Fe Sheet Pile Wall

March 13, 2017 | Author: lrbs3083 | Category: N/A
Share Embed Donate


Short Description

Download Fe Sheet Pile Wall...

Description

gw = g1 =

9.81 15.90

f'1 =

32.00

Ka = L1 = s'1 = g2 = g' =

0.307 2.00 9.77

f'2 = Ka = L2 = s'2 =

19.33 9.52 32.00 0.307 3.00 18.55

FS Kp =

1.00

Kp =

3.25

Kp-Ka =

2.95

L3 = 0.66 Area 1 = 9.77 Area 2 = 29.31 Area 3 = 13.16 Area 4 = 6.13 P = 58.38 Zbar = 2.23 s'5 = 214.99 A1 = 7.66 A2 =

Solution for Cantilever Sheet Pile Wall in Sand Example Problem 9.1 from Das book on Foundation Engineering z p V M z' = 2.04 Mmax = 0.00 0 0 0 209.58 sall = L1 2.00 10 10 7 172000.00 L1+L2 p = 0. V = 0. L - L5 L

5.00 5.66 7.70

19 0.0 -57

52 52 0

93 168 209.1

Sreq'd = 0.00122 Das Solution Obtained by summing forces

9.34 10.40

-103 348

-130 4

112.8 1.6

and taking a moment at the pile tip.

Pressure -200

0

200

Moment

Shear 400

-200

-100

0

100

-100

0

0

0

0

2

2

2

4

4

4

6

6

6

8

8

8

10

10

10

12

12

12

16.64

A3 = A4 =

151.3 230.6 Old L4 = 4.75 Zero = 5 Increment = -0.01 New L4 = 4.74 D = 5.41 s'3 = 133.3 s'4 = 348.3 L5 = 1.07 s'6 = -103.2

Use F9 to iterate until zero ≈ 0

100

200

300

Solution for Cantilever Sheet Pile Wall in Sand with no Wate Section 9.5 from Das book on Foundation Engineering, 5th ed. - Reference Fig. 9.9 (Ex z p V 15.9

f' =

32

Ka = L= s'2 =

0.307 24.43

L p = 0. V = 0. L - L5

FS Kp =

1.00

L+D

Kp =

3.25

Kp-Ka =

2.95

L3 = Area 1 = Area 2 = P= Zbar = s'5 =

0.52 61.07 6.37 67.43 2.19 283.16

5

6.04

A2 =

11.51

A3 = A4 =

D= s'3 =

90.0 122.4 4.07 3 -0.01 4.06 4.59 190.7

s'4 =

473.9

L5 =

0.97

s'6 =

-145.5

Old L4 = Zero = Increment = New L4 =

0

0

5

24.43

61

5.52

0.00

67

7.22

-79

-0.06

8.63

-145

-157

9.58

473

6

Pressure -500

0 0.00

500

Shear 1000 -500-400-300-200-100 0

0.00

2.00 2.00

4.00

Depth Z

A1 =

0

6.00

4.00

Depth Z

g=

6.00

8.00

8.00

10.00

10.00

12.00

12.00

Source Data for Graphs

z 0.00 1.00 2.00 3.00 4.00 5.00 5.17 5.35 5.521 5.80 6.09 6.37 6.65 6.93 7.22 7.45 7.68 7.92 8.15 8.38 8.631 8.79 8.95 9.11 9.27 9.43 9.581 9.581

p 0 5 10 15 20 24 16 8 0 -13 -26 -40 -53 -66 -80 -91 -101 -112 -123 -134 -146 -42 61 164 267 370 474 0

V 0 2 10 22 39 61 65 67 67 66 60 51 38 21 0.06 -20 -42 -67 -95 -125 -159 -174 -173 -155 -120 -69 -6

M 0 1 7 23 54 104 115 126 138 157 174 190 202 211 214 211 204 191 173 147 112 85 57 31 9 -6 -12

all in Sand with no Water - Reference Fig. 9.9 (Example 8.2 Das 4th Edition) M z' = 1.70 Mmax = 0 223.80 104 sall = 172000.00 138 Sreq'd = 0.00130 213 Das Solution obtained by summing 114 forces and taking a moment at the -7

pile tip.

Shear

Moment -100 0 0.00

0 100 200 300 400 500

0.00

2.00

2.00

4.00

Depth Z

4.00

6.00

100

999

6.00

8.00

8.00

10.00

10.00

12.00

12.00

200

300

gw = g1 =

9.81 15.90

f'1 =

32.00

Solution for Cantilever Sheet Pile Wall in Sand Example Problem 9.2 from Das 5th ed. on Foundation Engineering z p V M z' = 0.41 Mmax = 0.00 0.0 0.0 0.0 103.6 sall = L1 2.00 9.8 9.8 6.6 172500.00

Ka = L1 = s'1 = g2 = g' =

0.307 2.00 9.77 19.33 9.52

L1+L2 V = 0. L1+L2+L3 p=0 L1+L2+D

f'2 = Ka = L2 = s'2 =

32.00 0.307 3.00 18.55

FS Kp =

1.00

Kp =

3.25

Kp-Ka = 2.95 Area 1 = 9.77 Area 2 = 29.31 Area 3 = 13.16 P = 52.25 z1bar = 1.78 c= 47.00 s'6 = 127.64 A2 = 104.49 A3 = 357.3 Old D = 2.14 Zero = 4 Increment = -0.01 New D = 2.13

Dactual = s'7 =

3.20 248.4

L4 =

1.17

L3 = z' =

0.96 0.41

5.00 5.41 5.96 6.36 7.1

18.5 127.6 127.6 0.0 248.4

52.2 0.0 -96.1 -1.3

Pressure -200

0

200

93.2 103.8 49.7 0.2

Sreq'd = 6.0087E-04 Das Solution Obtained by summing forces and taking a moment at the pile tip. Moment

Shear 400

-200

-100

0

0

100

0

0

0

1

1

1

2

2

2

3

3

3

4

4

4

5

5

5

6

6

6

7

7

7

8

8

8

Use F9 to iterate until zero ≈ 0

50

100

z 0.00 0.40 0.80 1.20 1.60 2.00 2.30 2.60 2.90 3.20 3.50 3.80 4.10 4.40 4.70 5.00 5.00 5.14 5.27 5.41 5.50 5.59 5.69 5.78 5.87 5.96 6.03 6.10 6.16 6.23 6.29 6.36 6.49 6.62 6.75 6.87 7.00 7.14 7.14

p 0.0 2.0 3.9 5.9 7.8 9.8 10.6 11.5 12.4 13.3 14.2 15.0 15.9 16.8 17.7 18.5 -127.6 -127.6 -127.6 -127.6 -127.6 -127.6 -127.6 -127.6 -127.6 -127.6 -106 -85 -64 -43 -21 0.0 41 83 124 166 207 248.4 0

V 0.0 0.4 1.6 3.5 6.3 9.8 12.8 16.2 19.7 23.6 27.7 32.1 36.7 41.6 46.8 52.2 52.2 34.8 17.4 0.0 -11.8 -23.5 -35.3 -47.0 -58.8 -70.9 -78.6 -84.9 -89.8 -93.2 -95.3 -96.1 -93.4 -85.5 -72.3 -53.8 -30.0 1.3

M 0.0 0.1 0.5 1.5 3.4 6.6 10.0 14.4 19.8 26.3 34.0 42.9 53.3 65.0 78.3 93.2 93.2 99.1 102.7 103.8 103.3 101.7 99.0 95.2 90.3 84.1 79.2 73.9 68.2 62.2 56.0 49.2 37.1 25.6 15.6 7.5 2.2 0.2

summing forces moment at the Moment 100

150

gw = g= Ka = L= s'2 = g sat cl = g' = f' = Ka = c=

9.81 15.90 32.00 0.307 5.00 24.43 18.00 8.19 0.00 1.000 47.00

FS Kp =

1.00

Kp =

1.00

Kp-Ka =

0.00

f' =

Solution for Cantilever Sheet Pile Wall Penetrating Clay Section 9.7 from Das book on Foundation Engineering 5E z p V M z' = 0.56 Mmax = 0.00 0 0 0 118.96 L 5.00 24 7 4 sall = 172000.00 p = s6 5.00 108.5 18 118 Sreq'd = 0.00069 V = 0. 5.56 -109 0 119.2 Das Solution L+D-L4 6.37 -109 -87 84.6 Obtained by summing forces L+D 7.45 268 2 1.4 and taking a moment at the pile tip. Pressure -200

0

200

Moment

Shear 400

-200

-100

0

0

100

0

0

0

1

1

1

2

2

2

3

3

3

4

4

4

A3 = -352.3

5

5

5

Old L4 = 2.46 Zero = 4 Increment = -0.01 New L4 = 2.45

6

6

6

7

7

7

8

8

8

P1 = 61.07 s6 = 108.50 s7 = 267.50 L4 = 1.09 z' = 0.56 Zbar = 1.67 A1 = 108.50 A2 = -122.13

D= L3 =

2.46 1.37

Use F9 to iterate until zero ≈ 0

50

100

z 0.00 0.33 0.67 1.00 1.33 1.67 2.00 2.33 2.67 3.00 3.33 3.67 4.00 4.33 4.67 5.00 5.00 5.06 5.11 5.17 5.23 5.28 5.34 5.39 5.45 5.51 5.56 5.70 5.83 5.96 6.09 6.23 6.365 6.55 6.73 6.91 7.10 7.28 7.450 7.450

p 0 2 3 5 7 8 10 11 13 15 16 18 20 21 23 24 -109 -109 -109 -109 -109 -109 -109 -109 -109 -109 -109 -109 -109 -109 -109 -109 -109 -46 17 80 142 205 268 0

V 0 0 1 2 4 7 10 13 17 22 27 33 39 46 53 61 61 55 49 43 37 31 24 18 12 6 0 -14 -29 -43 -58 -72 -87 -101 -104 -95 -75 -43 -2

M 0 0 0 1 2 4 7 10 16 22 30 40 52 66 83 102 102 105 108 111 113 115 116 118 119 119 119 118 115 111 104 95 84 67 48 30 15 4 0

summing forces moment at the Moment 100

150

Solution for Anchored Sheet Pile Wall in Sand Example Problem 9.3 from Das book on Foundation Engineering Use F9 to Solve gw = 9.81 z p V M Old z-L1 = 4.00 g1 = 16.00 0.00 0.00 0.00 0.00 Zero = -0.68 f1 = 30.0 L1 3.05 8.16 6.24 3.36 Increment = 0.001 Ka = 0.333 V=0 7.05 29.2 0.00 -352.84 New z-L1 = 4.00 L1 =

3.05

L1+L2

9.15

-48.5

-10.20

-284.83

l1 =

1.53

p = 0.

10.54

0.00

92.79

-167.51

l2 = s'1 =

1.52 16.27

L

13.22

-69.51

-0.69

-3.40

g2 = g' = f2 = Ka = L2 = s'2 =

19.50 9.69 30.0 0.33 6.10 35.97

FS Kp =

1.00

Kp =

3.00

Kp-Ka =

2.67

L3 = 1.39 Area 1 = 24.81 Area 2 = 99.23 Area 3 = 60.09 Area 4 = 25.04 P = 209.16 Zbar = 4.21 A2 = 13.52 A3 = 116.57 Use F9 to Solve Old L4 = 2.68 Zero = -0.23 Increment = 0.01 New L4 = 2.69 L4 = 2.69 Dtheory = 4.08 Dfactor = 1.30 Dcomp = F =

5.31 115.7

Shear

Pressure -75 -50 -25 0 0.0

25

50

-500.0 0.0 0.0

z= 7.05 Mmax = -353.6 sall = 172000.0 Sreq'd = 0.0020556 Moment

500.0

-400

-200

0 0.0

2.0

2.0

2.0

4.0

4.0

4.0

6.0

6.0

6.0

8.0

8.0

8.0

10.0

10.0

10.0

12.0

12.0

12.0

14.0

14.0

14.0

200

Solution for Anchored Sheet Pile Wall in Clay (Free Support Method) Example Problem 9.5 from Das book on Foundation Engineering gw = 9.81 z p V M g1 = 17.00 0.00 0.00 0.00 0.00 f1 = 35.0 L1 3.00 6.91 5.18 2.74 Ka = 0.271 V=0 5.80 21.6 0.00 -159.26 L1 = l1 = l2 = s'1 =

3.00 1.50 1.50 13.82

g2 = g' = f2 = Ka = L2 = s'2 = c=

20.00 10.19 35.0 0.27 6.00 30.39 41.0

FS Kp =

1.00

Kp =

3.69

L1+L2 p = 0. L

-50.7 -51.86 -51.86

-4.99 82.98 3.51

Old z-L1 = Zero = Increment = New z-L1 =

-34.13 -34.13 32.13

z= Mmax = sall = Sreq'd =

Shear

Pressure -75 -50 -25 0 0.0

Kp-Ka = 3.42 Area 1 = 20.73 Area 2 = 82.92 Area 3 = 49.70 P1 = 153.36 Zbar = 3.22 s6 = 51.86 a 51.86 b 777.90 c -1313.78 D= 1.53 Zero = 0.00 Dtheory = 1.60 Dfactor = 1.30 Dcomp = F =

9.00 9.00 10.53

Use F9 to Solve

2.50 70.4 z

25

50

-100.0

0.0

Moment 100.0

-200

-100

0

0.0

0.0

2.0

2.0

2.0

4.0

4.0

4.0

6.0

6.0

6.0

8.0

8.0

8.0

10.0

10.0

10.0

12.0

12.0

12.0

Pressure

Shear

Moment

0.00 0.50 1.00 1.50 1.50 2.00 2.50 3.00 3.23 3.47 3.70 3.94 4.17 4.40 4.64 4.87 5.10 5.34 5.57 5.81 6.21 6.60 7.00 7.40 7.80 8.20 8.60 9.00 9.00 9.31 9.61 9.92 10.23 10.53 10.53

0.00 2.30 4.61 6.91 6.91 9.21 11.52 13.82 14.47 15.11 15.76 16.40 17.05 17.69 18.34 18.99 19.63 20.28 20.92 21.57 22.67 23.77 24.88 25.98 27.08 28.18 29.29 30.39 -51.86 -51.86 -51.86 -51.86 -51.86 -51.86 0.00

0.00 0.58 2.30 5.18 -65.20 -61.17 -55.99 -49.65 -46.34 -42.89 -39.28 -35.52 -31.61 -27.54 -23.33 -18.97 -14.45 -9.78 -4.97 0.00 8.83 18.10 27.81 37.97 48.56 59.59 71.06 82.98 82.98 67.08 51.19 35.30 19.40 3.51

0.00 0.14 0.86 2.74 2.74 -28.86 -58.14 -84.55 -95.78 -106.21 -115.82 -124.56 -132.41 -139.32 -145.27 -150.22 -154.12 -156.96 -158.68 -159.26 -157.50 -152.12 -142.96 -129.82 -112.55 -90.96 -64.88 -34.13 -34.13 -11.14 6.99 20.24 28.62 32.13

Use F9 to Solve 2.81 0.00 -0.001 2.80 5.81 -159.8 172500.0 0.0009263

100

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF