EXAM MLC

May 8, 2017 | Author: Adriel Galván Lugo | Category: N/A
Share Embed Donate


Short Description

Download EXAM MLC ...

Description

Exam MLC

Raise Your Oddsยฎ with Adapt

SURVIVAL DISTRIBUTIONS SURVIVAL DISTRIBUTIONS Probability Functions Actuarial Notations # ๐‘๐‘$ = Probability that ๐‘ฅ๐‘ฅ survives ๐‘ก๐‘ก years = Pr ๐‘‡๐‘‡$ > ๐‘ก๐‘ก = ๐‘†๐‘†$ ๐‘ก๐‘ก # ๐‘ž๐‘ž$ = Probability that ๐‘ฅ๐‘ฅ dies within ๐‘ก๐‘ก years = Pr ๐‘‡๐‘‡$ โ‰ค ๐‘ก๐‘ก = ๐น๐น$ ๐‘ก๐‘ก # ๐‘๐‘$ + # ๐‘ž๐‘ž$ = 1 #|3 ๐‘ž๐‘ž$ = Probability that ๐‘ฅ๐‘ฅ survives ๐‘ก๐‘ก years and dies within the following ๐‘ข๐‘ข years = # ๐‘๐‘$ โ‹… 3 ๐‘ž๐‘ž$D# = # ๐‘๐‘$ โˆ’ #D3 ๐‘๐‘$ = #D3 ๐‘ž๐‘ž$ โˆ’ # ๐‘ž๐‘ž$ Life Table Functions G ๐‘‘๐‘‘$ = ๐‘™๐‘™$ โˆ’ ๐‘™๐‘™$DG ๐‘™๐‘™$D# # ๐‘๐‘$ = ๐‘™๐‘™$ ๐‘™๐‘™$ โˆ’ ๐‘™๐‘™$D# # ๐‘‘๐‘‘$ = # ๐‘ž๐‘ž$ = ๐‘™๐‘™$ ๐‘™๐‘™$ ๐‘™๐‘™$D# โˆ’ ๐‘™๐‘™$D#D3 3 ๐‘‘๐‘‘$D# = #|3 ๐‘ž๐‘ž$ = ๐‘™๐‘™$ ๐‘™๐‘™$ Force of Mortality ๐‘“๐‘“$ ๐‘ก๐‘ก ๐œ‡๐œ‡$D# = ๐‘†๐‘†$ ๐‘ก๐‘ก ๐‘‘๐‘‘ ๐œ‡๐œ‡$D# = โˆ’ ln ๐‘†๐‘†$ ๐‘ก๐‘ก d๐‘ก๐‘ก ๐‘‘๐‘‘ ๐œ‡๐œ‡$D# = โˆ’ ln # ๐‘๐‘$ d๐‘ก๐‘ก ๐‘“๐‘“$ ๐‘ก๐‘ก = # ๐‘๐‘$ โ‹… ๐œ‡๐œ‡$D# # ๐‘๐‘$

# ๐‘ž๐‘ž$

= exp โˆ’ =

#|3 ๐‘ž๐‘ž$

=

#

O

#

. M ๐‘๐‘$ #D3

#

O

๐œ‡๐œ‡$DM d๐‘ ๐‘ 

โ‹… ๐œ‡๐œ‡$DM d๐‘ ๐‘ 

. M ๐‘๐‘$

โ‹… ๐œ‡๐œ‡$DM d๐‘ ๐‘ 

Mortality Laws Constant Force of Mortality ๐œ‡๐œ‡$ = ๐œ‡๐œ‡ RS# # ๐‘๐‘$ = ๐‘’๐‘’ Uniform Distribution 1 ๐œ‡๐œ‡$ = , 0 โ‰ค ๐‘ฅ๐‘ฅ < ๐œ”๐œ” ๐œ”๐œ” โˆ’ ๐‘ฅ๐‘ฅ ๐œ”๐œ” โˆ’ ๐‘ฅ๐‘ฅ โˆ’ ๐‘ก๐‘ก , 0 โ‰ค ๐‘ก๐‘ก โ‰ค ๐œ”๐œ” โˆ’ ๐‘ฅ๐‘ฅ # ๐‘๐‘$ = ๐œ”๐œ” โˆ’ ๐‘ฅ๐‘ฅ ๐‘ข๐‘ข , 0 โ‰ค ๐‘ก๐‘ก + ๐‘ข๐‘ข โ‰ค ๐œ”๐œ” โˆ’ ๐‘ฅ๐‘ฅ #|3 ๐‘ž๐‘ž$ = ๐œ”๐œ” โˆ’ ๐‘ฅ๐‘ฅ Beta Distribution ๐›ผ๐›ผ ๐œ‡๐œ‡$ = , 0 โ‰ค ๐‘ฅ๐‘ฅ < ๐œ”๐œ” ๐œ”๐œ” โˆ’ ๐‘ฅ๐‘ฅ ๐œ”๐œ” โˆ’ ๐‘ฅ๐‘ฅ โˆ’ ๐‘ก๐‘ก Y , 0 โ‰ค ๐‘ก๐‘ก โ‰ค ๐œ”๐œ” โˆ’ ๐‘ฅ๐‘ฅ # ๐‘๐‘$ = ๐œ”๐œ” โˆ’ ๐‘ฅ๐‘ฅ Gompertzโ€™s Law ๐œ‡๐œ‡$ = ๐ต๐ต๐‘๐‘ $ , ๐‘๐‘ > 1 ๐ต๐ต๐‘๐‘ $ ๐‘๐‘ # โˆ’ 1 # ๐‘๐‘$ = exp โˆ’ ln ๐‘๐‘ Makehamโ€™s Law ๐œ‡๐œ‡$ = ๐ด๐ด + ๐ต๐ต๐‘๐‘ $ , ๐‘๐‘ > 1 ๐ต๐ต๐‘๐‘ $ ๐‘๐‘ # โˆ’ 1 # ๐‘๐‘$ = exp โˆ’๐ด๐ด๐ด๐ด โˆ’ ln ๐‘๐‘

www.coachingactuaries.com

Moments Complete Future Lifetime

โˆ˜

๐‘’๐‘’$ =

General

]

O

# ๐‘๐‘$

1 ๐œ‡๐œ‡ ๐œ”๐œ” โˆ’ ๐‘ฅ๐‘ฅ โˆ˜ ๐‘’๐‘’$ = 2 ๐œ”๐œ” โˆ’ ๐‘ฅ๐‘ฅ โˆ˜ ๐‘’๐‘’$ = ๐›ผ๐›ผ + 1 โˆ˜

๐‘’๐‘’$ =

Constant Force of Mortality Uniform Distribution Beta Distribution

d๐‘ก๐‘ก

G

โˆ˜

O

# ๐‘๐‘$

d๐‘ก๐‘ก

โ€ข Uniform Distribution โˆ˜

๐‘’๐‘’$:G| = G๐‘๐‘$ ๐‘›๐‘› + G ๐‘ž๐‘ž$

Curtate Future Lifetime ๐‘’๐‘’$ =

]

bcd

๐‘˜๐‘˜ โ‹… b|๐‘ž๐‘ž$ =

]

bcd

๐‘’๐‘’$:G| =

bcd

b ๐‘๐‘$

๐‘˜๐‘˜ โ‹… b|๐‘ž๐‘ž$ + ๐‘›๐‘› โ‹… G ๐‘๐‘$ =

โ€ข Uniform Distribution โˆ˜ ๐‘’๐‘’$:G| = ๐‘’๐‘’$:G| โˆ’ 0.5 G.๐‘ž๐‘ž$ Recursive Formulas โˆ˜ โˆ˜ โˆ˜ ๐‘’๐‘’$ = ๐‘’๐‘’$:G| + G ๐‘๐‘$ โ‹… ๐‘’๐‘’$DG โˆ˜

โˆ˜

โˆ˜

bcd

๐‘’๐‘’$:G| = ๐‘’๐‘’$:f| + f ๐‘๐‘$ โ‹… ๐‘’๐‘’$Df:GRf| ,

b ๐‘๐‘$

Term Life

๐‘š๐‘š < ๐‘›๐‘›

๐‘’๐‘’$:G| = ๐‘’๐‘’$:fRd| + f ๐‘๐‘$ 1 + ๐‘’๐‘’$Df:GRf| ,

Fractional Ages UDD 0 โ‰ค ๐‘ ๐‘  + ๐‘ก๐‘ก โ‰ค 1 ๐‘™๐‘™$DM = 1 โˆ’ ๐‘ ๐‘  โ‹… ๐‘™๐‘™$ + ๐‘ ๐‘  โ‹… ๐‘™๐‘™$Dd M ๐‘ž๐‘ž$ = ๐‘ ๐‘  โ‹… ๐‘ž๐‘ž$ ๐‘ ๐‘  โ‹… ๐‘ž๐‘ž$ M ๐‘ž๐‘ž$D# = 1 โˆ’ ๐‘ก๐‘ก โ‹… ๐‘ž๐‘ž$ ๐‘ž๐‘ž$ ๐œ‡๐œ‡$DM = 1 โˆ’ ๐‘ ๐‘  โ‹… ๐‘ž๐‘ž$ ๐‘ž๐‘ž$ = M๐‘๐‘$ โ‹… ๐œ‡๐œ‡$DM

35

34

Whole Life

๐‘’๐‘’$ = ๐‘’๐‘’$:G| + G ๐‘๐‘$ โ‹… ๐‘’๐‘’$DG = ๐‘’๐‘’$:GRd| + G ๐‘๐‘$ 1 + ๐‘’๐‘’$DG ๐‘’๐‘’$ = ๐‘๐‘$ 1 + ๐‘’๐‘’$Dd ๐‘’๐‘’$:G| = ๐‘’๐‘’$:f| + f ๐‘๐‘$ โ‹… ๐‘’๐‘’$Df:GRf| , ๐‘š๐‘š < ๐‘›๐‘› ๐‘’๐‘’$:G| = ๐‘๐‘$ 1 + ๐‘’๐‘’$Dd:GRd|

33

33

INSURANCE INSURANCE Level Annual Insurance Type of EPV Insurance Discrete

๐‘›๐‘› 2

G

32

32

โ€ข Uniform Distribution โˆ˜ ๐‘’๐‘’$ = ๐‘’๐‘’$ โˆ’ 0.5 n-year Temporary Curtate Future Lifetime GRd

30 31

n-year Temporary Complete Future Lifetime ๐‘’๐‘’$:G| =

Read the 2-year select and ultimate mortality table from the left to the right and then continue downwards. ๐‘ž๐‘ž $ ๐‘ž๐‘ž $ Dd ๐‘ž๐‘ž $ Dh ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฅ + 2

๐‘š๐‘š < ๐‘›๐‘›

Constant Force of Mortality 0 โ‰ค ๐‘ ๐‘  + ๐‘ก๐‘ก โ‰ค 1 ๐‘™๐‘™$DM = ๐‘™๐‘™$ dRM โ‹… ๐‘™๐‘™$Dd M M M ๐‘๐‘$ = M ๐‘๐‘$D# = ๐‘๐‘$ ๐œ‡๐œ‡$DM = โˆ’ ln ๐‘๐‘$ Select and ultimate mortality A person is โ€˜selectedโ€™ at the age when the policy is first purchased.

Select mortality is written as ๐‘ž๐‘ž $ D# where ๐‘ฅ๐‘ฅ is the โ€˜selectedโ€™ age and ๐‘ก๐‘ก is the number of years after selection. After a certain number of years of โ€˜select periodโ€™, mortality is called the โ€˜ultimateโ€™ mortality. ๐‘ž๐‘ž $ D# = ๐‘ž๐‘ž$D# .

Deferred Life Pure Endowment Endowment Insurance

๐ด๐ด$ =

๐ด๐ด$ =

]

bcO

๐‘ฃ๐‘ฃ bDd โ‹… b|๐‘ž๐‘ž$

Continuous ]

O

๐‘ฃ๐‘ฃ # โ‹… # ๐‘๐‘$ โ‹… ๐œ‡๐œ‡$D# d๐‘ก๐‘ก

Discrete ๐ด๐ดd$:G| = ๐ด๐ด$ โˆ’ G ๐ธ๐ธ$ โ‹… ๐ด๐ด$DG

Continuous ๐ด๐ด d = ๐ด๐ด$ โˆ’ G ๐ธ๐ธ$ โ‹… ๐ด๐ด$DG $โˆถG|

G|๐ด๐ด$ G|๐ด๐ด$

Discrete = ๐ด๐ด$ โˆ’ ๐ด๐ดd$:G| = G๐ธ๐ธ$ โ‹… ๐ด๐ด$DG

Continuous = ๐ด๐ด$ โˆ’ ๐ด๐ด d = G๐ธ๐ธ$ โ‹… ๐ด๐ด$DG $โˆถG|

Discrete G ๐ด๐ด d = G ๐ธ๐ธ$ = ๐‘ฃ๐‘ฃ G ๐‘๐‘$ $:G| Continuous N/A Discrete ๐ด๐ด = ๐ด๐ดd$:G| + G ๐ธ๐ธ$ $:G|

Continuous ๐ด๐ด = ๐ด๐ด d + G ๐ธ๐ธ$ $:G| $:G|

EPV under Constant Force of Mortality Discrete Continuous ๐œ‡๐œ‡ ๐‘ž๐‘ž ๐ด๐ด$ = ๐ด๐ด$ = ๐œ‡๐œ‡ + ๐›ฟ๐›ฟ ๐‘ž๐‘ž + ๐‘–๐‘– ๐œ‡๐œ‡ ๐‘ž๐‘ž = 1 โˆ’ G ๐ธ๐ธ$ ๐ด๐ดd$:G| = 1 โˆ’ G ๐ธ๐ธ$ ๐ด๐ด d $:G| ๐œ‡๐œ‡ + ๐›ฟ๐›ฟ ๐‘ž๐‘ž + ๐‘–๐‘– ๐‘ž๐‘ž ๐œ‡๐œ‡ โ‹… ๐ธ๐ธ โ‹… ๐ธ๐ธ G|๐ด๐ด$ = G|๐ด๐ด$ = ๐‘ž๐‘ž + ๐‘–๐‘– G $ ๐œ‡๐œ‡ + ๐›ฟ๐›ฟ G $ G ๐ธ๐ธ$

= ๐‘ฃ๐‘ฃ G ๐‘๐‘G

G ๐ธ๐ธ$

= ๐‘’๐‘’ R(SDo)G

EPV under Uniform Distribution Discrete Continuous ๐‘Ž๐‘ŽrR$| ๐‘Ž๐‘ŽrR$| ๐ด๐ด$ = ๐ด๐ด$ = ๐œ”๐œ” โˆ’ ๐‘ฅ๐‘ฅ ๐œ”๐œ” โˆ’ ๐‘ฅ๐‘ฅ ๐‘Ž๐‘ŽG| ๐‘Ž๐‘ŽG| ๐ด๐ดd$:G| = ๐ด๐ด d = $:G| ๐œ”๐œ” โˆ’ ๐‘ฅ๐‘ฅ ๐œ”๐œ” โˆ’ ๐‘ฅ๐‘ฅ ๐œ”๐œ” โˆ’ ๐‘ฅ๐‘ฅ โˆ’ ๐‘›๐‘› ๐œ”๐œ” โˆ’ ๐‘ฅ๐‘ฅ โˆ’ ๐‘›๐‘› G G G ๐ธ๐ธ$ = ๐‘ฃ๐‘ฃ โ‹… G ๐ธ๐ธ$ = ๐‘ฃ๐‘ฃ โ‹… ๐œ”๐œ” โˆ’ ๐‘ฅ๐‘ฅ ๐œ”๐œ” โˆ’ ๐‘ฅ๐‘ฅ

Copyright ยฉ 2016 Coaching Actuaries. All Rights Reserved. 1

m-thly Insurance (f)

๐ด๐ด$

=

]

bcO

bDd /f

๐‘ฃ๐‘ฃ

โ‹…

Recursive Formulas

(๐’Ž๐’Ž)

b d ๐‘ž๐‘ž$ | f f

Discrete ๐ด๐ด$ = ๐‘ฃ๐‘ฃ๐‘ž๐‘ž$ + ๐‘ฃ๐‘ฃ๐‘๐‘$ โ‹… ๐ด๐ด$Dd ๐ด๐ด$ = ๐‘ฃ๐‘ฃ๐‘ž๐‘ž$ + ๐‘ฃ๐‘ฃ h ๐‘๐‘$ ๐‘ž๐‘ž$Dd + ๐‘ฃ๐‘ฃ h h๐‘๐‘$ โ‹… ๐ด๐ด$Dh ๐ด๐ดd$:G| = ๐‘ฃ๐‘ฃ๐‘ž๐‘ž$ + ๐‘ฃ๐‘ฃ๐‘๐‘$ โ‹… ๐ด๐ด d $Dd:GRd| ๐ด๐ด$:G| = ๐‘ฃ๐‘ฃ๐‘ž๐‘ž$ + ๐‘ฃ๐‘ฃ๐‘๐‘$ โ‹… ๐ด๐ด$Dd:GRd| G|๐ด๐ด$ = ๐‘ฃ๐‘ฃ๐‘๐‘$ โ‹… GRd|๐ด๐ด$Dd d ๐ด๐ด d $:G| = ๐‘ฃ๐‘ฃ๐‘๐‘$ โ‹… ๐ด๐ด$Dd:GRd|

Continuous ๐ด๐ด$ = ๐ด๐ดd$:d| + ๐‘ฃ๐‘ฃ๐‘๐‘$ โ‹… ๐ด๐ด$Dd h ๐ด๐ด$ = ๐ด๐ดd$:d| + ๐‘ฃ๐‘ฃ๐‘๐‘$ โ‹… ๐ด๐ด d $Dd:d| + ๐‘ฃ๐‘ฃ h๐‘๐‘$ โ‹… ๐ด๐ด$Dh d ๐ด๐ด$:G| = ๐ด๐ดd$:d| + ๐‘ฃ๐‘ฃ๐‘๐‘$ โ‹… ๐ด๐ด d $Dd:GRd| ๐ด๐ด$:G| = ๐ด๐ดd$:d| + ๐‘ฃ๐‘ฃ๐‘๐‘$ โ‹… ๐ด๐ด$Dd:GRd| G|๐ด๐ด$



= ๐‘ฃ๐‘ฃ๐‘๐‘$ โ‹… GRd|๐ด๐ด$Dd

Variances

Var ๐‘๐‘$

Discrete = h๐ด๐ด$ โˆ’ ๐ด๐ด$ h

Relationship between ๐‘จ๐‘จ๐’™๐’™ , ๐‘จ๐‘จ๐’™๐’™ and ๐‘จ๐‘จ๐’™๐’™ (Under UDD Assumption) ๐‘–๐‘– ๐ด๐ด$ = ๐ด๐ด$ ๐›ฟ๐›ฟ ๐‘–๐‘– d ๐ด๐ด d ๐ด๐ด $:G| = ๐›ฟ๐›ฟ $:G| ๐‘–๐‘– ๐ด๐ด G|๐ด๐ด$ = ๐›ฟ๐›ฟ G| $ ๐‘–๐‘– d ๐ด๐ด$:G| = ๐ด๐ด $:G| + ๐ด๐ด d $:G| ๐›ฟ๐›ฟ ๐‘–๐‘– (f) ๐ด๐ด$ = (f) ๐ด๐ด$ ๐‘–๐‘– 2๐‘–๐‘– + ๐‘–๐‘– h h h ๐ด๐ด$ = โ‹… ๐ด๐ด$ 2๐›ฟ๐›ฟ ANNUITIES ANNUITIES Level Annual Annuities Type of EPV Annuities Due; Discrete

h

Var ๐‘๐‘$:G| = h๐ด๐ด$:G| โˆ’ ๐ด๐ด$:G| Continuous Var ๐‘๐‘$ = h๐ด๐ด$ โˆ’ ๐ด๐ด$ h h

h

๐‘Ž๐‘Ž$ =



Temporary Life

SDho

Increasing and Decreasing Insurance ๐ผ๐ผ๐ผ๐ผ $ = ๐ด๐ด$ + d|.๐ด๐ด$ + h|.๐ด๐ด$ + โ‹ฏ ๐ผ๐ผ๐ด๐ด

$

๐ผ๐ผ๐ด๐ด

๐ท๐ท๐ด๐ด ๐ผ๐ผ๐ผ๐ผ



๐ผ๐ผ๐ด๐ด ๐ผ๐ผ๐ด๐ด

]

=

O

d $:G|

d $:G|

d $:G| d $:G| d $:G|

=

=

๐‘ก๐‘ก๐‘ก๐‘ก # โ‹… # ๐‘๐‘$ โ‹… ๐œ‡๐œ‡$D# d๐‘ก๐‘ก G

O

G

O

+ ๐ท๐ท๐ท๐ท

+ ๐ท๐ท๐ด๐ด + ๐ท๐ท๐ด๐ด

๐‘›๐‘› โˆ’ ๐‘ก๐‘ก ๐‘ฃ๐‘ฃ # โ‹… # ๐‘๐‘$ โ‹… ๐œ‡๐œ‡$D# d๐‘ก๐‘ก d $:G| d $:G| d $:G|

= ๐‘›๐‘› + 1 โ‹… ๐ด๐ด d $:G| = ๐‘›๐‘› + 1 โ‹… = ๐‘›๐‘› โ‹… ๐ด๐ด d $:G|

๐ด๐ด d $:G|

EPV under Constant Force Discrete Continuous ๐œ‡๐œ‡ ๐‘ž๐‘ž h 1 ๐ผ๐ผ๐ด๐ด $ = ๐ผ๐ผ๐ผ๐ผ $ = ๐œ‡๐œ‡ + ๐›ฟ๐›ฟ h ๐‘ฃ๐‘ฃ๐‘ฃ๐‘ฃ ๐‘ž๐‘ž + ๐‘–๐‘–

EPV under Uniform Distribution Discrete Continuous ๐ผ๐ผ๐ผ๐ผ rR$| ๐ผ๐ผ๐‘Ž๐‘Ž rR$| ๐ผ๐ผ๐ผ๐ผ $ = ๐ผ๐ผ๐ด๐ด $ = ๐œ”๐œ” โˆ’ ๐‘ฅ๐‘ฅ ๐œ”๐œ” โˆ’ ๐‘ฅ๐‘ฅ ๐ผ๐ผ๐ผ๐ผ ๐ผ๐ผ๐‘Ž๐‘Ž G| G| ๐ผ๐ผ๐ผ๐ผ d ๐ผ๐ผ๐ด๐ด d $:G| = $:G| = ๐œ”๐œ” โˆ’ ๐‘ฅ๐‘ฅ ๐œ”๐œ” โˆ’ ๐‘ฅ๐‘ฅ ๐ท๐ท๐ท๐ท G| ๐ท๐ท๐‘Ž๐‘Ž G| ๐ท๐ท๐ท๐ท d ๐ท๐ท๐ด๐ด d $:G| = $:G| = ๐œ”๐œ” โˆ’ ๐‘ฅ๐‘ฅ ๐œ”๐œ” โˆ’ ๐‘ฅ๐‘ฅ



Deferred Whole Life

๐‘ก๐‘ก๐‘ก๐‘ก # โ‹… # ๐‘๐‘$ โ‹… ๐œ‡๐œ‡$D# d๐‘ก๐‘ก





]

bcO

๐‘ฃ๐‘ฃ b โ‹… b ๐‘๐‘$

Immediate; Discrete ๐‘Ž๐‘Ž$ = ๐‘Ž๐‘Ž$ โˆ’ 1 Continuous

Whole Life

Var ๐‘๐‘$:G| = ๐ด๐ด$:G| โˆ’ ๐ด๐ด$:G| Note: h๐ด๐ด and h๐ด๐ด are calculated similar to ๐ด๐ด and ๐ด๐ด respectively, but with double the force of interest, ๐›ฟ๐›ฟ. Equivalently, replace ๐‘ฃ๐‘ฃ with ๐‘ฃ๐‘ฃ h , or replace ๐‘–๐‘– with 2๐‘–๐‘– + ๐‘–๐‘– h . For example, under constant force, h๐ด๐ด$ = u S and h๐ด๐ด$ = . w uDhvDv

๐‘Ž๐‘Ž$ =

]

O

#

๐‘ฃ๐‘ฃ โ‹… # ๐‘๐‘$ d๐‘ก๐‘ก

Immediate; Discrete ๐‘Ž๐‘Ž$:G| = ๐‘Ž๐‘Ž$:G| โˆ’ 1 + G ๐ธ๐ธ$ Continuous ๐‘Ž๐‘Ž$:G| = ๐‘Ž๐‘Ž$ โˆ’ G ๐ธ๐ธ$ โ‹… ๐‘Ž๐‘Ž$DG Due; Discrete G|๐‘Ž๐‘Ž$ = ๐‘Ž๐‘Ž$ โˆ’ ๐‘Ž๐‘Ž$:G| = G ๐ธ๐ธ$ โ‹… ๐‘Ž๐‘Ž$DG Immediate; Discrete G|๐‘Ž๐‘Ž$ = ๐‘Ž๐‘Ž$ โˆ’ ๐‘Ž๐‘Ž$:G| = G ๐ธ๐ธ$ โ‹… ๐‘Ž๐‘Ž$DG Continuous G|๐‘Ž๐‘Ž$ = ๐‘Ž๐‘Ž$ โˆ’ ๐‘Ž๐‘Ž$:G| = G ๐ธ๐ธ$ โ‹… ๐‘Ž๐‘Ž$DG

= ๐‘ฃ๐‘ฃ G ๐‘๐‘G

G ๐ธ๐ธ$

= ๐‘’๐‘’ R(SDo)G

Discrete ๐‘Ž๐‘Ž$ = 1 + ๐‘ฃ๐‘ฃ๐‘๐‘$ โ‹… ๐‘Ž๐‘Ž$Dd ๐‘Ž๐‘Ž$:G| = 1 + ๐‘ฃ๐‘ฃ๐‘๐‘$ โ‹… ๐‘Ž๐‘Ž$Dd:GRd| G|๐‘Ž๐‘Ž$ = ๐‘ฃ๐‘ฃ๐‘๐‘$ โ‹… GRd|๐‘Ž๐‘Ž$Dd Continuous ๐‘Ž๐‘Ž$ = ๐‘Ž๐‘Ž$:d| + ๐‘ฃ๐‘ฃ๐‘๐‘$ โ‹… ๐‘Ž๐‘Ž$Dd ๐‘Ž๐‘Ž$:G| = ๐‘Ž๐‘Ž$:d| + ๐‘ฃ๐‘ฃ๐‘๐‘$ โ‹… ๐‘Ž๐‘Ž$Dd:GRd| G|๐‘Ž๐‘Ž$ = ๐‘ฃ๐‘ฃ๐‘๐‘$ โ‹… GRd|๐‘Ž๐‘Ž$Dd



Relationship between Insurances and Annuities Discrete Continuous ๐ด๐ด$ = 1 โˆ’ ๐‘‘๐‘‘๐‘Ž๐‘Ž$ ๐ด๐ด$ = 1 โˆ’ ๐›ฟ๐›ฟ๐‘Ž๐‘Ž$ ๐ด๐ด$:G| = 1 โˆ’ ๐‘‘๐‘‘๐‘Ž๐‘Ž$:G| ๐ด๐ด$:G| = 1 โˆ’ ๐›ฟ๐›ฟ๐‘Ž๐‘Ž$:G|

Variances

Discrete

h

๐ด๐ด$ โˆ’ ๐ด๐ด$ h ๐‘‘๐‘‘ h h h ๐ด๐ด$:G| โˆ’ ๐ด๐ด$:G| Var ๐‘Œ๐‘Œ$:G| = Var ๐‘Œ๐‘Œ$:GRd| = h ๐‘‘๐‘‘ Continuous h ๐ด๐ด$ โˆ’ ๐ด๐ด$ h Var ๐‘Œ๐‘Œ$ = ๐›ฟ๐›ฟ h h h ๐ด๐ด$:G| โˆ’ ๐ด๐ด$:G| Var ๐‘Œ๐‘Œ$:G| = h ๐›ฟ๐›ฟ Increasing and Decreasing Annuities Var ๐‘Œ๐‘Œ$ = Var ๐‘Œ๐‘Œ$ =



$:G|

๐ผ๐ผ๐‘Ž๐‘Ž

Due; Discrete ๐‘Ž๐‘Ž$:G| = ๐‘Ž๐‘Ž$ โˆ’ G ๐ธ๐ธ$ โ‹… ๐‘Ž๐‘Ž$DG

EPV under Constant Force of Mortality Discrete Continuous 1 + ๐‘–๐‘– 1 ๐‘Ž๐‘Ž$ = ๐‘Ž๐‘Ž$ = ๐‘ž๐‘ž + ๐‘–๐‘– ๐œ‡๐œ‡ + ๐›ฟ๐›ฟ 1 + ๐‘–๐‘– 1 ๐‘Ž๐‘Ž$:G| = 1 โˆ’ G ๐ธ๐ธ$ ๐‘Ž๐‘Ž$:G| = 1 โˆ’ G ๐ธ๐ธ$ ๐‘ž๐‘ž + ๐‘–๐‘– ๐œ‡๐œ‡ + ๐›ฟ๐›ฟ 1 + ๐‘–๐‘– 1 โ‹… ๐ธ๐ธ โ‹… ๐ธ๐ธ G|๐‘Ž๐‘Ž$ = G|๐‘Ž๐‘Ž$ = ๐‘ž๐‘ž + ๐‘–๐‘– G $ ๐œ‡๐œ‡ + ๐›ฟ๐›ฟ G $ G ๐ธ๐ธ$

Recursive Formulas

$

๐ผ๐ผ๐‘Ž๐‘Ž

๐ท๐ท๐‘Ž๐‘Ž ๐ผ๐ผ๐‘Ž๐‘Ž ๐ผ๐ผ๐ผ๐ผ

=

=

$:G|

$:G| $:G|

G

O

๐‘ก๐‘ก๐‘ก๐‘ก # โ‹… # ๐‘๐‘$ d๐‘ก๐‘ก

1 ๐œ‡๐œ‡ + ๐›ฟ๐›ฟ

=

G

O

+ ๐ท๐ท๐‘Ž๐‘Ž

+ ๐ท๐ท๐ท๐ท

h

if ๐œ‡๐œ‡ is constant

๐‘›๐‘› โˆ’ ๐‘ก๐‘ก ๐‘ฃ๐‘ฃ # โ‹… # ๐‘๐‘$ d๐‘ก๐‘ก

$:G| $:G|

= ๐‘›๐‘›๐‘Ž๐‘Ž$:G|

= ๐‘›๐‘› + 1 ๐‘Ž๐‘Ž$:G|

Annuities with m-thly Payments UDD Assumption (f)

๐‘Ž๐‘Ž$

(f)

= ๐›ผ๐›ผ ๐‘š๐‘š โ‹… ๐‘Ž๐‘Ž$ โˆ’ ๐›ฝ๐›ฝ(๐‘š๐‘š)

๐‘Ž๐‘Ž$:G| = ๐›ผ๐›ผ ๐‘š๐‘š โ‹… ๐‘Ž๐‘Ž$:G| โˆ’ ๐›ฝ๐›ฝ(๐‘š๐‘š)(1 โˆ’ G๐ธ๐ธ$ ) (f) G|๐‘Ž๐‘Ž$



= ๐›ผ๐›ผ ๐‘š๐‘š โ‹… G|๐‘Ž๐‘Ž$ โˆ’ ๐›ฝ๐›ฝ ๐‘š๐‘š โ‹… G ๐ธ๐ธ$

Woolhouseโ€™s Formula (3 terms) ๐‘š๐‘š โˆ’ 1 ๐‘š๐‘šh โˆ’ 1 (f) ๐‘Ž๐‘Ž$ โ‰ˆ ๐‘Ž๐‘Ž$ โˆ’ โˆ’ ๐œ‡๐œ‡$ + ๐›ฟ๐›ฟ 12๐‘š๐‘šh 2๐‘š๐‘š ๐‘š๐‘š โˆ’ 1 f 1 โˆ’ G ๐ธ๐ธ$ ๐‘Ž๐‘Ž$:G| โ‰ˆ ๐‘Ž๐‘Ž$:G| โˆ’ 2๐‘š๐‘š ๐‘š๐‘š h โˆ’ 1 ๐œ‡๐œ‡ + ๐›ฟ๐›ฟ โˆ’ G๐ธ๐ธ$ ๐œ‡๐œ‡$DG + ๐›ฟ๐›ฟ โˆ’ 12๐‘š๐‘šh $ ๐‘š๐‘š โˆ’1 f โ‰ˆ G|๐‘Ž๐‘Ž$ โˆ’ ๐ธ๐ธ G|๐‘Ž๐‘Ž$ 2๐‘š๐‘š G $ ๐‘š๐‘š h โˆ’ 1 ๐ธ๐ธ ๐œ‡๐œ‡ + ๐›ฟ๐›ฟ โˆ’ 12๐‘š๐‘šh G $ $DG 1 1 ๐œ‡๐œ‡ + ๐›ฟ๐›ฟ ๐‘Ž๐‘Ž$ โ‰ˆ ๐‘Ž๐‘Ž$ โˆ’ โˆ’ 2 12 $

Recursive Formulas d ๐ผ๐ผ๐ผ๐ผ d $:G| = ๐ด๐ด $:G| + ๐‘ฃ๐‘ฃ๐‘๐‘$ โ‹… ๐ผ๐ผ๐ผ๐ผ ๐ท๐ท๐ท๐ท

d $:G|

=

๐ด๐ด d $:G|

+ ๐ท๐ท๐ท๐ท

d $Dd:GRd| d $:GRd|

www.coachingactuaries.com

Copyright ยฉ 2016 Coaching Actuaries. All Rights Reserved. 2

PREMIUMS PREMIUMS Net Premiums PREMIUMS Net Premiums Calculate net premiums using the equivalence Calculate net premiums using the equivalence principle: principle: ๐ธ๐ธ๐ธ๐ธ๐ธ๐ธ(premiums) = ๐ธ๐ธ๐ธ๐ธ๐ธ๐ธ(benefits) ๐ธ๐ธ๐ธ๐ธ๐ธ๐ธ(premiums) = ๐ธ๐ธ๐ธ๐ธ๐ธ๐ธ(benefits) Name Type Name Type Fully Discrete ๐ด๐ด$ Fully Discrete 1 ๐‘‘๐‘‘๐ด๐ด$ ๐ด๐ด$ = 1 โˆ’ ๐‘‘๐‘‘ = ๐‘‘๐‘‘๐ด๐ด$ ๐‘Ž๐‘Ž$ = ๐‘Ž๐‘Ž$ โˆ’ ๐‘‘๐‘‘ = 1 โˆ’ ๐ด๐ด$ Whole ๐‘Ž๐‘Ž$ Fully Continuous 1 โˆ’ ๐ด๐ด$ ๐‘Ž๐‘Ž$ Whole Life Insurance Life Insurance ๐ด๐ด$Fully Continuous 1 ๐›ฟ๐›ฟ๐ด๐ด$ ๐ด๐ด$ = 1 โˆ’ ๐›ฟ๐›ฟ = ๐›ฟ๐›ฟ๐ด๐ด$ ๐‘Ž๐‘Ž$ = ๐‘Ž๐‘Ž$ โˆ’ ๐›ฟ๐›ฟ = 1 โˆ’ ๐ด๐ด$ ๐‘Ž๐‘Ž$ Fully Discrete ๐‘Ž๐‘Ž$ 1 โˆ’ ๐ด๐ด$ ๐ด๐ด$:G| Fully Discrete ๐‘‘๐‘‘๐ด๐ด$:G| 1 ๐ด๐ด$:G| = 1 โˆ’ ๐‘‘๐‘‘ = ๐‘‘๐‘‘๐ด๐ด$:G| ๐‘Ž๐‘Ž$:G| = ๐‘Ž๐‘Ž$:G| โˆ’ ๐‘‘๐‘‘ = 1 โˆ’ ๐ด๐ด$:G| Endowment ๐‘Ž๐‘Ž$:G| ๐‘Ž๐‘Ž$:G| 1 โˆ’ ๐ด๐ด Endowment Fully Continuous $:G| Insurance Insurance ๐›ฟ๐›ฟ๐ด๐ด$:G| ๐ด๐ด$:G| Fully Continuous 1 ๐ด๐ด$:G| = 1 โˆ’ ๐›ฟ๐›ฟ = ๐›ฟ๐›ฟ๐ด๐ด$:G| ๐‘Ž๐‘Ž$:G| = ๐‘Ž๐‘Ž$:G| โˆ’ ๐›ฟ๐›ฟ = 1 โˆ’ ๐ด๐ด$:G| ๐‘Ž๐‘Ž$:G| ๐‘Ž๐‘Ž$:G| 1 โˆ’ ๐ด๐ด Fully Discrete $:G| d Fully Discrete ๐ด๐ด d $:G| ๐ด๐ด$:G| ๐‘Ž๐‘Ž$:G| Term ๐‘Ž๐‘Ž$:G| Term Life Insurance Fully Continuous Life Insurance Fully Continuous ๐ด๐ด d $:G| ๐ด๐ด d $:G| ๐‘Ž๐‘Ž$:G| ๐‘Ž๐‘Ž$:G| Fully Discrete Deferred Life Fully Discrete Deferred Life Insurance G|๐ด๐ด$ Insurance G|๐ด๐ด$ ๐‘Ž๐‘Ž $:G| (premiums ๐‘Ž๐‘Ž $:G| (premiums Fully Continuous payable during Fully Continuous payable during deferral G|๐ด๐ด$ ๐ด๐ด deferral period) ๐‘Ž๐‘ŽG|$:G|$ period) ๐‘Ž๐‘Ž$:G| Fully Discrete Fully Discrete Deferred Life G|๐ด๐ด$ Deferred Life Insurance G|๐ด๐ด$ ๐‘Ž๐‘Ž$ Insurance ๐‘Ž๐‘Ž$ (premiums Fully Continuous (premiums Fully Continuous payable for G|๐ด๐ด$ payable for life) G|๐ด๐ด$ ๐‘Ž๐‘Ž$ life) ๐‘Ž๐‘Ž$ Fully Discrete Deferred Life Fully Discrete Deferred Life Annuity G|๐‘Ž๐‘Ž$ ๐‘Ž๐‘Ž Annuity ๐‘Ž๐‘ŽG|$:G|$ (premiums ๐‘Ž๐‘Ž$:G| (premiums Fully Continuous payable during Fully Continuous payable during deferral G|๐‘Ž๐‘Ž$ ๐‘Ž๐‘Ž deferral period) ๐‘Ž๐‘ŽG|$:G|$ period) ๐‘Ž๐‘Ž$:G| Note: Numerator and denominator of net premium Note: Numerator and denominator of net premium formula can be substituted with any other EPV formula can be substituted with any other EPV expression depending on premium payment expression depending on premium payment frequency and nature of death benefit (e.g. ๐‘š๐‘š-thly frequency and nature of death benefit (e.g. ๐‘š๐‘š-thly premiums, continuous premiums, death benefit premiums, continuous premiums, death benefit paid at moment of death). paid at moment of death). Gross Premiums Gross Premiums If gross premiums are calculated using the If gross premiums are calculated using the equivalence principle, then: equivalence principle, then: ๐ธ๐ธ๐ธ๐ธ๐ธ๐ธ(premiums) = ๐ธ๐ธ๐ธ๐ธ๐ธ๐ธ(benefits) + ๐ธ๐ธ๐ธ๐ธ๐ธ๐ธ(expenses) ๐ธ๐ธ๐ธ๐ธ๐ธ๐ธ(premiums) Net Future Loss = ๐ธ๐ธ๐ธ๐ธ๐ธ๐ธ(benefits) + ๐ธ๐ธ๐ธ๐ธ๐ธ๐ธ(expenses) Net Future Loss O๐ฟ๐ฟ = ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ(benefits) โˆ’ ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ(premiums) ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ(benefits) ๐‘๐‘O๐ฟ๐ฟ==face amount, ๐‘ƒ๐‘ƒ โˆ’ = ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ(premiums) premium ๐‘๐‘ = face amount, ๐‘ƒ๐‘ƒ = premium

www.coachingactuaries.com



Whole Whole Life Life

Discrete Discrete ๐‘ƒ๐‘ƒ ๐‘ƒ๐‘ƒ ๐ธ๐ธ O๐ฟ๐ฟ = ๐ด๐ด$ ๐‘๐‘ + ๐‘ƒ๐‘ƒ โˆ’ ๐‘ƒ๐‘ƒ ๐‘‘๐‘‘ ๐ธ๐ธ O๐ฟ๐ฟ = ๐ด๐ด$ ๐‘๐‘h + โˆ’ ๐‘‘๐‘‘ ๐‘‘๐‘‘ ๐‘ƒ๐‘ƒ h h๐‘‘๐‘‘ Var O๐ฟ๐ฟ = ๐‘๐‘ + ๐‘ƒ๐‘ƒ ๐ด๐ด โˆ’ ๐ด๐ด$ h h $ ๐‘‘๐‘‘ Var O๐ฟ๐ฟ = ๐‘๐‘ + ๐ด๐ด$ โˆ’ ๐ด๐ด$ h ๐‘‘๐‘‘ ๐‘ƒ๐‘ƒ ๐‘ƒ๐‘ƒ ๐ธ๐ธ O๐ฟ๐ฟ = ๐ด๐ด$:G| ๐‘๐‘ + ๐‘ƒ๐‘ƒ โˆ’ ๐‘ƒ๐‘ƒ ๐ธ๐ธ O๐ฟ๐ฟ = ๐ด๐ด$:G|h ๐‘๐‘ + ๐‘‘๐‘‘ โˆ’ ๐‘‘๐‘‘ ๐‘‘๐‘‘ ๐‘‘๐‘‘ ๐‘ƒ๐‘ƒ h h

EndowEndowment ment Insurance Var O๐ฟ๐ฟ = ๐‘๐‘ + ๐‘ƒ๐‘ƒ h ๐ด๐ด$:G| โˆ’ ๐ด๐ด$:G| h h Insurance Var O๐ฟ๐ฟ = ๐‘๐‘ + ๐‘‘๐‘‘ ๐ด๐ด$:G| โˆ’ ๐ด๐ด$:G| ๐‘‘๐‘‘ Continuous Continuous ๐‘ƒ๐‘ƒ ๐‘ƒ๐‘ƒ ๐ธ๐ธ O๐ฟ๐ฟ = ๐ด๐ด$ ๐‘๐‘ + ๐‘ƒ๐‘ƒ โˆ’ ๐‘ƒ๐‘ƒ Whole ๐ธ๐ธ O๐ฟ๐ฟ = ๐ด๐ด$ ๐‘๐‘h + ๐›ฟ๐›ฟ โˆ’ ๐›ฟ๐›ฟ Whole ๐›ฟ๐›ฟ ๐›ฟ๐›ฟ ๐‘ƒ๐‘ƒ Life Var O๐ฟ๐ฟ = ๐‘๐‘ + ๐‘ƒ๐‘ƒ h hh๐ด๐ด$ โˆ’ ๐ด๐ด$ h Life Var O๐ฟ๐ฟ = ๐‘๐‘ + ๐›ฟ๐›ฟ ๐ด๐ด$ โˆ’ ๐ด๐ด$ h ๐›ฟ๐›ฟ ๐‘ƒ๐‘ƒ ๐‘ƒ๐‘ƒ Endow๐ธ๐ธ O๐ฟ๐ฟ = ๐ด๐ด$:G| ๐‘๐‘ + ๐‘ƒ๐‘ƒ โˆ’ ๐‘ƒ๐‘ƒ ๐›ฟ๐›ฟ Endow๐ธ๐ธ O๐ฟ๐ฟ = ๐ด๐ด$:G|h ๐‘๐‘ + โˆ’ ๐›ฟ๐›ฟ ment h ment Var ๐ฟ๐ฟ = ๐‘๐‘ + ๐‘ƒ๐‘ƒ h h๐ด๐ด ๐›ฟ๐›ฟ โˆ’ ๐›ฟ๐›ฟ๐ด๐ด Insurance ๐‘ƒ๐‘ƒ O $:G| h h $:G| Insurance Var O๐ฟ๐ฟ = ๐‘๐‘ + ๐›ฟ๐›ฟ ๐ด๐ด$:G| โˆ’ ๐ด๐ด$:G| ๐›ฟ๐›ฟ Gross Future Loss รข Gross Future Loss O๐ฟ๐ฟรข = ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ(benefits) + ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ(expenses) O๐ฟ๐ฟ = ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ(benefits) + ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ(expenses) โˆ’๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ(premiums) โˆ’๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ(premiums) Portfolio Percentile Premium Principle Portfolio Percentile Premium Principle Under normal approximation and given the Under normal approximation and given the probability of a loss on a portfolio of ๐‘›๐‘› policies probability of a loss on a portfolio of ๐‘›๐‘› policies equals 1 โˆ’ ๐‘๐‘, solve for the premium per policy equals 1 โˆ’ ๐‘๐‘, solve for the premium per policy such that: such that: ๐‘‰๐‘‰๐‘‰๐‘‰๐‘‰๐‘‰ O๐ฟ๐ฟ ๐ธ๐ธ O๐ฟ๐ฟ + ๐‘ง๐‘งรฃ ๐‘‰๐‘‰๐‘‰๐‘‰๐‘‰๐‘‰ O๐ฟ๐ฟ = 0 ๐‘›๐‘› = 0 ๐ธ๐ธ O๐ฟ๐ฟ + ๐‘ง๐‘งรฃ ๐‘›๐‘› RESERVES RESERVES RESERVES Net Premium Reserve Net Premium Reserve Prospective Method Prospective Method # ๐‘‰๐‘‰ = ๐ธ๐ธ๐ธ๐ธ๐‘‰๐‘‰# (future ben.) โˆ’ ๐ธ๐ธ๐ธ๐ธ๐‘‰๐‘‰# (future prem.) ๐‘‰๐‘‰ = ๐ธ๐ธ๐ธ๐ธ๐‘‰๐‘‰ (future ben.) โˆ’ ๐ธ๐ธ๐ธ๐ธ๐‘‰๐‘‰ (future prem.) # # # Retrospective Method Retrospective Method ๐ธ๐ธ๐ธ๐ธ๐‘‰๐‘‰O (past prem.) โˆ’ ๐ธ๐ธ๐ธ๐ธ๐‘‰๐‘‰O (past ben.) # ๐‘‰๐‘‰ = ๐ธ๐ธ๐ธ๐ธ๐‘‰๐‘‰O (past prem.) โˆ’ ๐ธ๐ธ๐ธ๐ธ๐‘‰๐‘‰O (past ben.) # ๐ธ๐ธ$ # ๐‘‰๐‘‰ = # ๐ธ๐ธ$ Recursive Formula Recursive Formula bRd๐‘‰๐‘‰ + ๐œ‹๐œ‹bRd 1 + ๐‘–๐‘– โˆ’ ๐‘๐‘b ๐‘ž๐‘ž$DbRd b ๐‘‰๐‘‰ = bRd๐‘‰๐‘‰ + ๐œ‹๐œ‹bRd 1 + ๐‘–๐‘– โˆ’ ๐‘๐‘b ๐‘ž๐‘ž$DbRd ๐‘๐‘$DbRd b ๐‘‰๐‘‰ = ๐‘๐‘$DbRd โ€ข If ๐‘๐‘b = FA + b ๐‘‰๐‘‰ (where FA is level) and โ€ข premiums are level, then: If ๐‘๐‘b = FA + b ๐‘‰๐‘‰ (where FA is level) and b premiums are level, then: b ๐‘ž๐‘ž$DรชRd 1 + ๐‘–๐‘– bRรช b ๐‘‰๐‘‰ = ๐œ‹๐œ‹๐‘ ๐‘ b| โˆ’ FA ๐‘‰๐‘‰ = ๐œ‹๐œ‹๐‘ ๐‘  โˆ’ FA ๐‘ž๐‘ž 1 + ๐‘–๐‘– bRรช b| b รชcd $DรชRd



รชcd Gross Premium Reserve Gross Premium Reserve Prospective Method รข Prospective Method # ๐‘‰๐‘‰ = ๐ธ๐ธ๐ธ๐ธ๐‘‰๐‘‰# (f. ben.) + ๐ธ๐ธ๐ธ๐ธ๐‘‰๐‘‰# (f. exp.) โˆ’ ๐ธ๐ธ๐ธ๐ธ๐‘‰๐‘‰# (f. prem.)



# ๐‘‰๐‘‰

รข

= ๐ธ๐ธ๐ธ๐ธ๐‘‰๐‘‰# (f. ben.) + ๐ธ๐ธ๐ธ๐ธ๐‘‰๐‘‰# (f. exp.) โˆ’ ๐ธ๐ธ๐ธ๐ธ๐‘‰๐‘‰# (f. prem.)

Retrospective Method รข Retrospective Method # ๐‘‰๐‘‰ รข = [๐ธ๐ธ๐ธ๐ธ๐‘‰๐‘‰O (p. prem.) โˆ’ ๐ธ๐ธ๐ธ๐ธ๐‘‰๐‘‰O (p. ben.) # ๐‘‰๐‘‰ = [๐ธ๐ธ๐ธ๐ธ๐‘‰๐‘‰O (p. prem.) โˆ’ ๐ธ๐ธ๐ธ๐ธ๐‘‰๐‘‰O (p. ben.) โˆ’ ๐ธ๐ธ๐ธ๐ธ๐‘‰๐‘‰O p. exp.) / # ๐ธ๐ธ$ โˆ’ ๐ธ๐ธ๐ธ๐ธ๐‘‰๐‘‰O p. exp.) / # ๐ธ๐ธ$ Recursive Formula รข Recursive Formula # ๐‘‰๐‘‰ รข = bRd๐‘‰๐‘‰ + ๐บ๐บbRd โˆ’ ๐‘’๐‘’bRd 1 + ๐‘–๐‘– + ๐‘–๐‘– # ๐‘‰๐‘‰ = bRd๐‘‰๐‘‰ + ๐บ๐บbRdโˆ’โˆ’๐‘ž๐‘ž๐‘’๐‘’bRd 1 $DbRd ๐‘๐‘b + ๐ธ๐ธb /๐‘๐‘$DbRd Expense Reserve โˆ’ ๐‘ž๐‘ž$DbRd ๐‘๐‘b + ๐ธ๐ธb /๐‘๐‘$DbRd รฌ Expense Reserve # ๐‘‰๐‘‰ รฌ = ๐ธ๐ธ๐ธ๐ธ๐‘‰๐‘‰# (f. exp.) โˆ’ ๐ธ๐ธ๐ธ๐ธ๐‘‰๐‘‰# (f. exp. loadings) ๐‘‰๐‘‰ = ๐ธ๐ธ๐ธ๐ธ๐‘‰๐‘‰# (f. exp.) โˆ’ ๐ธ๐ธ๐ธ๐ธ๐‘‰๐‘‰# (f. exp. loadings) # exp. loadings = gross premium โ€“ net premium exp. loadings = gross premium โ€“ net premium รข รฌ # ๐‘‰๐‘‰ รฌ = # ๐‘‰๐‘‰ รข โˆ’ # ๐‘‰๐‘‰ # ๐‘‰๐‘‰ = # ๐‘‰๐‘‰ โˆ’ # ๐‘‰๐‘‰

Modified Reserve Modified Reserve Full preliminary term (FPT): one-year term Full preliminary term (FPT): one-year term insurance followed by an insurance issued to life insurance followed by an insurance issued to life one year older. one year older. โ€ข FPT net premium d โ€ข FPT net premium First-year valuation premium: ๐‘ƒ๐‘ƒ$:d| = ๐‘๐‘๐‘๐‘๐‘ž๐‘ž$ d =๐‘๐‘๐ด๐ด ๐‘๐‘๐‘๐‘๐‘ž๐‘ž$ First-year valuation premium: ๐‘ƒ๐‘ƒ$:d| $Dd Renewal valuation premium: ๐‘ƒ๐‘ƒ$Dd = ๐‘๐‘๐ด๐ด$Dd Renewal valuation premium: ๐‘ƒ๐‘ƒ$Dd = ๐‘Ž๐‘Ž$Dd ๐‘Ž๐‘Ž$Dd โ€ข FPT reserve โ€ข FPT reserve รฑรณรฒ # ๐‘‰๐‘‰$รฑรณรฒ = #Rd๐‘‰๐‘‰$Dd = #Rd๐‘‰๐‘‰$Dd # ๐‘‰๐‘‰$ Treat reserves after first year as if the policy were Treat reserves after first year as if the policy were issued one year later. issued one year later. Reserve between Premium Dates Reserve between Premium Dates M dRM b ๐‘‰๐‘‰ + ๐œ‹๐œ‹b 1 + ๐‘–๐‘– M โˆ’ ๐‘๐‘bDd โ‹… M ๐‘ž๐‘ž$Db โ‹… ๐‘ฃ๐‘ฃ dRM โˆ’ ๐‘๐‘bDd โ‹… M๐‘ž๐‘ž$Db โ‹… ๐‘ฃ๐‘ฃ bDM ๐‘‰๐‘‰ = b ๐‘‰๐‘‰ + ๐œ‹๐œ‹b 1 + ๐‘–๐‘– M ๐‘๐‘$Db bDM ๐‘‰๐‘‰ = M ๐‘๐‘$Db for 0 < ๐‘ ๐‘  < 1 for 0 < ๐‘ ๐‘  < 1 Thieleโ€™s Differential Equation Thieleโ€™s Differential Equation d d ๐‘‰๐‘‰ = ๐›ฟ๐›ฟ ๐‘‰๐‘‰ + ๐บ๐บ โˆ’ ๐‘’๐‘’ โˆ’ ๐‘๐‘ + ๐ธ๐ธ โˆ’ ๐‘‰๐‘‰ ๐œ‡๐œ‡ d๐‘ก๐‘ก ## ๐‘‰๐‘‰ = ๐›ฟ๐›ฟ## ## ๐‘‰๐‘‰ + ๐บ๐บ## โˆ’ ๐‘’๐‘’## โˆ’ ๐‘๐‘## + ๐ธ๐ธ## โˆ’ ## ๐‘‰๐‘‰ ๐œ‡๐œ‡ $$ D# D# d๐‘ก๐‘ก ๐บ๐บ = gross premium, ๐‘’๐‘’ = level expense, ๐บ๐บ = gross premium, ๐‘’๐‘’ = level expense, ๐‘๐‘ = face amount, ๐ธ๐ธ = settlement expense ๐‘๐‘ = face amount, ๐ธ๐ธ = settlement expense Eulerโ€™s Method โ€ขEulerโ€™s Method From ๐‘ก๐‘ก + โ„Ž to ๐‘ก๐‘ก: โ€ข From ๐‘ก๐‘ก +๐‘‰๐‘‰โ„Ž to ๐‘ก๐‘ก: #Dรถ โˆ’ โ„Ž ๐บ๐บ# โˆ’ ๐‘’๐‘’# โˆ’ ๐‘๐‘# + ๐ธ๐ธ# ๐œ‡๐œ‡ $ D# # ๐‘‰๐‘‰ = #Dรถ ๐‘‰๐‘‰ โˆ’ โ„Ž ๐บ๐บ# โˆ’ ๐‘’๐‘’# โˆ’ ๐‘๐‘# + ๐ธ๐ธ# ๐œ‡๐œ‡ $ D# 1 + โ„Ž ๐œ‡๐œ‡ $ D# + ๐›ฟ๐›ฟ = ๐‘‰๐‘‰ # 1 + โ„Ž ๐œ‡๐œ‡ $ D# + ๐›ฟ๐›ฟ โ€ข From ๐‘ก๐‘ก to ๐‘ก๐‘ก โˆ’ โ„Ž: โ€ข From ๐‘ก๐‘ก to ๐‘ก๐‘ก โˆ’ โ„Ž: #Rรถ ๐‘‰๐‘‰ = # ๐‘‰๐‘‰ 1 โˆ’ โ„Ž ๐œ‡๐œ‡ $ D# + ๐›ฟ๐›ฟ = ๐‘‰๐‘‰ 1 โˆ’ โ„Ž ๐œ‡๐œ‡ + ๐›ฟ๐›ฟ ๐‘‰๐‘‰ # #Rรถ ๐บ๐บ# โˆ’ ๐‘’๐‘’# โˆ’ ๐‘๐‘$# D# + ๐ธ๐ธ# ๐œ‡๐œ‡ $ D# โˆ’โ„Ž ๐บ๐บ โˆ’ ๐‘’๐‘’ โˆ’ ๐‘๐‘ + ๐ธ๐ธ# ๐œ‡๐œ‡ $ D# โˆ’โ„Ž # # # Policy Alterations Policy Alterations To calculate face amount or duration of new To calculate face amount or duration of new altered contract, use equivalence principle: altered contract, use equivalence principle: # ๐ถ๐ถ๐ถ๐ถ + ๐ธ๐ธ๐ธ๐ธ๐‘‰๐‘‰# future prem. = ๐ธ๐ธ๐ธ๐ธ๐‘‰๐‘‰# future ben. ๐ถ๐ถ๐ถ๐ถ + ๐ธ๐ธ๐ธ๐ธ๐‘‰๐‘‰ future prem. = ๐ธ๐ธ๐ธ๐ธ๐‘‰๐‘‰ future ben. # # # Surrenders Surrenders โ€ข Paid-up term policy (extended term) d โ€ข Paid-up term policy (extended term) # ๐ถ๐ถ๐ถ๐ถ$ = ๐ด๐ด d $D#:G| # ๐ถ๐ถ๐ถ๐ถ$ = ๐ด๐ด d $D#:G| ๐ถ๐ถ๐ถ๐ถ = ๐ด๐ด # $ $D#:G| + PEโ‹… GR# ๐ธ๐ธ$D# for endowment d # ๐ถ๐ถ๐ถ๐ถ$ = ๐ด๐ด$D#:G| + PEโ‹… GR# ๐ธ๐ธ$D# for endowment insurance, where PE = pure endowment amt. insurance, where PE = pure endowment amt. โ€ข Reduced paid-up policy โ€ข Reduced paid-up policy # ๐ถ๐ถ๐ถ๐ถ$ # ๐‘Š๐‘Š$ = # ๐ถ๐ถ๐ถ๐ถ$ ๐ด๐ด $D# = ๐‘Š๐‘Š # $ ๐ด๐ด$D# ๐ถ๐ถ๐ถ๐ถ = cash surrender value, ๐‘Š๐‘Š = face amount ๐ถ๐ถ๐ถ๐ถ = cash surrender value, ๐‘Š๐‘Š = face amount MARKOV CHAINS MARKOV CHAINS MARKOV CHAINS Discrete Probabilities vรช Discrete Probabilities # ๐‘๐‘$vรช : probability that a life in state ๐‘–๐‘– at time ๐‘ฅ๐‘ฅ is in # ๐‘๐‘$ : probability that a life in state ๐‘–๐‘– at time ๐‘ฅ๐‘ฅ is in state ๐‘—๐‘— (where ๐‘—๐‘— may equal ๐‘–๐‘–) at time ๐‘ฅ๐‘ฅ + ๐‘ก๐‘ก vv state ๐‘—๐‘— (where ๐‘—๐‘— may equal ๐‘–๐‘–) at time ๐‘ฅ๐‘ฅ + ๐‘ก๐‘ก # ๐‘๐‘$vv : probability that a life in state ๐‘–๐‘– at time ๐‘ฅ๐‘ฅ # ๐‘๐‘$ : probability that a life in state ๐‘–๐‘– at time ๐‘ฅ๐‘ฅ remains in state ๐‘–๐‘– until time ๐‘ฅ๐‘ฅ + ๐‘ก๐‘ก remains in state ๐‘–๐‘– until time ๐‘ฅ๐‘ฅ + ๐‘ก๐‘ก ๐๐ ๐’•๐’• : transition matrix ๐’•๐’• ๐๐ : transition matrix Homogeneous Markov chain: Only one transition Homogeneous Markov chain: Only one transition matrix needed for all periods matrix needed for all periods Non-homogeneous Markov chain: One transition Non-homogeneous Markov chain: One transition matrix needed for each period vรช matrix needed for each period Perform matrix multiplication to calculate # ๐‘๐‘$vรช . Perform matrix multiplication to calculate # ๐‘๐‘$ .

Copyright ยฉ 2016 Coaching Actuaries. All Rights Reserved. 3

Continuous Probabilities vv # ๐‘๐‘$

#

= exp โˆ’

Discrete Insurances ๐ด๐ด =

vรช

๐œ‡๐œ‡$DM d๐‘ ๐‘ 

O รชยฐv



#

vรช

vรช

=

Eulerโ€™s Method vรช #Dรถ ๐‘๐‘$

vรช # ๐‘๐‘$

โ‰ˆ

vรช

bรช

vb # ๐‘๐‘$

bcO bยฐรช

+โ„Ž

vb # ๐‘๐‘$

bcO bยฐรช

โ‹…

vรช

๐ด๐ด$ =

O



โˆ’

vรช # ๐‘๐‘$

โ‹…

รชb ๐œ‡๐œ‡$D#

bรช

๐‘’๐‘’ Ro# # ๐‘๐‘$vb โ‹… ๐œ‡๐œ‡$D# d๐‘ก๐‘ก

bยฐรช

Annuity pays benefit as long as one remains in state j: vรช ๐‘Ž๐‘Ž$ vรช

]

=

๐‘Ž๐‘Ž$ =

๐‘Ž๐‘Ž$vv =

O ]

vรช ๐‘’๐‘’ Ro# # ๐‘๐‘$ d๐‘ก๐‘ก

G

โˆ’

vรช

๐œ‡๐œ‡$D# ๐‘๐‘#

รชcO รชยฐv

v

vรช

+ # ๐‘‰๐‘‰

รช

G

รชcd รช

รชcO รชยฐv

vรช

๐œ‡๐œ‡$D# ๐‘๐‘#

vรช

+ # ๐‘‰๐‘‰

v



รช

โˆ’ # ๐‘‰๐‘‰

MULTIPLE DECREMENT MODELS MULTIPLE DECREMENT MODELS Probabilities =

รช # ๐‘ž๐‘ž$

=

รช

G

รชcd #Rd bcO

รช # ๐‘ž๐‘ž$



ยง b ๐‘๐‘$

๐‘ž๐‘ž$Db

ยง

#|3 ๐‘ž๐‘ž$ = # ๐‘๐‘$

Life Table Formulas ยง

๐‘‘๐‘‘$ = ยง

f

รชcd ยง

ยง b ๐‘๐‘$ ยง ยง ๐‘™๐‘™$ b ๐‘๐‘$

๐‘™๐‘™$Db = ๐‘™๐‘™$ รช

๐‘‘๐‘‘$Db =



#D3Rd bc#

ยง b ๐‘๐‘$

รช

๐‘ž๐‘ž$Db

รช

๐‘‘๐‘‘$

ยง

ยง

= ๐‘™๐‘™$ โˆ’ b ๐‘‘๐‘‘$ รช

๐‘ž๐‘ž$Db

รช

รช

๐œ‡๐œ‡$D# ๐‘๐‘# d๐‘ก๐‘ก

1

รช

(รช) ๐œ‡๐œ‡$D#

รชcd

www.coachingactuaries.com



(รช)

d # ๐‘ž๐‘ž$ d๐‘ก๐‘ก

ยง # ๐‘๐‘$ G

#

O

= exp โˆ’ #

=

โ€ข(รช) # ๐‘๐‘$

O

O



(รช)

๐œ‡๐œ‡$DM d๐‘ ๐‘ 

โ€ข รช

d # ๐‘๐‘$ d๐‘ก๐‘ก

v



ยฎ ยถรŸ ยฉ

ยง

=โˆ’

d โ€ข รช ln # ๐‘๐‘$ d๐‘ก๐‘ก

= M๐‘๐‘$ ยถรŸ , 0 โ‰ค ๐‘ ๐‘  โ‰ค 1 UDD in Associated Single Decrement Tables (UDDASDT) For 2 decrements: โ€ข h ๐‘ก๐‘ก h ๐‘ž๐‘ž$ (d) โ€ข d ๐‘ก๐‘ก โˆ’ , 0 โ‰ค ๐‘ก๐‘ก โ‰ค 1 # ๐‘ž๐‘ž$ = ๐‘ž๐‘ž$ 2 For 3 decrements: โ€ข h โ€ข โ„ข โ€ข h โ€ข โ„ข ๐‘ก๐‘ก h ๐‘ž๐‘ž$ + ๐‘ž๐‘ž$ ๐‘ก๐‘ก โ„ข ๐‘ž๐‘ž$ ๐‘ž๐‘ž$ d โ€ข d ๐‘ก๐‘ก โˆ’ + , # ๐‘ž๐‘ž$ = ๐‘ž๐‘ž$ 2 3

0 โ‰ค ๐‘ก๐‘ก โ‰ค 1 MULTIPLE LIVES MULTIPLE LIVES Joint Life ๐‘‡๐‘‡$ยจ = min ๐‘‡๐‘‡$ , ๐‘‡๐‘‡ยจ # ๐‘๐‘$ยจ

+ # ๐‘ž๐‘ž$ยจ = 1

= #๐‘๐‘$ยจ โˆ’ #D3 ๐‘๐‘$ยจ #D3 ๐‘๐‘$ยจ โˆ˜

๐‘’๐‘’$ยจ =

๐‘’๐‘’$ยจ =

=

#D3 ๐‘ž๐‘ž$ยจ

โˆ’ # ๐‘ž๐‘ž$ยจ

= # ๐‘๐‘$ยจ โ‹… 3 ๐‘๐‘$D#:ยจD# ]

O ]

bcd

# ๐‘๐‘$ยจ

d๐‘ก๐‘ก

b ๐‘๐‘$ยจ

+ # ๐‘ž๐‘ž$ยจ = 1

O

โˆ˜



๐œ‡๐œ‡$DM + ๐œ‡๐œ‡ยจDM d๐‘ ๐‘ 

= # ๐‘๐‘$ยจ โˆ’ #D3 ๐‘๐‘$ยจ = ]

# ๐‘๐‘$ยจ

O ]

d๐‘ก๐‘ก

#D3 ๐‘ž๐‘ž$ยจ

โˆ’ # ๐‘ž๐‘ž$ยจ

b ๐‘๐‘$ยจ

bcd

๐ด๐ด$ยจ = 1 โˆ’ ๐›ฟ๐›ฟ๐‘Ž๐‘Ž$ยจ

Independent Lives # ๐‘ž๐‘ž$ยจ

= # ๐‘ž๐‘ž$ โ‹… # ๐‘ž๐‘žยจ # ๐‘ž๐‘ž$

๐œ‡๐œ‡$ยจ ๐‘ก๐‘ก =

โˆ™ # ๐‘๐‘ยจ ๐œ‡๐œ‡ยจD# + # ๐‘ž๐‘žยจ โˆ™ # ๐‘๐‘$ ๐œ‡๐œ‡$D# # ๐‘๐‘$ยจ

Relationship between (๐’™๐’™๐’™๐’™) Status and (๐’™๐’™๐’™๐’™) Status ๐‘‡๐‘‡$ยจ + ๐‘‡๐‘‡$ยจ = ๐‘‡๐‘‡$ + ๐‘‡๐‘‡ยจ # ๐‘๐‘$ยจ + # ๐‘๐‘$ยจ = # ๐‘๐‘$ โˆ˜ โˆ˜ โˆ˜ โˆ˜ ๐‘’๐‘’$ยจ + ๐‘’๐‘’$ยจ = ๐‘’๐‘’$ + ๐‘’๐‘’ยจ

๐‘’๐‘’$ยจ + ๐‘’๐‘’$ยจ = ๐‘’๐‘’$ + ๐‘’๐‘’ยจ

(ยง)

โ€ข รช

# ๐‘๐‘$ยจ

๐‘’๐‘’$ยจ =

(ยง)

โ€ข(รช) (รช)

1

= exp โˆ’

๐‘’๐‘’$ยจ =

M ๐‘๐‘$ ๐œ‡๐œ‡$DM d๐‘ ๐‘ 

= # ๐‘๐‘$

#

# ๐‘๐‘$ยจ

#|3 ๐‘ž๐‘ž$ยจ



๐œ‡๐œ‡$DM d๐‘ ๐‘ 

#

Independent Lives # ๐‘๐‘$ยจ = # ๐‘๐‘$ โ‹… # ๐‘๐‘ยจ ๐œ‡๐œ‡$D#:ยจD# = ๐œ‡๐œ‡$D# + ๐œ‡๐œ‡ยจD# Last Survivor ๐‘‡๐‘‡$ยจ = max ๐‘‡๐‘‡$ , ๐‘‡๐‘‡ยจ

๐œ‡๐œ‡$DM d๐‘ ๐‘ 

#|3 ๐‘ž๐‘ž$ยจ = # ๐‘๐‘$ยจ โ‹… 3 ๐‘ž๐‘ž$D#:ยจD#

รช

รช

(ยง) M ๐‘๐‘$

O

โ€ข รช M ๐‘๐‘$



3 ๐‘ž๐‘ž$D# =

(รช)

# ๐‘๐‘$ UDD in Multiple-Decrement Tables (UDDMDT)



G

#

๐œ‡๐œ‡$D# = โˆ’

โˆ’ # ๐‘‰๐‘‰

Eulerโ€™s Method v v = # ๐‘‰๐‘‰ v 1 โˆ’ ๐›ฟ๐›ฟ# โ„Ž + โ„Ž๐ต๐ต# #Rรถ ๐‘‰๐‘‰

รชcd

= exp โˆ’

โ€ข(รช)

# ๐‘ž๐‘ž$

๐ต๐ต# : difference between benefit and premium in state ๐‘–๐‘– vรช ๐‘๐‘# : benefit for transitioning from state ๐‘–๐‘– to ๐‘—๐‘— +โ„Ž

(รช)

๐‘ž๐‘ž$DbRd ๐‘๐‘b

Fractional Ages UDD in the multiple decrement table: (รช) (รช) 0 โ‰ค ๐‘ ๐‘  โ‰ค 1 M ๐‘ž๐‘ž$ = ๐‘ ๐‘ ๐‘ž๐‘ž$ , Constant forces of decrement: รช ๐‘ž๐‘ž$ รช ยง M 1 โˆ’ ๐‘๐‘$ M ๐‘ž๐‘ž$ = ยง ๐‘ž๐‘ž$ Associated Single Decrement Tables The associated single decrements are independent.

for constant force, where ๐œ‡๐œ‡ v โ€ข is the

Thieleโ€™s Differential Equation d v ๐‘‰๐‘‰ v = ๐›ฟ๐›ฟ# # ๐‘‰๐‘‰ v โˆ’ ๐ต๐ต# d๐‘ก๐‘ก #

ยง # ๐‘ž๐‘ž$

(ยง) # ๐‘๐‘$

vรช

bcO d

=

โ€ข(รช) # ๐‘๐‘$

sum of forces of interest out of state ๐‘–๐‘–



(ยง) ๐œ‡๐œ‡$D#

๐‘ฃ๐‘ฃ b b ๐‘๐‘$

S ยข โ€ข Do

ยง

=

(รช)

Premiums and Reserves Insurance pays benefit upon transition to state j: ]

รช

G

๐‘ฃ๐‘ฃ # # ๐‘๐‘$

๐œ‡๐œ‡$D# =

รชb

bรช ๐œ‡๐œ‡$D#

O

รช # ๐‘ž๐‘ž$

โ‹… ๐œ‡๐œ‡$D# โˆ’ # ๐‘๐‘$ โ‹… ๐œ‡๐œ‡$D# G

(ยง)

๐‘ฃ๐‘ฃ b bRd๐‘๐‘$

Forces of Decrement

Kolmogorovโ€™s Forward Equations d vรช ๐‘๐‘ = Rate of entry into state ๐‘—๐‘— d๐‘ก๐‘ก # $ โˆ’ Rate of leaving state ๐‘—๐‘— G

]

๐ด๐ด =

รชรช

vv M ๐‘๐‘$ โ‹… ๐œ‡๐œ‡$DM โ‹… #RM ๐‘๐‘$DM d๐‘ ๐‘ 

O

bcd

Continuous Insurances

For permanent disability model: # ๐‘๐‘$ =

]



+ # ๐‘๐‘ยจ

โˆ˜

โˆ˜

โˆ˜

โˆ˜

Cov ๐‘‡๐‘‡$ยจ , ๐‘‡๐‘‡$ยจ = Cov ๐‘‡๐‘‡$ , ๐‘‡๐‘‡ยจ + ๐‘’๐‘’$ โˆ’ ๐‘’๐‘’$ยจ ๐‘’๐‘’ยจ โˆ’ ๐‘’๐‘’$ยจ

Cov ๐‘‡๐‘‡$ , ๐‘‡๐‘‡ยจ = 0 if ๐‘‡๐‘‡$ and ๐‘‡๐‘‡ยจ are independent ๐ด๐ด$ยจ + ๐ด๐ด$ยจ = ๐ด๐ด$ + ๐ด๐ดยจ ๐‘Ž๐‘Ž$ยจ + ๐‘Ž๐‘Ž$ยจ = ๐‘Ž๐‘Ž$ + ๐‘Ž๐‘Žยจ G ๐ธ๐ธ$ยจ

+ G ๐ธ๐ธ$ยจ = G๐ธ๐ธ$ + G๐ธ๐ธยจ

d G ๐‘ž๐‘ž$ยจ

=

Contingent Probabilities

d G ๐‘ž๐‘ž$ยจ d G ๐‘ž๐‘ž$ยจ

h G ๐‘ž๐‘ž$ยจ

h G ๐‘ž๐‘ž$ยจ h G ๐‘ž๐‘ž$ยจ

d G ๐‘ž๐‘ž$ยจ d G ๐‘ž๐‘ž$ยจ d G ๐‘ž๐‘ž$ยจ

=

+

=

=

+

G

O

G

# ๐‘๐‘$ยจ

O

# ๐‘๐‘$ยจ

O

# ๐‘๐‘$

d G ๐‘ž๐‘ž$ยจ G G

O

โˆ™ ๐œ‡๐œ‡ยจD# ๐‘‘๐‘‘๐‘‘๐‘‘

= G ๐‘ž๐‘ž$ยจ

# ๐‘๐‘ยจ

h G ๐‘ž๐‘ž$ยจ

โˆ™ ๐œ‡๐œ‡$D# ๐‘‘๐‘‘๐‘‘๐‘‘

1 โˆ’ # ๐‘๐‘ยจ โˆ™ ๐œ‡๐œ‡$D# ๐‘‘๐‘‘๐‘‘๐‘‘

1 โˆ’ # ๐‘๐‘$ โˆ™ ๐œ‡๐œ‡ยจD# ๐‘‘๐‘‘๐‘‘๐‘‘

= G ๐‘ž๐‘ž$ยจ

h + G ๐‘ž๐‘ž$ยจ = G ๐‘ž๐‘ž$

h + G ๐‘ž๐‘ž$ยจ = G ๐‘ž๐‘žยจ

h = G ๐‘ž๐‘ž$ยจ + G ๐‘ž๐‘ž$ G ๐‘๐‘ยจ Contingent Insurance ๐ด๐ดd$ยจ + ๐ด๐ด d $ยจ = ๐ด๐ด$ยจ

๐ด๐ดh$ยจ + ๐ด๐ด h $ยจ = ๐ด๐ด$ยจ ๐ด๐ดd$ยจ + ๐ด๐ดh$ยจ = ๐ด๐ด$

๐ด๐ดd$ยจ โˆ’ ๐ด๐ด h $ยจ = ๐ด๐ด$ โˆ’ ๐ด๐ด$ยจ = ๐ด๐ด$ยจ โˆ’ ๐ด๐ดยจ Reversionary Annuities ๐‘Ž๐‘Ž$|ยจ = ๐‘Ž๐‘Žยจ โˆ’ ๐‘Ž๐‘Ž$ยจ





๐ด๐ด$ยจ = 1 โˆ’ ๐›ฟ๐›ฟ๐‘Ž๐‘Ž$ยจ

Copyright ยฉ 2016 Coaching Actuaries. All Rights Reserved. 4

PENSION MATHEMATICS PENSION MATHEMATICS Replacement Ratio, R

๐‘…๐‘… =

1st year pension after retirement salary in the final year of work

Salary Rate Assumption

โ€ข Salaries increase continuously

๐‘ ๐‘ ยจ salary rate at age ๐‘ฆ๐‘ฆ = ๐‘ ๐‘ $ salary rate at age ๐‘ฅ๐‘ฅ

Salary Scale Assumption

โ€ข Salaries increase at discrete intervals ๐‘ ๐‘ ยจ salary earned between age ๐‘ฆ๐‘ฆ and ๐‘ฆ๐‘ฆ + 1 = ๐‘ ๐‘ $ salary earned between age ๐‘ฅ๐‘ฅ and ๐‘ฅ๐‘ฅ + 1

Final average salary over the last 3 years (e.g. retire at age 65)

1 ๐‘ ๐‘ โ‰คh + ๐‘ ๐‘ โ‰คโ„ข + ๐‘ ๐‘ โ‰คโ‰ฅ =3 โ‹… Salary between age ๐‘ฅ๐‘ฅ and ๐‘ฅ๐‘ฅ + 1 ๐‘ ๐‘ $

Salary rate to salary scale: ๐‘ ๐‘ $ =

d

O

๐‘ ๐‘ $D# d๐‘ก๐‘ก

Salary scale to salary rate: ๐‘ ๐‘ $ = ๐‘ ๐‘ $RO.ยต

Normal Contribution

๐ถ๐ถ# = ๐‘ฃ๐‘ฃ d๐‘๐‘$OO #Dd๐‘‰๐‘‰ โˆ’ # ๐‘‰๐‘‰ + EPV(mid-year exits benefits)

โ€ข TUC if the actuarial liability is calculated with the traditional unit method โ€ข PUC if the actuarial liability is calculated with the projected unit method. Under constant and independent of salary accrual rate with no exit benefits: โ€ข TUC: O๐‘‰๐‘‰



โˆ‚รŸโˆ‘โˆ GDd โˆ‚รŸ

G

โˆ’ 1 PUC: O๐‘‰๐‘‰

d

G



INTEREST RATE RISK INTEREST RATE RISK Replicating Cash Flows Spot rate, ๐‘ฆ๐‘ฆ# : effective interest rate paid by a zerocoupon bond maturing at time ๐‘ก๐‘ก ๐‘ฃ๐‘ฃ ๐‘ก๐‘ก : Present value of 1 paid at time ๐‘ก๐‘ก 1 ๐‘ฃ๐‘ฃ ๐‘ก๐‘ก = 1 + ๐‘ฆ๐‘ฆ# # Forward rate, ๐‘“๐‘“ ๐‘ก๐‘ก, ๐‘ก๐‘ก + ๐‘˜๐‘˜ : yield paid at time 0 by a zero-coupon bond bought at time ๐‘ก๐‘ก and maturing for 1 at time ๐‘ก๐‘ก + ๐‘˜๐‘˜ 1 + ๐‘ฆ๐‘ฆ#Db #Db ๐‘ฃ๐‘ฃ ๐‘ก๐‘ก b 1 + ๐‘“๐‘“ ๐‘ก๐‘ก, ๐‘ก๐‘ก + ๐‘˜๐‘˜ = = ๐‘ฃ๐‘ฃ ๐‘ก๐‘ก + ๐‘˜๐‘˜ 1 + ๐‘ฆ๐‘ฆ# # Variance of loss per policy ๐ฟ๐ฟรฃ ๐ธ๐ธ Var ๐ฟ๐ฟd ๐ผ๐ผ Var = Var ๐ธ๐ธ ๐ฟ๐ฟv ๐ผ๐ผ + ๐‘›๐‘› ๐‘›๐‘› PROFIT TESTS PROFIT TESTS Asset Shares b ๐ด๐ด๐ด๐ด = bRd๐ด๐ด๐ด๐ด + ๐บ๐บbRd โˆ’ ๐‘’๐‘’bRd 1 + ๐‘–๐‘– ฯ€

(ฯ€)

โˆ’๐‘ž๐‘ž$DbRd ๐‘๐‘b + ๐ธ๐ธb ฯ€ ๐‘ž๐‘ž$DbRd

โˆซ โˆ’ ๐‘ž๐‘ž$DbRd โˆซ ๐‘ž๐‘ž$DbRd

b CV

(โˆซ)

+ ๐ธ๐ธb

/

โˆ’ 1 โˆ’ ๐บ๐บ = gross premium, ๐‘’๐‘’ = level expenses, ๐‘๐‘ = face amount, ๐ธ๐ธ รช = settlement expenses paid on decrement ๐‘—๐‘—, ๐ถ๐ถ๐ถ๐ถ = cash value Profits for Traditional Products Profit Vector, Prb Profit per policy in force at the beginning of each year Prb = bRd๐‘‰๐‘‰ + ๐บ๐บbRd โˆ’ ๐‘’๐‘’bRd 1 + ๐‘–๐‘– ฯ€ โˆ’๐‘ž๐‘ž$DbRd ๐‘๐‘b + (ยง) โˆ’๐‘๐‘$DbRd b ๐‘‰๐‘‰



ฯ€ ๐ธ๐ธb

โˆ’

โˆซ ๐‘ž๐‘ž$DbRd

Profit Signature, ฮ b Profit per policy issued ฮ b = Prb โ‹… bRd๐‘๐‘$ , ๐‘˜๐‘˜ โ‰ฅ 1 ฮ b = Prb , ๐‘˜๐‘˜ = 0

Change in reserve ฮ”b ๐‘‰๐‘‰ = 1 + ๐‘–๐‘–

bRd๐‘‰๐‘‰

b CV

+

โˆซ ๐ธ๐ธb



Profit Margin The ratio of the NPV to the (expected) present value of future premiums.

Discounted Payback Period (DPP) Solve for lowest ๐‘š๐‘š such that

f

bcO

ฮ b ๐‘ฃ๐‘ฃ b = 0.

Universal Life General AV# = AV#Rd + ๐‘ƒ๐‘ƒ# โˆ’ ๐‘’๐‘’# โˆ’ COI# 1 + ๐‘–๐‘– COI# = ๐‘ฃ๐‘ฃu ๐‘ž๐‘ž$D#Rd DB# โˆ’ AV#

Type A (Death Benefit = Face Amount) AV#Rd + ๐‘ƒ๐‘ƒ# โˆ’ ๐‘’๐‘’# 1 + ๐‘–๐‘– โˆ’ ๐‘ž๐‘ž$D#Rd FA AV# = 1 โˆ’ ๐‘ž๐‘ž$D#Rd

Type B (Death Benefit = Face Amount + AVโˆš ) AV# = AV#Rd + ๐‘ƒ๐‘ƒ# โˆ’ ๐‘’๐‘’# 1 + ๐‘–๐‘– โˆ’ ๐‘ž๐‘ž$D#Rd FA

Corridor Factor, ฮณ AV#Rd + ๐‘ƒ๐‘ƒ# โˆ’ ๐‘’๐‘’# 1 + ๐‘–๐‘– AV# = 1 + ๐‘ž๐‘ž$D#Rd ๐›พ๐›พ โˆ’ 1

If ๐›พ๐›พ โ‹… AV# > death benefit, set death benefit = ๐›พ๐›พ โ‹… AV# .

Note: For all types, replace ๐‘ž๐‘ž$D#Rd with ๐‘ž๐‘ž$D#Rd 1 + ๐‘–๐‘– ๐‘ฃ๐‘ฃu if ๐‘–๐‘– โ‰  ๐‘–๐‘–u Gain by Source Total Profit = bRd๐‘‰๐‘‰ + ๐บ๐บb โˆ’ ๐‘’๐‘’b 1 + ๐‘–๐‘–

โˆ’๐‘ž๐‘ž$DbRd ๐‘๐‘b + ๐ธ๐ธb โˆ’ ๐‘๐‘$DbRd b ๐‘‰๐‘‰



Total Gain = Actual Profit โˆ’ Expected Profit

Components of Gain (โˆ— = assumed, โ€ฒ = actual): Interest: ๐‘–๐‘– โ€ข โˆ’ ๐‘–๐‘– โˆ— bRd๐‘‰๐‘‰ + ๐บ๐บb โˆ’ ๐‘’๐‘’b Expense: ๐‘’๐‘’bโˆ— โˆ’ ๐‘’๐‘’bโ€ข 1 + ๐‘–๐‘– + ๐‘ž๐‘ž$DbRd ๐ธ๐ธbโˆ— โˆ’ ๐ธ๐ธbโ€ข โˆ— โ€ข โˆ’ ๐‘ž๐‘ž$DbRd ๐‘๐‘b + ๐ธ๐ธb โˆ’ b ๐‘‰๐‘‰ Mortality: ๐‘ž๐‘ž$DbRd โˆซ โˆ—

โˆซ โ€ฆ

Lapse: ๐‘ž๐‘ž$DbRd โˆ’ ๐‘ž๐‘ž$DbRd

kCV

โˆซ

+ ๐ธ๐ธb

โˆ’ b ๐‘‰๐‘‰

(ยง)

โˆ’ ๐‘๐‘$DbRd b ๐‘‰๐‘‰

IRR: GbcO ฮ b ๐‘ฃ๐‘ฃ b = 0 b NPV = ] bcO ฮ b ๐‘ฃ๐‘ฃรธ , where ๐‘Ÿ๐‘Ÿ = discount/hurdle rate Partial NPV NPV ๐‘ก๐‘ก =

#

bcO

ฮ b ๐‘ฃ๐‘ฃรธb ,

where ๐‘Ÿ๐‘Ÿ = discount/hurdle rate

www.coachingactuaries.com

Copyright ยฉ 2016 Coaching Actuaries. All Rights Reserved. 5 Copyright ยฉ 2016 Coaching Actuaries. All Rights Reserved. 5 Personal copies permitted. Resale or distribution is prohibited.

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF