Finite element analysis result for the tunnel support design: comparison with empirical design method (Q)

March 29, 2018 | Author: Wilham Louhenapessy Jr | Category: Engineering, Solid Mechanics, Mechanical Engineering, Mechanics, Classical Mechanics
Share Embed Donate


Short Description

Abstract & Sari: ABSTRACT: The Q-system also called the NGI (Norwegian Geotechnical Institution) Classification sy...

Description

H F-XC A N GE

H F-XC A N GE

k

to

bu

y

N o

c u-tr a c k

.c

Metode Elemen Hingga untuk disain penyangga Terowongan: Perbandingan dengan Metoda Empiris (Q) (Finite element analysis result for the tunnel support design: comparison with empirical design method (Q) Wilham G. Louhenapessy 1* 1

UPDATE NOW at:

SIGNTEGRA NOW Sr. Geotechnical Engineer, Royal HaskoningDHV - Jakarta 12430, Indonesia

Sari Sistim Penyangga batuan dari Klasifikasi Institut Geoteknik Norwegia (NGI) atau Q memiliki kekurangan-kekurangan a/l sbb: (a) kurang diperhitungkannya arah kekar terhadap permukaan galian terowongan; (b) tidak diperhatikan pengaruh waktu; dan (c) terlalu sederhana dalam menganalisa pengaruh air didalam masa kekar batuan. Paper ini menawarkan suatu metode yang lebih rasional dengan mempertimbangkan pengaruh-pengaruh tersebut diatas berdasarkan Metode Elemen Hingga Multilaminate untuk masa kekar batuan/joint rock (Zienkiewicz-Pande 1977). Akan ditampilkan diagram-diagram bunga (Rose Diagrams), tabel-tabel disain, Indeks Keruntuhan dan kurva-kurva yang berguna untuk praktek rekayasa pembuatan terowongan, tanpa ‘shotcrecte lining’. Dalam hal ini dipostulasikan keruntuhan batuan disebabkan oleh dua pilihan runtuh: (1) runtuhnya batuan intak (intact rock) atau, (2) runtuhnya batuan berkekar (joint rock). Studi numerik terfokus pada terowongan lingkaran, dengan sebuah kedalaman, berbagai tekanan lateral, berbagai arah kekar dan dua kriteria runtuh: kriteria runtuh Mohr-Coulomb dan Papaliangas (Brittle-Ductile). Kata-kata kunci: model Multilaminate, penyangga terowongan, Diagram Bunga, Indeks Keruntuhan, Bobot Q, kriteria runtuh Papaliangas dan Mohr-Coulomb Abstract The Q-system also called the NGI (Norwegian Geotechnical Institution) Classification system does not take into account (a) the orientation of rock joints with respect to the exposed surface of the tunnel excavation and (b) the effect of the time in it’s tunnel support equation; includes (c) too simple approach in the influence of water for joint rock. This paper propose a rational methodology by taking into consideration those parameters by using the Element Method -Multilaminate Model- for jointed rock masses (Zienkiewicz-Pande 1977). The results will show Rose Diagrams, design tables, failure indices and curves in the case of no 'shotcrecte lining'. In this case, the failure of rock are due to (1) intact rock or, (2) joint rock. Numerical parametric studies focused on the circular tunnel, with a depth, insitu stress, the orientation of rock joints and two failure criteria (Mohr-Coulomb criterion and Papaliangas/Brittle-Ductile). Keywords: Multilaminate Model, tunnel support, Rose Diagrams, Failure Indices, Q-value, Mohr-Coulomb and Papaliangas criterion. *Penulis untuk korespondensi (corresponding author): E-mail (update 2016): [email protected] :[email protected] or [email protected]

.d o

m o

m

w

w

w

.d o

lic

lic C

w

w

w

WSNG III 16-17Februari 2015, Jakarta

k

to

bu

Workshop & Seminar Nasional Geomekanika III

C

y

N

O W !

PD

O W !

PD

c u-tr a c k

.c

H F-XC A N GE

H F-XC A N GE

c u-tr a c k

lic

k

to

bu

y

N .c

REFERENCES 1. Barton, N., Lien, R., and Lunde, J., 1974. Engineering classification of rock masses for the design of tunnel support. Rock Mechanics, Vol 6, pp. 189-236. 2. Bieniawski, Z.T., 1990. Engineering rock mass classification, Wiley, Chichester. 3. Brady, B.H.G., 1992. A chapter from Engineering in rock masses: Stress analysis for rock masses. Edited by F.G. Bell, Butterworth & Heinemann, Oxford. 4. Cundal, P.A., 1980. A generalized distinct element program for modeling joint rock. Report PCAR-180. Peter Cundal Associates. 5. Deere,D.U., Hendron,A.J.,Patton, F.D.& Cording,E.J., 1967. Design of surface and near surface constructions in rock, Proc. 8th U.S. Symp. Rock Mechanics, ed. Fairhurst, publ. AIME, New York, pp. 237-302.

6. Hoek, E, KaiserP.K., and Bawden, W.F., 1995. Support of Underground Excavations in Hard Rock. A.A.Balkema, Rotterdam. 7. Honisch, K., 1988. Rockmass modelling for large underground powerhouse. Numerical Methods in Geomechanics, pp. 1517-1522. A.A.Balkema, Rotterdam. 8. Hori, Muneo., 2006. Introduction to Computational Earthquake Engineering. Imperial College Press. London UK. 9. Koesnaryo, S. dan Rai, M. A., 1998. Peran kuantifikasi sifat-sifat massa batuan dan struktur geologis pada rancangan terowongan dalam batuan saat ini dan masa mendatang. Prosiding: Geoteknik di Indonesia Menjelang Millenium ke-3, Januari 1998, ITB, Bandung. 10. Louhenapessy, Wilham G., 1995 Undrained Analysis of Rock Structures. M.Sc. thesis. Univ. Wales Swansea, UK. 11. Louhenapessy, Wilham G., 1998. A Rational Finite Element Analysis Based Procedure for The Analysis of Pressure on Tunnel Supports. Proc. Canadian Soc. Mech. Eng. F.98. Ryerson Polytechnic Univ., Toronto. 12. Louhenapessy, Wilham G., 2000. Analysis of Tunnel Supports using the Finite Element Method. Ph.D. thesis. Univ. of Wales Swansea, Swansea, UK. 13. Louhenapessy, Wilham G., 2003. Finite Element Method in Rock Tunnel Engineering. Konperensi Geoteknik Indonesia – VI. Perkembangan Permasalahan Geoteknik dan Pemecahannya di Millenium Baru. Himpunan Ahli Teknik Tanah Indonesia (HATTI), pp.289-298. Jakarta, Agustus 2003. ISBN 979-96668-2-1.

14. Louhenapessy, Wilham G., 2008. Draft kajian Geologi/AMDAL: Jembatan Poka-Galala di Ambon.

15. Louhenapessy, W. and Pande, G.N., 1998. On a rational method of analysis and design of tunnel supports based on the finite element technique. J.of Rock Mech. & Tunneling Tech., 4 (2), pp. 97-124. 16. Louhenapessy, W.G. and Pande, G. N., 1999. Finite element analysis for design of tunnel support. Proc. 7th Assoc. of Computational Mechanics in Engineering (ACME) Conf.’99. Durham Univ. 1999. England, UK. 17. Louhenapessy, W.G. and Pande, G.N., 2000.

Newmo3962_2000: User's Instruction Manual, Rep No.CR/1022/00. Civil Eng. Dept., Univ.of Wales Swansea, Swansea. 18. Lu, M., Kjoholt, H. and Ruistuen, H., 1995. Numerical study of Gjovik ice-hokey cavern. Computer Methods and Advances in Geomechanics,pp. 2609-2614. A.A.Balkema, Rotterdam. 19. Mangkusubroto, K., 2002. Terowongan Nusantara Penyatu Selat Sunda. Kompas. Minggu, 3 Nov. 2002, pp. 22. 20. Milne, D., Germain, P., Grant, D. and Noble, P., 1991. Systematic rock mass characterization for underground mine design. Proc.- 7th Int. Congress on Rock Mechanics, Vol. 1 pp. 293-298. A.A. Balkema, Aachen. 21. Natau, O, Buhler, M, Keller, S, and Mutschler, T., 1995. Large-scale triaxial test in combination with a FEM analysis for the determination of the properties of a transversal isotropic rock mass. 8th Int. Cong. on Rock Mechanics, pp. 635-643, ISRM, Tokyo. 22. Palmstrom, A., 1995, RMi - a system for characterizing rock mass strength for use in rock engineering. J. of Rock Mech. & Tunneling Tech., 1(2),pp. 69-108. 23. Pande, G.N. – 1995 – Personal Communication: based on Prof. G.N. Pande’s visitation-lecture at The Central Soil and Material Research Station - Ministry of Water Resources, New Delhi, India; in late 1995: Internal Report to the Sponsor, pp. 20.

24. Pande, G.N., and Williams, J.R. (1990). Numerical Methods in Rock Mechanics. John Willey, Chichester. 25. Papaliangas, T.T., Lumsden, A. and Hencher, S., 1996. Prediction of in situ shear strength of rock joints. EUROC’96. Barla (ed.), p.143-149, A.A.Balkema, Rotterdam. 26. Riedmuller, G., 1997. Rock characterization for tunneling –Engineering geologist’s point of view. Felsbau, Vol. 16 No. 1, p. 284-288. 27. Seraphim, J.L. & Pereira, J.P., 1983. Consideration of the Geomechancis Classification of Bieniawski. Proc. Int. Symp. On Engng. Geol. And Underground Construction, LNEC, Lisbon. 28. Terzaghi, K., 1946. Rock defects and loads on tunnel supports (Chapter 1), In Rock Tunneling With Steel Supports. Proctor, R.V & White, T.L. (Editors), CSSC, Ohio.

29. Zienkiewicz, O.C., & Pande, G.N., 1977. Time dependent multi-laminate model of rocks a numerical study of deformation and failure of rock masses. Int. J. Numerical and Analytical Meth. in Geomech, Vol 1, No. 1, pp. 219-247.

.d o

m o

m

w

o

.d o

w

w

w

WSNG III 16-17Februari 2015, Jakarta

w

w

C

lic

k

to

bu

Workshop & Seminar Nasional Geomekanika III

C

y

N

O W !

PD

O W !

PD

c u-tr a c k

.c

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF