Filtered Backprojection Algorithm in MATLAB.ppt

March 19, 2019 | Author: sultanprince | Category: Fast Fourier Transform, Matlab, Signal Processing, Matrix (Mathematics), Trigonometric Functions
Share Embed Donate


Short Description

Download Filtered Backprojection Algorithm in MATLAB.ppt...

Description

The Filtered Backprojection  Algorithm in MATLAB Greg Gallardo 51:185

Filtered Backprojection Algorithm 1.

Measure the family of projections    1,2,..., K ; n  1,2,..., N 

 P  n  , i   i

 K  =

# of projections (angles),  N =# =# of rays (detector size)

2.

Perform FFT[ P  n , i  1,2,..., K  ]

3.

Multiply FFT[  P  n   ] by FFT[ hn   ].

4.

Perform IFFT[ product from step 3]

5.

Perform backprojection as:

 i

  i

 f   x, y  

 

 K 

sin n    Q  x cos   y si   K   i

i 1

i

i

1) Measure the family of projections 

[R,Xp] = RADON(...) returns two variables 



Matrix R  – columns are the Radon transform for the angles . Rows are detector position Vector Xp - containing the radial coordinates corresponding correspondi ng to each row of R.

1) Measure the family of projections 

Function parameters



size(): gets N and K



nextpow2(): get width for FFT

2) Perform FFT[  P  n , i  1,2,..., K  ]  i

 

MATLAB stands for MAT for MATrix rix LAB LABoratory oratory Matrix operations are faster than visiting each element in a loop.

3) Multiply FFT[



 P  n    



Backprojection Backprojec tion filters 







Shepp-Logan: Ram-Lak multiplied by sinc function (see iradon help) Cosine: Ram-Lak multiplied by cosine Hamming: Ram-Lak multiplied by Hamming window

Hanning, Blackman, etc.

i

]

by FFT[



h n 



]

3) Multiply FFT[



 P  n    



i

]

by FFT[



h n 

Ram-Lak, Shepp-Logan and Cosine filters in frequency domain



]

3) Multiply FFT[



 P  n    



i

]

by FFT[

FIR Filters. Commonly used Windows

Figure from “Discrete-Tim Timee Signal Processing”, Oppenheim & Schafer, Prentice-Hall



h n 



]

3) Multiply FFT[



]

w[n]

1,  0,

 P  n    











Rectangular 

Hanning (von Hann)

Blackman

w[n]

w[ n] 

by FFT[ 0

w[ n]

n



h n 

  M ,

otherwise

2n /  M ,  w[ n]  2  2n /  M  , 0, 

Bartlett (triangular)

Hamming

i

0

  M  / 2  M  / 2  n   M  n

otherwise

0.5  0.5 cos( 2  n /  M  ),  0,

0.54  0.46 cos( 2  n /  M  ),  0,

0

n

  M ,

otherwise

0

n

  M ,

otherwise

0.42  0.5 cos( 2  n /  M  )  0.08 cos( 4  n /  M  ), 0  n   M ,  otherwise 0,

from “Discrete-Time Signal Processing”, Oppenheim & Schafer, Sch afer, Prentice-Hall



]

3) Multiply FFT[



 P  n     i

]

by FFT[



h n 



]

3) Multiply FFT[



 P  n     i

]

by FFT[



h n 



]

3) Multiply FFT[



 P  n    



i

]

by FFT[

Filter step. Element by element multiplication

4) IFFT[product from step 3]



h n 



]

5) Perform Backprojection as:  f   x, y  

 

 K 

sin n    Q  x cos   y si   K   i

i 1

i

i

Results

Results

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF