Feedstock Recycling and Pyrolysis of Waste Plastics
Short Description
Download Feedstock Recycling and Pyrolysis of Waste Plastics...
Description
Feedstock Recycling and Pyrolysis of Waste Plastics:
Ref
Converting Waste Plastics into Diesel and Other Fuels
Edited by
JOHN SCHEIRS ExcelPlas Australia and
WALTER KAMINSKY University 01 Hamburg, Germany
WILEY SERIES IN POLYMER SCIENCE
~
Tn]'n Wi]"" flo Cn.n" T ~rl
;ontents ontributors ", eries Preface ' . . reface ., .. , .. bout the Editors
.. , . " " . , ..,.,...., ,.,., , . , . , ,.,..,.,.,
... ... .,. .,.
",." ,.,.. ,.,., ,,,.'
.... ,,... ,,.,. ,,.,,
xix
,.,.",.,.",." ,.' .,,.,,..,,.,, , , . , .... ' .. , . , . , .,.,,......,.,..
xxiii
xxv
xxix
INTRODUCTION 1
1 "'"
Introduction to Feedstock Recycling of Plastics .. , . , , , . , , , . ,
3
A. Buekens
Abbreviations 1 Introduction.".,., '. , . , . . , . . , . , . , . , . . , , . . . . , . , 2 Nomenclature,.,.,.,., .. " . , .. "",." .. ,., .. 3 Pyrolysis of Plastics and Rubber , . , .. , . , . , . , ... , . , , . 3.1 Survey of Previous Work, .. , , , .. , . , .. 3.2 Produets from Polymers, . , . , .. , , . , , . , .. , .. 3.3 Hetero-atoms and Side Products . , . , . , . , . ' . , . ' , . 3.4 Fundamentals", .. " .. , . , . , . , . , . , . " " . " 3.5 Value of the Resulting Products, ... , ... , . , . , , , , , 4 Feedstock Recycling , .. , . , . , . , . , . , . , , . , . , 4.1 Survey,.,.,., , .. , .. , . , . , . , . , . ' , . ' .. 4.2 Problems with Hetero-atoms , . , , . , . , . , . , . , , .... 4.3 Collection Systems . , .. , . , , . , . , , .. , . , .. , . , .. 4.4 Logistics of Supply. , .. , , , , , , , . , . , .. , .. , . , .. 5 Some Feasible Processes , . , .... , , , , . , .. , .. , .. , , .. 5.1 Pilot and Industrial Plant Operation . , . , . , . , .... , , 5,2 Conclusions, .... ,." .. , . , . , . , . " , . , .. ,.,. 6 Waste management , . , , ... , .. , .. , . , . , . , . , . , .. , .. 6,1 Principles",.""."., .. ,.,.,." .. ,." .. 6.2 Plastics Waste .. , . , . , , : , . , . , .. , . , , , . , .. 6.3 Rubber Waste ,.,., , . , . , . , . " , .. '., , . 6.4 Plastics Pyrolysis as a Waste Management Option .',. 7 Conclusions,..,...,."."".,.,."....,..,." References
.
3
3
4
6
7
8
15
18
20
22
22
23
24
25
27
27
32
32
32
33
35
35
39
40
CONTENTS
CATALYTIC CRACKING 2
43
Acid-Catalyzed Cracking of Polyolefins: Primary Reaction
Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
45
Robert L. White
I 2 3 4
Introduction... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Polyethylene Cracking. . . . . . . . . . . . . . . . . . . . . . . . . Polystyrene Cracking Hydrocracking Processes . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 PE-PtHZSM-5............................ 4.2 PE-PtHy _. . . . . . . . . . . . . . . . . . 4.3 PE-PtHMCM-4I.......................... 5 Conclusions.................................. Refereuces
3
Catalytic Upgrading of Plastic Wastes
45
46
54
60
60
63
63
67
67
.
73
Introduction... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 Catalytic versus Thermal Cracking. . . . . . . . . . . . . . . 1.2 Plastics Susceptible to Upgrading by Catalytic Cracking 1.3 Products Deri,Jci from the Catalytic Cracking . . . . . . . Catalytic Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Homogeneous Catalysts. . . . . . . . . . . . . . . . . . . . . . 2.2 Heterogeneous Catalysts Reactors .... _.. .. .. .. .. . . .. .. .. .. . .. .. .. .. .. 3.1 Batch/Semi-batch Reactors. . . . . . . . . . . . . . . . . . . . 3.2 Fixed-bed Reactors. . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Fluidized-bed Reactors .. 3.4 Spouted-bed Reactors . . . . . . . . . . . . . . . . . . . . . . . 3.5 Screw Kiln Reactors . . . . . . . . . . . . . . . . . . . . . . . . Influence of the Main Operation Variables. . . . . . . . . . . . . . 4.1 Temperature............................. 4.2 Catalyst Amount 4.3 Time.................................. 4.4 Plastics Waste Composition .. . . . . . . . . . . . . . . . . . Processes ......... _.. . .. .. .. .. .. .. .. .. .. .. .. 5.1 Direct Catalytic Cracking. . . . . . . . . . . . . . . . . . . . . 5.2 Thermal Degradation and Subsequent Catalytic Upgrading Related Technologies: Coprocessing . . . . . . . . . . . . . . . . . . 6.1 Coal.................................. 6.2 Petroleum Cuts 6.3 Solvents................................
73
74
77
78
79
79
79
85
86
86
88
90
91
92
93
94
95
95
96
97
99
101
101
102
103
1 Aguado, D. P. Serrano and J. M. £Scola
I
2
3
4
5
6
an
CONTENTS
vii
4
Thennal and Catalytic Conversion of Polyolefins lerzy Walendziewski
111
I 2 3 4 5
Introduction.............. . . . . . . . . . . . . . . . . . . . . General Scheme of Waste Polyolefin Processing. . . . . . . . . . Waste Plastics Suitable for Cracking and Pyrolysis. . . . . . . . Mechanism of Cracking Processes ,. Waste Plastics Processing. . . . . . . . . . . . . . . . . . . . . . . . . 5.1 Catalytic and Thermal Cracking Processes: Typical.
Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Coprocessing of Waste Plastics with Other Raw Materials 6 Reactor Design 7 Pilot Plants and Commercial Plants . . . . . . . . . . . . . . . . . . 8 Economic Aspects _. . . . . . . . . . . . . . . . . References ...,..................
III
112
113
II 3
lIS
Thennal and Catalytic Degradation of Wasle HDPE . . . . . . . . .
129
5
115
119
120
122
124
125
Kyong-Hwan Lee
6
I Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Theory of Plastics Pyrolysis. . . . . . . . . . . . . . . . . . . . . . . 3 Process Flow Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Total Mass Balance. , . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 ~ect of Temperatl'lre ,.................... 6 Effect of Catalyst. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Various Catalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Effect of Addition of Other Thermoplastics . . . . . . . . . . . . . 9 Fractional Distillation of Products . . . . . . . . . . . . . . . . . . . 10 Properties of Liquid Product. . . . . . . . . . . . . . . . . . . . . . . References ..........................
129
130
133
136
137
141
144
149
153
155
158
Development of a Process for the Continuous Conversion of
Waste Plastics Mixtnres to Fuel ..............
161
Takao Masuda and Teruoki Tago
I 2
3
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recovery of Heavy Oil from Waste Plastic . . . . . . . . . . . . . 2.1 Degradation of Various Plastics. . . . . . . . . . . . . . . . . 2.2 Catalytic Cracking of Waste Plastics Without Residue. . 2.3 Continuous Degradation of Waste Plastics Mixtures for
the Recovery of Heavy Oil. . . . . . . . . . . . . . . . . . . . Upgrading of Waste-plastics-derived Heavy Oil Over Catalysts 3.1 Catalytic Cracking of Heavy Oil over Solid-acid Catalysts 3.2 Production of High-quality Gasoline over REY Zeolites. 3.3 J(jnetics of the Catalytic Cracking of Heavy Oil over DCV '7""....l~t.'"
161
162
162
165
168
172
172
175
tRO
CONTENTS
viii
4
7
Continuous Production of Fuels from Waste Plastics. . . . . . . 4.1 Continuous Production of Fuels. . . . . . . . . . . . . . . . . References ............................
188
188
190
Catalytic Degradation of Plastic Waste to Fuel over Microporous
Materials :'. .
193
George Manos
I 2 3 4 5 6
8
Introduction.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Zeolites.................................... Polymer-to-catalyst Ratio. . . . . . . . . . . . . . . . . . . . . . . . . Initial Degradation Mechanism . . . . . . . . . . . . . . . . . . . . . Product Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1 Conversion,;Liquid Yield, Coke Content. . . . . . . . . . . 6.2 Characterization of GaseouslLiquid Products . . . . . . . . 6.3 Boiling Point Distribution of Liquid Fraction. . . . . . . . 7 Concluding Remarks .. .. . .. .. .. .. .. .. . .. .. . .. .. . References ... . . . . . . . '>-. . . . • • . • • • . • . • . • • . . . . . . . • . •
193
194
195
196
199
20I
202
203
203
204
206
Liquefaction of Municipal Waste Plastics over Acidic and
Nonacidic Catalysts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
209
lale Yanik and Tamer Karayildirim
I 2
9
Introduction.................................. Catalytic Liquefaction of MWP. . . . . . . . . . . . . . . . . . . . . 2.1 Liquid Phase Contact ......... 2.2 Thermal Cracking plus Catalytic Upgrading. . . . . . . . . 2.3 Co-processing of MWP . . . . . . . . . . . . . . . . . . . . . . 3 Conclusions.................................. References ...............................
209
2IO
2IO
21 I
216
221
22 I
Kinetic Model of the Chemical and Catalytic Recycling of Waste
Polyethylene into Fuels ........
225
Norbert Miskolezi
I 2 3
Introduction..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reaction Kinetics of Degradation 2.1 Reaction Mechanism. . . . . . . . . . . . . . . . . . . . . . . . Catalysts.................................... 3.1 Monofunctional Catalysts. . . . . . . . . . . . . . . . . . . . . 3.2 Bifunctional Catalvsts :. . . .
225
226
228
239
239
241
ix
)NTENTS
249
QUALITY OF FUELS 10 Production of Gaseous and Liquid Fuels by Pyrolysis and
Gasification of Plastics: Technological Approach C. Gisele lung and Andre Fontana
.
251
..
. . . . . . . . . . . . .
251
254
255
258
262
264
266
267
271
271
272
272
275
278
280
.
285
Introduction.................................. Feedstock Recycling of Plastics . 2.1 Product Yield . 2.2 Gas Composition . 2.3 OillWax Composition from the Feedstock Recycling of
Single Plastics . 3 Conclusions . References .................................
285
288
288
292
I 2
Introduction Literature Review on Plastics Carbonization 2.1 Polyethylene (PE) 2.2 Polypropylene (PP) 2.3 Polystyrene (PS) 2.4 Polyvinyl Chloride (pVC) 2.5 Polyethylene Terephthalate (PET) 2.6 Plastic Mixtures 3 Technological Approach 3.1 Predictive Carbonization Model 3.2 Seale-up 3.3 Pyrolysis Technologies 3.4 Gasification Technologies 3.5 Fuel Valorization References , 11 Yield and Composition of Gases and OilslWaxes from the
Feedstock Recycling of Waste Plastic Paul T. Williams
. .
I 2
12 Composition of Liquid Fuels Derived from the Pyrolysis of
Plastics
295
309
309
.
315
Introduction . Experimental Methods . . . . . . . . . . . . . , . . . . . . . . . . . . . Chemical Composition of Pyrolysis Liquids . 3.1 Relation of Major Oil Characteristics and Chemical
Features of Component Compounds . 3.2 Thermal Decomposition Reactions of Polymers .,. .
315
316
317
Marianne Blazso
I 2 3
317
318
,r· '~
CONTENTS 4.2 Vinyl Polymers 4.3 Polyesters............................... 5 Pyrolysis Products of Automotive Waste Plastics 5.1 Styrene Copolymers . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Rubber Plastics ................... 5.3 Polyamides.................. . . . . . . . . . . . . 5.4 Polyurethanes (PU) . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pyrolysis Products of Electronic Waste Plastics .... 6.1 Polycarbonate............................ 6.2 Epoxy Resin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3 Phenol-Formaldehyde Resin References
326
329
329
329
331
333
335
337
338
339
340
341
13 Production of Premium Oil Products from Waste Plastic by
Pyrolysis and Hydroprocessing . . . . . . . . . . . . . . . . . . . . . . . . S.J. Miller, N. Shah and G.P. Huffman
345
Background..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conversion of Waste Plastics to Transportation Fuels Direct Liquefaction and Co-processing of Waste Plastic . . . . . Pyrolysis and Hydroprocessing . . . . . . . . . . . . . . . . . . . . . Feasibility Study Conversion of Waste Plastic to Lubricating Base Oil . . . . . . . Lubricating Base Oils from Fischer-Tropsch Wax and Waste
Plastic .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 One-gallon-per-day Pilot Plant .... 8.1 Hydroprocessing... . . . . . . . . . . . . . . . . . . . . . . . 8.2 Pyrolysis Pilot Plant Results for Various Feedstocks . . . 9 Summary and Conclusions. . . . . . . . . . . . . . . . . . . . . . . . References ............................ 1 2 3 4 5 6 7
14 The Conversion of WllSte PlasticslPetroleum Residue Mixtures to
Transportation Fuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mohammad Farhat Ali and Mohammad Nahid Siddiqui 1 2 3
4
5 6
Introduction
T1L. __ 1~.~~~
..
-
351
354
355
355
358
360
363
.
363
364
. .
365
365
, ..
The Characteristics and Chemical Structure of Plastics The Characteristics and Chemical Properties of Petroleum
Residue Technologies for Petroleum Residue Upgrading Tecbnologies for Tertiary Recycling of Mixed Plastic Waste
(MPW) 5.1 Feedstock Recycling of MPW with Low PVC Content Coprocessing for Fuel from Mixed Plastic Waste
345
346
346
347
350
351
. . . :..
366
367
369
374
i,
NTENTS
xi
8 Environmental Impacts of Recycling of Waste Plastics 9 Economic Evaluation 10 Conclusions
. . .
376
376
378
378
References .,. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
REACTOR TYPES 15 Overview of Commercial Pyrolysis Processes for Waste
Plastics John Scheirs
2
3
4
.' .
Introduction . l.l Advantages of Pyrolysis . 1.2 Thermal Cracking . 1.3 Catalytic Cracking . . . . . . . . . . . . . . . . . . . . . . . . . Feedstock Options '. 2.1 Polyethylene (PE) , . 2.2 Polypropylene (PP) . 2.3 Polystyrene (PS) Pyrolysis , . 2.4 PET . 2.5 PVC , . 2.6 Halogenated Polymers . 2.7 Plastic Feedstock Specification . Operational Considerations . . . . . . . . . . . . . . . . . . . . . ' . . 3.1 Preventing Coking . 3.2 Preventing Corrosion . 3.3 Tank/Kettle Reactors . 3.4 Reflux , , . 3.5 Problems with Batch Pyrolysis , , . 3.6 Continuous Systems . 3.7 Fluidized-bed Processes . 3.8 Fluid-bed Coking . 3.9 Fluid Catalytic Cracking (FCC) . 3.10 Catalytic Cracking . Engineering Design Aspects . 4.1 Pyrolysis Chamber Design " . 4.2 Pyrolysis Vessel Construction . 4.3 Agitator Speed , 4.4 Burner Characteristics . . 4.5 Inert Purge Gas 4.6 Distillation Columns . 4.7 Centrifuge . 4.8 Scrubber , . 4.9 Dechlorination 'I' .
381
383
383
385
385
386
386
387
387
388
389
390
391
391
392
392
393
393
393
393
394
394
394
394
394
395
395
396
396
396
396
397
397
397
397
o,,~
r
CONTENTS
5
Quality of the Output Fuels ... . . . . . . . . . . . . . . . . . . . . 5.1 Dnsaturation.... . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Carbon Residue in the Fuel ..... 5.3 Low-temperature Properties ................ 5.4 Fuel Instability. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 Diesel Additives " 5.6 Storage Stability of Plastic-derived Diesel Fuel 5.7 Characteristics of the Solid Residue. . . . . . . . . . . . . . 5.8 Gaseous Emissions. . . . . . . . . . . . . . . . . . . . . . . . . 6 Catalytic Cracking .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1 Catalyst Activity and Selectivity . . . . . . . . . . . . . . . . 6.2 Layered Clay Catalysts . . . . . . . . . . . . . . . . . . . . . . 6.3 External Catalysts. . . . . . . . . . . . . . . . . . . . . . . . . . 6.4 PS Catalytic Cracking . . . . . . . . . . . . . . . . . . . . . . . 6.5 Catalytic Dechlorination 7 Commercial Plastic Pyrolysis Processes ...... 7.1 Thermofuel™ Process . . . . . . . . . . . . . . . . . . . . . . . 7.2 Smuda Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3 Polymer-Engineering Process (Catalytic
Depolymerization) 7.4 Royco Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.5 Reentech Process . . . . . . . . . . . . . . . . . . . . . . . . . . 7.6 Hitachi Process ..................... 7.7 Chiyoda Process. . . . . . . . . . . . . . . . . . . . . . . . . . . 7.8 Blowdec Process ................ 7.9 Conrad Process ....................... 7.10 Other Processes with Separate Catalyst Beds. . . . . . . . 8 Conclusions.................................. References ......................
16 Fluidized Bed Pyrolysis of Plastic Wastes
399 399
399
399
400
401
401
403
403
404
404
405
406
406
407
407
407
414
418
422
423
427
429
429
430
431
431
431
.
435
Introduction . 1.1 Fluidized-bed Technology for Waste Thermal Treatments:
The Key Role of Hydrodynamics . 1.2 From Plastic Waste to Feedstocks and Energy by Means
of Fluidized-bed Pyrolysis . Different Stages in the Fluidized-bed Pyrolysis of a Plastic Waste 2.1 An Overview of Physical and Chemical Phenomena . 2.2 The Polymer Degradation Process . Operability Range of Fluidized-bed Pyrolysers . 3.1 The Phenomenology of Bed Defluidization . ~ ? Predictive Defluidization Models and Operability Maps .
435
Umberto Arena and Maria Laura Mastellone
2
3
435
437
444
444
452
453
453
454
1
xiii
)NTENTS
4.1 Fluidized-bed Pyrolysis of Monopolymeric Waste. . . . 4.2 Fluidized-bed Pyrolysis of Multipolymeric Waste . . . . 4.3 Fluidized-bed Pyrolysis of Other Polymeric Wastes. . . 5 Operating Experience with Industrial Fluidized-bed Pyrolysers 5.1 The BP Chemicals Polymer Cracking Process . . . . . . 5.2 The Akzo Process 5.3 The Ebara TwinRec Process . . . . . . . . . . . . . . . . . . References
. . . . ' .
17 The Hamburg Fluidized-bed Pyrolysis Process to Recycle
Polymer Wastes and Tires . . . . . . . . . . . . . . . . . . . . . . . . . . . Walter Kaminsky I 2
Introduction... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pilot Plant Description. . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Pyrolysis of Whole Tires . . . . . . . . . . . . . . . . . . . . . 3 Pyrolysis Product Composition . . . . . . . . . . . . . . . . . . . . . 3.1 Industrial Pilot Plants . . . . . . . . . . . . . . . . . . . . . . . References .......
18 Liquefaction of PVC Mixed Plastics '" Thallada Bhaskar and Yusaku Sakata I 2
3
4
462
464
466
467
467
468
469
471
475
475
476
480
482
488
490
.................
493
Introduction.................................. Experimental and Analytical Methods 2.1 Preparation of Iron and Calcium Composites . . . . . . . . 2.2 Experimental Procedure. . . . . . . . . . . . . . . . . . . . . . 2.3 Analysis procedure . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 HCl Adsorption Capacity. . . . . . . . . . . . . . . . . . . . . Fundamental Studies on the Decomposition of PVC . . . . . . . 3.1 Product Distribution and Mechanism of PVC
Decomposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Degradation of PVC - Polymer Mixtures . . . . . . . . . . Liquefaction with Commingled Plastics and Dechlorination .. 4.1 Pyrolysis of PE, PP or PS with PVC . . . . . . . . . . . . . 4.2 Thermal Degradation of PPIPVC by Solid Acid Catalysts
and Dechlorination with Iron Oxides . . . . . . . . . . . . . 4.3 Thermal Degradation of PE Mixed with PET. . . . . . . . 4.4 Laboratory Evaluation of Various Carbon Composites as
HCI Sorbents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 Liquefaction of PVC Mixed Plastics and Dechlorination
with Ca-C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6 Liquefaction of PPIPEIPSIPVC with HIPS-Br and
Dehalogenation with Ca-C . . . . . . . . . . . . . . . . . . . . 4.7 Liquefaction of Real Municipal Waste Plastics .....\ .
493
496
496
496
497
498
498
498
501
502
502
505
508
509
514
518
521
T
CONTENTS
6 Conclusions References
525
525
. .
19 Liquid Fuel from Plastic Wastes Using Extrusion-Rotary Kiln
Reactors Sam Behzadi and Mohammed Farid
531
.
.
Introduction.................................. Pyrolysis . 2.1 Industrial-scale Pyrolysis Processes . References ... .. ... .
531
532
533
547
20 Rotary Kiln Pyrolysis of Polymers Containing Heteroatoms ....
549
I 2
Andreas Hornung and Helmut Seifert
Introduction . Technical Variations . 2.1 Conrad Process ... .. .... . .... 2.2 Double Rotary Kiln Pyrolysis . 2.3 Pyrolysis of Tires: Faulkner System . 2.4 VTA Pyrolysis: A Rotary Kiln for the Treatment of
Petrochemical Residues and Hydrocarbon Residues . 3 State of the Art of Rotary Kiln Technology . 3.1 Haloclean Gas-tight Rotary Kiln . 4 Rotary Kiln Principles . 5 Treatment of Thennoplastics: PVC . 6 Pyrolysis of Mono Fractions: Polymethylmethacrylate
PMMA . 7 Treatment of Shredder Light Fractions/Shredder Residues '" 8 Treatment of Electronic Scrap . 8.1 The European Dimension . 8.2 The Pyrocom Rotary Kiln . 8.3 The Haloclean Rotary Kiln Process . . 9 Dehalogenation of Pyrolysis Oils References .. ... . .. .. .. ... . . .... . I
2
21 Microwave Pyrolysis of Plastic Wastes
549
549
550
550
550
551
551
552
553
553
556
557
557
558
558
559
562
564
.
569
Introduction . Background . 2.1 Microwave Heating . 2.2 Microwave Pyrolysis . Microwave Pyrolysis of Plastics in the Scientific Literature .. 11 Microwave Pvrolvsis Eauipment '..
569
570
570
572
575
575
C. Ludlow-Palafox and H.A. Chase I 2
3
NTENTS
xv
4
582
582
585
586
587
Microwave Pyrolysis in the Commercial Literature . 4.1 Patents History and Comparison with Scientific Literature 4.2 Companies . 5 Conclusions.................................. References ..
., 22 Continuous Thermal Process for Cracking Polyolefin Wastes to
Produce Hydrocarbons .................... Jean Dispons I 2 3 4 5 6
Background . Introduction.................................. The Two Principal Phases of Polyolefin Waste Cracking . Thermal Valorization of Polyolefin Wastes . Continuous Feeding of the Cracking Reactors . Heating Methods .
23 Waste Plastic Pyrolysis in Free-Fall Reactors Ali Y. Bilgesil, M. (:etin Korak, and Ali Karaduman 1 2 3 4
Pyrolysis Previous Pyrolysis Work Design Aspects of FFR to be Used in Pyrolysis A Free-Fall Reactor System for Flash Pyrolysis 4.1 Set-up 4.2 Experimental Procedure 5 Plastic Waste Recycling 6 Results from Ateklab Free-Fall Reactor 6.1 LDPE Results 6.1 Polystyrene Results References
595
595
596
597
598
598
599
. . . . . . . . . . . .
605
605
605
609
610
610
611
612
613
613
617
621
MONOMER RECOVERY
625
24 Monomer Recovery of Plastic Waste in a Fluidized Bed Process. Walter Kaminsky
627
I 2 3
4 5
Introduction.................... . . . . . . . . . . . . . . Fluidized-bed Process . Pyrolysis of PMMA . 3.1 Pure PMMA . 3.2 Filled PMMA . Pyrolysis of Polystyrene . Pyrolysis of PTFE ".
627
628
629
629
631
635
635
Loa
r
CONTENTS
25 Feedstock Recycling of PET
.
641
Introduction........... . . . . . . . . . . . . . . . . . . . . . . . Physical Recycling (Mechanical Recycling) . Solvolysis (Chemolysis) . 3.1 Glycolysis . 3.2 Methanolysis . 3.3 Hydrolysis , ' .. , .. , . 3.4 Other Processes. , . , .. , , . , . , 4 Pyrolysis and Other Hot Processes ,, ,. 4.1 Decomposition Mechanism of PET , . 4.2 Pyrolysis Processes , . References ' ,
641
643
643
644
644
647
649
649
650
653
659
Toshiaki Yoshioka and Guido Grause
1 2 3
ASIAN DEVELOPMENTS
663
26 The Liquefaction of Plastic Containers and Packaging
in Japan ' . A. Okuwaki, T Yoshioka, M. Asai, H. Tachibana, K. Wakai, K. Tada
665
I
Introduction, 1.1 Brief History of Plastics Liquefaction in Japan 1.2 The Law for Promotion of Sorted Collection and
Recycling of Containers and Packaging 1.3 Feedstock Recycling of Plastic Containers and Packaging
. .
665
665
.
666
.
667
670
670
670
671
673
673
675
675
676
678
678
678
678
680
682
684
687
References .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2
Niigata Waste Plastic Liquefaction Process ' ' 2,1 Plant Outline ' , . , . ' 2.2 Process Description 2.3 Qnality of Waste Plastics ' 2.4 Properties of Outputs .. ' 2.5 Material Balance and Consumption Figures , 2.6 Heat Balance , , , 2.7 Application of the Ontputs .' 2.8 Environmental Measurement References 3 Sapporo Waste Plastics Liquefaction Process 3.1 Plant Outline , 3.2 Process Description , 3.3 Quality of Waste Plastics 3.4 Properties of Outputs 3.5 Material Balance and Consumption Figures. ,
. ,. .. . , .. . . . . . . . . . . ,..
i
xvii
ONTENTS
3.8 Environmental Aspects . . . . . . . . . . . . . . . . . . . . . . 3.9 Characteristics of the Plant. . . . . . . . . . . . . . . . . . . . References ................. 4 Mikasa Waste Plastic Liquefaction Plant . . . . . . . . . . . . . . . 4.1 Plant Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Process Description '.' 4.3 Quality and Application of Reclaimed Oil. . . . . . . . . . 4.4 Material Balance .......... 4.5 High Energy Collection . . . . . . . . . . . . . . . . . . . . . . 4.6 Characteristics of the Plant ..... _ . . . . . . . . . . . . . . 4.7 Application of the System . . . . . . . . . . . . . . . . . . . . References ............................ 5 The Scope of Liquefaction in Japan ',' . . . . . . . . . . . . . . . . 5.1 Present Status of Feedstock Recycling . . . . . . . . . . . . 5.2 Scope for Liquefaction References .................
692
693
695
695
695
695
698
698
700
700
702
702
702
702
706
708
27 Process and Equipment for Conversions of Waste Plastics into
Fuels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
709
AlIw Zadgaonkar
I 2
3
4
5
6
7
8
Introduction.......... . . . . . . . . . . . . . . . . . . . . . . . . Pyrolysis............................ . . . . . . . 2.1 Definitioo.... . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Plastics Suitable for Pyrolysis. . . . . . . . . . . . . . . . . . Pyrolysis: Mode of Operation and Apparatus. . . . . . . . . . . . 3.1 Batch Pyrolysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Types of Pyrolyzers .................. Pyrolysis: Thennal CrackingINoncatalytic Cracking 4.1 Operation.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Process Mechanism 4.3 Degradation of Polymers . . . . . . . . . . . . . . . . . . . . . Pyrolysis Catalyst. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1 Role and Effect of Catalyst 5.2 Properties of Catalyst _. . . . . . . . . . . . Pyrolysis: Output Characteristics. . . . . . . . . . . . . . . . . . . . 6.1 Effect of Temperature on Pyrolysis Products . . . . . . . . 6.2 By-products of Pyrolysis . . . . . . . . . . . . . . . . . . . . . Pyrolysis of Heteroatom Polymers . . . . . . . . . . . . . . . . . . . 7.1 Pyrolysis of PVC . _ . . . . . . . . . . . . . . . . . . . . . . . . 7.2 Pyrolysis of ABS . . . . . . . . . . . . . . . . . . . . . . . . . . Refinement of Pyrolysis Output Products 8.1 Removal of Vnsaturation and Olefinic Products . . . . . . 8.2 Various Examples of Pyrolysis , . 0'
,
709
709
709
710
710
710
711
712
712
713
713
715
715
716
719
719
719
720
720
721
721
721
722
CONTENTS
9.1 9.2
Thermofuel of Waste Plastic by Ozmotech Conversion of Waste Plastics to Fuels: Zadgaonkar's
Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 28 Converting Waste Plastics into Liquid Fuel by Pyrolysis:
Developments in China . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Yuan Xingzhong 1
724
724
728
729
Progress in Converting Waste Plastics into Liquid Fuel by
Pyrolysis Theory of Plastics Pyrolysis . . . . . . . . . . . . . . . . . . . 2.1 Mass Balance for the Pyrolysis Process 2.2 Energy Balance for the Pyrolysis Process . . . . . . . . . . 2.3 Mechanism of Plastics Pyrolysis . . . . . . . . . . . . . . . . 2.4 Methods for Plastics Pyrolysis 3 Process of Plastics Pyrolysis. . . . . . . . . . . . . . . . . . . . . . . 3.1 Veba Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 BP Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Fuji Process 3.4 BASF Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 Hamburg University Process. . . . . . . . . . . . . . . . . . . 3.6 Hunan University Process 3.7 United Carbon Process 3.8 Likun Proce" . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.9 Other Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Main Factors in Plastics Pyrolysis . . . . . . . . . . . . . . . . . . . 4.1 Temperature............................. 4.2 Catalyst................................ 5 Pyrolysis of PVC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ......... 6 Catalytic Reforming of Cracked Gas References ............................ 2
ex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
729
730
730
732
734
735
738
738
738
741
741
741
742
743
743
744
744
744
746
747
748
750
757
View more...
Comments