaticallyins iswillautomaticallyinsertvalue ertvalue sintoall
theremainingtextboxesinthiswindow.These theremainingtextbox esinthiswindow.Thesevaluesshouldcorrespond valuesshouldcorrespondtothef tothef arfield boundarysettings.Selectinitandthenclose. boundarysettings.Sel ectinitandthenclose.Nexttheconvergencecri Nexttheconvergencecriterianee terianee dstobe set.ThisisdonebyselectingSolve.Monitors.ResidualIntheupperleftcorn er ofthenewwindowaretheoptionstoprintand ofthenewwindoware theoptionstoprintandplotthecurrentconverg plotthecurrentconvergencecrit encecrit eria values.Sinceweonlycarethatthemodelconv values.Sinceweonly carethatthemodelconvergesandnottheexactv ergesandnottheexactvaluesat aluesat which theconvergenceoccursselecttheplotoption theconvergenceoccurs selecttheplotoptionanddeselecttheprintop anddeselecttheprintoption.Thi tion.Thi swill keepthemainFLUENTwindowfromclutteringwi keepthemainFLUENTw indowfromclutteringwithanabundantamountof thanabundantamountof information.Theminimumconvergencecriterion information.Theminim umconvergencecriterionshouldbesetto1x10-6 shouldbesetto1x10-6foreach foreach residual.Duetothelargenumberofcellsin residual.Duetothel argenumberofcellsin3Dmodelsasmallconverg 3Dmodelsasmallconvergencecrit encecrit erion canleadtolongcomputationtimes.Inordert canleadtolongcompu tationtimes.Inordertodirectlymonitortheli odirectlymonitortheliftcoeffi ftcoeffi cientbeing experiencedbytheairfoil,selectSolve.Monitor.ForceWiththeforcemonitor s windowopenselectliftforthecoefficientto windowopenselectlif tforthecoefficienttobemonitored.Underopti bemonitored.Underoptionscheck onscheck theprint andplotboxesandforwallzonesselectthea andplotboxesandfor wallzonesselecttheairfoilprofile.Theforce irfoilprofile.Theforcevectors vectors havetobe settocorrespondtotheangleofattackforw settocorrespondtot heangleofattackforwhichthemodelisgoingt hichthemodelisgoingtobecalc obecalc ulated. Thismeansforanangleofattackof10°thex Thismeansforanangl eofattackof10°thexforcevectorshouldhave forcevectorshouldhaveavalueof avalueof
sin(10°)=-0.17365andayforcevectorofco sin(10°)=-0.17365an dayforcevectorofcos(10°)=0.9848,seefigu s(10°)=0.9848,seefigure18. re18. Fig.34.ForceMonitorswindowsettomonitortheliftcoefficientfor Fig.34.ForceMonitorswindowsettomonitor theliftcoefficientforanangle anangle ofattackof10°.
Thedragcoefficientcanbemonitoredinasim Thedragcoefficientc anbemonitoredinasimilarfashionbutaccurate ilarfashionbutaccurateresults results forthe dragcoefficientweren'tfound.Nexttherefer dragcoefficientweren 'tfound.Nextthereferencevaluesmustbeset. encevaluesmustbeset.Allforce Allforce monitor calculationsforthemodelwillusethesevalu calculationsforthem odelwillusethesevalues.SelectReport.Refer es.SelectReport.ReferenceValu enceValu es Inthecomputefromdropdownmenuselectfarfi Inthecomputefromdr opdownmenuselectfarfieldandforreferencezon eldandforreferencezoneselect eselect the fluidzonethatwasdefinedinGambit,air.Wh fluidzonethatwasde finedinGambit,air.Whilethiswillsetmostof ilethiswillsetmostoftherefe therefe rence valuescorrectly,theactualdimensionsofthe valuescorrectly,the actualdimensionsoftheairfoilgeometryhaveto airfoilgeometryhavetobeset beset independently.Sincethechordlengthofthis independently.Sincet hechordlengthofthisprocedureisonemeteran procedureisonemeterandthedep dthedep thisone meter,thedefaultvaluesarecorrect.Nowthe meter,thedefaultval uesarecorrect.Nowthemodelisreadytobesol modelisreadytobesolved.This ved.This isdone byselectingSolve.IterateSinceconvergencecriteriaweredefined,thenumber of iterationschosenshouldberelativelylarget iterationschosenshou ldberelativelylargetomakecertainasolution omakecertainasolutionhastime hastime to converge.Thenumberofiterationswillbeset converge.Thenumbero fiterationswillbesetto10,000.Theotherval to10,000.Theothervaluesinth uesinth is windowwillbeleftattheirdefaultvalues.B windowwillbeleftat theirdefaultvalues.Begintheiterationproces egintheiterationprocessbysele sbysele cting iterate.Oncethemodelfinishesiteratingthe iterate.Oncethemode lfinishesiteratingtheaccuracyoftheresults accuracyoftheresultsshouldbe shouldbe checked. Anumberoffour-digitairfoilshavealreadyh Anumberoffour-digit airfoilshavealreadyhadcoefficientofliftpl adcoefficientofliftplotsgener otsgener atedfrom NACAempiricaldata.Theseplotscanbefound NACAempiricaldata.T heseplotscanbefoundinmanydifferentsources inmanydifferentsources.Forthi .Forthi s procedurethevalueswillbecomparedtofigur procedurethevaluesw illbecomparedtofigures35,36,and37insect es35,36,and37insection5.2f ion5.2f rom reference1.Iftheresultsarenotwithinar reference1.Ifthere sultsarenotwithinarangeofaccuracydesired angeofaccuracydesiredseverals severals tepscanbe takentotryandimprovethesolution.Thefir takentotryandimpro vethesolution.Thefirst,istochangethedisc st,istochangethediscretizatio retizatio nvalues undertheSolve.Control.Solutionwindow.Thesecondistoincreasethe densityofthemesh,throughtheadaptcommand densityofthemesh,t hroughtheadaptcommand,orreducestheconverge ,orreducestheconvergencecrite ncecrite ria.No improvementswerefounddotoconvergencecrit improvementswerefoun ddotoconvergencecriterialessthan10-10.Ta erialessthan10-10.Table2giv ble2giv esthe settingswithwhichthebestsolutionswerefo settingswithwhichth ebestsolutionswerefoundforthe0012inviscid undforthe0012inviscidmodel. model.
Table2.Settingdiscretizationandmeshadaptationsettingsfor0012i Table2.Settingdiscretizationandmeshadapt ationsettingsfor0012inviscidm nviscidm odelforbestresults. Toincreasetheaccuracyofthemodelbyincreasingthenumberofcells Toincreasetheaccuracyofthemodelbyincre asingthenumberofcellsthatexi thatexi staround theairfoilssurfaceselectAdapt.BoundaryAdaptingthecellsaroundthebounda ry oftheairfoilgeometrywillbreakeachofthe oftheairfoilgeometr ywillbreakeachoftheboundarycellsintofour boundarycellsintofourcellsre cellsre sultingina densermesh.However,byincreasingthedensit densermesh.However, byincreasingthedensityofthemeshthecalcula yofthemeshthecalculationtime tiontime is increased.Underboundaryzonesselecttheair increased.Underbound aryzonesselecttheairfoilgeometryandclickt foilgeometryandclickthemarkb hemarkb utton. AnotewillpopupinthemainFLUENTwindowin Anotewillpopupint hemainFLUENTwindowindicatingthenumberofce dicatingthenumberofcellstobe llstobe adapted.Toadaptthesecellssimplyclickthe adapted.Toadaptthes ecellssimplyclicktheadaptbuttonintheboun adaptbuttonintheboundaryadap daryadap t windowandselectokintheadaptwarningwind windowandselectoki ntheadaptwarningwindow.Aftertheadaptproce ow.Aftertheadaptprocessiscom ssiscom plete themainFLUENTwindowwillprintouttheresu themainFLUENTwindow willprintouttheresultsoftheadaptingproce ltsoftheadaptingprocess.Then ss.Then umber undertheadaptedcolumnindicatesthecurrent undertheadaptedcolu mnindicatesthecurrentnumberofcellsinthem numberofcellsinthemesh.The esh.The 7436in
Table2underadaptisreferringtothisvalue Table2underadaptis referringtothisvalue.Nowthatthemeshisde .Nowthatthemeshisdenserthe nserthe model mustbereinitializeandthentheiterationprocessrepeated. 5.Conclusion 5.1Comparisonof2-Dand3-DFLUENTModels Byfollowingtheprocedureasdescribedabove, Byfollowingtheproce dureasdescribedabove,botha2-Dand3-Dmodel botha2-Dand3-Dmodelofthef ofthef ourdigitairfoil0012werecreated.Whenthesemo digitairfoil0012wer ecreated.WhenthesemodelswereruninFLUENTu delswereruninFLUENTunderthe nderthe same conditionsidenticalresultswereproduced.Th conditionsidenticalr esultswereproduced.Thisgoestoprovethevali isgoestoprovethevalidityofu dityofu singa simpler2-Dmodelforanalyzingairflowovera simpler2-Dmodelfor analyzingairflowoverairfoilsinsteadofthemo irfoilsinsteadofthemoretimec retimec onsuming 3-Dmodel. 5.2Comparisonof2-DNumericalResultstoNACAEmpiricalData 5.2Comparisonof2-DNumericalResultstoNAC AEmpiricalData Throughconductingthisresearch,aprocessto Throughconductingthi sresearch,aprocesstoobtainresultswithless obtainresultswithlessthana1 thana1 0%error, whencomparedtoNACAempiricaldata,usingFL whencomparedtoNACA empiricaldata,usingFLUENT,wasfoundforangle UENT,wasfoundforanglesofatta sofatta ck lessthan10°.However,astheangleofattack lessthan10°.However ,astheangleofattackoftheairfoilincreased oftheairfoilincreasedbeyond10°t beyond10°t he accuracyalsodecreased.Figure35,36,and37 accuracyalsodecrease d.Figure35,36,and37showacomparisonofthe showacomparisonoftheFLUENT FLUENT producedresultsascomparedtotheNACAempir producedresultsasco mparedtotheNACAempiricaldataaswellasthe icaldataaswellastheaccuracy accuracy ata givenangleofattackfortheReynoldsnumbers givenangleofattack fortheReynoldsnumbersof3x106,6x106,and9x1 of3x106,6x106,and9x106respec 06respec tively. Valueshavebeenplottedforboththeinviscid Valueshavebeenplott edforboththeinviscidandSpalart-Allmarasmod andSpalart-Allmarasmodel. el.
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 048121620 AngleofAttack(degrees) CoefficientofLift 0 5 10 15 20 25 30 35 40 Error(%) NACA Inviscid SA InviscidError SAError 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 048121620 AngleofAttack(degrees) CoefficientofLift 0 5 10 15 20 25 30 35 40 Error(%) NACA Inviscid SA InviscidError SAError Fig.35.PlotofcoefficientofliftsversusN Fig.35.Plotofcoeff icientofliftsversusNACAempiricaldataandpe ACAempiricaldataandpercenterr rcenterr ordifferencebetween theresultsforReynoldsnumber3x106. 0
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 048121620 AngleofAttack(degrees) CoefficientofLift 0 5 10 15 20 25 30 35 40 Error(%) NACA Inviscid SA InviscidError SAError Fig.36.PlotofcoefficientofliftsversusN Fig.36.Plotofcoeff icientofliftsversusNACAempiricaldataandpe ACAempiricaldataandpercenterr rcenterr ordifferencebetween theresultsforReynoldsnumber6x106.
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 048121620 AngleofAttack(degrees) CoefficientofLift 0 5 10 15 20 25 30 35 40 45 Error(%) NACA Inviscid SA InviscidError SAError 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 048121620 AngleofAttack(degrees) CoefficientofLift 0 5 10 15 20 25 30 35 40 45 Error(%) NACA Inviscid SA InviscidError SAError Fig.37..Plotofcoefficientofliftsversus Fig.37..Plotofcoe fficientofliftsversusNACAempiricaldataand NACAempiricaldataandpercente percente rrordifference betweentheresultsforReynoldsnumber9x106.
Ascanbenoticedfromthesefigures,theinvi Ascanbenoticedfrom thesefigures,theinviscidmodelproducedmore scidmodelproducedmoreaccurate accurate results ateveryangleofattack.Also,theaccuracyo ateveryangleofatta ck.Also,theaccuracyofeithermodeldoesn'tne feithermodeldoesn'tnecessarily cessarily increase ordecreasecorrespondingtotheflowvelocity ordecreasecorrespond ingtotheflowvelocity.Astheangleofattack .Astheangleofattackincreases increases the accuracyofbothmodelsdropsdramatically.At accuracyofbothmodel sdropsdramatically.Attemptstoincreasethisa temptstoincreasethisaccuracyw ccuracyw ere madebybothincreasingthedensityofthemes madebybothincreasin gthedensityofthemeshandthetighteningthe handthetighteningtheconvergen convergen ce criterion.Unfortunately,neitherreducingthe criterion.Unfortunate ly,neitherreducingtheconvergencecriterionle convergencecriterionlessthan1 ssthan1 0-10nor increasingthedensityofthemeshresultedin increasingthedensity ofthemeshresultedinanincreaseofaccuracy anincreaseofaccuracyforthel forthel ift coefficient.Thislargeerrorcouldbedueto coefficient.Thislarg eerrorcouldbeduetothefactthatstatistical thefactthatstatistical(Reynold (Reynold saveraged Novier-Stokes)turbulencemodelshavedifficul Novier-Stokes)turbule ncemodelshavedifficultysolvingproblemswith tysolvingproblemswithlargeedd largeedd y turbulenceeffects(Mellen).Thus,usingFLUEN turbulenceeffects(Me llen).Thus,usingFLUENT'sinviscidmodel,lift T'sinviscidmodel,liftcoefficie coefficie ntscan befoundwithin10%oftheirempiricalvalues befoundwithin10%of theirempiricalvaluesforanglesofattackless foranglesofattacklessthan10°. than10°.
5.3WingtipVorticesModel Athreedimensionalwingmodelwascreatedusi Athreedimensionalwi ngmodelwascreatedusingthesameprocessdescr ngthesameprocessdescribedins ibedins ection 3.5.Theonlyadditionwasasecondvolumeextrusioninthepositivez3.5.Theonlyadditionwasasecondvolumeext rusioninthepositivez-direction direction ,see figure25. Fig.38.ExtrudedWingmodel. Anattemptwasthenmadetomeshhalfofthew Anattemptwasthenma detomeshhalfofthewingsectionasafluidto ingsectionasafluidtocreatet createt he conditionsnecessaryforawingtipvortextoo conditionsnecessaryf orawingtipvortextooccur.However,duetothe ccur.However,duetotheairfoils airfoils peculiar geometryaquadmeshwasnotpossible.Atrim geometryaquadmeshw asnotpossible.Atrimeshonthetwoendfaces eshonthetwoendfacesoftheai oftheai rfoil wasattemptedsothataCoopermeshcouldbep wasattemptedsothat aCoopermeshcouldbeperformedforthevolume. erformedforthevolume.Unfortuna Unfortuna tely, thefacesmeshesdidnotcomeoutidentical,seefigure26.
Fig.39.DisplayingthefailureoftheTripavemesh. Thereasonforthisisunknownsincebothgeom Thereasonforthisis unknownsincebothgeometrieswereidentical.Th etrieswereidentical.Theonlyfa eonlyfa cemesh thatresultedinidenticalfaceswasaQuad/Tr thatresultedinident icalfaceswasaQuad/Trimap.Unfortunately,thi imap.Unfortunately,thisresults sresults inan extremelyskewedmeshwhichledtoinaccuracy extremelyskewedmesh whichledtoinaccuracyintheresults,seefigur intheresults,seefigure27. e27.
Fig.40.DisplayingtheQuad/Trimapmeshgeneratedforthemeshedwing Fig.40.DisplayingtheQuad/Trimapmeshgene ratedforthemeshedwingsection. section. Resultedin skewedcellswhichgivepoorresults. AnattemptwasmadetouseFLUENTtoanalyzethemeshwiththeskewedc AnattemptwasmadetouseFLUENTtoanalyzet hemeshwiththeskewedcells, ells, however,duetotheskewedcellsnoconvergenc however,duetothesk ewedcellsnoconvergenceeveroccurred.After50 eeveroccurred.After5000iterat 00iterat ions themodelwasstoppedandanattemptwasmade themodelwasstopped andanattemptwasmadetoseeifanywingtipvor toseeifanywingtipvortexwas texwas discernable.Thisattemptresultedinthecomp discernable.Thisatte mptresultedinthecomputerrunningoutofmemor uterrunningoutofmemoryandno yandno final visualrepresentationofthemodelcouldbepl visualrepresentation ofthemodelcouldbeplotted.Whileitislikely otted.WhileitislikelyFLUENTi FLUENTi s
capableofmodelingwingtipvortices,analter capableofmodelingwi ngtipvortices,analternatemeshmethodwillhav natemeshmethodwillhavetobea etobea ttempted andamorepowerfulcomputermaybenecessary andamorepowerfulco mputermaybenecessarytosolvethemodel. tosolvethemodel.
6.References 1. Abbott,I.,andVonDoenhoff,A.,1959,Theory Abbott,I.,andVonDo enhoff,A.,1959,TheoryofWingSections,Dover, ofWingSections,Dover, Mineola,NY 2. Anderson,Jr.,J,2001,FundamentalsofAerody Anderson,Jr.,J,2001 ,FundamentalsofAerodynamics,3rdEd.,McGrawH namics,3rdEd.,McGrawHill, ill, Singapore 3. Eastman,J.,andWard,K.,1933,"Thecharacte Eastman,J.,andWard, K.,1933,"Thecharacteristicsof78relatedair risticsof78relatedairfoilsect foilsect ions fromtestsinthevariable-densitywindtunnel fromtestsinthevari able-densitywindtunnel,"NACA-report-460 ,"NACA-report-460 4. Aerospaceweb.org,"NACAAirfoilSeries," http://www.aerospaceweb.org/question/airfoils/ http://www.aerospacewe b.org/question/airfoils/q0041.shtml(2006) q0041.shtml(2006) 5. FLUENT,"studentFLUENT-TutorialLibrary-Airfoil," http://www.FLUENT.com/software/studentFLUENT/t http://www.FLUENT.com/ software/studentFLUENT/tutorial_airfoil.htm(16N utorial_airfoil.htm(16Nov ov 2006) 6. U.S.CentennialFlightCommission,"TheNation U.S.CentennialFlight Commission,"TheNationalAdvisoryCommitteefor alAdvisoryCommitteefor Aeronautics(NACA)," http://www.centennialofflight.gov/essay/Evolut http://www.centennialo fflight.gov/essay/Evolution_of_Technology/NACA/Te ion_of_Technology/NACA/Tech1 ch1 .htm(7Dec2006) 7. Mellen,C.,Fröhlich,J.,andRodi,W.,2003, Mellen,C.,Fröhlich, J.,andRodi,W.,2003,"LessonsfromLESFOILPro "LessonsfromLESFOILProjecton jecton Large-EddySimulationofFlowAroundanAirfoi Large-EddySimulation ofFlowAroundanAirfoil,"AIAAJournal,Vol.41 l,"AIAAJournal,Vol.41, , No.4.
Appendix:Four-digitAirfoilCalculatorM-file function[Upoints,Lpoints]=FourSeries(c,m,p,t) %c:thelengthofthechord %m:maxordinateofmeanlineinpercent %p:chordwisepositionofmaxordinateintenths %t:maxthicknessofairfoilaspercent x=linspace(0,1); %Calculatingthethicknessoftheairfoil i=1; whilei
View more...
Comments