Feedstock Recycling and Pyrolysis of Waste Plastics

July 19, 2018 | Author: NP | Category: Pyrolysis, Cracking (Chemistry), Polyethylene, Waste, Plastic
Share Embed Donate


Short Description

Download Feedstock Recycling and Pyrolysis of Waste Plastics...

Description

Feedstock Recycling and Pyrolysis of Waste Plastics:

Ref

Converting Waste Plastics into Diesel and Other Fuels

Edited by

JOHN SCHEIRS ExcelPlas Australia and

WALTER KAMINSKY University 01 Hamburg, Germany

WILEY SERIES IN POLYMER SCIENCE

~

Tn]'n Wi]"" flo Cn.n" T ~rl

;ontents ontributors ", eries Preface ' . . reface ., .. , .. bout the Editors

.. , . " " . , ..,.,...., ,.,., , . , . , ,.,..,.,.,

... ... .,. .,.

",." ,.,.. ,.,., ,,,.'

.... ,,... ,,.,. ,,.,,

xix

,.,.",.,.",." ,.' .,,.,,..,,.,, , , . , .... ' .. , . , . , .,.,,......,.,..

xxiii

xxv

xxix

INTRODUCTION 1

1 "'"

Introduction to Feedstock Recycling of Plastics .. , . , , , . , , , . ,

3

A. Buekens

Abbreviations 1 Introduction.".,., '. , . , . . , . . , . , . , . , . . , , . . . . , . , 2 Nomenclature,.,.,.,., .. " . , .. "",." .. ,., .. 3 Pyrolysis of Plastics and Rubber , . , .. , . , . , . , ... , . , , . 3.1 Survey of Previous Work, .. , , , .. , . , .. 3.2 Produets from Polymers, . , . , .. , , . , , . , .. , .. 3.3 Hetero-atoms and Side Products . , . , . , . , . ' . , . ' , . 3.4 Fundamentals", .. " .. , . , . , . , . , . , . " " . " 3.5 Value of the Resulting Products, ... , ... , . , . , , , , , 4 Feedstock Recycling , .. , . , . , . , . , . , . , , . , . , 4.1 Survey,.,.,., , .. , .. , . , . , . , . , . ' , . ' .. 4.2 Problems with Hetero-atoms , . , , . , . , . , . , . , , .... 4.3 Collection Systems . , .. , . , , . , . , , .. , . , .. , . , .. 4.4 Logistics of Supply. , .. , , , , , , , . , . , .. , .. , . , .. 5 Some Feasible Processes , . , .... , , , , . , .. , .. , .. , , .. 5.1 Pilot and Industrial Plant Operation . , . , . , . , .... , , 5,2 Conclusions, .... ,." .. , . , . , . , . " , . , .. ,.,. 6 Waste management , . , , ... , .. , .. , . , . , . , . , . , .. , .. 6,1 Principles",.""."., .. ,.,.,." .. ,." .. 6.2 Plastics Waste .. , . , . , , : , . , . , .. , . , , , . , .. 6.3 Rubber Waste ,.,., , . , . , . , . " , .. '., , . 6.4 Plastics Pyrolysis as a Waste Management Option .',. 7 Conclusions,..,...,."."".,.,."....,..,." References

.

3

3

4

6

7

8

15

18

20

22

22

23

24

25

27

27

32

32

32

33

35

35

39

40

CONTENTS

CATALYTIC CRACKING 2

43

Acid-Catalyzed Cracking of Polyolefins: Primary Reaction

Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

45

Robert L. White

I 2 3 4

Introduction... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Polyethylene Cracking. . . . . . . . . . . . . . . . . . . . . . . . . Polystyrene Cracking Hydrocracking Processes . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 PE-PtHZSM-5............................ 4.2 PE-PtHy _. . . . . . . . . . . . . . . . . . 4.3 PE-PtHMCM-4I.......................... 5 Conclusions.................................. Refereuces

3

Catalytic Upgrading of Plastic Wastes

45

46

54

60

60

63

63

67

67

.

73

Introduction... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 Catalytic versus Thermal Cracking. . . . . . . . . . . . . . . 1.2 Plastics Susceptible to Upgrading by Catalytic Cracking 1.3 Products Deri,Jci from the Catalytic Cracking . . . . . . . Catalytic Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Homogeneous Catalysts. . . . . . . . . . . . . . . . . . . . . . 2.2 Heterogeneous Catalysts Reactors .... _.. .. .. .. .. . . .. .. .. .. . .. .. .. .. .. 3.1 Batch/Semi-batch Reactors. . . . . . . . . . . . . . . . . . . . 3.2 Fixed-bed Reactors. . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Fluidized-bed Reactors .. 3.4 Spouted-bed Reactors . . . . . . . . . . . . . . . . . . . . . . . 3.5 Screw Kiln Reactors . . . . . . . . . . . . . . . . . . . . . . . . Influence of the Main Operation Variables. . . . . . . . . . . . . . 4.1 Temperature............................. 4.2 Catalyst Amount 4.3 Time.................................. 4.4 Plastics Waste Composition .. . . . . . . . . . . . . . . . . . Processes ......... _.. . .. .. .. .. .. .. .. .. .. .. .. 5.1 Direct Catalytic Cracking. . . . . . . . . . . . . . . . . . . . . 5.2 Thermal Degradation and Subsequent Catalytic Upgrading Related Technologies: Coprocessing . . . . . . . . . . . . . . . . . . 6.1 Coal.................................. 6.2 Petroleum Cuts 6.3 Solvents................................

73

74

77

78

79

79

79

85

86

86

88

90

91

92

93

94

95

95

96

97

99

101

101

102

103

1 Aguado, D. P. Serrano and J. M. £Scola

I

2

3

4

5

6

an

CONTENTS

vii

4

Thennal and Catalytic Conversion of Polyolefins lerzy Walendziewski

111

I 2 3 4 5

Introduction.............. . . . . . . . . . . . . . . . . . . . . General Scheme of Waste Polyolefin Processing. . . . . . . . . . Waste Plastics Suitable for Cracking and Pyrolysis. . . . . . . . Mechanism of Cracking Processes ,. Waste Plastics Processing. . . . . . . . . . . . . . . . . . . . . . . . . 5.1 Catalytic and Thermal Cracking Processes: Typical.

Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Coprocessing of Waste Plastics with Other Raw Materials 6 Reactor Design 7 Pilot Plants and Commercial Plants . . . . . . . . . . . . . . . . . . 8 Economic Aspects _. . . . . . . . . . . . . . . . . References ...,..................

III

112

113

II 3

lIS

Thennal and Catalytic Degradation of Wasle HDPE . . . . . . . . .

129

5

115

119

120

122

124

125

Kyong-Hwan Lee

6

I Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Theory of Plastics Pyrolysis. . . . . . . . . . . . . . . . . . . . . . . 3 Process Flow Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Total Mass Balance. , . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 ~ect of Temperatl'lre ,.................... 6 Effect of Catalyst. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Various Catalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Effect of Addition of Other Thermoplastics . . . . . . . . . . . . . 9 Fractional Distillation of Products . . . . . . . . . . . . . . . . . . . 10 Properties of Liquid Product. . . . . . . . . . . . . . . . . . . . . . . References ..........................

129

130

133

136

137

141

144

149

153

155

158

Development of a Process for the Continuous Conversion of

Waste Plastics Mixtnres to Fuel ..............

161

Takao Masuda and Teruoki Tago

I 2

3

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recovery of Heavy Oil from Waste Plastic . . . . . . . . . . . . . 2.1 Degradation of Various Plastics. . . . . . . . . . . . . . . . . 2.2 Catalytic Cracking of Waste Plastics Without Residue. . 2.3 Continuous Degradation of Waste Plastics Mixtures for

the Recovery of Heavy Oil. . . . . . . . . . . . . . . . . . . . Upgrading of Waste-plastics-derived Heavy Oil Over Catalysts 3.1 Catalytic Cracking of Heavy Oil over Solid-acid Catalysts 3.2 Production of High-quality Gasoline over REY Zeolites. 3.3 J(jnetics of the Catalytic Cracking of Heavy Oil over DCV '7""....l~t.'"

161

162

162

165

168

172

172

175

tRO

CONTENTS

viii

4

7

Continuous Production of Fuels from Waste Plastics. . . . . . . 4.1 Continuous Production of Fuels. . . . . . . . . . . . . . . . . References ............................

188

188

190

Catalytic Degradation of Plastic Waste to Fuel over Microporous

Materials :'. .

193

George Manos

I 2 3 4 5 6

8

Introduction.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Zeolites.................................... Polymer-to-catalyst Ratio. . . . . . . . . . . . . . . . . . . . . . . . . Initial Degradation Mechanism . . . . . . . . . . . . . . . . . . . . . Product Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1 Conversion,;Liquid Yield, Coke Content. . . . . . . . . . . 6.2 Characterization of GaseouslLiquid Products . . . . . . . . 6.3 Boiling Point Distribution of Liquid Fraction. . . . . . . . 7 Concluding Remarks .. .. . .. .. .. .. .. .. . .. .. . .. .. . References ... . . . . . . . '>-. . . . • • . • • • . • . • . • • . . . . . . . • . •

193

194

195

196

199

20I

202

203

203

204

206

Liquefaction of Municipal Waste Plastics over Acidic and

Nonacidic Catalysts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

209

lale Yanik and Tamer Karayildirim

I 2

9

Introduction.................................. Catalytic Liquefaction of MWP. . . . . . . . . . . . . . . . . . . . . 2.1 Liquid Phase Contact ......... 2.2 Thermal Cracking plus Catalytic Upgrading. . . . . . . . . 2.3 Co-processing of MWP . . . . . . . . . . . . . . . . . . . . . . 3 Conclusions.................................. References ...............................

209

2IO

2IO

21 I

216

221

22 I

Kinetic Model of the Chemical and Catalytic Recycling of Waste

Polyethylene into Fuels ........

225

Norbert Miskolezi

I 2 3

Introduction..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reaction Kinetics of Degradation 2.1 Reaction Mechanism. . . . . . . . . . . . . . . . . . . . . . . . Catalysts.................................... 3.1 Monofunctional Catalysts. . . . . . . . . . . . . . . . . . . . . 3.2 Bifunctional Catalvsts :. . . .

225

226

228

239

239

241

ix

)NTENTS

249

QUALITY OF FUELS 10 Production of Gaseous and Liquid Fuels by Pyrolysis and

Gasification of Plastics: Technological Approach C. Gisele lung and Andre Fontana

.

251

..

. . . . . . . . . . . . .

251

254

255

258

262

264

266

267

271

271

272

272

275

278

280

.

285

Introduction.................................. Feedstock Recycling of Plastics . 2.1 Product Yield . 2.2 Gas Composition . 2.3 OillWax Composition from the Feedstock Recycling of

Single Plastics . 3 Conclusions . References .................................

285

288

288

292

I 2

Introduction Literature Review on Plastics Carbonization 2.1 Polyethylene (PE) 2.2 Polypropylene (PP) 2.3 Polystyrene (PS) 2.4 Polyvinyl Chloride (pVC) 2.5 Polyethylene Terephthalate (PET) 2.6 Plastic Mixtures 3 Technological Approach 3.1 Predictive Carbonization Model 3.2 Seale-up 3.3 Pyrolysis Technologies 3.4 Gasification Technologies 3.5 Fuel Valorization References , 11 Yield and Composition of Gases and OilslWaxes from the

Feedstock Recycling of Waste Plastic Paul T. Williams

. .

I 2

12 Composition of Liquid Fuels Derived from the Pyrolysis of

Plastics

295

309

309

.

315

Introduction . Experimental Methods . . . . . . . . . . . . . , . . . . . . . . . . . . . Chemical Composition of Pyrolysis Liquids . 3.1 Relation of Major Oil Characteristics and Chemical

Features of Component Compounds . 3.2 Thermal Decomposition Reactions of Polymers .,. .

315

316

317

Marianne Blazso

I 2 3

317

318

,r· '~

CONTENTS 4.2 Vinyl Polymers 4.3 Polyesters............................... 5 Pyrolysis Products of Automotive Waste Plastics 5.1 Styrene Copolymers . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Rubber Plastics ................... 5.3 Polyamides.................. . . . . . . . . . . . . 5.4 Polyurethanes (PU) . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pyrolysis Products of Electronic Waste Plastics .... 6.1 Polycarbonate............................ 6.2 Epoxy Resin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3 Phenol-Formaldehyde Resin References

326

329

329

329

331

333

335

337

338

339

340

341

13 Production of Premium Oil Products from Waste Plastic by

Pyrolysis and Hydroprocessing . . . . . . . . . . . . . . . . . . . . . . . . S.J. Miller, N. Shah and G.P. Huffman

345

Background..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conversion of Waste Plastics to Transportation Fuels Direct Liquefaction and Co-processing of Waste Plastic . . . . . Pyrolysis and Hydroprocessing . . . . . . . . . . . . . . . . . . . . . Feasibility Study Conversion of Waste Plastic to Lubricating Base Oil . . . . . . . Lubricating Base Oils from Fischer-Tropsch Wax and Waste

Plastic .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 One-gallon-per-day Pilot Plant .... 8.1 Hydroprocessing... . . . . . . . . . . . . . . . . . . . . . . . 8.2 Pyrolysis Pilot Plant Results for Various Feedstocks . . . 9 Summary and Conclusions. . . . . . . . . . . . . . . . . . . . . . . . References ............................ 1 2 3 4 5 6 7

14 The Conversion of WllSte PlasticslPetroleum Residue Mixtures to

Transportation Fuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mohammad Farhat Ali and Mohammad Nahid Siddiqui 1 2 3

4

5 6

Introduction

T1L. __ 1~.~~~

..

-

351

354

355

355

358

360

363

.

363

364

. .

365

365

, ..

The Characteristics and Chemical Structure of Plastics The Characteristics and Chemical Properties of Petroleum

Residue Technologies for Petroleum Residue Upgrading Tecbnologies for Tertiary Recycling of Mixed Plastic Waste

(MPW) 5.1 Feedstock Recycling of MPW with Low PVC Content Coprocessing for Fuel from Mixed Plastic Waste

345

346

346

347

350

351

. . . :..

366

367

369

374

i,

NTENTS

xi

8 Environmental Impacts of Recycling of Waste Plastics 9 Economic Evaluation 10 Conclusions

. . .

376

376

378

378

References .,. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

REACTOR TYPES 15 Overview of Commercial Pyrolysis Processes for Waste

Plastics John Scheirs

2

3

4

.' .

Introduction . l.l Advantages of Pyrolysis . 1.2 Thermal Cracking . 1.3 Catalytic Cracking . . . . . . . . . . . . . . . . . . . . . . . . . Feedstock Options '. 2.1 Polyethylene (PE) , . 2.2 Polypropylene (PP) . 2.3 Polystyrene (PS) Pyrolysis , . 2.4 PET . 2.5 PVC , . 2.6 Halogenated Polymers . 2.7 Plastic Feedstock Specification . Operational Considerations . . . . . . . . . . . . . . . . . . . . . ' . . 3.1 Preventing Coking . 3.2 Preventing Corrosion . 3.3 Tank/Kettle Reactors . 3.4 Reflux , , . 3.5 Problems with Batch Pyrolysis , , . 3.6 Continuous Systems . 3.7 Fluidized-bed Processes . 3.8 Fluid-bed Coking . 3.9 Fluid Catalytic Cracking (FCC) . 3.10 Catalytic Cracking . Engineering Design Aspects . 4.1 Pyrolysis Chamber Design " . 4.2 Pyrolysis Vessel Construction . 4.3 Agitator Speed , 4.4 Burner Characteristics . . 4.5 Inert Purge Gas 4.6 Distillation Columns . 4.7 Centrifuge . 4.8 Scrubber , . 4.9 Dechlorination 'I' .

381

383

383

385

385

386

386

387

387

388

389

390

391

391

392

392

393

393

393

393

394

394

394

394

394

395

395

396

396

396

396

397

397

397

397

o,,~

r

CONTENTS

5

Quality of the Output Fuels ... . . . . . . . . . . . . . . . . . . . . 5.1 Dnsaturation.... . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Carbon Residue in the Fuel ..... 5.3 Low-temperature Properties ................ 5.4 Fuel Instability. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 Diesel Additives " 5.6 Storage Stability of Plastic-derived Diesel Fuel 5.7 Characteristics of the Solid Residue. . . . . . . . . . . . . . 5.8 Gaseous Emissions. . . . . . . . . . . . . . . . . . . . . . . . . 6 Catalytic Cracking .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1 Catalyst Activity and Selectivity . . . . . . . . . . . . . . . . 6.2 Layered Clay Catalysts . . . . . . . . . . . . . . . . . . . . . . 6.3 External Catalysts. . . . . . . . . . . . . . . . . . . . . . . . . . 6.4 PS Catalytic Cracking . . . . . . . . . . . . . . . . . . . . . . . 6.5 Catalytic Dechlorination 7 Commercial Plastic Pyrolysis Processes ...... 7.1 Thermofuel™ Process . . . . . . . . . . . . . . . . . . . . . . . 7.2 Smuda Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3 Polymer-Engineering Process (Catalytic

Depolymerization) 7.4 Royco Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.5 Reentech Process . . . . . . . . . . . . . . . . . . . . . . . . . . 7.6 Hitachi Process ..................... 7.7 Chiyoda Process. . . . . . . . . . . . . . . . . . . . . . . . . . . 7.8 Blowdec Process ................ 7.9 Conrad Process ....................... 7.10 Other Processes with Separate Catalyst Beds. . . . . . . . 8 Conclusions.................................. References ......................

16 Fluidized Bed Pyrolysis of Plastic Wastes

399 399

399

399

400

401

401

403

403

404

404

405

406

406

407

407

407

414

418

422

423

427

429

429

430

431

431

431

.

435

Introduction . 1.1 Fluidized-bed Technology for Waste Thermal Treatments:

The Key Role of Hydrodynamics . 1.2 From Plastic Waste to Feedstocks and Energy by Means

of Fluidized-bed Pyrolysis . Different Stages in the Fluidized-bed Pyrolysis of a Plastic Waste 2.1 An Overview of Physical and Chemical Phenomena . 2.2 The Polymer Degradation Process . Operability Range of Fluidized-bed Pyrolysers . 3.1 The Phenomenology of Bed Defluidization . ~ ? Predictive Defluidization Models and Operability Maps .

435

Umberto Arena and Maria Laura Mastellone

2

3

435

437

444

444

452

453

453

454

1

xiii

)NTENTS

4.1 Fluidized-bed Pyrolysis of Monopolymeric Waste. . . . 4.2 Fluidized-bed Pyrolysis of Multipolymeric Waste . . . . 4.3 Fluidized-bed Pyrolysis of Other Polymeric Wastes. . . 5 Operating Experience with Industrial Fluidized-bed Pyrolysers 5.1 The BP Chemicals Polymer Cracking Process . . . . . . 5.2 The Akzo Process 5.3 The Ebara TwinRec Process . . . . . . . . . . . . . . . . . . References

. . . . ' .

17 The Hamburg Fluidized-bed Pyrolysis Process to Recycle

Polymer Wastes and Tires . . . . . . . . . . . . . . . . . . . . . . . . . . . Walter Kaminsky I 2

Introduction... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pilot Plant Description. . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Pyrolysis of Whole Tires . . . . . . . . . . . . . . . . . . . . . 3 Pyrolysis Product Composition . . . . . . . . . . . . . . . . . . . . . 3.1 Industrial Pilot Plants . . . . . . . . . . . . . . . . . . . . . . . References .......

18 Liquefaction of PVC Mixed Plastics '" Thallada Bhaskar and Yusaku Sakata I 2

3

4

462

464

466

467

467

468

469

471

475

475

476

480

482

488

490

.................

493

Introduction.................................. Experimental and Analytical Methods 2.1 Preparation of Iron and Calcium Composites . . . . . . . . 2.2 Experimental Procedure. . . . . . . . . . . . . . . . . . . . . . 2.3 Analysis procedure . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 HCl Adsorption Capacity. . . . . . . . . . . . . . . . . . . . . Fundamental Studies on the Decomposition of PVC . . . . . . . 3.1 Product Distribution and Mechanism of PVC

Decomposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Degradation of PVC - Polymer Mixtures . . . . . . . . . . Liquefaction with Commingled Plastics and Dechlorination .. 4.1 Pyrolysis of PE, PP or PS with PVC . . . . . . . . . . . . . 4.2 Thermal Degradation of PPIPVC by Solid Acid Catalysts

and Dechlorination with Iron Oxides . . . . . . . . . . . . . 4.3 Thermal Degradation of PE Mixed with PET. . . . . . . . 4.4 Laboratory Evaluation of Various Carbon Composites as

HCI Sorbents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 Liquefaction of PVC Mixed Plastics and Dechlorination

with Ca-C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6 Liquefaction of PPIPEIPSIPVC with HIPS-Br and

Dehalogenation with Ca-C . . . . . . . . . . . . . . . . . . . . 4.7 Liquefaction of Real Municipal Waste Plastics .....\ .

493

496

496

496

497

498

498

498

501

502

502

505

508

509

514

518

521

T

CONTENTS

6 Conclusions References

525

525

. .

19 Liquid Fuel from Plastic Wastes Using Extrusion-Rotary Kiln

Reactors Sam Behzadi and Mohammed Farid

531

.



Introduction.................................. Pyrolysis . 2.1 Industrial-scale Pyrolysis Processes . References ... .. ... .

531

532

533

547

20 Rotary Kiln Pyrolysis of Polymers Containing Heteroatoms ....

549

I 2

Andreas Hornung and Helmut Seifert

Introduction . Technical Variations . 2.1 Conrad Process ... .. .... . .... 2.2 Double Rotary Kiln Pyrolysis . 2.3 Pyrolysis of Tires: Faulkner System . 2.4 VTA Pyrolysis: A Rotary Kiln for the Treatment of

Petrochemical Residues and Hydrocarbon Residues . 3 State of the Art of Rotary Kiln Technology . 3.1 Haloclean Gas-tight Rotary Kiln . 4 Rotary Kiln Principles . 5 Treatment of Thennoplastics: PVC . 6 Pyrolysis of Mono Fractions: Polymethylmethacrylate

PMMA . 7 Treatment of Shredder Light Fractions/Shredder Residues '" 8 Treatment of Electronic Scrap . 8.1 The European Dimension . 8.2 The Pyrocom Rotary Kiln . 8.3 The Haloclean Rotary Kiln Process . . 9 Dehalogenation of Pyrolysis Oils References .. ... . .. .. .. ... . . .... . I

2

21 Microwave Pyrolysis of Plastic Wastes

549

549

550

550

550

551

551

552

553

553

556

557

557

558

558

559

562

564

.

569

Introduction . Background . 2.1 Microwave Heating . 2.2 Microwave Pyrolysis . Microwave Pyrolysis of Plastics in the Scientific Literature .. 11 Microwave Pvrolvsis Eauipment '..

569

570

570

572

575

575

C. Ludlow-Palafox and H.A. Chase I 2

3

NTENTS

xv

4

582

582

585

586

587

Microwave Pyrolysis in the Commercial Literature . 4.1 Patents History and Comparison with Scientific Literature 4.2 Companies . 5 Conclusions.................................. References ..

., 22 Continuous Thermal Process for Cracking Polyolefin Wastes to

Produce Hydrocarbons .................... Jean Dispons I 2 3 4 5 6

Background . Introduction.................................. The Two Principal Phases of Polyolefin Waste Cracking . Thermal Valorization of Polyolefin Wastes . Continuous Feeding of the Cracking Reactors . Heating Methods .

23 Waste Plastic Pyrolysis in Free-Fall Reactors Ali Y. Bilgesil, M. (:etin Korak, and Ali Karaduman 1 2 3 4

Pyrolysis Previous Pyrolysis Work Design Aspects of FFR to be Used in Pyrolysis A Free-Fall Reactor System for Flash Pyrolysis 4.1 Set-up 4.2 Experimental Procedure 5 Plastic Waste Recycling 6 Results from Ateklab Free-Fall Reactor 6.1 LDPE Results 6.1 Polystyrene Results References

595

595

596

597

598

598

599

. . . . . . . . . . . .

605

605

605

609

610

610

611

612

613

613

617

621

MONOMER RECOVERY

625

24 Monomer Recovery of Plastic Waste in a Fluidized Bed Process. Walter Kaminsky

627

I 2 3

4 5

Introduction.................... . . . . . . . . . . . . . . Fluidized-bed Process . Pyrolysis of PMMA . 3.1 Pure PMMA . 3.2 Filled PMMA . Pyrolysis of Polystyrene . Pyrolysis of PTFE ".

627

628

629

629

631

635

635

Loa

r

CONTENTS

25 Feedstock Recycling of PET

.

641

Introduction........... . . . . . . . . . . . . . . . . . . . . . . . Physical Recycling (Mechanical Recycling) . Solvolysis (Chemolysis) . 3.1 Glycolysis . 3.2 Methanolysis . 3.3 Hydrolysis , ' .. , .. , . 3.4 Other Processes. , . , .. , , . , . , 4 Pyrolysis and Other Hot Processes ,, ,. 4.1 Decomposition Mechanism of PET , . 4.2 Pyrolysis Processes , . References ' ,

641

643

643

644

644

647

649

649

650

653

659

Toshiaki Yoshioka and Guido Grause

1 2 3

ASIAN DEVELOPMENTS

663

26 The Liquefaction of Plastic Containers and Packaging

in Japan ' . A. Okuwaki, T Yoshioka, M. Asai, H. Tachibana, K. Wakai, K. Tada

665

I

Introduction, 1.1 Brief History of Plastics Liquefaction in Japan 1.2 The Law for Promotion of Sorted Collection and

Recycling of Containers and Packaging 1.3 Feedstock Recycling of Plastic Containers and Packaging

. .

665

665

.

666

.

667

670

670

670

671

673

673

675

675

676

678

678

678

678

680

682

684

687

References .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2

Niigata Waste Plastic Liquefaction Process ' ' 2,1 Plant Outline ' , . , . ' 2.2 Process Description 2.3 Qnality of Waste Plastics ' 2.4 Properties of Outputs .. ' 2.5 Material Balance and Consumption Figures , 2.6 Heat Balance , , , 2.7 Application of the Ontputs .' 2.8 Environmental Measurement References 3 Sapporo Waste Plastics Liquefaction Process 3.1 Plant Outline , 3.2 Process Description , 3.3 Quality of Waste Plastics 3.4 Properties of Outputs 3.5 Material Balance and Consumption Figures. ,

. ,. .. . , .. . . . . . . . . . . ,..

i

xvii

ONTENTS

3.8 Environmental Aspects . . . . . . . . . . . . . . . . . . . . . . 3.9 Characteristics of the Plant. . . . . . . . . . . . . . . . . . . . References ................. 4 Mikasa Waste Plastic Liquefaction Plant . . . . . . . . . . . . . . . 4.1 Plant Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Process Description '.' 4.3 Quality and Application of Reclaimed Oil. . . . . . . . . . 4.4 Material Balance .......... 4.5 High Energy Collection . . . . . . . . . . . . . . . . . . . . . . 4.6 Characteristics of the Plant ..... _ . . . . . . . . . . . . . . 4.7 Application of the System . . . . . . . . . . . . . . . . . . . . References ............................ 5 The Scope of Liquefaction in Japan ',' . . . . . . . . . . . . . . . . 5.1 Present Status of Feedstock Recycling . . . . . . . . . . . . 5.2 Scope for Liquefaction References .................

692

693

695

695

695

695

698

698

700

700

702

702

702

702

706

708

27 Process and Equipment for Conversions of Waste Plastics into

Fuels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

709

AlIw Zadgaonkar

I 2

3

4

5

6

7

8

Introduction.......... . . . . . . . . . . . . . . . . . . . . . . . . Pyrolysis............................ . . . . . . . 2.1 Definitioo.... . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Plastics Suitable for Pyrolysis. . . . . . . . . . . . . . . . . . Pyrolysis: Mode of Operation and Apparatus. . . . . . . . . . . . 3.1 Batch Pyrolysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Types of Pyrolyzers .................. Pyrolysis: Thennal CrackingINoncatalytic Cracking 4.1 Operation.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Process Mechanism 4.3 Degradation of Polymers . . . . . . . . . . . . . . . . . . . . . Pyrolysis Catalyst. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1 Role and Effect of Catalyst 5.2 Properties of Catalyst _. . . . . . . . . . . . Pyrolysis: Output Characteristics. . . . . . . . . . . . . . . . . . . . 6.1 Effect of Temperature on Pyrolysis Products . . . . . . . . 6.2 By-products of Pyrolysis . . . . . . . . . . . . . . . . . . . . . Pyrolysis of Heteroatom Polymers . . . . . . . . . . . . . . . . . . . 7.1 Pyrolysis of PVC . _ . . . . . . . . . . . . . . . . . . . . . . . . 7.2 Pyrolysis of ABS . . . . . . . . . . . . . . . . . . . . . . . . . . Refinement of Pyrolysis Output Products 8.1 Removal of Vnsaturation and Olefinic Products . . . . . . 8.2 Various Examples of Pyrolysis , . 0'

,

709

709

709

710

710

710

711

712

712

713

713

715

715

716

719

719

719

720

720

721

721

721

722

CONTENTS

9.1 9.2

Thermofuel of Waste Plastic by Ozmotech Conversion of Waste Plastics to Fuels: Zadgaonkar's

Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 28 Converting Waste Plastics into Liquid Fuel by Pyrolysis:

Developments in China . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Yuan Xingzhong 1

724

724

728

729

Progress in Converting Waste Plastics into Liquid Fuel by

Pyrolysis Theory of Plastics Pyrolysis . . . . . . . . . . . . . . . . . . . 2.1 Mass Balance for the Pyrolysis Process 2.2 Energy Balance for the Pyrolysis Process . . . . . . . . . . 2.3 Mechanism of Plastics Pyrolysis . . . . . . . . . . . . . . . . 2.4 Methods for Plastics Pyrolysis 3 Process of Plastics Pyrolysis. . . . . . . . . . . . . . . . . . . . . . . 3.1 Veba Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 BP Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Fuji Process 3.4 BASF Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 Hamburg University Process. . . . . . . . . . . . . . . . . . . 3.6 Hunan University Process 3.7 United Carbon Process 3.8 Likun Proce" . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.9 Other Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Main Factors in Plastics Pyrolysis . . . . . . . . . . . . . . . . . . . 4.1 Temperature............................. 4.2 Catalyst................................ 5 Pyrolysis of PVC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ......... 6 Catalytic Reforming of Cracked Gas References ............................ 2

ex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

729

730

730

732

734

735

738

738

738

741

741

741

742

743

743

744

744

744

746

747

748

750

757

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF