Example Composite Floor Slab

July 23, 2019 | Author: Zamfira Octavian | Category: Bending, Composite Material, Structural Load, Mechanics, Engineering
Share Embed Donate


Short Description

Download Example Composite Floor Slab...

Description

Example: Composite floor slab

SX009a-EN-EU 

Document Ref:

CALCULATION SHEET 

Sheet



of

12

Title

 Example: Composite floor slab

Eurocode Ref

 EN 1994-1-1, EN 1993-1-3, EN 1992-1-1 & EN 1993-1-1

Made by

 Jonas Gozzi

Date

 March 2005

Checked by

 Bernt Johansson

Date

 April 2005

For full shear connection: Mpl,Rd

 M pl,Rd

=

Ap



fyd

⋅ ( dp −

xpl / 2

)

= 955 ⋅ 320 ⋅ (101 − 21, 6 / 2 ) ⋅ 10 −3 = 27,5 kNm/m > 20,5 =  M Ed

Longitudinal shear by partial connection method: Shear span required for full shear connection Nc

= τ u,Rd ⋅ b⋅

Lx

≤  N cf 

The distance to the nearest support,  Lx, required for full shear connection can be determined by

   t   n   e   m   e   e   r   g    A   e   c   n   e   c    i    L    l   e   e    t    S   s   s   e   c   c    A   e    h    t    f   o   s   n   o    i    t    i    d   n   o   c    d   n   a   s   m   r   e    t   e    h    t   o    t    t   c   e    j    b   u   s   s    i    t   n   e   m   u   c   o    d   s    i    h    t    f   o   e   s    U  .    d   e   v   r   e   s   e   r    9  s    0   t    0   h   g    2   i  ,   r    9   l    l    0  a   e    n   t   u   h   g    J   i  ,   r   y  y   a  p    d  o   s  c   e  s   u   i    l    T   a   n   i   r   o   t   e    d  a   e    t   m   a  s    i   e   r   h    C    T

 Lx

=

τ u,Rd  Lx

=

 N cf  b ⋅ τ u,Rd

=

τ u,Rk  γ Vs

= =

 Ap ⋅ f yd b ⋅ τ u,Rd

0, 306 1, 25

955 ⋅ 320 1000 ⋅ 0,245

= 0,245 N/mm

2

= 1247 mm

Hence, at a distance of 1247 mm from the support a full shear connection is fulfilled. Design check using the simplified partial interaction diagram: For any cross section along the span it has to be shown that the corresponding design bending moment,  M Ed, does not exceed the design bending resistance,  M Rd. In the figure x is the distance from the support.

EN 1994-1-1 §9.7.3 (8)

Example: Composite floor slab

CALCULATION SHEET 

SX009a-EN-EU 

Document Ref:

Sheet

8

of

12

Title

 Example: Composite floor slab

Eurocode Ref

 EN 1994-1-1, EN 1993-1-3, EN 1992-1-1 & EN 1993-1-1

Made by

 Jonas Gozzi

Date

 March 2005

Checked by

 Bernt Johansson

Date

 April 2005

 M Rd, M Ed

[kNm/m] 30

 M pl,Rd  M Rd 20

10

M= Ed

[γ G ⋅ ( g1 + g 2 ) + γ Q ⋅ q ] ⋅ x 2

 M pa    t   n   e   m   e   e   r   g    A   e   c   n   e   c    i    L    l   e   e    t    S   s   s   e   c   c    A   e    h    t    f   o   s   n   o    i    t    i    d   n   o   c    d   n   a   s   m   r   e    t   e    h    t   o    t    t   c   e    j    b   u   s   s    i    t   n   e   m   u   c   o    d   s    i    h    t    f   o   e   s    U  .    d   e   v   r   e   s   e   r    9  s    0   t    0   h   g    2   i  ,   r    9   l    l    0  a   e    n   t   u   h   g    J   i  ,   r   y  y   a  p    d  o   s  c   e  s   u   i    l    T   a   n   i   r   o   t   e    d  a   e    t   m   a  s    i   e   r   h    C    T

⋅ ( −L ) x  x [m]

0 0

0.4

0.8

1.2

1.6

2

 Lx  M Ed

≤ M Rd for all cross sections

Vertical shear: V Ed

=

V Ed

=

[γ G ⋅ ( g1 + g 2 ) + γ Q ⋅ q ] ⋅ L 2

[1, 35 ⋅ ( 2, 6 + 1, 2) + 1, 5 ⋅ 5, 0] ⋅ 3, 6 2

= 22,7 kN/m

Design vertical shear resistance: Vv,Rd

= ⎡⎣CRd,c ⋅ k ⋅ (100 ⋅ ρ I ⋅

1 / 3

f ck )

+ k1 ⋅ σ cp ⎤⎦ ⋅ bw ⋅ d  p

EN 1992-1-1 §6.2.2

with a minimum of  Vv,Rd,min

C Rd,c

=

k  = 1 +

= (vmin + k1 ⋅ σ cp ) ⋅ bw ⋅ d p 0,18

γ C

=

200 d p

0,18 1, 5

= 1+

= 0,12 200 101

= 2, 4

See Note in EN 1992-1-1 §6.2.2

Example: Composite floor slab

CALCULATION SHEET 

 ρ l

=

 Asl bw ⋅ d p

Document Ref:

SX009a-EN-EU 

 9

Sheet

of

12

Title

 Example: Composite floor slab

Eurocode Ref

 EN 1994-1-1, EN 1993-1-3, EN 1992-1-1 & EN 1993-1-1

Made by

 Jonas Gozzi

Date

 March 2005

Checked by

 Bernt Johansson

Date

 April 2005

≤ 0,02

 Asl is the area of the tension reinforcement in [mm], i.e  Asl = Ap bw = 400 mm/m, i.e. the smallest width in [mm] of the section in the tension area.

 ρ l

=

σ cp

955 400 ⋅101

=

 N Ed  Ac

= 0,024 > 0,02   ρ l = 0,02

= 0 , since N Ed = 0, i.e. no axial forces or prestress. See Note in EN 1992-1-1 §6.2.2

k 1 = 0,15 V v,Rd    t   n   e   m   e   e   r   g    A   e   c   n   e   c    i    L    l   e   e    t    S   s   s   e   c   c    A   e    h    t    f   o   s   n   o    i    t    i    d   n   o   c    d   n   a   s   m   r   e    t   e    h    t   o    t    t   c   e    j    b   u   s   s    i    t   n   e   m   u   c   o    d   s    i    h    t    f   o   e   s    U  .    d   e   v   r   e   s   e   r    9  s    0   t    0   h   g    2   i  ,   r    9   l    l    0  a   e    n   t   u   h   g    J   i  ,   r   y  y   a  p    d  o   s  c   e  s   u   i    l    T   a   n   i   r   o   t   e    d  a   e    t   m   a  s    i   e   r   h    C    T

= ⎡⎣ 0,12 ⋅ 2, 4 ⋅ (100 ⋅ 0,02 ⋅ 25 )1 / 3 + 0,15 ⋅ 0 ⎤⎦ ⋅ 400 ⋅ 101

V v,Rd = 42,8 kN/m

Minimum value vmin

= 0, 035 ⋅ k 3 / 2 ⋅ f ck1/2 = 0  , 035 ⋅ 2, 43 / 2 ⋅ 251 / 2 = 0,65

V v,Rd,min

= (0, 65 + 0,15 ⋅ 0) ⋅ 400 ⋅ 101= 26,3 kN/m

OK

V v,Rd = 42,8 kN/m > 22,7 kNm/m = V Ed

All design checks of the composite slab in the ultimate limit state are OK. Serviceability limit state:

Cracking of concrete: As the slab is designed as simply supported, only anti-crack reinforcement is EN 1994-1-1 needed. The cross-sectional area of the reinforcement above the ribs should be §9.8.1 (2) not less than 0,4% of the cross-sectional area of the concrete above the ribs. min As = 0, 004 ⋅ b⋅ hc = 0, 004 ⋅ 1000 ⋅ 75 = 300 mm  /m 2

φ8 s160 mm will be enough for this purpose.

Example: Composite floor slab

SX009a-EN-EU 

Document Ref:

CALCULATION SHEET 

10

Sheet

of

12

Title

 Example: Composite floor slab

Eurocode Ref

 EN 1994-1-1, EN 1993-1-3, EN 1992-1-1 & EN 1993-1-1

Made by

 Jonas Gozzi

Date

 March 2005

Checked by

 Bernt Johansson

Date

 April 2005

Deflection: For the calculations of the deflections of the slab, the slab is considered to be continuous. The following approximations apply:



the second moment of area may be taken as the average of the values for the cracked and un-cracked section;



for concrete, an average value of the modular ratio, n, for both longand short-term effects may be used. n=

 Ep '  E cm

=

E p  E  ⎞ ⎛ ⋅ ⎜ E cm + cm ⎟ 2 ⎝ 3 ⎠

1

=

210000 2 ⋅ 31000 3

≈ 10

Second moment of area for the cracked section    t   n   e   m   e   e   r   g    A   e   c   n   e   c    i    L    l   e   e    t    S   s   s   e   c   c    A   e    h    t    f   o   s   n   o    i    t    i    d   n   o   c    d   n   a   s   m   r   e    t   e    h    t   o    t    t   c   e    j    b   u   s   s    i    t   n   e   m   u   c   o    d   s    i    h    t    f   o   e   s    U  .    d   e   v   r   e   s   e   r    9  s    0   t    0   h   g    2   i  ,   r    9   l    l    0  a   e    n   t   u   h   g    J   i  ,   r   y  y   a  p    d  o   s  c   e  s   u   i    l    T   a   n   i   r   o   t   e    d  a   e    t   m   a  s    i   e   r   h    C    T

Ibc

=

b ⋅ xc3

3⋅ n

+

Ap ⋅ ( dp

− xc )2 +

∑ Ai ⋅ zi n ⋅ Ap  xc = = b ∑ Ai  xc

 I bc

=

10 ⋅ 955

=

1000

⎛ ⋅ ⎜⎜ ⎝

1+

1000 ⋅ 35, 43 3 ⋅ 10

⎛ ⋅⎜ ⎜ ⎝

1+

Ip  

⎞ − 1⎟ ⎟ ⎠

2 ⋅ b ⋅ dp   n⋅ Ap

2 ⋅1000 ⋅ 101 10 ⋅ 955

⎞ − 1⎟⎟ = 35,4 mm ⎠

+ 955 ⋅ (101 − 35, 4 )2 + 33,0 ⋅ 10 4 = 5,92 ⋅10 6 mm4 /m

Second moment of area for the un-cracked section 2 b0 ⋅ hp3 b0 ⋅ hp ⎛ hc ⎞ ⎛ + ⋅ ⎜ u x− ⎟ + + ⋅ ⎜ t h− buI = n ⎝ n 12 ⋅ n 2⎠ 12 ⋅ n ⎝ Ap ⋅ ( dp − xu )2 + Ip  

b ⋅ hc3

2

b⋅  xu

=

hc

2

b ⋅ hc

h ⎞ ⎛ + b0 ⋅ hp ⋅ ⎜ ht − p ⎟ + n ⋅ Ap ⋅ d p 2⎠ ⎝ b ⋅ hc + b0 ⋅ hp + n ⋅ Ap



ux

hp

2

2

⎞ ⎟ + ⎠

EN1994-1-1 §9.8.2 (5)

Example: Composite floor slab

Document Ref:

CALCULATION SHEET 

1000 ⋅  xu

12

of

Title

 Example: Composite floor slab

Eurocode Ref

 EN 1994-1-1, EN 1993-1-3, EN 1992-1-1 & EN 1993-1-1

Made by

 Jonas Gozzi

Date

 March 2005

Checked by

 Bernt Johansson

Date

 April 2005

45 + 650 ⋅ 45 ⋅ ⎛⎜120 − ⎞⎟ + 10 ⋅ 955 ⋅ 101 2 2 ⎠ ⎝ = 58,3 mm 1000 ⋅ 75 + 650 ⋅ 45 + 10 ⋅ 955

1000 ⋅ 753

=

11

Sheet

752

=

 I bu

SX009a-EN-EU 

12 ⋅ 10

+

1000 ⋅ 75 10

2

75 ⎞ 610 ⋅ 453 ⎛ ⋅ ⎜ 58, 3 − ⎟ + + 2 ⎠ 12 ⋅10 ⎝ 2

610 ⋅ 45

45 ⋅ ⎛⎜120 − 58,3 − ⎞⎟ + 955 ⋅ (101 − 58,3)2 + 10 2 ⎠ ⎝ 33, 0 ⋅ 104 = 13, 5 ⋅106 mm 4 /m Average I b of the cracked and un-cracked section  I b    t   n   e   m   e   e   r   g    A   e   c   n   e   c    i    L    l   e   e    t    S   s   s   e   c   c    A   e    h    t    f   o   s   n   o    i    t    i    d   n   o   c    d   n   a   s   m   r   e    t   e    h    t   o    t    t   c   e    j    b   u   s   s    i    t   n   e   m   u   c   o    d   s    i    h    t    f   o   e   s    U  .    d   e   v   r   e   s   e   r    9  s    0   t    0   h   g    2   i  ,   r    9   l    l    0  a   e    n   t   u   h   g    J   i  ,   r   y  y   a  p    d  o   s  c   e   i   s   u   l    T   a    i   n  r   o   t   e    d  a   e    t   m   a  s    i   e   r   h    C    T

=

 I bc

+ I bu 2

=

5, 92 + 13, 5 2

⋅ 106 = 9, 7 ⋅ 106 mm 4 /m

Deflections The total deflection under the worst load case should not exceed L/250.

EN1992-1-1 §7.4.1(4)

Weight of floor finishes: 0, 0068 ⋅ g 2 ⋅ L4

=

δ c,g2

 E ⋅ I b

=

0, 0068 ⋅ 1, 2 ⋅ 3600 4 210000 ⋅ 9, 7 ⋅ 10

Live load, worst case:

δ c,q

=

6

= 0,67 mm

q

0, 0099 ⋅ψ 1 ⋅ q ⋅ L4  E ⋅ I b

=

q

0, 0099 ⋅ 0, 7 ⋅ 5, 0 ⋅ 3600 210000 ⋅ 9, 7 ⋅ 10

6

4

= 2,86 mm

Removal of the props: G1'

G1′ = g1 ⋅

δ 

c,G1′

=

 L

2

= 2, 6 ⋅

3, 6 2

G1'

= 4,68 kN/m

0, 01146 ⋅ G1′ ⋅ L3  E ⋅ I b

G1'

=

0, 01146 ⋅ 4680 ⋅ 3600 210000 ⋅ 9, 7 ⋅ 10

6

3

= 1,23 mm

  e

E

  g

  n

x

a

m

p

l

Document Ref:

CALCULATION SHEET 

   i

  u   r

   J   y

  p

  a

   d   s

  s    i

  e

  u   l

   T  a

   i

  n  r

  o  e

   t

   d  a

  e  m

   t

  a  s

  e   i

  r   h

   C    T

C

o

SX009a-EN-EU 

Sheet

12

p

of

o

12

 Example: Composite floor slab

Eurocode Ref

 EN 1994-1-1, EN 1993-1-3, EN 1992-1-1 & EN 1993-1-1

Made by

 Jonas Gozzi

Date

 March 2005

Checked by

 Bernt Johansson

Date

 April 2005

= δ c,G ′ + δ c,g + δ c,q   = 1, 23 + 0, 67 + 2, 86 = 4,76 mm

δ c

= 4,76 mm <

1

m

Title

δc

2

  o

  c

:

Total deflection:

 ,

  y

e

L

250

=

3600 250

= 14,4 mm

OK

s

i

t

Example: Composite floor slab

 Example: Composite floor slab SX009a-EN-EU 

Quality Record RESOURCE TITLE

Example: Composite floor slab

Reference(s) ORIGINAL DOCUMENT Name

Company

Date

Created by

Jonas Gozzi

SBI

10/03/2005

Technical content checked by

Bernt Johansson

SBI

08/04/2005

1. UK

G W Owens

SCI

7/7/05

2. France

A Bureau

CTICM

17/8/05

3. Sweden

A Olsson

SBI

8/8/05

4. Germany

C Muller

RWTH

10/8/05

5. Spain

J Chica

Labein

12/8/05

G W Owens

SCI

06/7/06

Editorial content checked by Technical content endorsed by the following STEEL Partners:

   t   n   e   m   e   e   r   g    A   e   c   n   e   c    i    L    l   e   e    t    S   s   s   e   c   c    A   e    h    t    f   o   s   n   o    i    t    i    d   n   o   c    d   n   a   s   m   r   e    t   e    h    t   o    t    t   c   e    j    b   u   s   s    i    t   n   e   m   u   c   o    d   s    i    h    t    f   o   e   s    U  .    d   e   v   r   e   s   e   r    9  s    0   t    0   h   g    2   i  ,   r    9   l    l    0  a   e    n   t   u   h   g    J   i  ,   r   y  y   a  p    d  o   s  c   e  s   u   i    l    T   a   n   i   r   o   t   e    d  a   e    t   m   a  s    i   e   r   h    C    T

Resource approved by Technical Coordinator TRANSLATED DOCUMENT This Translation made and checked by: Translated resource approved by:

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF