Final Pot Ptfe Design Sheet_02.01.13

February 4, 2017 | Author: Sandeep Kumar | Category: N/A
Share Embed Donate


Short Description

PTFE bearing design excel sheet...

Description

Bearing Design Y General Bearing Composition: X Nomenclature: Longitudinal Sliding Bearing

Transverse Sliding Bearing

Fixed Bearing

Pin Bearing

Longitudinal Girders

1.ROB INPUT

Span Deck Width I_ for permanent action I_ for variable action E Grade of concrete Area of steel, As Area of concrete, Ac No of Girders No of Bearing Positions

24000 mm 14800 m 4 6.13E+10 mm 4 7.66E+10 mm 2.00E+05 N/mm2 M 40 64120 mm2 680000 mm2 6 12

2.Configuration Check of bearings A1

Trans. sliding

A2

Free Bearing

Trans. sliding

B2

Free Bearing

C1(Fixed) Fixed Bearing

C2

Long. sliding

Girders B1

D1

Fixed Bearing

D2

Long. sliding

E1

Trans. sliding

E2

Free Bearing

F1

Trans. sliding

F2

Free Bearing

Pin to be Provided Check for Configurtion of Bearings

= =

Yes OK

3.Calculation of longitudinal movement Lo (Effective Span of ROB) ∆t (Tmp Variation) m (Modulus ratio) As (area of steel) Ac (area of concrete) αs (Tmp coeffecient of Steel) αc (Tmp coeffecent of concrete) k = (mAs/Ac) * (1+αc∆t)/(1+αs∆t) ∆L = *(αc + k.αs) / (k + 1)+ * Lo*∆t

= = = = = = = = =

24000 60 7.50 64120 680000 2.00E-05 1.17E-05 0.71 21.80

mm degrees Ref: Clause 922.2 of IRC:83 (Part III)-2002 Mpa mm2 mm2 per degree cl 218.4 of IRC-6 & cl304.9.1 of IRC-21 per degree cl 218.4 of IRC-6 & cl304.9.1 of IRC-21 mm

4. Calculation of lateral movement Transverse movement in lateral dirn

=

5.449 mm

Almost 25% of the longitudinal movement

5. Bearing Design Inputs: Neoprene Pad Size dia Neoprene Pad Thickness Pot Base Thickness Pot base effective dia (consider 1:2 dispersion from elastomer base) Pot internal Dia Pot Projection beyond walls Pot External Dia Pot wall Depth >28mm Pot wall thickness Piston thickness above spigot Diameter of Piston Piston effective contact area diameter (consider 1:2 dispersion from spiggot) Vertical face of piston wall for contact with pot internal wall Spigott Projection > 30mm Bolt Dia No of Bolts per component Bolt flange thickness No of sealing rings Total thickness of ring Clearance between top edge of pot wall and bottom edge of piston No of Lugs Thickness of Lugs PTFE size (dia) PTFE size (thickness) Height of Guide Bar Width of Guide Bar Length of piston flat Slide Stainless steel Plate (Length) Slide Stainless steel Plate (Width) Slide Stainless steel Plate (Thickness) Neoprene pad stress PTFE stress (working) Steel stress (working) for design Shear strength of Bolt Gr 8.8 Axial Tensile strength, Bolts, Grp 8.8 fy for the mild steel

FIXED INPUT CHECK

OK OK OK

INPUT

OK OK OK

LONG_SLD INPUT CHECK

OK OK OK

384

384

384

384

494

224 45 394 40 40 35 222

224 45 394 40 40 35 222

224 45 394 40 40 35 222

224 45 394 40 40 35 222

302 90 666 80 92 35 300

mm

362

362

OK OK OK

CHECK

mm mm mm mm mm mm mm

OK OK

224 20 40

294 20 50

mm

362

OK OK OK

PIN INPUT

224 20 40

OK OK

224 20 40

TRNS_SLD INPUT CHECK

mm mm mm

OK OK

224 20 40

FREE CHECK

OK OK

362

440

mm

8

8

8

8

40

mm mm mm mm Nos mm

43 28 8 12 2 4

43 28 8 12 2 4

43 28 8 12 2 4

43 28 8 12 2 4

70 32 12 12 0 0

mm

10

Nos mm mm mm mm mm mm mm mm mm

8 20 NA NA NA NA NA NA NA NA = = = = = =

6. Design Outputs: Neoprene Pad stress: Ref: Clause 926.2.3 of IRC:83(III)-2002 Rotaion check on pad ( Ref: clause 926.2.3.4 of IRC:83 (Part III) Concrete stresses at pot base(Ref: clause 926.1.5 IRC:83 (Part III) Conc. stresses at piston base:(clause 926.1.5 IRC:83 (Part III) Stresses at Pot Wall cl 926.3.1.1.7 of IRC-83(III) Check on Piston rotaion gap: Vertical Face of Piston required cl 926.3.1.3.1 of IRC-83(III) Check for Thickness of Pot in Bending-Bottom Check for Thickness of Piston in Bending-Top Stress into Lugs because of Horizontal Force Check of Weld connection of stainless steel surface: Sliding Capacity of stainless steel Design Result:

OK

OK

10

35 40 340 190 286 250

OK

Mpa Mpa Mpa Mpa Mpa Mpa

8 20 224 4.5 28 50 312 350 350 36

OK

10 OK OK

8 20 224 5 28 50 312 350 350 36

10 OK OK

Cl 926.2.3.2 of IRC-83(III) Cl 926.2.4.3 of IRC-83(III) Grade-340-570W as per IS-1030

FIXED OK OK OK OK OK OK OK OK OK OK NA NA

FREE OK OK OK OK OK OK OK OK OK OK OK OK

OK

OK

OK OK OK OK OK OK OK OK OK OK OK OK

OK OK OK OK OK OK OK OK OK OK OK OK

PIN NA NA OK OK OK OK OK OK OK OK NA NA

OK

OK

OK

LONG_SLD TRNS_SLD

OK

8 20 224 5 28 50 312 350 350 36

OK OK

OK

OK

10 OK OK

12 20 NA NA NA NA NA NA NA NA

OK

Loading on Bearings: A. Vertical Loading(Ref: Design sheet "Final Stresses" for item 1,2,3,4 & "Other Loads" for item 5(a,b),6

Dead Load reaction Superimposed Load reaction Live Load Centrifigal Load Primary Loading (Total ) Load due to vertical Seismic Force Load, Load due to horizontal Vertical Force Load due to vertical Wind Force Load, Load due to horizontal Vertical Force Summary

= = = = =

per girder SF(KN) 352.12 320.09 425.14 38.39 1135.74

=

67.66

=

64.82

=

26.97

=

14.69

1. Horizontal loading_Total (KN) H_Non seismic (KN) H_Seismic (KN) 2. Vertical Loading_ on a Bearing (KN) (DL+SIDL+LL) + CFv Non seismic Case (DL+SIDL+LL) -CFv (DL+SIDL+LL)+ CFv + (Vv+ 0.3*Vvh )

B. Horizontal Loading (Ref:Design sheet "X-Frame Des"), on complete deck (i) Transverse Laoding (x-dirn) Force (KN) 420.64 Centrifugal Force 251.85 Wind load 1982.75 Seismic load Hx_Non seismic 420.64 Hx_Seismic/wind 918.61 Load on Each Pin/Metallic Guide 1565.51

Ref: Design sheet: (Ref: Design Sheet " Shear_Connect."), force on full deck (ii) Longitudinal Loading (y direction) Force KN) 235.36 Breaking Force 62.96 Wind Force 594.83 Seismic Load Hy_Nonsiesmic 235.36 Hy_siesmic/wind 830.19

420.64 918.61

1135.74 1058.97 1222.84

(DL+SIDL+LL) -CFv - (Vv + 0.3*Vvh)

971.87

(DL+SIDL+LL)+ CFv + (0.3*Vv+ Vvh)

1220.86

(DL+SIDL+LL) - CFv - (0.3*Vv + Vvh )

973.85

Seismic/ wind Case

Vvh

= Vertical Load due to effect of Horizontal forces (Wind Horizontal/Seismic horizontal)

Design of Bearing

Fixed Bearing

Free Bearing

Long. sliding

Trans. sliding

Case1: Non Seismic Case ( (DL+SIDL+LL) + CFv ) Ist End of Girder V A1 Trans. sliding 1135.74 B1 Trans. sliding 1135.74 C1(Fixed) Fixed Bearing 1135.74 D1 Fixed Bearing 1135.74 E1 Trans. sliding 1135.74 F1 Trans. sliding 1135.74 Design of Bearing Fixed Bearing Design Load V 1135.74 Hx 106.41 Hy 39.69

HX HY 0.00 39.23 0.00 39.23 105.16 39.23 105.16 39.23 0.00 39.23 0.00 39.23 Free Bearing V 1135.74 Hx 0.00 Hy 0.00

II nd End of Girder

Design Load H/V 3% 113.57425 3% 113.57425 10% 113.57425 10% 113.57425 3% 113.57425 3% 113.57425 Long. sliding V 1135.74 V Hx 113.57 Hx Hy 0.00 Hy

A2 Free Bearing B2 Free Bearing C2 Long. sliding D2 Long. sliding E2 Free Bearing F2 Free Bearing Trans. sliding 1135.74 0.00 113.57

Design Load H/V 4% 105.89695 4% 105.89695 11% OK 11% OK 4% 105.89695 4% 105.89695 Long. sliding V 1058.97 V Hx 105.90 Hx Hy 0.00 Hy

A2 Free Bearing B2 Free Bearing C2 Long. sliding D2 Long. sliding E2 Free Bearing F2 Free Bearing Trans. sliding 1058.97 0.00 105.90

V 1135.74 1135.74 1135.74 1135.74 1135.74 1135.74

HX 0.00 0.00 105.16 105.16 0.00 0.00

HY 0.00 0.00 0.00 0.00 0.00 0.00

H/V 0% 0% 9% 9% 0% 0%

Design Load

V 1058.97 1058.97 1058.97 1058.97 1058.97 1058.97

HX 0.00 0.00 105.16 105.16 0.00 0.00

HY 0.00 0.00 0.00 0.00 0.00 0.00

H/V 0% 0% 10% 10% 0% 0%

Design Load

V 1222.84 1222.84 1222.84 1222.84 1222.84 1222.84

HX 0.00 0.00 68.90 68.90 0.00 0.00

HY 0.00 0.00 0.00 0.00 0.00 0.00

H/V 0% 0% 6% 6% 0% 0%

Design Load

V 971.87 971.87 971.87 971.87 971.87 971.87

HX 0.00 0.00 68.90 68.90 0.00 0.00

HY 0.00 0.00 0.00 0.00 0.00 0.00

H/V 0% 0% 7% 7% 0% 0%

Design Load

OK OK 113.5742 113.5742 OK OK

Case2: Non Seismic Case ( (DL+SIDL+LL) -CFv ) No of Girders No of Bearing Positions Ist End of Girder

6 12

V A1 Trans. sliding 1058.97 B1 Trans. sliding 1058.97 C1(Fixed) Fixed Bearing 1058.97 D1 Fixed Bearing 1058.97 E1 Trans. sliding 1058.97 F1 Trans. sliding 1058.97 Design of Bearing Fixed Bearing Design Load V 1058.97 Hx 105.16 Hy 39.23

HX HY 0.00 39.23 0.00 39.23 105.16 39.23 105.16 39.23 0.00 39.23 0.00 39.23 Free Bearing V 1058.97 Hx 0.00 Hy 0.00

II nd End of Girder

OK OK 105.8969 105.8969 OK OK

Case3: Seismic Case- (( (DL+SIDL+LL)+ CFv + (Vv+ 0.3*Vvh ) ) + 0.3*Hx + 0.3*Hy) No of Girders No of Bearing Positions Ist End of Girder

6 12

V A1 Trans. sliding 1222.84 B1 Trans. sliding 1222.84 C1(Fixed) Fixed Bearing 1222.84 D1 Fixed Bearing 1222.84 E1 Trans. sliding 1222.84 F1 Trans. sliding 1222.84 Design of Bearing Fixed Bearing Design Load V 1222.84 Hx 104.74 Hy 63.11

HX HY 0.00 41.51 0.00 41.51 68.90 41.51 68.90 41.51 0.00 41.51 0.00 41.51 Free Bearing V 1222.84 Hx 0.00 Hy 0.00

Design Load H/V 3% 122.28449 3% 122.28449 7% 122.28449 7% 122.28449 3% 122.28449 3% 122.28449 Long. sliding V 1222.84 Hx 122.28 Hy 0.00

II nd End of Girder A2 Free Bearing B2 Free Bearing C2 Long. sliding D2 Long. sliding E2 Free Bearing F2 Free Bearing Trans. sliding V 1222.84 Hx 0.00 Hy 122.28

OK OK 122.2845 122.2845 OK OK

Case4: Seismic Case- (( (DL+SIDL+LL) -CFv - (Vv + 0.3*Vvh) ) + 0.3*Hx + 0.3*Hy) No of Girders No of Bearing Positions Ist End of Girder

6 12

V A1 Trans. sliding 971.87 B1 Trans. sliding 971.87 C1(Fixed) Fixed Bearing 971.87 D1 Fixed Bearing 971.87 E1 Trans. sliding 971.87 F1 Trans. sliding 971.87 Design of Bearing Fixed Bearing Design Load V 971.87 Hx 83.25 Hy 50.15

HX HY 0.00 41.51 0.00 41.51 68.90 41.51 68.90 41.51 0.00 41.51 0.00 41.51 Free Bearing V 971.87 Hx 0.00 Hy 0.00

Design Load H/V 4% 97.186705 4% 97.186705 8% 97.186705 8% 97.186705 4% 97.186705 4% 97.186705 Long. sliding V 971.87 Hx 97.19 Hy 0.00

II nd End of Girder A2 Free Bearing B2 Free Bearing C2 Long. sliding D2 Long. sliding E2 Free Bearing F2 Free Bearing Trans. sliding V 971.87 Hx 0.00 Hy 97.19

OK OK 97.1867 97.1867 OK OK

Case5: Seismic Case- (( (DL+SIDL+LL)+ CFv + (0.3*Vv+ Vvh) ) + Hx + 0.3*Hy) No of Girders No of Bearing Positions Ist End of Girder

6 12 V

HX

A1 Trans. sliding 1220.86 B1 Trans. sliding 1220.86 C1(Fixed) Fixed Bearing 1220.86 D1 Fixed Bearing 1220.86 E1 Trans. sliding 1220.86 F1 Trans. sliding 1220.86 Design of Bearing Fixed Bearing Design Load V 1220.86 Hx 229.65 Hy 41.51

HY

H/V

0.00 41.51 0.00 41.51 229.65 41.51 229.65 41.51 0.00 41.51 0.00 41.51 Free Bearing V 1220.86 Hx 0.00 Hy 0.00

Design Load

3% 122.08583 3% 122.08583 19% OK 19% OK 3% 122.08583 3% 122.08583 Long. sliding V 1220.86 Hx 229.65 Hy 0.00

II nd End of Girder A2 Free Bearing B2 Free Bearing C2 Long. sliding D2 Long. sliding E2 Free Bearing F2 Free Bearing Trans. sliding V 1220.86 Hx 0.00 Hy 122.09

V

HX

HY

H/V

Design Load

1220.86 1220.86 1220.86 1220.86 1220.86 1220.86

0.00 0.00 229.65 229.65 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0% 0% 19% 19% 0% 0%

OK OK OK OK OK OK

V 973.85 973.85 973.85 973.85 973.85 973.85

HX 0.00 0.00 229.65 229.65 0.00 0.00

HY 0.00 0.00 0.00 0.00 0.00 0.00

H/V 0% 0% 24% 24% 0% 0%

Design Load

Case6: Seismic Case- (( (DL+SIDL+LL) - CFv - (0.3*Vv + Vvh )) + Hx + 0.3*Hy) No of Girders No of Bearing Positions Ist End of Girder

6 12

V A1 Trans. sliding 973.85 B1 Trans. sliding 973.85 C1(Fixed) Fixed Bearing 973.85 D1 Fixed Bearing 973.85 E1 Trans. sliding 973.85 F1 Trans. sliding 973.85 Design of Bearing Fixed Bearing Design Load V 973.85 Hx 229.65 Hy 41.51

HX HY 0.00 41.51 0.00 41.51 229.65 41.51 229.65 41.51 0.00 41.51 0.00 41.51 Free Bearing V 973.85 Hx 0.00 Hy 0.00

Design Load H/V 4% 97.385361 4% 97.385361 24% OK 24% OK 4% 97.385361 4% 97.385361 Long. sliding V 973.85 Hx 229.65 Hy 0.00

II nd End of Girder A2 Free Bearing B2 Free Bearing C2 Long. sliding D2 Long. sliding E2 Free Bearing F2 Free Bearing Trans. sliding V 973.85 Hx 0.00 Hy 97.39

Summary of Design Loads on Various Type of Bearings Forces on Fixed Bearing Case1: Non Seismic Case2: Non Seismic Case Case ( (DL+SIDL+LL) + ( (DL+SIDL+LL) -CFv ) CFv ) V (KN) Hx (KN) Hy (KN)

1135.74 106.41 39.69

Forces on Free Bearing

1058.97 105.16 39.23

Case3: Seismic Case- (( Case4: Seismic Case- (( Case5: Seismic Case- Case6: Seismic Case(DL+SIDL+LL)+ CFv + (DL+SIDL+LL) -CFv - (Vv (( (DL+SIDL+LL)+ CFv + (( (DL+SIDL+LL) - CFv (Vv+ 0.3*Vvh ) ) + + 0.3*Vvh) ) + 0.3*Hx (0.3*Vv+ Vvh) ) + Hx + (0.3*Vv + Vvh )) + Hx 0.3*Hx + 0.3*Hy) + 0.3*Hy) 0.3*Hy) + 0.3*Hy) 1222.84 104.74 63.11

971.87 83.25 50.15

1220.86 229.65 41.51

973.85 229.65 41.51

OK OK OK OK OK OK

Case1: Non Seismic Case2: Non Seismic Case Case ( (DL+SIDL+LL) + ( (DL+SIDL+LL) -CFv ) CFv ) V (KN) Hx (KN) Hy (KN)

1135.74 0.00 0.00

1058.97 0.00 0.00

Case3: Seismic Case- (( Case4: Seismic Case- (( Case5: Seismic Case- Case6: Seismic Case(DL+SIDL+LL)+ CFv + (DL+SIDL+LL) -CFv - (Vv (( (DL+SIDL+LL)+ CFv + (( (DL+SIDL+LL) - CFv (Vv+ 0.3*Vvh ) ) + + 0.3*Vvh) ) + 0.3*Hx (0.3*Vv+ Vvh) ) + Hx + (0.3*Vv + Vvh )) + Hx 0.3*Hx + 0.3*Hy) + 0.3*Hy) 0.3*Hy) + 0.3*Hy) 1222.84 0.00 0.00

971.87 0.00 0.00

1220.86 0.00 0.00

973.85 0.00 0.00

Forces on Long Sliding Bearing Case1: Non Seismic Case2: Non Seismic Case Case ( (DL+SIDL+LL) + ( (DL+SIDL+LL) -CFv ) CFv ) V (KN) Hx (KN) Hy (KN)

1135.74 113.57 0.00

1058.97 105.90 0.00

Case3: Seismic Case- (( Case4: Seismic Case- (( Case5: Seismic Case- Case6: Seismic Case(DL+SIDL+LL)+ CFv + (DL+SIDL+LL) -CFv - (Vv (( (DL+SIDL+LL)+ CFv + (( (DL+SIDL+LL) - CFv (Vv+ 0.3*Vvh ) ) + + 0.3*Vvh) ) + 0.3*Hx (0.3*Vv+ Vvh) ) + Hx + (0.3*Vv + Vvh )) + Hx 0.3*Hx + 0.3*Hy) + 0.3*Hy) 0.3*Hy) + 0.3*Hy) 1222.84 122.28 0.00

971.87 97.19 0.00

1220.86 229.65 0.00

973.85 229.65 0.00

Forces on Transverse Sliding Bearing Case1: Non Seismic Case2: Non Seismic Case Case ( (DL+SIDL+LL) + ( (DL+SIDL+LL) -CFv ) CFv ) V (KN) Hx (KN) Hy (KN)

1135.74 0.00 113.57

1058.97 0.00 105.90

Case3: Seismic Case- (( Case4: Seismic Case- (( Case5: Seismic Case- Case6: Seismic Case(DL+SIDL+LL)+ CFv + (DL+SIDL+LL) -CFv - (Vv (( (DL+SIDL+LL)+ CFv + (( (DL+SIDL+LL) - CFv (Vv+ 0.3*Vvh ) ) + + 0.3*Vvh) ) + 0.3*Hx (0.3*Vv+ Vvh) ) + Hx + (0.3*Vv + Vvh )) + Hx 0.3*Hx + 0.3*Hy) + 0.3*Hy) 0.3*Hy) + 0.3*Hy) 1222.84 0.00 122.28

971.87 0.00 97.19

1220.86 0.00 122.09

973.85 0.00 97.39

Summary: Fixed Bearing V (KN) Hx (KN) Hy (KN) H_rsltnt

Free Bearing V (KN) Hx (KN) Hy (KN) H_rsltnt

Max Value Min Value Max Value non non seismic seismic seismic 1135.7 106.4 39.7 113.6

1059.0 105.2 39.2 112.2

1222.8 229.7 63.1 238.2

Max Value Min Value Max Value non non seismic seismic seismic 1135.7 90.9 90.9 128.5

1059.0 84.7 84.7 119.8

1222.8 73.4 73.4 103.8

Min Value seismic 971.9 83.2 41.5 93.0

Min Value seismic 971.9 73.4 73.4 103.8

long_Slidin g Bearing V (KN) Hx (KN) Hy (KN) H_rsltnt

trns_slidin g Bearing V (KN) Hx (KN) Hy (KN) H_rsltnt

Max Value Min Value Max Value Min Value non non seismic seismic seismic seismic 1135.7 113.6 90.9 145.4

1059.0 105.9 84.7 135.6

1222.8 229.7 73.4 241.1

971.9 97.2 77.7 124.5

Max Value Min Value Max Value Min Value non non seismic seismic seismic seismic 1135.7 90.9 113.6 145.4

1059.0 84.7 105.9 135.6

1222.8 73.4 122.3 142.6

971.9 77.7 97.2 124.5

DESIGN OF FIXED BEARING :

Pot Wall thck 40

40

40 40

Pot Depth

Dispersion of 1(V) :2(H) Fig 5 of IRC 83(iii)

a. Design Inputs: Neoprene Pad Size dia Neoprene Pad Thickness Pot Base Thickness Pot base effective dia (consider 1:2 dispersion from elastomer base) Pot Internal Dia Pot wall Depth >28mm Pot wall thickness Piston thickness above spigot Piston effective contact area diameter (consider 1:2 dispersion from spiggot) Spigott Projection > 30mm Bolt Dia No of Bolts per component Bolt flange thickness No of sealing rings Total thickness of ring Clearance between top edge of pot wall and bottom edge of piston Vertical face of piston wall for contact with pot internal wall < 20 mm fy for the mild steel Neoprene pad stress PTFE stress (working) Steel stress (working) for design

= = =

224 mm 20 mm 40 mm

=

384 mm

= = = =

224 40 40 35

= = = = = = =

362 43 28 8 12 2 4

OK

Ref : Cl 926.2.3.6 of IRC83(III)

Cl 926.3.1.1.6.1 of IRC83(III)

mm mm mm mm mm mm mm mm mm Nos mm

Spigot projection 10

Neoprene pad 8 mm

=

10 mm

=

8 mm

= = = =

250 35 Mpa 40 Mpa 340 Mpa

Design of Fixed Bearing Longitudinal movement Transverse movement Rotation (total)

= = =

0.0 mm 0.0 mm 0.00566 Radians

Rotation (Permanent actions) WL2/(24EI)

=

0.00342 Radians

Cl 926.1.6 of IRC-83(III)

Rotation (Variable actions) WL2/(24EI)

=

0.00224 Radians

Cl 926.1.6 of IRC-83(III)

Pot

43 pad thk 40

Cl 926.2.3.2 of IRC-83(III) Cl 926.2.4.3 of IRC-83(III) Grade-340-570W as per IS-1030

C. Calculation for permissible stresses in pedestal concrete & bottom flange: Grade of concrete for Pedestal = M 40 Permissible direct compressive Stress in = 10 As per cl 926.2.1.1 of IRC-83(III) concrete= 0.25* fck The projection of the adjacent structure beyond the loaded area shall NOT be less than 150mm Bottom: Dia of loaded area = 224 mm Loaded Area A2 Dia after dispersion(1:2) Dispersion Area A1 Permissible concrete stress =0.25fck* √(A1/A2)

Top:

Permissible bearing stress in bottom flange (= 0.75*fy)

= =

39408.138 mm2 304 mm

=

72583.357 mm2

=

13.57 Mpa

=

187.5 Mpa

Cl 926.2.1.1 of IRC-83(III)

Bearing Pedestal

20

d. Neoprene Pad stress:

Ref: Clause 926.2.3 of IRC:83(III)-2002 Non-Seismic Min Max = Actual Stress (Mpa) 28.83 26.89 Maximum Permissible Average = 35.00 35.00 stress (Mpa) Minimum Permissible Average = 5.00 5.00 stress (Mpa) OK OK Rotaion check on pad ( Ref: clause 926.2.3.4 of IRC:83 (Part III) = Rotaiton of pad 0.0057 Radians Deforamtion of pad due to = 0.63 mm rotation he,eff (as per Figure) = 16.00 mm Check OK

Seismic Min max 31.05 24.67 35.00 5.00 OK

35.00

Ref : clause 926.2.3.2 and clause 926.2.3.5 of IRC:83(Part -III)

5.00 Ref : clause 926.2.3.3 of IRC:83(Part -III) OK

OK

he

he,eff

< he,eff * 0.15

Concentrated stresses at pot base (at concrete pedastal): As per Clause 926.1.5: For design of bearings or part thereof and the adjacent structures the resultant of the coexisting moments prodeiced due to design horizontal force and that induced due to resistance to rotation shall be considered. Seismic Non-Seismic Min Min Max max Direct Bearing Stress due to Vertical Load (Mpa) 9.81 9.14 10.56 8.39 Direct Bearing Stress = i) Permissible stress (Mpa) = 13.57 13.57 16.96 16.96 cl 926.2.1.4 of IRC-83(III) Increase by 25% when wind or Actual : Permissible = 0.72 0.67 0.62 0.49 OK earthquake taken into account

Flexural Stress due to active Moment resulting from acting Horizontal Forces eccentricity (mm), From the = 64.00 64.00 64.00 64.00 bottom of bearing Flexural Stress (Mpa) = 1.31 1.29 2.74 1.07 Flexural Stress due to induced Moment resulting from resistance to rotation due to the iii) effect of tilting stiffness of elastomeric pressure pad 3 Me.d = di * (k1.Ѳp + k2.Ѳv) Ref: Cl 926.1.5.1 of IRC-83(III) = 224.00 224.00 224.00 224.00 di (dia of elastomeric pad, mm) he (thickness of confined = 20.00 20.00 20.00 20.00 elastomeric pressure pad,mm) di/he = 11.20 11.20 11.20 11.20 iii-1) k1 = 1.64 1.64 1.64 1.64 Ѳp (radians) = 0.0034 0.0034 0.0034 0.0034 k2 = 39.93 39.93 39.93 39.93 Ѳv (radians) = 0.0022 0.0022 0.0022 0.0022 Me.d (KN-m) = 1.07 1.07 1.07 1.07 MR.d = 0.2*C*H Ref: Cl 926.1.5.2 of IRC-83(III) ii)

C (mm), Perpendicular distance iii-2) from the point of action of horizontal force on cylinde wall to the axis of rotation H (KN) MR.d (KN-m) Total induced moment iii-3) = Me,d + MR,d (KN-m) iii-4) Stress (Mpa) Total flexural Stress (Mpa) iii-5) Permissible stress (Mpa) Actual : Permissible Total Stress (Mpa) iii-6) Permissible stress (Mpa) Actual : Permissible Coexisting Direct & Flexural iv) Stress Ratio > 1

=

112.00

112.00

112.00

112.00

= =

113.57 2.54

112.24 2.51

238.17 5.33

93.02 2.08

=

3.61

3.58

6.40

3.15

= = = = = = = = =

0.65 0.64 1.15 1.96 1.94 3.89 13.20 13.20 16.50 0.15 0.15 0.24 11.76 11.08 14.45 13.57 13.57 16.96 0.87 0.82 0.85 Ref: Cl 926.2.1.3 of IRC-83(III) 0.87 0.82 0.86

Horizontal force acts at the center line of bearing

0.57 1.64 16.50 Ref: Cl 926.2.1.2 & Cl 926.2.1.4 of IRC-83(III) 0.10 OK 10.03 16.96 cl 926.2.1 & cl 926.2.1.4 of IRC-83(III) 0.59 OK 0.59

Concentrated stresses at piston base :

OK

OK

Ref: Cl 926.1.5 of IRC-83(III) Siesmic Non-Siesmic Min Min Max max Direct Bearing Stress due to Vertical Load (Mpa) Direct Bearing Stress due to = 110.35 102.89 118.81 94.43 i Vertical Load (Mpa) = Permissible Stress (Mpa) 187.50 187.50 187.50 187.50 Cl 926.2.2.4 & cl 926.2.2.6 of IRC-83(III) Actual:Permissible 0.59 0.55 0.63 0.50 OK = Flexural Stress due to active Moment resulting from acting horizontal forces ii) eccentricity (mm) = 74.00 74.00 74.00 74.00 Stress (Mpa) = 1.80 1.78 3.78 1.48 iii) Stress due to induced moment from resistance to rotation Me.d = di3 * (k1.Ѳp + k2.Ѳv) Ref: Cl 926.1.5.1 of IRC-83(III) di (dia of elastomer pad, mm) = 224.00 224.00 224.00 224.00 he (thickness of confined elastomeric pressure pad in mm)

iii-1) di/he k1 Ѳp (radians) k2 Ѳv (radians) Me.d (KN-m) MR.d = 0.2*C*H C (mm) iii-2) H (KN) MR.d (KN-m) Total induced moment = Me.d + iii-3) MR.d (KN-m)

= = = = = = = = = = =

20.00

20.00

20.00

11.20 11.20 11.20 1.64 1.64 1.64 0.003 0.003 0.003 39.933 39.933 39.933 0.002 0.002 0.002 1.07 1.07 1.07 Ref: Cl 926.1.5.2 of IRC-83(III) 112.00 112.00 112.00 113.57 112.24 238.17 2.54 2.51 5.33

11.20 1.64 0.003 39.933 0.002 1.07

3.61

20.00

3.58

6.40

112.00 93.02 2.08 3.15

iii-4) Stress (Mpa) = Total flexural Stress (Mpa) = iii-5) Permissible stress (0.66fy) (Mpa) = Actual : Permissible = Total Stress (Mpa) = iii-6) Permissible Stress (Mpa) = Actual : Permissible = Coexisting Direct & Flexural Stress Check iv) Combined Stresses (Mpa) Permissible stress (0.9fy) (Mpa) Actual:Permissible

0.78 0.77 2.58 2.55 165.00 165.00 0.02 0.02 112.93 105.44 187.50 187.50 0.60 0.56 Cl 926.2.2.5 of IRC-83(III) 191.15 178.23 225.00 225.00 0.850 0.792

1.37 5.16 165.00 0.03 123.97 187.50 0.66

0.68 2.15 224.40 Cl 926.2.2.2 & cl 926.2.2.6 of IRC-83(III) 0.01 OK 96.58 187.50 Cl 926.2.2.4 & cl 926.2.2.6 of IRC-83(III) 0.52 OK

205.85 225.00 0.915

163.57 225.00 Cl 926.2.2.5 of IRC-83(III) 0.727 OK OK

Stresses at Pot Wall cl 926.3.1.1.7 of IRC-83(III) Non-Siesmic Min Max

Siesmic Min max

Check of Hoop Tensile stress i) Force from pad (KN per I section of ring) 129.18 120.45 ii) Pressure from Pad (P1) (Mpa) 40.37 37.64 iii)-a Total horizontal force into wall (KN) 113.57 112.24 Total horizontal stress into wall due to iii)-b horizontal force (P2) (Mpa) 35.49 35.07 iv) Total P = P1 + P2 (Mpa) 75.86 72.71 v) Permissible stress (0.6fy) (Mpa) 204.00 204.00 vi) Actual:Permissible 0.37 0.36 Shear stress at cylinder & base interface considering 1mm slice i) Fluid Pressure (P1) Mpa 14.42 13.44 ii) Horizontal Force (P2) Mpa 19.01 18.79 Total Shear Stress P = P1 + P2 (Mpa) 33.43 32.23 Permissible Stress (0.45fy) 153.00 153.00 Actual : Permissible 0.22 0.21 Bending Stress at cylinder & base interface considering 1mm slice i) Fluid Pressure (P1) Mpa 21.63 20.16 ii) Horizontal Force (P2) Mpa 68.45 67.64 Total Bending Stress (Mpa) P1 + P2 90.07 87.81 Permissible Stress (0.66fy) 224.40 224.40 Actual : Permissible 0.40 0.39 iii) Combined Stress (Mpa) 107.08 104.05 Permissible Stress (0.9fy) Mpa 306 306 Actual : Permissible 0.35 0.34 Check for Thickness of Pot in Bending-Bottom i) Max Vertical Load (KN) ii) Pot Base effective Contact Dia (mm) iii) Effective area of the Plate in contact to concrete (mm2) iv) Stress on Plate (N/mm2) Dia of loaded area (mm) Projection of pot (mm) Bending Moment at Top (N-mm) Thickness of top plate required to cater to this BM (mm) ix) Provided thickness (mm)

v) vi) vii) viii)

Non-Siesmic Min Max 1135.74 1058.97 384.00 384.00

139.09 43.46 238.17

110.54 Cl 926.3.1.1.7.1 (i) of IRC-83(III) 34.54 Cl 926.3.1.1.7.1 (ii) of IRC-83(III) 93.02

74.43 117.89 204.00 0.58

29.07 63.61 204.00 Cl 926.2.2 of IRC-83(III) 0.31 OK

15.52 39.87 55.39 153.00

12.34 15.57 27.91 153.00 Cl 926.2.2.3 of IRC-83(III)

0.36 23.28 143.54 166.82 224.40

0.74 192.45 306

0.63

0.18

OK

18.51 56.06 74.57 224.40 Cl 926.2.2.2 of IRC-83(III)

0.33

OK

88.87 306 Cl 926.2.2.5 of IRC-83(III) 0.29 OK OK

Siesmic Min max 1222.84 971.87 384.00 384.00

1.16E+05

1.16E+05 1.16E+05 1.16E+05

9.81 224.00 80.00 31397.69

9.15 10.56 8.40 224.00 224.00 224.00 80.00 80.00 80.00 29275.30 33805.65 26867.34

28.97

27.98

30.06

26.80

40.00

40.00

40.00

40.00

OK

OK

OK

OK

Neoprene pad Pot

stress = BM*6/(b*d2)=0.66*σ OK

Check for Thickness of Piston in Bending-Top i) Max Vertical Load (KN) ii) Effective Dia of Piston (mm) iii) Effective area of the Top Plate in contact to steel/concrete (mm2) iv) Stress at Top Plate (N/mm) v) Dia of loaded area (mm) vi) Projection of piston (mm) vii) Bending Moment at Top (N-mm) viii) Thickness of top plate required to cater to this BM (mm) ix) Provided thickness (mm)

Non-Siesmic Min Max 1135.74 1058.97 362.00 362.00

Siesmic Min max 1222.84 971.87 362.00 362.00

1.03E+05

1.03E+05 1.03E+05 1.03E+05

11.04 224.00 69.00 2.63E+04

10.29 11.89 9.45 224.00 224.00 224.00 69.00 69.00 69.00 2.45E+04 2.83E+04 2.25E+04

26.51

25.60

27.51

24.52

35.00

35.00

35.00

35.00

OK

OK

OK

OK

Miscellaneous Design Checks: Rotation Capacity cl 926.2.3 of IRC-83(III) i)

Check compression at edge of neoprene pad T1 = thickness of pad less seal rings thickness

ii)

Rotation (Radius)

15% of T1 16.00 mm 2.40 mm Cl 926.2.3.4 of IRC-83(III) 0.02 radians

>=

0.0057 radians

OK Check on Piston rotaion gap: Ref: Clause 926.3.1.4 of IRC:83 (Part III)-2002 Clearance between top edge of pot wall and 10.00 mm bottom edge of piston Rotaion 0.0057 radians gap after rotation 9.14 mm

OK Diameter & Thickness checks cl 926.2.3.6 of IRC-83(III) Thickness of pad ii)

20.00 mm

OK iii)

Dia of pad

224.00 mm

OK

> 16 mm cl 926.2.3.6 of IRC-83(III) > 180 mm cl 926.2.3.6 of IRC-83(III)

OK

Vertical Face of Piston required cl 926.3.1.3.1 of IRC-83(III) i)

Effective contact Width of pistton and pot We= 1.3*(Seismic H Load)*1000/((Pot dia 1.5) * 0.75fy)

4.09 mm 28mm Pot wall thickness Piston thickness above spigot Piston effective contact area diameter (consider 1:2 dispersion from spiggot) Spigott Projection > 30mm Bolt Dia No of Bolts per component Bolt flange thickness No of sealing rings Total thickness of ring Clearance between top edge of pot wall and bottom edge of piston Vertical face of piston wall PTFE size (dia) PTFE size (thickness) Height of Guide Bar Width of Guide Bar Length of piston flat Slide Stainless steel Plate (Length) Slide Stainless steel Plate (Width) Slide Stainless steel Plate (Thickness) Neoprene pad stress PTFE stress (working) Steel stress (working) for design fy for the mild steel b. Design Requirements

=

Longitudinal movement Transverse movement Rotation (total)

= = =

21.798 mm 5.449411 mm 0.00566 Radians

Rotation (Permanent actions) WL2/(24EI)

=

0.00342 Radians

Cl 926.1.6 of IRC-83(III)

Rotation (Variable actions) WL2/(24EI)

=

0.00224 Radians

Cl 926.1.6 of IRC-83(III)

= = = = = = = = = = = = = = = = = = = = = = = = =

384 224 40 40 35 362 43 28 8 12 2 4

mm

Cl 926.3.1.1.6.1 of IRC83(III)

mm mm mm mm mm mm mm mm mm Nos mm

Spigot projection Neoprene pad

Pot 8 mm

10 mm 8 224 4.5 28 50 312 350 350 36 35 40 340 250

mm mm mm mm mm mm mm mm mm Mpa Mpa Mpa Mpa

Thk>=4.5 mm

43 pad thk

10 40

Ref: Table 4 of IRC:83 (Part-III)-2002

OK OK Cl 926.2.3.2 of IRC-83(III) Cl 926.2.4.3 of IRC-83(III) Grade-340-570W as per IS-1030

C. Calculation for permissible stresses in pedestal concrete & bottom flange: Grade of concrete for Pedestal = M 40 Permissible direct compressive Stress in = 10 As per cl 926.2.1.1 of IRC-83(III) concrete= 0.25* fck The projection of the adjacent structure beyond the loaded area shall NOT be less than 150mm Bottom: Dia of loaded area = 224 mm

Top:

Loaded Area A2 Dia after dispersion(1:2)

= =

39408.138 mm2 304 mm

Dispersion Area A1 Permissible concrete stress =0.25fck* √(A1/A2)

=

72583.357 mm2

=

13.57 Mpa

=

187.5 Mpa

Permissible bearing stress in bottom flange (= 0.75*fy)

20

Cl 926.2.1.1 of IRC-83(III)

Bearing Pedestal

d. Neoprene Pad stress:

Ref: Clause 926.2.3 of IRC:83(III)-2002 Non-Seismic Min Max = Actual Stress (Mpa) 28.83 26.89 Maximum Permissible Average = 35.00 35.00 stress (Mpa) Minimum Permissible Average = 5.00 5.00 stress (Mpa) OK OK Rotaion check on pad ( Ref: clause 926.2.3.4 of IRC:83 (Part III) = Rotaiton of pad 0.0057 Radians Deforamtion of pad due to = 0.63 mm rotation he,eff (as per Figure) = 16.00 mm Check OK

Seismic Min max 31.05 24.67 35.00 5.00 OK

35.00

Ref : clause 926.2.3.2 and clause 926.2.3.5 of IRC:83(Part -III)

5.00 Ref : clause 926.2.3.3 of IRC:83(Part -III) OK

OK

he

he,eff

< he,eff * 0.15

PTFE stress Actual (Mpa) 28.82 Permissible (Mpa) 40.00 Ratio Actual:Permissible 0.72 Coeffecient of friction (μ): Ref: Table 5 of IRC:83 (part-III)-2002 Average Pressure on confined PTFE (Mpa) 5 10 20 more than 30

Average Pressure on PTFE (Mpa) Coeffecient of friction (μ)

26.87 40.00 0.67

Maximum Maximum Design Coeffecient of friction Coeffecient of friction 0.08 0.16 0.06 0.12 0.04 0.08 0.03 0.06

= =

Non-Siesmic Min Max 28.82 26.87 0.08 0.08

31.03 40.00 0.78

24.66 40.00 Ref: Cluse 926.2.4.3 & 926.2.4.4 of IRC-83(III) 0.62 OK

Ref: Clause 926.2.4.2 of IRC:83 (Part-III)-2002

Siesmic Min max 31.03 24.66 0.06 0.08

Concentrated stresses at pot base:(At concrete pedastal) As per Clause 926.1.5: For design of bearings or part thereof and the adjacent structures the resultant of the coexisting moments prodeiced due to design horizontal force and that induced due to resistance to rotation shall be considered. Seismic Non-Seismic Min Min Max max Direct Bearing Stress due to Vertical Load (Mpa) 9.81 9.14 10.56 8.39 Direct Bearing Stress = i) Permissible stress (Mpa) = 13.57 13.57 16.96 16.96 cl 926.2.1.4 of IRC-83(III) Increase by 25% when wind or Actual : Permissible = 0.72 0.67 0.62 0.49 OK earthquake taken into account

Flexural Stress due to active Moment resulting from acting Horizontal Forces eccentricity (mm), From the = 64.00 64.00 64.00 64.00 bottom of bearing Flexural Stress (Mpa) = 1.48 1.38 1.19 1.19 Flexural Stress due to induced Moment resulting from resistance to rotation due to the iii) effect of tilting stiffness of elastomeric pressure pad 3 Me.d = di * (k1.Ѳp + k2.Ѳv) Ref: Cl 926.1.5.1 of IRC-83(III) = 224.00 224.00 224.00 224.00 di (dia of elastomeric pad, mm) he (thickness of confined = 20.00 20.00 20.00 20.00 elastomeric pressure pad,mm) di/he = 11.20 11.20 11.20 11.20 iii-1) k1 = 1.64 1.64 1.64 1.64 Ѳp (radians) = 0.0034 0.0034 0.0034 0.0034 k2 = 39.93 39.93 39.93 39.93 Ѳv (radians) = 0.0022 0.0022 0.0022 0.0022 Me.d (KN-m) = 1.07 1.07 1.07 1.07 MR.d = 0.2*C*H Ref: Cl 926.1.5.2 of IRC-83(III) ii)

C (mm), Perpendicular distance iii-2) from the point of action of horizontal force on cylinde wall to the axis of rotation H (KN) MR.d (KN-m) Total induced moment iii-3) = Me,d + MR,d (KN-m) iii-4) Stress (Mpa) Total flexural Stress (Mpa) iii-5) Permissible stress (Mpa) Actual : Permissible Total Stress (Mpa) iii-6) Permissible stress (Mpa) Actual : Permissible Coexisting Direct & Flexural iv) Stress Ratio > 1

=

112.00

112.00

112.00

112.00

= =

128.49 2.88

119.81 2.68

103.76 2.32

103.76 2.32

=

3.95

3.75

3.39

3.39

= = = = = = = = =

0.71 0.68 0.61 2.19 2.05 1.80 13.20 13.20 16.50 0.17 0.16 0.11 12.00 11.20 12.36 13.57 13.57 16.96 0.88 0.83 0.73 Ref: Cl 926.2.1.3 of IRC-83(III) 0.89 0.83 0.73

Horizontal force acts at the center line of bearing

0.61 1.80 16.50 Ref: Cl 926.2.1.2 & Cl 926.2.1.4 of IRC-83(III) 0.11 OK 10.20 16.96 cl 926.2.1 & cl 926.2.1.4 of IRC-83(III) 0.60 OK 0.60

Concentrated stresses at piston base:

OK

OK

Ref: Cl 926.1.5 of IRC-83(III) Siesmic Non-Siesmic Min Min Max max Direct Bearing Stress due to Vertical Load (Mpa) Direct Bearing Stress due to = 110.35 102.89 118.81 94.43 i Vertical Load (Mpa) = Permissible Stress (Mpa) 187.50 187.50 187.50 187.50 Cl 926.2.2.4 & cl 926.2.2.6 of IRC-83(III) Actual:Permissible 0.59 0.55 0.63 0.50 OK = Flexural Stress due to active Moment resulting from acting horizontal forces ii) eccentricity (mm) = 74.00 74.00 74.00 74.00 Stress (Mpa) = 2.04 1.90 1.65 1.65 iii) Stress due to induced moment from resistance to rotation Me.d = di3 * (k1.Ѳp + k2.Ѳv) Ref: Cl 926.1.5.1 of IRC-83(III) di (dia of elastomer pad, mm) = 224.00 224.00 224.00 224.00 he (thickness of confined elastomeric pressure pad in mm)

iii-1) di/he k1 Ѳp (radians) k2 Ѳv (radians) Me.d (KN-m) MR.d = 0.2*C*H C (mm) iii-2) H (KN) MR.d (KN-m) Total induced moment = Me.d + iii-3) MR.d (KN-m)

= = = = = = = = = = =

20.00

20.00

20.00

11.20 11.20 11.20 1.64 1.64 1.64 0.003 0.003 0.003 39.933 39.933 39.933 0.002 0.002 0.002 1.07 1.07 1.07 Ref: Cl 926.1.5.2 of IRC-83(III) 112.00 112.00 112.00 128.49 119.81 103.76 2.88 2.68 2.32

11.20 1.64 0.003 39.933 0.002 1.07

3.95

20.00

3.75

3.39

112.00 103.76 2.32 3.39

iii-4) Stress (Mpa) = Total flexural Stress (Mpa) = iii-5) Permissible stress (0.66fy) (Mpa) = Actual : Permissible = Total Stress (Mpa) = iii-6) Permissible Stress (Mpa) = Actual : Permissible = Coexisting Direct & Flexural Stress Check iv) Combined Stresses (Mpa) Permissible stress (0.9fy) (Mpa) Actual:Permissible

0.85 0.81 2.89 2.71 165.00 165.00 0.02 0.02 113.24 105.60 187.50 187.50 0.60 0.56 Cl 926.2.2.5 of IRC-83(III) 191.15 178.23 225.00 225.00 0.850 0.792

0.73 2.38 165.00 0.01 121.19 187.50 0.65

0.73 2.38 165.00 Cl 926.2.2.2 & cl 926.2.2.6 of IRC-83(III) 0.01 OK 96.80 187.50 Cl 926.2.2.4 & cl 926.2.2.6 of IRC-83(III) 0.52 OK

205.80 225.00 0.915

163.57 225.00 Cl 926.2.2.5 of IRC-83(III) 0.727 OK OK

Stresses at Pot Wall cl 926.3.1.1.7 of IRC-83(III) Non-Siesmic Min Max

Siesmic Min max

Check of Hoop Tensile stress i) Force from pad (KN per I section of ring) 129.18 120.45 ii) Pressure from Pad (P1) (Mpa) 40.37 37.64 iii)-a Total horizontal force into wall (KN) 128.49 119.81 Total horizontal stress into wall due to iii)-b horizontal force (P2) (Mpa) 40.15 37.44 iv) Total P = P1 + P2 (Mpa) 80.52 75.08 v) Permissible stress (0.6fy) (Mpa) 204.00 204.00 vi) Actual:Permissible 0.39 0.37 Shear stress at cylinder & base interface considering 1mm slice i) Fluid Pressure (P1) Mpa 14.42 13.44 ii) Horizontal Force (P2) Mpa 21.51 20.06 Total Shear Stress P = P1 + P2 (Mpa) 35.93 33.50 Permissible Stress (0.45fy) 153.00 153.00 Actual : Permissible 0.23 0.22 Bending Stress at cylinder & base interface considering 1mm slice i) Fluid Pressure (P1) Mpa 21.63 20.16 ii) Horizontal Force (P2) Mpa 77.44 72.21 Total Bending Stress (Mpa) P1 + P2 99.07 92.37 Permissible Stress (0.66fy) 224.40 224.40 Actual : Permissible 0.44 0.41 iii) Combined Stress (Mpa) 116.99 109.08 Permissible Stress (0.9fy) Mpa 306 306 Actual : Permissible 0.38 0.36 Check for Thickness of Pot in Bending-Bottom i) Max Vertical Load (KN) ii) Pot Base effective Contact Dia (mm) iii) Effective area of the Plate in contact to concrete (mm2) iv) Stress on Plate (N/mm2) Dia of loaded area (mm) Projection of pot (mm) Bending Moment at Top (N-mm) Thickness of top plate required to cater to this BM (mm) ix) Provided thickness (mm)

v) vi) vii) viii)

Non-Siesmic Min Max 1135.74 1058.97 384.00 384.00

139.09 43.46 103.76

110.54 Cl 926.3.1.1.7.1 (i) of IRC-83(III) 34.54 Cl 926.3.1.1.7.1 (ii) of IRC-83(III) 103.76

32.43 75.89 204.00 0.37

32.43 66.97 204.00 Cl 926.2.2 of IRC-83(III) 0.33 OK

15.52 17.37 32.89 153.00

12.34 17.37 29.71 153.00 Cl 926.2.2.3 of IRC-83(III)

0.21 23.28 62.54 85.82 224.40

0.38 103.01 306

0.34

0.19

OK

18.51 62.54 81.04 224.40 Cl 926.2.2.2 of IRC-83(III)

0.36

OK

96.00 306 Cl 926.2.2.5 of IRC-83(III) 0.31 OK OK

Siesmic Min max 1222.84 971.87 384.00 384.00

1.16E+05

1.16E+05 1.16E+05 1.16E+05

9.81 224.00 80.00 31397.69

9.15 10.56 8.40 224.00 224.00 224.00 80.00 80.00 80.00 29275.30 33805.65 26867.34

28.97

27.98

30.06

26.80

40.00

40.00

40.00

40.00

OK

OK

OK

OK

Neoprene pad Pot

stress = BM*6/(b*d2)=0.66*σ

OK

Check for Thickness of Piston in Bending-Top i) Max Vertical Load (KN) ii) Effective Dia of Piston (mm) iii) Effective area of the Top Plate in contact to steel/concrete (mm2) iv) Stress at Top Plate (N/mm) v) Dia of loaded area (mm) vi) Projection of piston (mm) vii) Bending Moment at Top (N-mm) viii) Thickness of top plate required to cater to this BM (mm) ix) Provided thickness (mm)

Non-Siesmic Min Max 1135.74 1058.97 362.00 362.00

Siesmic Min max 1222.84 971.87 362.00 362.00

1.03E+05

1.03E+05 1.03E+05 1.03E+05

11.04 224.00 69.00 2.63E+04

10.29 11.89 9.45 224.00 224.00 224.00 69.00 69.00 69.00 2.45E+04 2.83E+04 2.25E+04

26.51

25.60

27.51

24.52

35.00

35.00

35.00

35.00

OK

OK

OK

OK

OK

Miscellaneous Design Checks: Rotation Capacity cl 926.2.3 of IRC-83(III) i)

Check compression at edge of neoprene pad T1 = thickness of pad less seal rings thickness

ii)

Rotation (Radius)

15% of T1 16.00 mm 2.40 mm Cl 926.2.3.4 of IRC-83(III) 0.02 radians

>=

0.0057 radians

OK Check on Piston rotaion gap: Ref: Clause 926.3.1.4 of IRC:83 (Part III)-2002 Clearance between top edge of pot wall and 10.00 mm bottom edge of piston Rotaion 0.0057 radians gap after rotation 9.14 mm

OK

Diameter & Thickness checks cl 926.2.3.6 of IRC-83(III) Thickness of pad ii)

20.00 mm

OK iii)

Dia of pad

224.00 mm

OK

> 16 mm cl 926.2.3.6 of IRC-83(III) > 180 mm cl 926.2.3.6 of IRC-83(III)

Vertical Face of Piston required cl 926.3.1.3.1 of IRC-83(III) Effective contact Width of pistton and pot i) We = 1.3*(Seismic H Load)*1000/((Pot dia 1.5) * 0.75fy)

5.57 mm >

mm mm

OK OK

Siesmic Min max 6.65 6.65 112.50 112.50 cl 926.2.2.3 of IRC-83(III)

0.07

0.07

0.06

0.06

OK

22.50 2891.13 22.24 165.00 0.13 26.42 225.00 0.12

22.50 2525.36 19.43 165.00 0.12 23.54 225.00 0.10

22.50 5358.75 41.22 165.00 0.25 42.80 225.00 0.19

=

128.5

119.8

103.8

110.0

=

110.0

110.0

110.0

110.0 Clause 926.2.6.1 of IRC:83(Part III)-2002

=

1.19

1.11

0.96

1.01

=

36.00 OK

36.00 OK

36.00 OK

36.00 OK

22.50 2092.96 16.10 165.00 cl 926.2.2.2 of IRC-83(III) 0.10 OK 19.80 225.00 cl 926.2.2.5 of IRC-83(III) 0.09 OK

Check of Weld connection of stainless steel surface: Induced horizontal force due to friction(KN) Permissible stress of weld(Mpa) Weld size (mm), assuming welding is done in full periphery Thicknes of stainless plate (mm)

OK Ref: Clause 926.3.1.5 of IRC:83 (Part -III)-2002

Stress into Lugs because of Horizontal Force i) ii) iii) iv) v) vi) vii) viii) ix)

Total horizontal force on bearing (KN) Effective length of lug taking shear (mm) Thickness of lug (mm) Total cross sectional area of each lug (mm2) No. of lugs in each bearing Horizontal force on each lug (KN) Stress on lug due to Horz. Force (Mpa) Permissible Stress (0.45fy) Actual : Permissible

Size of weld with Bottom Flange: i) ii) iii) iv) v)

Horizontal Force over weld by bolts (KN) Permissible stress in weld (Mpa) Dia of welded area (mm) Size of weld required (mm) Size of weld to be provided (mm)

Non-Siesmic Min Max 128.49 119.81 84.00 84.00 20.00 20.00 1680.00 1680.00 8.00 8.00 16.06 14.98 9.56 8.91 153.00 153.00

0.06

0.06

Non-Siesmic Min Max 374.19 374.19 110.00 110.00 362.00 362.00 4.28 4.28 6.00 6.00

Siesmic Min max 103.76 103.76 84.00 84.00 20.00 20.00 1680.00 1680.00 8.00 8.00 12.97 12.97 7.72 7.72 153.00 153.00

0.05

0.05

OK

Siesmic Min max 374.19 374.19 110.00 110.00 Cl 926.2.6.1 of IRC-83(III) 362.00 362.00 4.28 4.28 6.00 6.00

BEARING DESIGN :

Pot Wall thck 40

40

40 40

Pot Depth

Dispersion of 1(V) :2(H)

Fig 5 of IRC 83(iii)

a. Design Inputs: Neoprene Pad Size dia Neoprene Pad Thickness Pot Base Thickness

= = =

224 mm 20 mm 40 mm

Pot base effective dia (consider 1:2 dispersion from elastomer base) Pot Internal Dia Pot wall Depth >28mm Pot wall thickness Piston thickness above spigot Piston effective contact area diameter (consider 1:2 dispersion from spiggot) Spigott Projection > 30mm Bolt Dia No of Bolts per component Bolt flange thickness No of sealing rings Total thickness of ring Clearance between top edge of pot wall and bottom edge of piston Vertical face of piston wall PTFE size (dia) PTFE size (thickness) Height of Guide Bar Width of Guide Bar Length of piston flat Slide Stainless steel Plate (Length) Slide Stainless steel Plate (Width) Slide Stainless steel Plate (Thickness) Neoprene pad stress PTFE stress (working) Steel stress (working) for design fy for the mild steel b. Design Requirements

=

384 mm

= = = =

224 40 40 35

=

362 mm

Longitudinal movement Transverse movement Rotation (total)

= = =

21.79764 mm 0.00000 mm 0.00566 Radians

Rotation (Permanent actions) WL 2/(24EI)

=

0.00342 Radians

Cl 926.1.6 of IRC-83(III)

Rotation (Variable actions) WL 2/(24EI)

=

0.00224 Radians

Cl 926.1.6 of IRC-83(III)

43 28 8 12 2 4

=

10 mm 8 224 4.5 28 50 312 350 350 36 35 40 340 250

Ref : Cl 926.2.3.6 of IRC83(III)

Cl 926.3.1.1.6.1 of IRC83(III)

mm mm mm mm

= = = = = =

= = = = = = = = = = = = =

OK

Spigot projection

mm mm mm mm Nos mm

mm mm mm mm mm mm mm mm mm Mpa Mpa Mpa

Neoprene pad Pot

8 mm

Thk>=4.5 mm

pad thk 10

43 40

Ref: Table 4 of IRC:83 (Part-III)-2002

OK NA Cl 926.2.3.2 of IRC-83(III) Cl 926.2.4.3 of IRC-83(III) Grade-340-570W as per IS-1030

C. Calculation for permissible stresses in pedestal concrete & bottom flange: Grade of concrete for Pedestal = M 40 Permissible direct compressive Stress in = 10 As per cl 926.2.1.1 of IRC-83(III) concrete= 0.25* fck The projection of the adjacent structure beyond the loaded area shall NOT be less than 150mm Bottom: Dia of loaded area = 224 mm 2 Loaded Area A2 = 39408.138 mm Dia after dispersion(1:2) = 304 mm Cl 926.2.1.1 of IRC-83(III) 2 Dispersion Area A1 = 72583.357 mm Permissible concrete stress = 13.57 Mpa =0.25fck* √(A1/A2) Top:

Permissible bearing stress in bottom flange (= 0.75*fy)

=

187.5 Mpa

20

Bearing Pedestal

d. Neoprene Pad stress:

Ref: Clause 926.2.3 of IRC:83(III)-2002 Non-Seismic Min Max = Actual Stress (Mpa) 28.83 26.89 Maximum Permissible Average = 35.00 35.00 stress (Mpa) Minimum Permissible Average = 5.00 5.00 stress (Mpa) OK OK Rotaion check on pad ( Ref: clause 926.2.3.4 of IRC:83 (Part III) = Rotaiton of pad 0.0057 Radians Deforamtion of pad due to = 0.63 mm rotation he,eff (as per Figure) = 16.00 mm Check OK

Seismic Min max 31.05 24.67 35.00 5.00 OK

35.00

Ref : clause 926.2.3.2 and clause 926.2.3.5 of IRC:83(Part -III)

5.00 Ref : clause 926.2.3.3 of IRC:83(Part -III) OK

OK

he

he,eff

< he,eff * 0.15

PTFE stress Actual (Mpa) 28.82 Permissible (Mpa) 40.00 Ratio Actual:Permissible 0.72 Coeffecient of friction (μ): Ref: Table 5 of IRC:83 (part-III)-2002

Average Pressure on confined PTFE (Mpa) 5 10 20 more than 30

Average Pressure on PTFE (Mpa) Coeffecient of friction (μ)

26.87 40.00 0.67

Maximum Maximum Design Coeffecient of friction Coeffecient of friction 0.08 0.16 0.06 0.12 0.04 0.08 0.03 0.06

= =

Non-Siesmic Min Max 28.82 26.87 0.08 0.08

31.03 40.00 0.78

24.66 40.00 Ref: Cluse 926.2.4.3 & 926.2.4.4 of IRC-83(III) 0.62 OK

Ref: Clause 926.2.4.2 of IRC:83 (Part-III)-2002

Siesmic Min max 31.03 24.66 0.06 0.08

Concentrated stresses at pot base:(At concrete pedastal) As per Clause 926.1.5: For design of bearings or part thereof and the adjacent structures the resultant of the coexisting moments prodeiced due to design horizontal force and that induced due to resistance to rotation shall be considered. Seismic Non-Seismic Min Min Max max Direct Bearing Stress due to Vertical Load (Mpa) 9.81 9.14 10.56 8.39 Direct Bearing Stress = i) Permissible stress (Mpa) = 13.57 13.57 16.96 16.96 cl 926.2.1.4 of IRC-83(III) Increase by 25% when wind or Actual : Permissible = 0.72 0.67 0.62 0.49 OK earthquake taken into account

Flexural Stress due to active Moment resulting from acting Horizontal Forces eccentricity (mm), From the = 64.00 64.00 64.00 64.00 bottom of bearing Flexural Stress (Mpa) = 1.67 1.56 2.77 1.43 Flexural Stress due to induced Moment resulting from resistance to rotation due to the iii) effect of tilting stiffness of elastomeric pressure pad 3 Me.d = di * (k1.Ѳp + k2.Ѳv) Ref: Cl 926.1.5.1 of IRC-83(III) = 224.00 224.00 224.00 224.00 di (dia of elastomeric pad, mm) he (thickness of confined = 20.00 20.00 20.00 20.00 elastomeric pressure pad,mm) di/he = 11.20 11.20 11.20 11.20 iii-1) k1 = 1.64 1.64 1.64 1.64 Ѳp (radians) = 0.0034 0.0034 0.0034 0.0034 k2 = 39.93 39.93 39.93 39.93 Ѳv (radians) = 0.0022 0.0022 0.0022 0.0022 Me.d (KN-m) = 1.07 1.07 1.07 1.07 MR.d = 0.2*C*H Ref: Cl 926.1.5.2 of IRC-83(III) ii)

C (mm), Perpendicular distance iii-2) from the point of action of horizontal force on cylinde wall to the axis of rotation H (KN) MR.d (KN-m) Total induced moment iii-3) = Me,d + MR,d (KN-m) iii-4) Stress (Mpa) Total flexural Stress (Mpa) iii-5) Permissible stress (Mpa) Actual : Permissible Total Stress (Mpa) iii-6) Permissible stress (Mpa) Actual : Permissible Coexisting Direct & Flexural iv) Stress Ratio > 1

=

112.00

112.00

112.00

112.00

= =

145.45 3.26

135.61 3.04

241.09 5.40

124.46 2.79

=

4.33

4.11

6.47

3.86

= = = = = = = = =

0.78 0.74 1.16 2.45 2.30 3.94 13.20 13.20 16.50 0.19 0.17 0.24 12.26 11.44 14.50 13.57 13.57 16.96 0.90 0.84 0.85 Ref: Cl 926.2.1.3 of IRC-83(III) 0.91 0.85 0.86

Horizontal force acts at the center line of bearing

0.69 2.13 16.50 Ref: Cl 926.2.1.2 & Cl 926.2.1.4 of IRC-83(III) 0.13 OK 10.52 16.96 cl 926.2.1 & cl 926.2.1.4 of IRC-83(III) 0.62 OK 0.62

Concentrated stresses at piston base:

OK

OK

Ref: Cl 926.1.5 of IRC-83(III) Siesmic Non-Siesmic Min Min Max max Direct Bearing Stress due to Vertical Load (Mpa) Direct Bearing Stress due to = 110.35 102.89 118.81 94.43 i Vertical Load (Mpa) = Permissible Stress (Mpa) 187.50 187.50 187.50 187.50 Cl 926.2.2.4 & cl 926.2.2.6 of IRC-83(III) Actual:Permissible 0.59 0.55 0.63 0.50 OK = Flexural Stress due to active Moment resulting from acting horizontal forces ii) eccentricity (mm) = 74.00 74.00 74.00 74.00 Stress (Mpa) = 2.31 2.15 3.83 1.98 iii) Stress due to induced moment from resistance to rotation 3 Me.d = di * (k1.Ѳp + k2.Ѳv) Ref: Cl 926.1.5.1 of IRC-83(III) di (dia of elastomer pad, mm) = 224.00 224.00 224.00 224.00 he (thickness of confined elastomeric pressure pad in mm)

iii-1) di/he k1 Ѳp (radians) k2 Ѳv (radians) Me.d (KN-m) MR.d = 0.2*C*H C (mm) iii-2) H (KN) MR.d (KN-m) Total induced moment = Me.d + iii-3) MR.d (KN-m)

= = = = = = = = = = =

20.00

20.00

20.00

11.20 11.20 11.20 1.64 1.64 1.64 0.003 0.003 0.003 39.933 39.933 39.933 0.002 0.002 0.002 1.07 1.07 1.07 Ref: Cl 926.1.5.2 of IRC-83(III) 112.00 112.00 112.00 145.45 135.61 241.09 3.26 3.04 5.40

11.20 1.64 0.003 39.933 0.002 1.07

4.33

20.00

4.11

6.47

112.00 124.46 2.79 3.86

iii-4) Stress (Mpa) = Total flexural Stress (Mpa) = iii-5) Permissible stress (0.66fy) (Mpa) = Actual : Permissible = Total Stress (Mpa) = iii-6) Permissible Stress (Mpa) = Actual : Permissible = Coexisting Direct & Flexural Stress Check iv) Combined Stresses (Mpa) Permissible stress (0.9fy) (Mpa) Actual:Permissible

0.93 0.88 3.24 3.04 165.00 165.00 0.02 0.02 113.59 105.93 187.50 187.50 0.61 0.56 Cl 926.2.2.5 of IRC-83(III) 191.16 225.00 0.850

178.24 225.00 0.792

1.39 5.22 165.00 0.03 124.03 187.50 0.66

0.83 2.81 165.00 Cl 926.2.2.2 & cl 926.2.2.6 of IRC-83(III) 0.02 OK 97.23 187.50 Cl 926.2.2.4 & cl 926.2.2.6 of IRC-83(III) 0.52 OK

205.86 225.00 0.915

163.58 225.00 Cl 926.2.2.5 of IRC-83(III) 0.727 OK OK

Design of Pot Wall cl 926.3.1.1.7 of IRC-83(III) Non-Siesmic Min Max

Siesmic Min max

Check of Hoop Tensile stress i) Force from pad (KN per I section of ring) 129.18 120.45 ii) Pressure from Pad (P1) (Mpa) 40.37 37.64 iii)-a Total horizontal force into wall (KN) 145.45 135.61 Total horizontal stress into wall due to iii)-b horizontal force (P2) (Mpa) 45.45 42.38 iv) Total P = P1 + P2 (Mpa) 85.82 80.02 v) Permissible stress (0.6fy) (Mpa) 204.00 204.00 vi) Actual:Permissible 0.42 0.39 Shear stress at cylinder & base interface considering 1mm slice i) Fluid Pressure (P1) Mpa 14.42 13.44 ii) Horizontal Force (P2) Mpa 24.35 22.70 Total Shear Stress P = P1 + P2 (Mpa) 38.77 36.15 Permissible Stress (0.45fy) 153.00 153.00 Actual : Permissible 0.25 0.24 Bending Stress at cylinder & base interface considering 1mm slice i) Fluid Pressure (P1) Mpa 21.63 20.16 ii) Horizontal Force (P2) Mpa 87.66 81.73 Total Bending Stress (Mpa) P1 + P2 109.28 101.90 Permissible Stress (0.66fy) 224.40 224.40 Actual : Permissible 0.49 0.45 iii) Combined Stress (Mpa) 128.26 119.59 Permissible Stress (0.9fy) Mpa 306 306 Actual : Permissible 0.42 0.39 Check for Thickness of Pot in Bending-Bottom i) Max Vertical Load (KN) ii) Pot Base effective Contact Dia (mm) iii) Effective area of the Plate in contact to concrete (mm2) iv) Stress on Plate (N/mm2) Dia of loaded area (mm) Projection of pot (mm) Bending Moment at Top (N-mm) Thickness of top plate required to cater to this BM (mm) ix) Provided thickness (mm)

v) vi) vii) viii)

Non-Siesmic Min Max 1135.74 1058.97 384.00 384.00

139.09 43.46 241.09

110.54 Cl 926.3.1.1.7.1 (i) of IRC-83(III) 34.54 Cl 926.3.1.1.7.1 (ii) of IRC-83(III) 124.46

75.34 118.80 204.00 0.58

38.89 73.44 204.00 Cl 926.2.2 of IRC-83(III) 0.36 OK

15.52 40.36 55.88 153.00

12.34 20.84 33.17 153.00 Cl 926.2.2.3 of IRC-83(III)

0.37 23.28 145.30 168.58 224.40

0.75 194.40 306

0.64

0.22

OK

18.51 75.01 93.51 224.40 Cl 926.2.2.2 of IRC-83(III)

0.42

OK

109.76 306 Cl 926.2.2.5 of IRC-83(III) 0.36 OK OK

Siesmic Min max 1222.84 971.87 384.00 384.00

1.16E+05

1.16E+05 1.16E+05 1.16E+05

9.81 224.00 80.00 31397.69

9.15 10.56 8.40 224.00 224.00 224.00 80.00 80.00 80.00 29275.30 33805.65 26867.34

28.97

27.98

30.06

26.80

40.00

40.00

40.00

40.00

OK

OK

OK

OK

Neoprene pad Pot

stress = BM*6/(b*d2)=0.66*σ

OK

Check for Thickness of Piston in Bending-Top i) Max Vertical Load (KN) ii) Effective Dia of Piston (mm) iii) Effective area of the Top Plate in contact to steel/concrete (mm2) iv) Stress at Top Plate (N/mm) v) Dia of loaded area (mm) vi) Projection of piston (mm) vii) Bending Moment at Top (N-mm) viii) Thickness of top plate required to cater to this BM (mm) ix) Provided thickness (mm)

Non-Siesmic Min Max 1135.74 1058.97 362.00 362.00

Siesmic Min max 1222.84 971.87 362.00 362.00

1.03E+05

1.03E+05 1.03E+05 1.03E+05

11.04 224.00 69.00 2.63E+04

10.29 11.89 9.45 224.00 224.00 224.00 69.00 69.00 69.00 2.45E+04 2.83E+04 2.25E+04

26.51

25.60

27.51

24.52

35.00

35.00

35.00

35.00

OK

OK

OK

OK

OK

Miscellaneous Design Checks: Rotation Capacity cl 926.2.3 of IRC-83(III) i)

Check compression at edge of neoprene pad T1 = thickness of pad less seal rings thickness

ii)

Rotation (Radius)

15% of T1 16.00 mm 2.40 mm Cl 926.2.3.4 of IRC-83(III) 0.02 radians

>=

0.0057 radians

OK Check on Piston rotaion gap: Ref: Clause 926.3.1.4 of IRC:83 (Part III)-2002 Clearance between top edge of pot wall and 10.00 mm bottom edge of piston Rotaion 0.0057 radians gap after rotation 9.14 mm

OK

Diameter & Thickness checks cl 926.2.3.6 of IRC-83(III) Thickness of pad ii)

20.00 mm

OK iii)

Dia of pad

224.00 mm

OK

> 16 mm cl 926.2.3.6 of IRC-83(III) > 180 mm cl 926.2.3.6 of IRC-83(III)

Vertical Face of Piston required cl 926.3.1.3.1 of IRC-83(III) Effective contact Width of pistton and pot We = 1.3*(Seismic H Load)*1000/((Pot dia i) 1.5) * 0.75fy)

5.57 mm >

0.07

OK

22.50 2800.34 21.54 165.00 cl 926.2.2.2 of IRC-83(III) 0.13 OK 25.59 225.00 cl 926.2.2.5 of IRC-83(III) 0.11 OK

Siesmic Min max 241.09 124.46 84.00 84.00 20.00 20.00 1680.00 1680.00 8.00 8.00 30.14 15.56 17.94 9.26 153.00 153.00

0.12

0.06

OK

Check of Weld connection of stainless steel surface: Induced horizontal force due to friction(KN) Permissible stress of weld(Mpa) Weld size (mm), assuming welding is done in full periphery Thicknes of stainless plate (mm)

=

90.9

84.7

73.4

=

110.0

110.0

110.0

77.7 110.0 Clause 926.2.6.1 of IRC:83(Part III)-2002

=

0.84

0.78

0.68

0.72

=

36.00 OK

36.00 OK

36.00 OK

36.00 OK

OK Ref: Clause 926.3.1.5 of IRC:83 (Part -III)-2002

Size of weld with Bottom Flange: i) ii) iii) iv) v)

Horizontal Force over weld by bolts (KN) Permissible stress in weld (Mpa) Dia of welded area (mm) Size of weld required (mm) Size of weld to be provided (mm)

Non-Siesmic Min Max 374.19 374.19 110.00 110.00 362.00 362.00 4.28 4.28 6.00 6.00

Siesmic Min max 374.19 374.19 110.00 110.00 Cl 926.2.6.1 of IRC-83(III) 362.00 362.00 4.28 4.28 6.00 6.00

BEARING DESIGN :

Pot Wall thck 40

40

40 40

Pot Depth

Dispersion of 1(V) :2(H) Fig 5 of IRC 83(iii)

a. Design Inputs: Neoprene Pad Size dia Neoprene Pad Thickness Pot Base Thickness Pot base effective dia (consider 1:2 Pot Internal Dia Pot wall Depth >28mm Pot wall thickness Piston thickness above spigot Piston effective contact area diameter (consider 1:2 dispersion from spiggot) Spigott Projection > 30mm Bolt Dia No of Bolts per component Bolt flange thickness No of sealing rings Total thickness of ring Clearance between top edge of pot wall and bottom edge of piston Vertical face of piston wall PTFE size (dia) PTFE size (thickness) Height of Guide Bar Width of Guide Bar Length of piston flat Slide Stainless steel Plate (Length) Slide Stainless steel Plate (Width) Slide Stainless steel Plate (Thickness) Neoprene pad stress PTFE stress (working) Steel stress (working) for design fy for the mild steel b. Design Requirements

= = = = = = = = = = = = = = = = = = = = = = = = = = = = =

224 20 40 384 224 40 40 35 362 43 28 8 12 2 4

mm mm mm mm mm mm mm mm

OK

Ref : Cl 926.2.3.6 of IRC83(III)

Cl 926.3.1.1.6.1 of IRC83(III)

mm Spigot projection

mm mm mm mm Nos mm

Neoprene pad

Pot 8 mm

10 mm 8 224 4.5 28 50 312 350 350 36 35 40 340 250

mm mm mm mm mm mm mm mm mm Mpa Mpa Mpa Mpa

Thk>=4.5 mm

pad thk 10

43 40

Ref: Table 4 of IRC:83 (Part-III)-2002

NA OK Cl 926.2.3.2 of IRC-83(III) Cl 926.2.4.3 of IRC-83(III) Grade-340-570W as per IS-1030

Longitudinal movement Transverse movement Rotation (total)

= = =

0.00 mm 5.45 mm 0.00566 Radians

Rotation (Permanent actions) WL2/(24EI)

=

0.00342 Radians

Cl 926.1.6 of IRC-83(III)

Rotation (Variable actions) WL2/(24EI)

=

0.00224 Radians

Cl 926.1.6 of IRC-83(III)

C. Calculation for permissible stresses in pedestal concrete & bottom flange: Grade of concrete for Pedestal = M 40 Permissible direct compressive Stress in = 10 As per cl 926.2.1.1 of IRC-83(III) concrete= 0.25* fck The projection of the adjacent structure beyond the loaded area shall NOT be less than 150mm Bottom: Dia of loaded area = 224 mm

Top:

Loaded Area A2 Dia after dispersion(1:2)

= =

39408.1382 mm2 304 mm

Dispersion Area A1 Permissible concrete stress =0.25fck* √(A1/A2)

=

72583.3567 mm2

=

13.57 Mpa

=

187.5 Mpa

Permissible bearing stress in bottom flange (= 0.75*fy)

d. Neoprene Pad stress:

Ref: Clause 926.2.3 of IRC:83(III)-2002 Non-Seismic

Cl 926.2.1.1 of IRC-83(III)

Seismic

20

Bearing Pedestal

Actual Stress (Mpa) Maximum Permissible Average stress (Mpa) Minimum Permissible Average stress (Mpa)

=

Min Max 28.83 26.89

Min max 31.05 24.67

=

35.00

35.00

35.00

=

5.00

5.00

5.00

OK OK Rotaion check on pad ( Ref: clause 926.2.3.4 of IRC:83 (Part III) = Rotaiton of pad 0.0057 Radians Deforamtion of pad due to = 0.63 mm rotation he,eff (as per Figure) = 16.00 mm Check OK

OK

PTFE stress: Actual (Mpa) 28.82 Permissible (Mpa) 40.00 Ratio Actual:Permissible 0.72 Coeffecient of friction (μ): Ref: Table 5 of IRC:83 (part-III)-2002

Average Pressure on confined PTFE (Mpa) 5 10 20 more than 30

Average Pressure on PTFE (Mpa) Coeffecient of friction (μ)

Maximum Coeffecient of friction 0.08 0.06 0.04 0.03

= =

26.87 40.00 0.67

Maximum Design Coeffecient of friction 0.16 0.12 0.08 0.06 Non-Siesmic Min Max 28.82 26.87 0.08 0.08

35.00

Ref : clause 926.2.3.2 and clause 926.2.3.5 of IRC:83(Part -III)

5.00 Ref : clause 926.2.3.3 of IRC:83(Part -III) OK

OK

he

he,eff

< he,eff * 0.15

31.03 40.00 0.78

24.66 40.00 Ref: Cluse 926.2.4.3 & 926.2.4.4 of IRC-83(III) 0.62 OK

Ref: Clause 926.2.4.2 of IRC:83 (Part-III)-2002

Siesmic Min max 31.03 24.66 0.06 0.08

Concentrated stresses at pot base: As per Clause 926.1.5: For design of bearings or part thereof and the adjacent structures the resultant of the coexisting moments prodeiced due to design horizontal force and that induced due to resistance to rotation shall be considered. Seismic Non-Seismic Min Min Max max Direct Bearing Stress due to Vertical Load (Mpa) 9.81 9.14 10.56 8.39 Direct Bearing Stress = i) Permissible stress (Mpa) = 13.57 13.57 16.96 16.96 cl 926.2.1.4 of IRC-83(III) Increase by 25% when wind or Actual : Permissible = 0.72 0.67 0.62 0.49 OK earthquake taken into account

Flexural Stress due to active Moment resulting from acting Horizontal Forces eccentricity (mm), From the = 64.00 64.00 64.00 64.00 bottom of bearing Flexural Stress (Mpa) = 1.67 1.56 1.64 1.43 Flexural Stress due to induced Moment resulting from resistance to rotation due to the iii) effect of tilting stiffness of elastomeric pressure pad 3 Me.d = di * (k1.Ѳp + k2.Ѳv) Ref: Cl 926.1.5.1 of IRC-83(III) = 224.00 224.00 224.00 224.00 di (dia of elastomeric pad, mm) he (thickness of confined = 20.00 20.00 20.00 20.00 elastomeric pressure pad,mm) di/he = 11.20 11.20 11.20 11.20 iii-1) k1 = 1.64 1.64 1.64 1.64 Ѳp (radians) = 0.0034 0.0034 0.0034 0.0034 k2 = 39.93 39.93 39.93 39.93 Ѳv (radians) = 0.0022 0.0022 0.0022 0.0022 Me.d (KN-m) = 1.07 1.07 1.07 1.07 MR.d = 0.2*C*H Ref: Cl 926.1.5.2 of IRC-83(III) ii)

C (mm), Perpendicular distance iii-2) from the point of action of horizontal force on cylinde wall to the axis of rotation H (KN) MR.d (KN-m) Total induced moment iii-3) = Me,d + MR,d (KN-m) iii-4) Stress (Mpa) Total flexural Stress (Mpa) iii-5) Permissible stress (Mpa) Actual : Permissible Total Stress (Mpa) iii-6) Permissible stress (Mpa) Actual : Permissible Coexisting Direct & Flexural iv) Stress Ratio > 1

=

112.00

112.00

112.00

112.00

= =

145.45 3.26

135.61 3.04

142.61 3.19

124.46 2.79

=

4.33

4.11

4.26

3.86

= = = = = = = = =

0.78 0.74 0.77 2.45 2.30 2.41 13.20 13.20 16.50 0.19 0.17 0.15 12.26 11.44 12.97 13.57 13.57 16.96 0.90 0.84 0.76 Ref: Cl 926.2.1.3 of IRC-83(III) 0.91 0.85 0.77

Horizontal force acts at the center line of bearing

0.69 2.13 16.50 Ref: Cl 926.2.1.2 & Cl 926.2.1.4 of IRC-83(III) 0.13 OK 10.52 16.96 cl 926.2.1 & cl 926.2.1.4 of IRC-83(III) 0.62 OK 0.62

Concentrated stresses at piston base:

OK

OK

Ref: Cl 926.1.5 of IRC-83(III) Siesmic Non-Siesmic Min Min Max max Direct Bearing Stress due to Vertical Load (Mpa) Direct Bearing Stress due to = 110.35 102.89 118.81 94.43 i Vertical Load (Mpa) = Permissible Stress (Mpa) 187.50 187.50 187.50 187.50 Cl 926.2.2.4 & cl 926.2.2.6 of IRC-83(III) Actual:Permissible 0.59 0.55 0.63 0.50 OK = Flexural Stress due to active Moment resulting from acting horizontal forces ii) eccentricity (mm) = 74.00 74.00 74.00 74.00 Stress (Mpa) = 2.31 2.15 2.27 1.98 iii) Stress due to induced moment from resistance to rotation Me.d = di3 * (k1.Ѳp + k2.Ѳv) Ref: Cl 926.1.5.1 of IRC-83(III) di (dia of elastomer pad, mm) = 224.00 224.00 224.00 224.00 he (thickness of confined elastomeric pressure pad in mm)

iii-1) di/he k1 Ѳp (radians) k2 Ѳv (radians) Me.d (KN-m) MR.d = 0.2*C*H C (mm) iii-2) H (KN) MR.d (KN-m) Total induced moment = Me.d + iii-3) MR.d (KN-m)

= = = = = = = = = = =

20.00

20.00

20.00

11.20 11.20 11.20 1.64 1.64 1.64 0.003 0.003 0.003 39.933 39.933 39.933 0.002 0.002 0.002 1.07 1.07 1.07 Ref: Cl 926.1.5.2 of IRC-83(III) 112.00 112.00 112.00 145.45 135.61 142.61 3.26 3.04 3.19

11.20 1.64 0.003 39.933 0.002 1.07

4.33

20.00

4.11

4.26

112.00 124.46 2.79 3.86

iii-4) Stress (Mpa) = Total flexural Stress (Mpa) = iii-5) Permissible stress (0.66fy) (Mpa) = Actual : Permissible = Total Stress (Mpa) = iii-6) Permissible Stress (Mpa) = Actual : Permissible = Coexisting Direct & Flexural Stress Check iv) Combined Stresses (Mpa) Permissible stress (0.9fy) (Mpa) Actual:Permissible

0.93 0.88 3.24 3.04 165.00 165.00 0.02 0.02 113.59 105.93 187.50 187.50 0.61 0.56 Cl 926.2.2.5 of IRC-83(III) 191.16 178.24 225.00 225.00 0.850 0.792

0.92 3.18 165.00 0.02 121.99 187.50 0.65

0.83 2.81 165.00 Cl 926.2.2.2 & cl 926.2.2.6 of IRC-83(III) 0.02 OK 97.23 187.50 Cl 926.2.2.4 & cl 926.2.2.6 of IRC-83(III) 0.52 OK

205.81 225.00 0.915

163.58 225.00 Cl 926.2.2.5 of IRC-83(III) 0.727 OK OK

Design of Pot Wall cl 926.3.1.1.7 of IRC-83(III) Non-Siesmic Min Max

Siesmic Min max

Check of Hoop Tensile stress i) Force from pad (KN per I section of ring) 129.18 120.45 ii) Pressure from Pad (P1) (Mpa) 40.37 37.64 iii)-a Total horizontal force into wall (KN) 145.45 135.61 Total horizontal stress into wall due to iii)-b horizontal force (P2) (Mpa) 45.45 42.38 iv) Total P = P1 + P2 (Mpa) 85.82 80.02 v) Permissible stress (0.6fy) (Mpa) 150.00 150.00 vi) Actual:Permissible 0.57 0.53 Shear stress at cylinder & base interface considering 1mm slice i) Fluid Pressure (P1) Mpa 14.42 13.44 ii) Horizontal Force (P2) Mpa 24.35 22.70 Total Shear Stress P = P1 + P2 (Mpa) 38.77 36.15 Permissible Stress (0.45fy) 112.50 112.50 Actual : Permissible 0.34 0.32 Bending Stress at cylinder & base interface considering 1mm slice i) Fluid Pressure (P1) Mpa 21.63 20.16 ii) Horizontal Force (P2) Mpa 87.66 81.73 Total Bending Stress (Mpa) P1 + P2 109.28 101.90 Permissible Stress (0.66fy) 165.00 165.00 Actual : Permissible 0.66 0.62 iii) Combined Stress (Mpa) 128.26 119.59 Permissible Stress (0.9fy) Mpa 225 225 Actual : Permissible 0.57 0.53 Check for Thickness of Pot in Bending-Bottom i) Max Vertical Load (KN) ii) Pot Base effective Contact Dia (mm) iii) Effective area of the Plate in contact to concrete (mm2) iv) Stress on Plate (N/mm2) Dia of loaded area (mm) Projection of pot (mm) Bending Moment at Top (N-mm) Thickness of top plate required to cater to this BM (mm) ix) Provided thickness (mm)

v) vi) vii) viii)

Non-Siesmic Min Max 1135.74 1058.97 384.00 384.00

139.09 43.46 142.61

110.54 Cl 926.3.1.1.7.1 (i) of IRC-83(III) 34.54 Cl 926.3.1.1.7.1 (ii) of IRC-83(III) 124.46

44.56 88.03 150.00 0.59

38.89 73.44 150.00 Cl 926.2.2 of IRC-83(III) 0.49 OK

15.52 23.87 39.40 112.50

12.34 20.84 33.17 112.50 Cl 926.2.2.3 of IRC-83(III)

0.35 23.28 85.95 109.23 165.00

0.66 128.79 225

0.57

0.29

OK

18.51 75.01 93.51 165.00 Cl 926.2.2.2 of IRC-83(III)

0.57

OK

109.76 225 Cl 926.2.2.5 of IRC-83(III) 0.49 OK OK

Siesmic Min max 1222.84 971.87 384.00 384.00

1.16E+05

1.16E+05 1.16E+05 1.16E+05

9.81 224.00 80.00 31397.69

9.15 10.56 8.40 224.00 224.00 224.00 80.00 80.00 80.00 29275.30 33805.65 26867.34

28.97

27.98

30.06

26.80

40.00

40.00

40.00

40.00

OK

OK

OK

OK

Neoprene pad Pot

stress = BM*6/(b*d2)=0.66*σ

OK

Check for Thickness of Piston in Bending-Top i) Max Vertical Load (KN) ii) Effective Dia of Piston (mm) iii) Effective area of the Top Plate in contact to steel/concrete (mm2) iv) Stress at Top Plate (N/mm) v) Dia of loaded area (mm) vi) Projection of piston (mm) vii) Bending Moment at Top (N-mm) viii) Thickness of top plate required to cater to this BM (mm) ix) Provided thickness (mm)

Non-Siesmic Min Max 1135.74 1058.97 362.00 362.00

Siesmic Min max 1222.84 971.87 362.00 362.00

1.03E+05

1.03E+05 1.03E+05 1.03E+05

11.04 224.00 69.00 2.63E+04

10.29 11.89 9.45 224.00 224.00 224.00 69.00 69.00 69.00 2.45E+04 2.83E+04 2.25E+04

26.51

25.60

27.51

24.52

35.00

35.00

35.00

35.00

OK

OK

OK

OK

OK

Miscellaneous Design Checks: Rotation Capacity cl 926.2.3 of IRC-83(III) i)

ii)

Check compression at edge of neoprene pad

15% of T1

T1 = thickness of pad less seal rings thickness

16.00 mm

Rotation (Radius)

2.40 mm Cl 926.2.3.4 of IRC-83(III) 0.02 radians

>=

0.0057 radians

OK Check on Piston rotaion gap: Ref: Clause 926.3.1.4 of IRC:83 (Part III)-2002 Clearance between top edge of pot wall and 10.00 mm bottom edge of piston Rotaion gap after rotation

0.0057 radians 9.14 mm

OK

Diameter & Thickness checks cl 926.2.3.6 of IRC-83(III) Thickness of pad i

20.00 mm

OK ii

Dia of pad

224.00 mm

OK

> 16 mm cl 926.2.3.6 of IRC-83(III) > 180 mm cl 926.2.3.6 of IRC-83(III)

Vertical Face of Piston required cl 926.3.1.3.1 of IRC-83(III) Effective contact Width of pistton and pot i) We = 1.3*(Seismic H Load)*1000/((Pot dia 1.5) * 0.75fy)

5.57 mm >

0.07

OK

22.50 2092.96 16.10 165.00 cl 926.2.2.2 of IRC-83(III) 0.10 OK 21.22 225.00 cl 926.2.2.5 of IRC-83(III) 0.09 OK

Siesmic Min max 142.61 124.46 84.00 84.00 20.00 20.00 1680.00 1680.00 8.00 8.00 17.83 15.56 10.61 9.26 153.00 153.00

0.07

0.07

0.07

0.06

=

90.9

84.7

73.4

77.7

=

110.0

110.0

110.0

=

0.84

0.78

0.68

0.72

=

36.00 OK

36.00 OK

36.00 OK

36.00 OK

OK

Check of Weld connection of stainless steel surface: Induced horizontal force due to friction(KN) Permissible stress of weld(Mpa) Weld size (mm), assuming welding is done in full periphery Thicknes of stainless plate (mm)

110.0 Clause 926.2.6.1 of IRC:83(Part III)-2002

OK Ref: Clause 926.3.1.5 of IRC:83 (Part -III)-2002

Size of weld with Bottom Flange: i) ii) iii) iv)

Horizontal Force over weld by bolts (KN) Permissible stress in weld (Mpa) Dia of welded area (mm) Size of weld required (mm)

Non-Siesmic Min Max 374.19 374.19 110.00 110.00 362.00 362.00 4.28 4.28

Siesmic Min max 374.19 374.19 110.00 110.00 Cl 926.2.6.1 of IRC-83(III) 362.00 362.00 4.28 4.28

v) Size of weld to be provided (mm)

6.00

6.00

6.00

6.00

Design of Pin Bearing Ref: Clause 923.3 of IRC:83 (Part III)-2002 Pin Bearing bear and transmit horizontal forces along any direction in the horizontal plane and accomaodatating rotational movement about any axis. Pin Bearing can NOT bear or transmit any vertical load. Design Load for pin bearing: V Hx Hy 0 1565.51 0.00 KN max H 1565.51 KN

a. Design Inputs: Dia of pin Neoprene Pad Size dia Neoprene Pad Thickness Pot Base Thickness Pot base effective dia (consider 1:2 dispersion from elastomer base) Pot Internal Dia Pot wall Depth =61mm Pot wall thickness Piston thickness above spigot Piston effective contact area diameter (consider 1:2 dispersion from spiggot) Spigott Projection > 70mm Bolt Dia No of Bolts per component Bolt flange thickness No of sealing rings Total thickness of ring Clearance between top edge of cylinder and bottom edge of piston Vertical face of piston wall Neoprene pad stress PTFE stress (working) Steel stress (working) for design fy for the mild steel

= = = =

272 294 20 50

mm mm mm mm

=

494 mm

= = = =

302 80 92 35

=

440 mm 70 32 12 12 0 0

=

10 mm 40 35 40 340 250

Ref : Cl 926.2.3.6 of IRC83(III) Ref: Cl 926.3.3.8 of IRC 83(III)

Cl 926.3.1.1.6.1 of IRC83(III)

mm mm mm mm

= = = = = =

= = = = =

OK OK

mm mm mm Nos mm

mm Mpa Mpa Mpa Mpa

10 80

40 Neoprene pad Pot

Cl 926.2.3.2 of IRC-83(III) Cl 926.2.4.3 of IRC-83(III) Grade-340-570W as per IS-1030

b. Design Requirements Longitudinal movement Transverse movement Rotation (total)

= = =

0.0 mm 0.0 mm 0.00566 Radians

Rotation (Permanent actions) WL2/(24EI)

=

0.00342 Radians

Cl 926.1.6 of IRC-83(III)

Rotation (Variable actions) WL2/(24EI)

=

0.00224 Radians

Cl 926.1.6 of IRC-83(III)

C. Calculation for permissible stresses in pedestal concrete & bottom flange: Grade of concrete for Pedestal = M 40 Permissible direct compressive Stress in = 10 As per cl 926.2.1.1 of IRC-83(III) concrete= 0.25* fck The projection of the adjacent structure beyond the loaded area shall NOT be less than 150mm Bottom: Dia of loaded area = 302 mm 2 Loaded Area A2 = 71631.4541 mm Dia after dispersion(1:2) = 402 mm Cl 926.2.1.1 of IRC-83(III) 2 Dispersion Area A1 = 126923.485 mm Bearing Permissible concrete stress = 13.31 Mpa =0.25fck* √(A1/A2) Pedestal Top:

Permissible bearing stress in bottom flange (= 0.75*fy)

=

187.5 Mpa

70 Spigot projection 20 pad thk

Rotaion check on Neoprene pad ( Ref: clause 926.2.3.4 of IRC:83 (Part III) = Rotaiton of pad 0.0057 Radians Deforamtion of pad due to = 0.83 mm rotation he,eff (as per Figure) = 20.00 mm Check OK

he

he,eff

< he,eff * 0.15

Concentrated stresses at pot base: As per Clause 926.1.5: For design of bearings or part thereof and the adjacent structures the resultant of the coexisting moments prodeiced due to design horizontal force and that induced due to resistance to rotation shall be considered. Direct Bearing Stress due to Vertical Load (Mpa)

i)

Direct Bearing Stress Permissible stress (Mpa) Actual : Permissible

= = =

0.00 13.31 cl 926.2.1.4 of IRC-83(III) 0.00 OK

Flexural Stress due to active Moment resulting from acting Horizontal Forces

ii) eccentricity (mm), From the bottom of bearing Flexural Stress (Mpa) MR.d = 0.2*C*H C (mm), Perpendicular distance from the point of action of iii-2) horizontal force on cylinde wall to the axis of rotation H (KN) MR.d (KN-m) Total induced moment iii-3) =MR,d (KN-m) iii-4) Stress (Mpa) Total flexural Stress (Mpa) iii-5) Permissible stress (Mpa) Actual : Permissible Total Stress (Mpa) iii-6) Permissible stress (Mpa) Actual : Permissible Coexisting Direct & Flexural Stress iv) Check Stress Ratio > 1

= =

90.00 11.90 Ref: Cl 926.1.5.2 of IRC-83(III)

=

0.00

= =

113.57 0.00

=

0.00

= = = = = = = = =

Concentrated stresses at piston base:

Horizontal force acts at the center line of bearing

0.00 11.90 13.20 Ref: Cl 926.2.1.2 & Cl 926.2.1.4 of IRC-83(III) 0.90 OK 11.90 13.31 cl 926.2.1 & cl 926.2.1.4 of IRC-83(III) 0.89 OK Ref: Cl 926.2.1.3 of IRC-83(III) 0.90 OK Ref: Cl 926.1.5 of IRC-83(III)

Direct Bearing Stress due to Vertical Load (Mpa)

Direct Bearing Stress due to i Vertical Load (Mpa) Permissible Stress (Mpa) Actual:Permissible ii)

iii-2)

iii-3) iii-4) iii-5)

iii-6)

= = =

0.00 187.50 Cl 926.2.2.4 & cl 926.2.2.6 of IRC-83(III) 0.00 OK

Flexural Stress due to active Moment resulting from acting horizontal forces

= eccentricity (mm) Stress (Mpa) = MR.d = 0.2*C*H = C (mm) H (KN) = MR.d (KN-m) = Total induced moment = Me.d + = MR.d (KN-m) Stress (Mpa) = Total flexural Stress (Mpa) = Permissible stress (0.66fy) (Mpa) = Actual : Permissible = Total Stress (Mpa) = Permissible Stress (Mpa) = Actual : Permissible = Coexisting Direct & Flexural Stress Check

iv) Combined Stresses (Mpa) Permissible stress (0.9fy) (Mpa) Actual:Permissible

85.00 15.91 Ref: Cl 926.1.5.2 of IRC-83(III) 0.00 113.57 0.00 0.00 0.00 15.91 165.00 Cl 926.2.2.2 & cl 926.2.2.6 of IRC-83(III) 0.10 OK 15.91 187.50 Cl 926.2.2.4 & cl 926.2.2.6 of IRC-83(III) 0.08 OK Cl 926.2.2.5 of IRC-83(III) 15.91 306.00 Cl 926.2.2.5 of IRC-83(III) 0.052 OK

Design of Pot Wall

(Ref: Clause 926.3.3.7 of IRC-83(III)

Check of Hoop Tensile stress

Total horizontal force into wall (KN) Total horizontal stress into wall due to horizontal force (Mpa) Permissible stress (0.6fy) (Mpa) Actual:Permissible

1565.51 106.35 204.00 Cl 926.2.2 of IRC-83(III) 0.52 OK

Shear stress at cylinder & base interface considering 1mm slice

Shear stress at Cylinder wall, Mpa Permissible Stress (0.45fy) Actual : Permissible

84.52 Mpa 153.00 Cl 926.2.2.3 of IRC-83(III)

0.55 OK

Bending Stress at cylinder & base interface considering 1mm slice

bending stress at Cylinder wall Permissible Stress (0.66fy) Actual : Permissible Combined Stress (Mpa) Permissible Stress (0.9fy) Mpa Actual : Permissible

220.48 Mpa 224.40 Cl 926.2.2.2 of IRC-83(III)

0.98 OK 264.66 306 Cl 926.2.2.5 of IRC-83(III) 0.86 OK OK

Check on mating Interface

(Ref: Clause 926.3.3.2 of IRC:83 (Part III)-2002 The contact surface of the pin shall be provided with a radius of curvature equal to the radius of the pin and the contact surface of the cylinder shall be provided with a radius of curvature equal to the inner radius of the cylinder. Dn =Dia of pin = 300 mm Dc = Dia of inner face of cylinder = 302 mm Horizontal surface at the contact of mating surface σp,Hertz = 0.6* *,H*Es/(We* Dc)-*(1-Dn/Dc)+^0.5 H (Design Horizontal Force ) Es (Modulus of Elasticity of steel) We(Eff Contact width of contact surface) σp,Hertz Permissible bearing capacity ( Ref: clause 926.2.2 of IRC:83) Check

= = =

= = =

1565511.42 N 200000 Mpa 40 mm

248.58 Mpa 255 Mpa OK

Check on Piston rotaion gap: Ref: Clause 926.3.3.3 of IRC:83 (Part III)-2002 Initial gap between top edge of cylinder and 10.00 mm bottom edge of piston Rotaion 0.0057 radians gap after rotation 8.65 mm

OK Bolt Design, Ref: Clause 926.3.3.4 of IRC-83(III) Direct BM due to Horizontal Force = Induced BM due to resistance of rotation = Total BM = No. of bolts used = Bolt Diameter = Cross Sectional Area of one Bolt =

140.90 0.00 140.90 12 32.00 803.84

KN.m KN.m KN.m Nos mm mm2

Distance of Bolts from Center line Angle subtanded by bolts( in multilpe of )

r1

=

253

mm

r2

=

219.1044

mm

r3

=

126.5

mm

r3

=

1.55E-14

mm

r4

=

-126.5

mm

r5

=

-219.1

mm

∑r^2

=

= = r 0 506 33.89557 472.1044 126.5 379.5 253 253 379.5 126.5 472.1044 33.89557

30 Degree 0.5236 Radians r^2 0.00 256036.00 1148.91 222882.59 16002.25 144020.25 64009.00 64009.00 144020.25 16002.25 222882.59 1148.91 1152162.00

Max axial Stress at extreme bolt due to bending moment (σtf,cal)

=

76.98 N/mm2

Shear Stress due to Horizontal Force (τvf,cal)

=

162.30 N/mm2

permissible Axial stress (σtf) Permissible Shear stress (τtf)

= =

286.00 N/mm2 190.00 N/mm2

Check LHS

(σtf,cal) (σtf) 0.269154

+ + =

(τvf,cal) (τtf) 0.854185 1.123338

=

0.0057 radians

OK Diameter & Thickness checks cl 926.2.3.6 of IRC-83(III) i)

D/T ratio of neoprene pad

14.70

16 mm cl 926.2.3.6 of IRC-83(III) > 180 mm cl 926.2.3.6 of IRC-83(III)

Vertical Face of Piston required cl 926.3.1.3.1 of IRC-83(III) Effective contact Width of pistton and pot We = 1.3*(Seismic H Load)*1000/((Pot dia - 1.5) * 0.75fy)

i)

27.09 mm =4.5 mm Length should be to accommodate Ref: Table 4 of theIRC:83 long displacement. (Part-III)-2002

Cl 926.2.3.2 of IRC-83(III) Cl 926.2.4.3 of IRC-83(III) Grade-340-570W as per IS-1030

C

b. Design Requirements Longitudinal movement Transverse movement Rotation (total)

= = =

21.79764 mm 0.00000 mm 0.00566 Radians

Cl 926.1.6 of IRC-83(III)

C. Calculation for permissible stresses in pedestal concrete & bottom flange: Grade of concrete for Pedestal = M 40 Permissible direct compressive Stress in = 20 As per cl 926.2.1.1 of IRC-83(III) concrete= 0.25* fck The projection of the adjacent structure beyond the loaded area shall NOT be less than 150mm Bottom:

Loaded Area A2 Available Pedestal Size Dispersion Area A1 Permissible concrete stress =0.25fck* √(A1/A2) Permissible bearing stress in bottom flange (= 0.75*fy)

Top:

= = =

330625 mm2 725 mm 525625 mm2

=

12.61 Mpa

=

187.5 Mpa

Cl 926.2.1.1 of IRC-83(III)

PTFE stress: Actual (Mpa) 33.19 Permissible (Mpa) 40.00 Ref: Cluse 926.2.4.3 & 926.2.4.4 of IRC-83(III) Ratio Actual:Permissible 0.83 OK Coeffecient of friction (μ): Ref: Table 5 of IRC:83 (part-III)-2002

Average Pressure on confined PTFE (Mpa) 5 10 20 more than 30

Maximum Maximum Design Coeffecient Coeffecient of friction of friction 0.08 0.16 0.06 0.12 0.04 0.08 0.03 0.06

Coefficient of Friction Between Steel plate and PTFE

=

Ref: Clause 926.2.4.2 of IRC:83 (Part-III)-2002

0.06

Concentrated stresses at pot base:(At concrete pedastal) As per Clause 926.1.5: For design of bearings or part thereof and the adjacent structures the resultant of the coexisting moments prodeiced due to design horizontal force and that induced due to resistance to rotation shall be considered. Direct Bearing Stress due to Vertical Load (Mpa) 0.00 Direct Bearing Stress = Permissible stress (Mpa) = 20.00 cl 926.2.1.4 of IRC-83(III) Actual : Permissible = 0.00 OK Flexural Stress due to active Moment resulting from acting Horizontal Forces ii) eccentricity (mm), From the 152.50 bottom of bearing = Flexural Stress (Mpa) = 15.07 Permissible stress (Mpa) = 16.50 Ref: Cl 926.2.1.2 & Cl 926.2.1.4 of IRC-83(III) Actual : Permissible = 0.91 OK i)

Concentrated stresses at piston base: Ref: Cl 926.1.5 of IRC-83(III) Direct Bearing Stress due to Vertical Load (Mpa) Direct Bearing Stress due to 0.00 i) Vertical Load (Mpa) = Permissible Stress (Mpa) = 187.50 Cl 926.2.2.4 & cl 926.2.2.6 of IRC-83(III) Actual:Permissible OK = 0.00 Flexural Stress due to active Moment resulting from acting horizontal forces ii) = 152.50 eccentricity (mm) Stress (Mpa) = 13.54 Permissible stress (0.66fy) (Mpa) = 165.00 Cl 926.2.2.2 & cl 926.2.2.6 of IRC-83(III) Actual : Permissible = 0.08 OK

Design of T Wall cl 926.3.1.1.7 of IRC-83(III) Shear stress at base of T part Total horizontal force into wall (KN) Total horizontal stress into wall due to i horizontal force (P) (Mpa) Permissible stress (0.45fy) (Mpa) Actual:Permissible bending Stress at base of T part bending Stress at base of T part Permissible Stress (0.66fy) ii)

1565.51 30.25 153.00 Cl 926.2.2 of IRC-83(III) 0.20 OK 115.96 224.40 Cl 926.2.2.2 of IRC-83(III)

ii)

iii)

0.52

Actual : Permissible Combined Stress (Mpa) Permissible Stress (0.9fy) Mpa Actual : Permissible

OK

127.25 306 Cl 926.2.2.5 of IRC-83(III)

0.42

Check for Thickness of Pot in Bending-Bottom i) Eccentricity from center of pot base ii Horizontal force iii Bending momet acting at the center of pot base iv Bending stress at face of pot wall v permissible bending stress (0.66*fy)

Check for Thickness of Piston in Bending-Top i) Eccentricity from center of pot base iii) Horizontal force iv) Bending momet acting at the center of pot vi) Bending stress at face of pot wall vii) permissible bending stress (0.66*fy)

OK

OK

105 mm 1565.51 KN 164378.70 KN.m 190.06 N/mm2 224.40 OK

105.00 1.57E+03 164378.70 170.75 224.40

mm KN KN.m N/mm2

OK Miscellaneous Design Checks: Check on Piston rotaion gap: Ref: Clause 926.3.1.4 of IRC:83 (Part III)-2002 Clearance between Bottom of Top Plate and 10.00 mm Top of T part Rotaion 0.0057 radians gap after rotation 8.19 mm

OK Bolt Design, Ref: Clause 926.2.5 of IRC-83(III) i) Total horizontal force acting (KN) Contribution to resistance by bolts (F1) No. of bolts used Bolt Diameter(mm) ii) Cross Sectional Area of one Bolt (mm2) Total cross sectional area of bolts (mm2) Shear strength of Bolt Gr 8.8 Total Shear Force Offered By the Bolts (F1)

1565.51 16 32.00 643.07 10289.15 190.00 1954.94

OK Additive Checks on components Sliding Capacity of stainless steel Slide Plate dimension used: i) Length Width ii) Preset in longitudinal direction iii) Movement possible in long direction

= = = =

Stress into Lugs because of Horizontal Force i) Total horizontal force on bearing (KN) ii) Effective length of lug taking shear (mm) iii) Thickness of lug (mm) iv) Total cross sectional area of each lug (mm2) v) No. of lugs in each bearing vi) Horizontal force on each lug (KN) vii) Stress on lug due to Horz. Force (Mpa) viii) Permissible Stress (0.45fy) ix) Actual : Permissible

620.00 90.00 0.00 32.50

mm mm mm mm

>

21.80

1565.51 96.00 20.00 1920.00 16.00 97.84 50.96 153.00

0.33

OK

Check of Weld connection of stainless steel surface: Induced horizontal force due to friction(KN) Permissible stress of weld(Mpa) Weld size (mm), assuming welding is done in full periphery Adopted Weld size Thicknes of stainless plate (mm)

= = = = =

93.9 110.0 Clause 926.2.6.1 of IRC:83(Part III)-2002 0.86 3.00 mm 20.00 OK Ref: Clause 926.3.1.5 of IRC:83 (Part -III)-2002

mm

OK

Loading on Bearings:

No of Girders Deck width A. Vertical Loading(Ref: Design sheet "Final Stresses" for item 1,2,3,4 & "Other Loads" for item 5(a,b),6 Dead Load reaction Superimposed Load reaction Live Load Centrifigal Load Seismic Load due to vertical Force Load, Load due to horizontal Force Load due to vertical Force Wind Load due to horizontal Force Load, B. Horizontal Loading (Ref:Design sheet "XFrame Des"), on complete deck (i) Transverse Laoding (x-dirn) Centrifugal Force Wind load Seismic load Ref: Design sheet: (Ref: Design Sheet " Shear_Connect."), force on full deck (ii) Longitudinal Loading (y direction) Breaking Force Wind Force Seismic Load

For Span

= Ipermnnt Itmpry As Ac 4 4 9900 10100

SF/End Reaction (KN)

SF/End Reaction (KN)

18 m = = = = 5 11800 SF/End Reaction (KN)

5 12900 SF/End Reaction (KN)

6 13400 SF/End Reaction (KN)

For Span

6 14800 SF/End Reaction (KN)

= Ipermnnt Itmpry As Ac 4 4 9900 10100

SF/End Reaction (KN)

351.369 206.213 380.532 48.503 51.918 70.560 27.060 30.847

SF/End Reaction (KN)

359.2438 331.4345 280.6497 48.50281 68.82344 91.5279 27.60697 30.84684

= = = =

24 m 6.1314E+10 7.6594E+10 64120 680000 5 5 11800 12900

SF/End Reaction (KN)

343.569 283.331 286.329 32.335 61.655 67.836 25.803 20.565

Force (KN) Force (KN) Force (KN)

253.0934 253.0934 253.093 251.8485 251.8485 251.848 1046.696 1317.175 1449.090

Force KN)

Force KN)

For Span mm4 mm4 mm2 mm2 6 13400

SF/End SF/End Reaction Reaction (KN) (KN)

363.369 211.493 539.556 53.741 53.744 62.379 28.208 20.565

334.619 145.877 491.920 38.387 44.138 43.982 24.418 14.689

6 14800 SF/End Reaction (KN)

= Ipermnnt Itmpry As Ac 4 4 9900 10100

SF/End Reaction (KN)

SF/End Reaction (KN)

352.119 320.093 425.145 38.387 67.657 64.819 26.969 14.689

Force (KN) Force (KN) Force (KN) Force (KN) Force (KN)

420.641 420.641 420.641 251.848 251.848 251.848 1433.865 1418.295 1982.755

Force KN)

Force KN)

Force KN)

Force KN)

200 200 200 62.96212 62.96212 62.96212 314.0087 395.1525 434.727

235.362 62.962 430.160

235.362 62.962 425.488

235.362 62.962 594.826

Force KN)

Force KN)

30 m

For Span

= = = = 5 11800 SF/End Reaction (KN)

5 12900 SF/End Reaction (KN)

6 13400 SF/End Reaction (KN)

6 14800 SF/End Reaction (KN)

= Ipermnnt Itmpry As Ac 4 4 9900 10100

SF/End Reaction (KN)

SF/End Reaction (KN)

36 m = = = = 5 11800 SF/End Reaction (KN)

5 12900 SF/End Reaction (KN)

6 13400 SF/End Reaction (KN)

Force (KN) Force (KN) Force (KN) Force (KN) Force (KN) Force (KN) Force (KN) Force (KN) Force (KN)

Force KN)

Force KN)

Force KN)

Force KN)

Force KN)

Force KN)

Force KN)

Force KN)

Force KN)

6 14800 SF/End Reaction (KN)

Force (KN)

Force KN)

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF