Filtered Backprojection Algorithm in MATLAB.ppt
Short Description
Download Filtered Backprojection Algorithm in MATLAB.ppt...
Description
The Filtered Backprojection Algorithm in MATLAB Greg Gallardo 51:185
Filtered Backprojection Algorithm 1.
Measure the family of projections 1,2,..., K ; n 1,2,..., N
P n , i i
K =
# of projections (angles), N =# =# of rays (detector size)
2.
Perform FFT[ P n , i 1,2,..., K ]
3.
Multiply FFT[ P n ] by FFT[ hn ].
4.
Perform IFFT[ product from step 3]
5.
Perform backprojection as:
i
i
f x, y
K
sin n Q x cos y si K i
i 1
i
i
1) Measure the family of projections
[R,Xp] = RADON(...) returns two variables
Matrix R – columns are the Radon transform for the angles . Rows are detector position Vector Xp - containing the radial coordinates corresponding correspondi ng to each row of R.
1) Measure the family of projections
Function parameters
size(): gets N and K
nextpow2(): get width for FFT
2) Perform FFT[ P n , i 1,2,..., K ] i
MATLAB stands for MAT for MATrix rix LAB LABoratory oratory Matrix operations are faster than visiting each element in a loop.
3) Multiply FFT[
P n
Backprojection Backprojec tion filters
Shepp-Logan: Ram-Lak multiplied by sinc function (see iradon help) Cosine: Ram-Lak multiplied by cosine Hamming: Ram-Lak multiplied by Hamming window
Hanning, Blackman, etc.
i
]
by FFT[
h n
]
3) Multiply FFT[
P n
i
]
by FFT[
h n
Ram-Lak, Shepp-Logan and Cosine filters in frequency domain
]
3) Multiply FFT[
P n
i
]
by FFT[
FIR Filters. Commonly used Windows
Figure from “Discrete-Tim Timee Signal Processing”, Oppenheim & Schafer, Prentice-Hall
h n
]
3) Multiply FFT[
]
w[n]
1, 0,
P n
Rectangular
Hanning (von Hann)
Blackman
w[n]
w[ n]
by FFT[ 0
w[ n]
n
h n
M ,
otherwise
2n / M , w[ n] 2 2n / M , 0,
Bartlett (triangular)
Hamming
i
0
M / 2 M / 2 n M n
otherwise
0.5 0.5 cos( 2 n / M ), 0,
0.54 0.46 cos( 2 n / M ), 0,
0
n
M ,
otherwise
0
n
M ,
otherwise
0.42 0.5 cos( 2 n / M ) 0.08 cos( 4 n / M ), 0 n M , otherwise 0,
from “Discrete-Time Signal Processing”, Oppenheim & Schafer, Sch afer, Prentice-Hall
]
3) Multiply FFT[
P n i
]
by FFT[
h n
]
3) Multiply FFT[
P n i
]
by FFT[
h n
]
3) Multiply FFT[
P n
i
]
by FFT[
Filter step. Element by element multiplication
4) IFFT[product from step 3]
h n
]
5) Perform Backprojection as: f x, y
K
sin n Q x cos y si K i
i 1
i
i
Results
Results
View more...
Comments