Exercices Corriges Construction Metallique 2

January 7, 2017 | Author: mtssofiene | Category: N/A
Share Embed Donate


Short Description

Download Exercices Corriges Construction Metallique 2...

Description

ASSEMBLAGES BOULONES

Source: www.almohandiss.com

Source: www.almohandiss.com

CHEMINEMENT A ADOPTER LORS DU CALCUL DES ASSEMBLAGES 1. Détermination des efforts transmis par l’assemblage. 2. Coupe dans l’assemblage afin de déterminer la section résistante de l’assemblage. 3. Définition des parties de la section résistante affectée à la reprise de chacun des efforts sollicitants. 4. Détermination des contraintes dans la section résistante (distribution des efforts sollicitants dans chacune des parties correspondantes de l’assemblage). 5. Vérification de la valeur maximum des contraintes

Source: www.almohandiss.com

Exercice 1:

Source: www.almohandiss.com

Assemblage à boulons ordinaires sollicités au cisaillement.

Déterminer, pour chacune des configurations suivantes d’assemblage boulonné, l’épaisseur des plats (et des couvre-joints), ainsi que le nombre de boulons nécessaires pour la transmission, en service, d’un effort N de traction, entre les plats assemblés. Dans chaque cas, faire un croquis de l’assemblage. Discuter, enfin, les avantages et les inconvénients que peut présenter chacune de ces trois configurations par rapport aux deux autres. Données : - N = 200 kN (charge variable) - acier utilisé pour la réalisation des plats et des couvres joints : S235 - boulons non-préserrés de 20 mm de diamètre nominal (type 8.6) - les trous dans les plats et les couvres-joints sont forés à un diamètre 2 mm supérieur à celui des boulons; - la largeur des plats et des couvres-joints est égale à 150mm

(a) N

N

(b) N

N

(c) N

Source: www.almohandiss.com

N

Source: www.almohandiss.com

Solution

N  200 kN N*   . N Charges variables

  1,5  N*   .N  1,5  200  300 kN

Déterminer la façon dont l’assemblage travaille Ici les boulons vont travailler en cisaillement. Boulons cisaillés La résistance de calcul Rs d’une section cisaillée d’un rivet (boulon) vaut par plan de cisaillement :

Rs   l . As

As : aire de la section résistante au cisaillement

l 

0.56 f ub

M

ub : Contrainte ultime en traction du fût du rivet ( boulon) Source: www.almohandiss.com

2 www.almohandiss.com On a des boulons  20  As Source: =245 mm On a des boulons 8.6  ub =8 x 100 = 800 MPa

0.56  800 Rs   245  87.8 kN 1.25 Si n est le nombre de boulons on doit avoir

nRs  N *  n 

N * 300   3.4 Rs 87,8

Donc le nombre de boulons n= 4 boulons - La première chose à vérifier c’est la résistance du boulon - La deuxième chose à vérifier si le plat tient

Source: www.almohandiss.com

Source: www.almohandiss.com

Résistance des plats Section brute Ab =b.t=150.t t: épaisseur des plats Section nette An= (b-2.trou ).t trou = boulon + 2 mm =22 mm An= (150-2 x 22 ).t=106 .t

N brute  Ab .

fy

M

235  150  t   300.103 N ;  m  1,1 1.1

 t  9,4 mm 0.8 f u 0.8  360 N nette  An .  160t   300.103 N M 1.1 t  10.8 mm  t  12 mm Remarque : Dans la section nette on se permet de dépasser y et d’aller jusqu’à 0.8 u Il reste à vérifier – la résistance à la pression diamétrale Pression diamétrale

R p  pl .d .t t : épaisseur des plats = 12 mm d : diamètre du boulon =20 mm

pl  

fy

M

 Dépend de la géométrie de l’assemblage Source: www.almohandiss.com

Source: www.almohandiss.com

Une interprétation linéaire est acceptable. On peut approximer ces valeurs selon

e1 e  0.5 ; 1  1,2 d d p p   1.25  1.75 ;  2 d d

  1.25

Si la nuance des pièces assemblées est différente de celle des organes d’assemblages, il faut considérer les valeurs correspondant à la nuance la plus douce.

Source: www.almohandiss.com

R p  pl .d .t

avec

Source: www.almohandiss.com fy pl   M

 dépend de la géométrie d’assemblage Selon que le boulon est en dernier ou en premier de la file - Première rangée de boulons ;

p   1.25  1.75 d

p : distance derrière les boulons , p = 50 soit:

50  1.75  1,06 20 - deuxième rangée de boulons ; e1   1.25  0,5 d e1 distance derrière les boulons ; e1 =25 soit: 25   1.25  0,5  1,375 20

  1.25

On prend  = min des deux valeurs La zone critique sera située derrière la première rangée de boulons. L’assemblage est constitué de 4 boulons

1.06  235  226,45 kN 1.1 3 N  4 . 226,45 . 12.Source: 103 . 20 . 10  217,9 kN www.almohandiss.com N  4.R p ; RP  pl . d . t ; pl 

Source: www.almohandiss.com

Attention : pour la pression diamétrale on prend d = diamètre des boulons

N *  300  4 . Donc à partir de

fy

M

.d .t   min  1.46

p  min  1.25  1,75 d

on calcule p= 52 mm

( p = distance entre deux boulons intérieurs à l’assemblage )

à partir de

 min  1.25

e1  0,5 d

Avec  =  min on déduit

on déduit e = 32 mm ( distance entre le dernier boulon et la fin du plat ) 1. b. N

N

Il s’agit tout simplement de deux assemblages en série qui fonctionnent comme l’assemblage (a) - Un assemblage est un endroit où l’effort passe d’un élément de structure à un autre élément de structure - donc on remarque directement ici qu’on a en fait deux assemblages identiques à l’assemblage étudié en (a) N N

N

Source: www.almohandiss.com

N

Source: www.almohandiss.com

1. c. N

N

coupe N

N/2 N/2

T couvre-joints = 6 mm

- Deux plans de cisaillement  nombre de boulons n , N= m . n . Rs m = nombre de plans de cisaillements Discuter les avantages et les inconvénients a/ non alignement des efforts

c/ pas de problème d’excentrement mais problème d’encombrement en (c) il y a problème de pression diamétrale donc il faut garder les 4 boulons. Source: www.almohandiss.com

Exercice 2 :

Source: www.almohandiss.com

Assemblage à boulon H. R. précontraints résistant par friction

Considérer la configuration (a) d’assemblage étudié à l’exercice 1, dans lequel les boulons ordinaires de type 8.6 sont remplacés par des boulons H. R. préserrés de type 10.9 Déterminer le nombre et l’emplacement des boulons pour deux valeurs différentes du coefficient de frottement  entre les pièces assemblées :  = 0.3 et  = 0.5

(a) N

N

(b) N

N

(c)

Source: www.almohandiss.com

Source: www.almohandiss.com

Solution

Les boulons précontraints  grande pression met les plats en contact et empêche l’effort de traction N de faire glisser les plats N* m.n.Rs RS : résistance par frottement n : nombre de boulons m: nombres de surfaces cisaillées

Rs 

k ..S

M

 = coefficient de frottement S = effort de preserrage; S = 0.8.Ab.fyb; k = 1 cas normal ; m = 1.25 S = 176 kN (voir tableau); m = 1 une seule surface de frottement

300 1.25   0.3  M   7.1  8 boulons 0.3 176 300 1.25   0.5  M   4.26  5 boulons 0.5 176 Source: www.almohandiss.com

www.almohandiss.com On doit de nouveau vérifier Source: la pression diamétrale

N *  n. pl .d .t fy pl   .

M

Ici la formule de  change  (boulon précontraint )=  (boulon ordinaire ) + 0.5

e1 p   f ( , )  0.5 avec   3 d d N * . M Donc il faut que  HR  n. f y .d .t   0.73 (cas 8 boulons )

  1.17

(cas 5 boulons )

Pour comparer il faut retirer 0,5 pour avoir la valeur en boulon non précontraints et calculer les espacements comme pour l’Exercice 1

Source: www.almohandiss.com

Exercice 3 :

Source: www.almohandiss.com

Assemblage à boulons ordinaires sollicités à la traction ( éventuellement combinée au cisaillement )

Dans l'assemblage suivant, l'effort centré N de traction est transmis entre les plats A et B par l'intermédiaire de deux platines C et D boulonnées entre elles et soudées aux plats A et B perpendiculairement au sens de l'effort N. On demande : 1° de déterminer l'effort maximum transmissible par les plats A et B 2° de calculer le nombre de boulons nécessaires à la prise de l’effort déterminé en 1°, si on suppose les platines Cet D infiniment rigides pour la flexion dans leur plan 3° d'évaluer la valeur de l'effort de levier dans les boulons, pour différentes épaisseurs des platines C et D ( platines non-infiniment rigides ) : t = 10 mm, t = 20 mm, t = 40 mm Données : - boulons 20 mm de diamètre non-préserrés ( type 6.6 ) - acier utilisé pour les différents plats : S235 2t

A

B

N

N

C

D

Source: www.almohandiss.com

Source: www.almohandiss.com

Solution

N* N charge variable   1.50 N* N charge permanente  1.33 fy 1) N *  b  t  ;  m  coefficien t de sécurité  1.1 pour l' acier

m

235  333.33 kN; N *  charge maximale admissible  charge de calcul 1.1 2) N *  n  Rt ; avec Rt   l  Ab ; n  nombre de boulons ; N *  130 12 

Rt  résistance à la traction d' un boulon  f yb f ub    ;  l  min  ;0.8  M  M boulons 6.6  f yb  360 MPa et f ub  600 MPa

20  Ab  245 mm2  Rt  70,6 kN  n 

N * 300   4.7  6 boulons Rt 70.6

on prend toujours un nombre pair de boulons pour garder une certaine symétrie ( 6 boulons plutôt que 5) Source: www.almohandiss.com

Source: www.almohandiss.com

3/Effort de levier En fait ci-dessus on suppose implicitement que la platine était infiniment rigide

Wt 4 0,5  2 N* 30 ab A Q . 4 2 a a  Wt   1  b  3b  6ab 2 A N* : force extérieure; Q : effort de levier; A : Section du boulon; W : distance concernée par la rangée de boulons considérés (voir figure )

Source: www.almohandiss.com

Source: www.almohandiss.com

N* Rt  Q 2

t  10 mm t  20 mm t  30 mm t  35 mm

N Q  0.37  2 N Q  0.31 2 N Q  0.14  2 N Q  0.05  2

Source: www.almohandiss.com

Source: www.almohandiss.com

Exercice 4 Assemblage à boulons H.R précontraints sollicités à la traction . En se plaçant dans les mêmes conditions que celles de l’exercice 3 ( même géométrie et même effort appliqué), on demande d’évaluer le nombre de boulons nécessaires à la prise de l’effort N si les plaques sont supposées suffisamment rigides et que l’on emploie cette fois des boulons H.R pré serrés de 20 mm de diamètre et de type 10.9

Solution N*  n.S ; boulons précontraints on introduit une pression de contact Boulons 10.9  S=176 kN

N* 333,33 n  n  n  2 boulons S 176 On voit l’avantage des boulons précontraints c'est-à-dire qu’il en faut beaucoup moins

Source: www.almohandiss.com

Source: www.almohandiss.com Exercice 5 L’assemblage suivant doit transmettre un effort tranchant F* ainsi qu’un moment de flexion M* (valeurs pondérées) de la poutre IPE200 à la colonne HE160B par l’intermédiaire d’un plat d’about soudé à la poutre et boulonné à la semelle de la colonne. On demande de vérifier la résistance des boulons sous l’effet combinés des deux efforts précités. Données: - F* = 40 kN et M* = 40 kN - acier utilisé pour la réalisation des éléments assemblés: S235 - boulons HR. préserrés M16, de type 10.9 - Coefficient de frottement =0,3 entre le plat et la semelle de la colonne

Source: www.almohandiss.com

Solution

Source: www.almohandiss.com

On vu jusqu’ici des boulons quasi–isolés. On étudie à partir de cet exemple un assemblage complet

M *  40 kN.m F *  40 kN

Source: www.almohandiss.com

Source: www.almohandiss.com

Ici aussi il faut reprendre la démarche à suivre pour le calcul.

a / F *  m.n.k ..

s

m m  1, n  6, k  1,   0.3 , S  113,  M  1,25 F *  162.72

b/ La flexion dûe à M* peut être assimilée à un coulpe, tirant le haut et comprimant le bas. L’effort de traction va être repris par deux boulons au dessus, au bas de l’assemblage on aura une zone de compression .

M M*  y I Moment statique de la section des boulons tendus

2  Ab  a  2  Ab  (a  68,5) Moment statique de la zone comprimée

38,5 100  (157,5  a) Source: www.almohandiss.com

2  Ab  a  2  Ab  (a Source:  68,5)www.almohandiss.com  38,5 100  (157,5  a)  a  130,39 mm  ne marche pas; car 130,9>123 On va changer la position de la fibre neutre nous avons trois rangées de boulons en traction .

2  Ab  a'2  Ab  (a'123)  2  Ab  (a'123  68,5)  38,5 100  (34,25  a' )

 a  6,91 mm L’effort de compression venant de la semelle inférieure de la poutre et passant dans la platine  longueur de la zone de compression =longueur de la poutre

I  2  Ab  a'2 2  Ab  (a'123) 2  2  Ab  (a'123  68,5) 2 100  (38,5)3   100  38,5  (34,25  a' ) 2 12

I  2102,87 cm 4

M 40.106  (a'123  68,5)  max  y I I  max  377,4 kN / m2 Nb  Ab   max  157  377,4  59,2 kN

L’effort de preserrage S 113 kN  N  S b

Source: www.almohandiss.com

Source: www.almohandiss.com

Remarque: pour le calcul des moments statiques dans la zone de diffusion de contraintes, on suppose une diffusion de 45°

H  e  2e'

Source: www.almohandiss.com

Source: www.almohandiss.com

Exercice 6 On demande d'assurer la reprise du moment M* par 1/ des boulons ordinaires non préserrés (type 6.8) 2/ des boulons préserrés (type 10.9 ) dans l'assemblage suivant. Dans les deux cas, faire un croquis de l'assemblage. Données • M* = 50 kNm • acier utilisé pour la poutre, la colonne et les plats : S235 • coefficient de frottement  = 0.3

Source: www.almohandiss.com

Source: www.almohandiss.com Solution 1° chose : repérer ce qui est exactement l’assemblage ( = l’endroit où deux élément sont liés entre eux)

M *  F * .h

Source:

1 h  0.2  2   0.015 2 50 F*   232.6 kN 1 0.2  2   0.015 www.almohandiss.com2

Résistance au cisaillement Source: www.almohandiss.com

Rs    As M 16  As  157 mm2 6.8  l  0.56 

fu

M

2  0.56  1600  269 N / mm .25

Condition qui va donner le nombre de boulons:

232.6 103 F *  n  Rs  n   5.5 157.269 donc n=6 boulons Le croquis de l’assemblage le plus simple est une vue en plan

Source: www.almohandiss.com

Source: www.almohandiss.com

Pression diamétrale 1 boulon

R p  pl  d  t d  16 mm t  8.5 (semelle IPE 200)

pl  

fy

M

60  1,75 16 avec    2,2 35   1,25.  0,5 16

  1,25.

235 .16  8,5  64kN 1,1 La condition à respecter est que l’effort est répartie équitablement entre les six boulons R p  2,2.

F*  R p  231,6  6  64  384 ok 6 Résistance du plat fy F*  Section brute 100,15  M 155  214

soit ok

232,6 235  100,15 1,1

Source: www.almohandiss.com

Source: www.almohandiss.com

Section nette

f F*  0,8 u 100  2(16  2) 1,1 soit 242,25  262 ok La résistance du plat est la même que ce soit des boulons ordinaire ou des boulons preserrés. Ce n’est pas la peine de faire les calcul, donc ce qu’il faut vérifier c’est: Résistance au glissement

F *  n.k . .S k 1   0,3 M 16    S  113 kN 10.9  232.6 n  6,86  n  8 boulons 0.3 113 On voit q’il faut plus de boulons. Les boulons preserrés sont meilleurs aux boulons ordinaires dans le cas d’une sollicitation en fatigue. Source: www.almohandiss.com

Exercice 7

Source: www.almohandiss.com

Calculer le moment de torsion maximum que peut reprendre l'assemblage suivant, en plus de l'effort tranchant F* auquel il est déjà soumis  F* = 100 kN  profil de la poutre : IPE200  profil de la colonne : IPE270  épaisseur du plat ; 20 mm  boulons ordinaires M2Q non préserrés, de type 4.6

Source: www.almohandiss.com

Source: www.almohandiss.com

Solution

M *?

F*  100 kN

;

  Mt

Il faut déterminer le centre de gravité De nouveau on va écrire l’équilibre du moment statique

2  Ab  (121,5  a)  2  Ab  (70  a)  2  Ab  a  2  Ab  (70  a)  a  30,38 mm J   ai ri2 Ab  TMt  Ab 

 x

M *t .ri . Ab J

2 i



  y i  13363172mm4 2

Source: www.almohandiss.com

i J

Source: www.almohandiss.com

La structure est soumise à un effort vertical vers le bas F* Donc on supposant qu’il soit équitablement réparti, chaque boulon est soumis à F*/8

donc TMt, y 

M *t . Ab M *t . Ab .xi , TMt, x  . yi J J 2

2  M *t .100,38   M *t .40  F *   2    T  TMt, x   TMt, y    12,51     8    54543,4   54543,4 

T est don c max pour TMt,xmax C à d pour yi max (yi =100,38) Rs   l  Ab

l 

0,56  f ub

M

Rs  44,45 kN T  Rs  M *t  19,32 k .m

Source: www.almohandiss.com

2

Exercice 8

Source: www.almohandiss.com

1° On demande de dimensionner la console ci-dessous (profils, couvres-joints et nombre de boulons des 2 assemblages ) pour que celle-ci résiste à une charge P*=25 kN (charge pondérée) Données : - acier S235 pour tous les éléments - Boulons H.R. 10.9 préserrés aussi bien pour le joint que pour l'encastrement -Surfaces traitées ( = 0.5) - caractéristiques des profils en U : voir catalogue de profilés - On suppose que le déversement est empêché par des dispositifs appropriés 2° Le dimensionnement étant effectué, on donnera !a charge maximale qui peut être reprise élastiquement par la console.

Source: www.almohandiss.com

Source: www.almohandiss.com

solution

Dimensionnement du profil

Source: www.almohandiss.com

Source: www.almohandiss.com

Pour dimensionner le profil on suppose que le moment agit seul

M * seul  25  5  125kN.m M * fy 125.106 1,1    W  m W m 235 fy

W  585 cm 3

Pour un profilé en , W =293 cm3 , on prend un UPN 240 W=300 cm3 M* 125.106 2    208 N / mm 2W 2,300 103 V * 25.103    6,25 N / mm2 2 A' 2  200

Si (M*) + (V*) critère de von mises  c   2  3 2  (208) 2  3  (6,25) 2  208,6 N / mm2 

235  214 N / mm2 1,1

Source: www.almohandiss.com

Deux assemblages à vérifier Source: www.almohandiss.com 1/ Assemblage intermédiaire (voir coupe schéma)

Cette section doit transmettre les efforts M *  25  2,5  62,5 kN.m V *  25 kN

V*  Effort tranchant 20.h

moment ,

fy 3 m

 h  10 mm,On néglige l’effet de l’effort tranchant

2  3 190   20  2403 t I  2t   120    t 190, 12 12 2   

 max 

M * fy   214 MPa I / v m

Si on essaye une épaisseur de 3 mm  I=39869 mm4

 max  193 MPa  214 MPa

Source: www.almohandiss.com

Source: www.almohandiss.com

Pour les boulons : plats supérieurs et inférieurs

F* 

( M * / I ) 121,5

M

 3 190  109 kN

Si on prends les M12 les plus petits qui existent .S 0,5  60   0,5 ; S  60kN  Rs   M 1,25 F *  nRs  n  4

Boulons pour plats vertical On appelle M** le reste du moment, V*= 25 kN M * *  M * 109  0,243  36,08 k.m M * *  62,5 kN.m

M** : C’est ce que doit transmettre le plat vertical.

Source: www.almohandiss.com

t Source: www.almohandiss.com 109  h  2. 2

Équilibre vertical V*  12,5 kN 2 FM 130  M  V * .d (on estime d  70 mm) Fv 

Ce qui donne FM  284 kN

277kN ?

A partir de FM et Fv on peut calculer FT effort total FT  284,3 kN Rs 

m.n.k ..S

M

,

m  2, n  1, k  1,   0,5

On doit exprimer FT  Rs  S  355,3

M 20, M 30

Source: www.almohandiss.com

Une autre solution

Source: www.almohandiss.com

On doit exprimer M* ht F *  Rs F* 

FM  V

a b

Source: www.almohandiss.com

Pression diamétrale

Source: www.almohandiss.com

R p  pl .d .t pl  

fy

M

Ft  R p R p :  : min( a, b) 55  0,5  0,5 27  R p  293  284

  1,25

( H .R)

Assemblage, encastrement

Source: www.almohandiss.com

Source: www.almohandiss.com

a/Mt

TM 

avec

Mt  r , J '   xi2   yi2  8a 2 J'

r  a 2 , TM 

125 2 , a  65 mm 8a

b/V*

Tv 

Ft 

T cos 45  TM 2  Tv . cos 452

Rs  m.k .. S

S

M

 2 1 0,5 

S  344 1,25

M

Source: www.almohandiss.com

25 .6.26 4

Exercice 9

Source: www.almohandiss.com

L'assemblage suivant est censé transmettre un effort de traction pondéré N* = 28kN entre les deux plats A et B. On demande de vérifier la résistance de ces plats dans deux cas distincts : 1° l'effort N* est transmis par l'intermédiaire de 5 boulons ordinaires M20 ( type 4.6 ) 2° l'effort est transmis par frottement entre les deux plats suite au préserrage de 5 boulons M20 ( type 10.9 ) Données : -Plat en acier S235 - Épaisseur des deux plats - Coefficient de frottement: =0,3

Source: www.almohandiss.com

Source: www.almohandiss.com

Solution N *  280 N

Ce qu’on vérifie ici ce sont non pas les boulons mais les plats (on suppose donc que les boulons sont suffisants pour encaisser l’effort).

A1   

f y 235 N* 280   186,7 N / mm2   A1 150 10  m 1,1

A2  A2  150  20  210  1280 mm2

On coupe: on regarde l’effort qui a été déjà transmis et celui qui reste Source: www.almohandiss.com

Source: www.almohandiss.com

A’) Aucun boulon situé à gauche  effort à transmettre =effort total N*  502  2 A'  150  3  20  2  2   10  1118 mm 4  45   50 2 2 représente la projection verticale de la ligne oblique. 4  45



0,8  f u 280.00  250,5   262MPa 1118,00 m

A3  A3  150  2  2210  1060 mm

Quand on fait la coupe A3 on voit qu’un boulon est déjà dépassé Ce boulon à déjà encaissé le 1/5 de l’effort total (puisqu’on a en tout 5 boulons et qu’on sait que l’effort se répartit équitablement 1 4 N A3  N *  N *  N *  224 kN 5 5 224000   A3   211,30 MPa  262MPa 1000 A4  A3 N A4 

2 N *  N A3 5

Source: www.almohandiss.com

Source: www.almohandiss.com

Anette Preserrage, si on fait une coupe Anette (à moitié de la zone de transmission)  Au niveau de la section nette, il y’a déjà une partie de l’effort qui a été déjà transmis ( a cause du preserrage)  on fait alors l’hypothèse qu’il y a 40% de l’effort qui est passé avant



0,6  N * 0,8  f u  Anette m

Rectangula ire;

A2  1280mm2

N*  257,6 kN 5   201,25 Mpa (admissible) N A2  N * 0,4 

A'  1118mm2 N*  212,8 kN 5   190,3 Mpa ou (admissible) N A'  N * 3  0,4 

Source: www.almohandiss.com

Source: www.almohandiss.com

A3  1060mm2 N* N*  2  0,4   179,2 kN 5 5   169,1 Mpa (ok ) (admissible) N A3  N * 

Théoriquement il haut aussi déterminer la résistance à la pression diamétrale comme pour les cas précédents, mais pas le but ici

Source: www.almohandiss.com

Source: www.almohandiss.com

Exercice 9 On demande de déterminer l’effort maximum T qui peut être transmis en traction ou en compression, par les deux profils UPN 10 S de la figure suivante, au gousset d’assemblage de 10 mm d’épaisseur. Données : - Les profils UPN sont reliés au gousset par 6 boulons préserrés M12 de type 10.9 ; fub =1000 N/mm2 et fyb =900 N/mm2 - le gousset et les deux profils sont en acier Fe360; - le coefficient de frottement entre les pièces assemblées vaut =0,5.

Source: www.almohandiss.com

Source: www.almohandiss.com

Solution

Plusieurs choses à vérifier 1) La résistance du fer en U proprement dit : (Vérification du profil en section brute) UPN 10 S  A = 1350 mm2 avec fy = 235 MPa

 Tmax 

fy

m

 A  288,4 kN

2) Vérification du profil en section nette

An  A1    A2 avec A1  100  8,26  2  2  12 6  338,4 mm2 et A2  2  8,26  50  3  776,4 mm2 sachant que    An  845,5 mm2

3 A1  0,6 3 A1  A2

Source: www.almohandiss.com

 max 

0,8  f u

m

Source: www.almohandiss.com

 261,8 MPa  Tmax  An   max  221,4 kN

Boulons pré serrés  40% effort total déjà passé (transmis) T Tmax Tmax  Ttot  2  0,4  tot  Ttot   255,4 kN 6  0,4  1   3   3) Boulons M12 (10.9 préserrés)  S= 60 kN

m n k   

S

M

 1  6  1  0,5 

4) Pression diamétrale

60  144 kN 1,5 R p  pl  d  t sachant que pl   

fy

m

avec d  12 mm et t  6mm On prend l’épaisseur la plus fine des deux éléments gousset ou UPN ; car s’il y’a problème ; il sera dans l’élément le plus mince 25   2  1,25   0,5   12   min  min 1 ,  2   2,1 50  1  1,25   12 Source: www.almohandiss.com

Source: www.almohandiss.com 235

 préserrés   min  0,5  Tmax  6  2,6 

1,1

 12  6  240,3 kN

5) Il faut vérifier que le gousset tient On part de la première rangée de boulons on trace deux droites à 30°

le  50  2 100  tg 30  2 14  137,5 mm Tmax  le  t gousset 

235  293,8 kN 1,1

6) On a toutes les chances pour que la section défavorable soit celle où les efforts sont transmis (voir section rouge sur la feuille d’exercices)

Source: www.almohandiss.com

Source: www.almohandiss.com

V  2  T  cos 45  2T M  h  T  cos 45  130 2T h  2  (80  50)

On suppose que la distribution des contraintes tangentielles est uniforme



V Agousset



2 T 300 10

My I 2 10  300 I  22500.103 mm4 12 300 y  150 mm 2

Navier

 



130  2  T 150 22500.103

Source: www.almohandiss.com

Source: www.almohandiss.com

En fin il faut voir Von Mises

 2  3 2 

fy

m

 Tmax  145 kN Conclusion: 6 conditions à vérifier mais la condition principale est la résistance des boulons

Source: www.almohandiss.com

Exercice 10

Source: www.almohandiss.com

La poutre-console de la figure suivante, constituée d'un profil IPE400 et longue de 2 m, est soumise à une charge concentrée verticale P* ( charge pondérée ) à son extrémité libre. L'inertie de la console est accrue au niveau de son encastrement par l'ajout d'un bracon. Celui-ci est découpé hors d'un profil IPE400 et est soudé à la semelle inférieure de la poutre-console sur une longueur de 50 cm La section d’encastrement ainsi réalisée est soudée à un plat d’about, lui-même boulonné à la semelle d’une colonne IPE400. Les détails d’assemblage sont repris aux figures suivantes On demande 1° de déterminer la charge P* maximale à laquelle peut être soumise la poutreconsole (si on suppose l’assemblage capable de résister à tout effort transmis par la console) 2° de calculer le diamètre nécessaire que doivent posséder les boulons d'assembiage pour supporter les efforts auxquels est soumise la section d'encastrement, si la charge P* qui agit sur la console correspond à celle déterminée en 1° Données : - acier S235 - boulon ordinaires non-presserrés de type 4.6

Source: www.almohandiss.com

Source: www.almohandiss.com

Source: www.almohandiss.com

Source: www.almohandiss.com

Solution

1/ Charge maximale à laquelle peut être soumis le profil.

Section A Contrainte de flexion

A 

MA* P * 1500  WIPE400 1160000

Source: www.almohandiss.com

Contrainte de cisaillement

A 

Source: www.almohandiss.com

T* P* P*   Aame 373  8,6 3207,8

 A2

Critère de VON MISES

 3 A2



fy

m

 P*  152,5 kN

Section B Contrainte de flexion MB * B  Wsec tionB Centre de gravité

8450  700  (500  19,1)  8,6  259,55  180 19,1 9,55  yG  8450  (500  19,1)  8,6  180 19,1  yG  438,18 Inertie

8,6  480,5 I  23. 1300000  8450700  438,18  12

3

2

180  19,1  8,6  480,9  438,18  259,55  12

3

2

 180 19,1 438,18  9,55  1653061,941 mm4 2

Source: www.almohandiss.com

Source: www.almohandiss.com

 'B 

M *B p * 2000  I 1653061,941 v

 

Contrainte de cisaillement P* P* P* B    Aame 373  8,6  (800  19,1)  8,6 7507,8 fy 2 2  A  3 A   P*  353,5 kN Critère de VON MISES

m

Donc charge maximale permise par le profil P *max  152,5 kN Pas de problème pour les sections comprise entre A et B

yG  49,55 mm

yG

450,45

543,95

836,45

2/ Détermination des diamètres des boulons à placer Effort de cisaillement dans les boulons On suppose que chaque boulons supporte 1/10 de l’effort P* de cisaillement  Pb (cisaillement) =P*/10 =15,3 kN Effort de traction dans les boulons Section résistante supposée yG  450,45 mm

t+2d=19,1+2x40 =99,1 mm 180

Source: www.almohandiss.com

Source: www.almohandiss.com

Centre de gravité

2 A2  450,45  2 A3  443,95  2 A4  336,95  2 A5  930,45  yG 8 As  180  99,1

yG 

5,5236 As 8 As  17,838

Inertie

I  450,45  yG   2 As  543,95  yG   2 As  836,95  yG   2 As 2

2

 930,45  yG   2 As  180  99,1 2

Boulon le plus sollicité M *B 930,45  yG  s  I

yG2

2

180  (99,1)3  12

 Effort normal maximum Pb (traction )   s  As

Critère de détermination du diamètre des boulons Résistance du boulon au cisaillement 400 Rs   l  As ou  l  0,567   181,4 N / mm2 1,25

 l  181,4 N / mm2 Source: www.almohandiss.com

Source: www.almohandiss.com Résistance du boulon en traction  f yb 0,8 f ub    min 192,256 Rt   l  As avec  l  min  ,   mb  mb 

Rt  192  As Critère 2 2  pb (cis )   pb (traction )        1 Rt  Rs    2

2

 15250    b  As        1 181 , 4  A 192  A s  s    Détermination du diamètre des boulons



yG

I

b

12

25,15

Condition

Pas vérifiée

16

45,42

Condition

Pas vérifiée

20

68,354

933,95

909,6

2,72>1

24

94,368

1,283493

217,64

1,34>1

27

117,868

1,611443

169,13

0,81
View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF