Fe Review

June 14, 2018 | Author: Djy Duhamy | Category: Real Versus Nominal Value (Economics), Tax Deduction, Bonds (Finance), Discounting, Tax Rate
Share Embed Donate


Short Description

Download Fe Review...

Description

1

FE Review for Engineering Economics

FE Review for Engineering Economics  http://ristroph.louisiana.edu/EngrEcon/Overhead/FEReview.pdf  Present Economics $ Revenue Revenue = ($/un ($/ unit) it) X  Profit = Revenue − Total ot al Cost Total Cost = Fixed Fixed Cost Cost + Variable Variable Cost Cos t Variable = ($/un ($ /unit) it) X  Cost

Total Cost

Fixed Cost

Breakeven

 X (units)

Breakeven Diagram

 f(x) $

df(x) =0 dx

 x*

 x (units)

Nonlinear Revenue or Profit

© 8/17/08 J H Ristroph

2

FE Review for Engineering Economics

$ TC1 TC2 Method 1

Method 2  x (units)

Breakeven

Alternative Production Methods

Expected Profit or Cost P(100) = 30%

P(200) = 20%

P(300) = 50%

Expected value = 220 = 100(0.30) + 200(0.20) + 300(0.50)

Equivalence Single Payments  E 4 55

65

3

6

2 4

5

100 Single Cash Flows E4 = -100(F |P,i,4-2) + 55(P|F ,i,5-4) + 65(P|F ,i,6-4)

© 8/17/08 J H Ristroph

3

FE Review for Engineering Economics

Uniform Series  E 3

 E 20

100 •

3

4





5

20

Simple Series E3 = 100(P |A,i,20-3) E20 = 100(F  |A,i,20-3)

 E -2  E 3

 E 20

100 •

3

-2

4



 E 30



5

20

30

Two Step Equivalents to 100 Series E-2 = E3(P|F ,i,3-(-2)) E30 = E20(F |P,i,30-20)

 E -2  E 3

 E 20

100 •

-6 -5 -4

-3

-2

3

4

5



E 30



20

30 31 32 33 34

Three Step Equivalents to 100 Series E -5 to -2 = E-2( A|F ,i, -2-(-6)) E 31 to 33 = E30( A|P,i,34-30)

© 8/17/08 J H Ristroph

4

FE Review for Engineering Economics

Arithmetic Gradients 70

54 50 52 •



9 10 11 12



 B = 50 =

20





G = +2

9 10 11 12

 Linear Trend

+



20

2 4 •





9 10 11 12

20

Base Series

20

Arithmetic Gradient 

Components of a Linear Trend

9 10 11 12

20

9 10 11 12 =





9 10 11 12

20 •



+





 B = -50

70





2 4 20 G = -2



50 52 54

20

a) Negative Base Series and Negative Gradient  B = 70

70 68 66

50 •











9 10 11 12

20

=

9 10 11 12

20

+

9 10 11 12

2

b) Positive Base Series and Negative Gradient

20 •





4 20 G = -2 G = +2

9 10 11 12

20 •

66 70 68



=

9 10 11 12

20

2 4 +

9 10 11 12



50







 B = -70

c) Negative Base Series and Positive Gradient Types of Linear Trends

© 8/17/08 J H Ristroph





20



20

5

FE Review for Engineering Economics

 E r  = G (P | G, i, s-r )

(s-r -1) G G 2G r  r +1 r +2 r+3







s

Arithmetic Gradient Present Worth Factor

(s-r -1) G G 2G r  r +1 r +2 r+3





 E U  = G ( A | G, i, s-r ) =



s







r  r +1 r +2 r+3

s

Arithmetic Gradient Uniform Series Factor

Effective Interest r = nominal rate, such as 12% per year compounded monthly

P = number of short periods in the long period, such as 12 months in a year iP = r / P = rate per short period, such as a month ie = (1 + iP)P – 1 = effective (or true) interest rate for the long period,

such as a year Example: 18% per year compounded monthly P = 12 im = 1.5% per month = 18% / 12 = true monthly rate ie = (1 + 0.015)12 – 1 = 19.56% effective (or true) interest rate per year

© 8/17/08 J H Ristroph

6

FE Review for Engineering Economics

Example: 12% per year compounded monthly with quarterly cash flows => The monthly interest rate is 1% Q  M  •



Q3

Q6

 M



M •

0

Q33





Q36



0 1

2

12

1

2

3

4

5

i = 3.0301% / qr

1,000

6

31 32

33 34 35 36

i = 1% / mo

1,000 Monthly Rate, Quarterly Payments



If draw cash flow diagram on a quarterly basis, must use quarterly rate 3.0301% = (1 + 0.01) 3 – 1
View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF