EXAM MLC
May 8, 2017 | Author: Adriel Galván Lugo | Category: N/A
Short Description
Download EXAM MLC ...
Description
Exam MLC
Raise Your Oddsยฎ with Adapt
SURVIVAL DISTRIBUTIONS SURVIVAL DISTRIBUTIONS Probability Functions Actuarial Notations # ๐๐$ = Probability that ๐ฅ๐ฅ survives ๐ก๐ก years = Pr ๐๐$ > ๐ก๐ก = ๐๐$ ๐ก๐ก # ๐๐$ = Probability that ๐ฅ๐ฅ dies within ๐ก๐ก years = Pr ๐๐$ โค ๐ก๐ก = ๐น๐น$ ๐ก๐ก # ๐๐$ + # ๐๐$ = 1 #|3 ๐๐$ = Probability that ๐ฅ๐ฅ survives ๐ก๐ก years and dies within the following ๐ข๐ข years = # ๐๐$ โ
3 ๐๐$D# = # ๐๐$ โ #D3 ๐๐$ = #D3 ๐๐$ โ # ๐๐$ Life Table Functions G ๐๐$ = ๐๐$ โ ๐๐$DG ๐๐$D# # ๐๐$ = ๐๐$ ๐๐$ โ ๐๐$D# # ๐๐$ = # ๐๐$ = ๐๐$ ๐๐$ ๐๐$D# โ ๐๐$D#D3 3 ๐๐$D# = #|3 ๐๐$ = ๐๐$ ๐๐$ Force of Mortality ๐๐$ ๐ก๐ก ๐๐$D# = ๐๐$ ๐ก๐ก ๐๐ ๐๐$D# = โ ln ๐๐$ ๐ก๐ก d๐ก๐ก ๐๐ ๐๐$D# = โ ln # ๐๐$ d๐ก๐ก ๐๐$ ๐ก๐ก = # ๐๐$ โ
๐๐$D# # ๐๐$
# ๐๐$
= exp โ =
#|3 ๐๐$
=
#
O
#
. M ๐๐$ #D3
#
O
๐๐$DM d๐ ๐
โ
๐๐$DM d๐ ๐
. M ๐๐$
โ
๐๐$DM d๐ ๐
Mortality Laws Constant Force of Mortality ๐๐$ = ๐๐ RS# # ๐๐$ = ๐๐ Uniform Distribution 1 ๐๐$ = , 0 โค ๐ฅ๐ฅ < ๐๐ ๐๐ โ ๐ฅ๐ฅ ๐๐ โ ๐ฅ๐ฅ โ ๐ก๐ก , 0 โค ๐ก๐ก โค ๐๐ โ ๐ฅ๐ฅ # ๐๐$ = ๐๐ โ ๐ฅ๐ฅ ๐ข๐ข , 0 โค ๐ก๐ก + ๐ข๐ข โค ๐๐ โ ๐ฅ๐ฅ #|3 ๐๐$ = ๐๐ โ ๐ฅ๐ฅ Beta Distribution ๐ผ๐ผ ๐๐$ = , 0 โค ๐ฅ๐ฅ < ๐๐ ๐๐ โ ๐ฅ๐ฅ ๐๐ โ ๐ฅ๐ฅ โ ๐ก๐ก Y , 0 โค ๐ก๐ก โค ๐๐ โ ๐ฅ๐ฅ # ๐๐$ = ๐๐ โ ๐ฅ๐ฅ Gompertzโs Law ๐๐$ = ๐ต๐ต๐๐ $ , ๐๐ > 1 ๐ต๐ต๐๐ $ ๐๐ # โ 1 # ๐๐$ = exp โ ln ๐๐ Makehamโs Law ๐๐$ = ๐ด๐ด + ๐ต๐ต๐๐ $ , ๐๐ > 1 ๐ต๐ต๐๐ $ ๐๐ # โ 1 # ๐๐$ = exp โ๐ด๐ด๐ด๐ด โ ln ๐๐
www.coachingactuaries.com
Moments Complete Future Lifetime
โ
๐๐$ =
General
]
O
# ๐๐$
1 ๐๐ ๐๐ โ ๐ฅ๐ฅ โ ๐๐$ = 2 ๐๐ โ ๐ฅ๐ฅ โ ๐๐$ = ๐ผ๐ผ + 1 โ
๐๐$ =
Constant Force of Mortality Uniform Distribution Beta Distribution
d๐ก๐ก
G
โ
O
# ๐๐$
d๐ก๐ก
โข Uniform Distribution โ
๐๐$:G| = G๐๐$ ๐๐ + G ๐๐$
Curtate Future Lifetime ๐๐$ =
]
bcd
๐๐ โ
b|๐๐$ =
]
bcd
๐๐$:G| =
bcd
b ๐๐$
๐๐ โ
b|๐๐$ + ๐๐ โ
G ๐๐$ =
โข Uniform Distribution โ ๐๐$:G| = ๐๐$:G| โ 0.5 G.๐๐$ Recursive Formulas โ โ โ ๐๐$ = ๐๐$:G| + G ๐๐$ โ
๐๐$DG โ
โ
โ
bcd
๐๐$:G| = ๐๐$:f| + f ๐๐$ โ
๐๐$Df:GRf| ,
b ๐๐$
Term Life
๐๐ < ๐๐
๐๐$:G| = ๐๐$:fRd| + f ๐๐$ 1 + ๐๐$Df:GRf| ,
Fractional Ages UDD 0 โค ๐ ๐ + ๐ก๐ก โค 1 ๐๐$DM = 1 โ ๐ ๐ โ
๐๐$ + ๐ ๐ โ
๐๐$Dd M ๐๐$ = ๐ ๐ โ
๐๐$ ๐ ๐ โ
๐๐$ M ๐๐$D# = 1 โ ๐ก๐ก โ
๐๐$ ๐๐$ ๐๐$DM = 1 โ ๐ ๐ โ
๐๐$ ๐๐$ = M๐๐$ โ
๐๐$DM
35
34
Whole Life
๐๐$ = ๐๐$:G| + G ๐๐$ โ
๐๐$DG = ๐๐$:GRd| + G ๐๐$ 1 + ๐๐$DG ๐๐$ = ๐๐$ 1 + ๐๐$Dd ๐๐$:G| = ๐๐$:f| + f ๐๐$ โ
๐๐$Df:GRf| , ๐๐ < ๐๐ ๐๐$:G| = ๐๐$ 1 + ๐๐$Dd:GRd|
33
33
INSURANCE INSURANCE Level Annual Insurance Type of EPV Insurance Discrete
๐๐ 2
G
32
32
โข Uniform Distribution โ ๐๐$ = ๐๐$ โ 0.5 n-year Temporary Curtate Future Lifetime GRd
30 31
n-year Temporary Complete Future Lifetime ๐๐$:G| =
Read the 2-year select and ultimate mortality table from the left to the right and then continue downwards. ๐๐ $ ๐๐ $ Dd ๐๐ $ Dh ๐ฅ๐ฅ ๐ฅ๐ฅ + 2
๐๐ < ๐๐
Constant Force of Mortality 0 โค ๐ ๐ + ๐ก๐ก โค 1 ๐๐$DM = ๐๐$ dRM โ
๐๐$Dd M M M ๐๐$ = M ๐๐$D# = ๐๐$ ๐๐$DM = โ ln ๐๐$ Select and ultimate mortality A person is โselectedโ at the age when the policy is first purchased.
Select mortality is written as ๐๐ $ D# where ๐ฅ๐ฅ is the โselectedโ age and ๐ก๐ก is the number of years after selection. After a certain number of years of โselect periodโ, mortality is called the โultimateโ mortality. ๐๐ $ D# = ๐๐$D# .
Deferred Life Pure Endowment Endowment Insurance
๐ด๐ด$ =
๐ด๐ด$ =
]
bcO
๐ฃ๐ฃ bDd โ
b|๐๐$
Continuous ]
O
๐ฃ๐ฃ # โ
# ๐๐$ โ
๐๐$D# d๐ก๐ก
Discrete ๐ด๐ดd$:G| = ๐ด๐ด$ โ G ๐ธ๐ธ$ โ
๐ด๐ด$DG
Continuous ๐ด๐ด d = ๐ด๐ด$ โ G ๐ธ๐ธ$ โ
๐ด๐ด$DG $โถG|
G|๐ด๐ด$ G|๐ด๐ด$
Discrete = ๐ด๐ด$ โ ๐ด๐ดd$:G| = G๐ธ๐ธ$ โ
๐ด๐ด$DG
Continuous = ๐ด๐ด$ โ ๐ด๐ด d = G๐ธ๐ธ$ โ
๐ด๐ด$DG $โถG|
Discrete G ๐ด๐ด d = G ๐ธ๐ธ$ = ๐ฃ๐ฃ G ๐๐$ $:G| Continuous N/A Discrete ๐ด๐ด = ๐ด๐ดd$:G| + G ๐ธ๐ธ$ $:G|
Continuous ๐ด๐ด = ๐ด๐ด d + G ๐ธ๐ธ$ $:G| $:G|
EPV under Constant Force of Mortality Discrete Continuous ๐๐ ๐๐ ๐ด๐ด$ = ๐ด๐ด$ = ๐๐ + ๐ฟ๐ฟ ๐๐ + ๐๐ ๐๐ ๐๐ = 1 โ G ๐ธ๐ธ$ ๐ด๐ดd$:G| = 1 โ G ๐ธ๐ธ$ ๐ด๐ด d $:G| ๐๐ + ๐ฟ๐ฟ ๐๐ + ๐๐ ๐๐ ๐๐ โ
๐ธ๐ธ โ
๐ธ๐ธ G|๐ด๐ด$ = G|๐ด๐ด$ = ๐๐ + ๐๐ G $ ๐๐ + ๐ฟ๐ฟ G $ G ๐ธ๐ธ$
= ๐ฃ๐ฃ G ๐๐G
G ๐ธ๐ธ$
= ๐๐ R(SDo)G
EPV under Uniform Distribution Discrete Continuous ๐๐rR$| ๐๐rR$| ๐ด๐ด$ = ๐ด๐ด$ = ๐๐ โ ๐ฅ๐ฅ ๐๐ โ ๐ฅ๐ฅ ๐๐G| ๐๐G| ๐ด๐ดd$:G| = ๐ด๐ด d = $:G| ๐๐ โ ๐ฅ๐ฅ ๐๐ โ ๐ฅ๐ฅ ๐๐ โ ๐ฅ๐ฅ โ ๐๐ ๐๐ โ ๐ฅ๐ฅ โ ๐๐ G G G ๐ธ๐ธ$ = ๐ฃ๐ฃ โ
G ๐ธ๐ธ$ = ๐ฃ๐ฃ โ
๐๐ โ ๐ฅ๐ฅ ๐๐ โ ๐ฅ๐ฅ
Copyright ยฉ 2016 Coaching Actuaries. All Rights Reserved. 1
m-thly Insurance (f)
๐ด๐ด$
=
]
bcO
bDd /f
๐ฃ๐ฃ
โ
Recursive Formulas
(๐๐)
b d ๐๐$ | f f
Discrete ๐ด๐ด$ = ๐ฃ๐ฃ๐๐$ + ๐ฃ๐ฃ๐๐$ โ
๐ด๐ด$Dd ๐ด๐ด$ = ๐ฃ๐ฃ๐๐$ + ๐ฃ๐ฃ h ๐๐$ ๐๐$Dd + ๐ฃ๐ฃ h h๐๐$ โ
๐ด๐ด$Dh ๐ด๐ดd$:G| = ๐ฃ๐ฃ๐๐$ + ๐ฃ๐ฃ๐๐$ โ
๐ด๐ด d $Dd:GRd| ๐ด๐ด$:G| = ๐ฃ๐ฃ๐๐$ + ๐ฃ๐ฃ๐๐$ โ
๐ด๐ด$Dd:GRd| G|๐ด๐ด$ = ๐ฃ๐ฃ๐๐$ โ
GRd|๐ด๐ด$Dd d ๐ด๐ด d $:G| = ๐ฃ๐ฃ๐๐$ โ
๐ด๐ด$Dd:GRd|
Continuous ๐ด๐ด$ = ๐ด๐ดd$:d| + ๐ฃ๐ฃ๐๐$ โ
๐ด๐ด$Dd h ๐ด๐ด$ = ๐ด๐ดd$:d| + ๐ฃ๐ฃ๐๐$ โ
๐ด๐ด d $Dd:d| + ๐ฃ๐ฃ h๐๐$ โ
๐ด๐ด$Dh d ๐ด๐ด$:G| = ๐ด๐ดd$:d| + ๐ฃ๐ฃ๐๐$ โ
๐ด๐ด d $Dd:GRd| ๐ด๐ด$:G| = ๐ด๐ดd$:d| + ๐ฃ๐ฃ๐๐$ โ
๐ด๐ด$Dd:GRd| G|๐ด๐ด$
= ๐ฃ๐ฃ๐๐$ โ
GRd|๐ด๐ด$Dd
Variances
Var ๐๐$
Discrete = h๐ด๐ด$ โ ๐ด๐ด$ h
Relationship between ๐จ๐จ๐๐ , ๐จ๐จ๐๐ and ๐จ๐จ๐๐ (Under UDD Assumption) ๐๐ ๐ด๐ด$ = ๐ด๐ด$ ๐ฟ๐ฟ ๐๐ d ๐ด๐ด d ๐ด๐ด $:G| = ๐ฟ๐ฟ $:G| ๐๐ ๐ด๐ด G|๐ด๐ด$ = ๐ฟ๐ฟ G| $ ๐๐ d ๐ด๐ด$:G| = ๐ด๐ด $:G| + ๐ด๐ด d $:G| ๐ฟ๐ฟ ๐๐ (f) ๐ด๐ด$ = (f) ๐ด๐ด$ ๐๐ 2๐๐ + ๐๐ h h h ๐ด๐ด$ = โ
๐ด๐ด$ 2๐ฟ๐ฟ ANNUITIES ANNUITIES Level Annual Annuities Type of EPV Annuities Due; Discrete
h
Var ๐๐$:G| = h๐ด๐ด$:G| โ ๐ด๐ด$:G| Continuous Var ๐๐$ = h๐ด๐ด$ โ ๐ด๐ด$ h h
h
๐๐$ =
Temporary Life
SDho
Increasing and Decreasing Insurance ๐ผ๐ผ๐ผ๐ผ $ = ๐ด๐ด$ + d|.๐ด๐ด$ + h|.๐ด๐ด$ + โฏ ๐ผ๐ผ๐ด๐ด
$
๐ผ๐ผ๐ด๐ด
๐ท๐ท๐ด๐ด ๐ผ๐ผ๐ผ๐ผ
๐ผ๐ผ๐ด๐ด ๐ผ๐ผ๐ด๐ด
]
=
O
d $:G|
d $:G|
d $:G| d $:G| d $:G|
=
=
๐ก๐ก๐ก๐ก # โ
# ๐๐$ โ
๐๐$D# d๐ก๐ก G
O
G
O
+ ๐ท๐ท๐ท๐ท
+ ๐ท๐ท๐ด๐ด + ๐ท๐ท๐ด๐ด
๐๐ โ ๐ก๐ก ๐ฃ๐ฃ # โ
# ๐๐$ โ
๐๐$D# d๐ก๐ก d $:G| d $:G| d $:G|
= ๐๐ + 1 โ
๐ด๐ด d $:G| = ๐๐ + 1 โ
= ๐๐ โ
๐ด๐ด d $:G|
๐ด๐ด d $:G|
EPV under Constant Force Discrete Continuous ๐๐ ๐๐ h 1 ๐ผ๐ผ๐ด๐ด $ = ๐ผ๐ผ๐ผ๐ผ $ = ๐๐ + ๐ฟ๐ฟ h ๐ฃ๐ฃ๐ฃ๐ฃ ๐๐ + ๐๐
EPV under Uniform Distribution Discrete Continuous ๐ผ๐ผ๐ผ๐ผ rR$| ๐ผ๐ผ๐๐ rR$| ๐ผ๐ผ๐ผ๐ผ $ = ๐ผ๐ผ๐ด๐ด $ = ๐๐ โ ๐ฅ๐ฅ ๐๐ โ ๐ฅ๐ฅ ๐ผ๐ผ๐ผ๐ผ ๐ผ๐ผ๐๐ G| G| ๐ผ๐ผ๐ผ๐ผ d ๐ผ๐ผ๐ด๐ด d $:G| = $:G| = ๐๐ โ ๐ฅ๐ฅ ๐๐ โ ๐ฅ๐ฅ ๐ท๐ท๐ท๐ท G| ๐ท๐ท๐๐ G| ๐ท๐ท๐ท๐ท d ๐ท๐ท๐ด๐ด d $:G| = $:G| = ๐๐ โ ๐ฅ๐ฅ ๐๐ โ ๐ฅ๐ฅ
Deferred Whole Life
๐ก๐ก๐ก๐ก # โ
# ๐๐$ โ
๐๐$D# d๐ก๐ก
]
bcO
๐ฃ๐ฃ b โ
b ๐๐$
Immediate; Discrete ๐๐$ = ๐๐$ โ 1 Continuous
Whole Life
Var ๐๐$:G| = ๐ด๐ด$:G| โ ๐ด๐ด$:G| Note: h๐ด๐ด and h๐ด๐ด are calculated similar to ๐ด๐ด and ๐ด๐ด respectively, but with double the force of interest, ๐ฟ๐ฟ. Equivalently, replace ๐ฃ๐ฃ with ๐ฃ๐ฃ h , or replace ๐๐ with 2๐๐ + ๐๐ h . For example, under constant force, h๐ด๐ด$ = u S and h๐ด๐ด$ = . w uDhvDv
๐๐$ =
]
O
#
๐ฃ๐ฃ โ
# ๐๐$ d๐ก๐ก
Immediate; Discrete ๐๐$:G| = ๐๐$:G| โ 1 + G ๐ธ๐ธ$ Continuous ๐๐$:G| = ๐๐$ โ G ๐ธ๐ธ$ โ
๐๐$DG Due; Discrete G|๐๐$ = ๐๐$ โ ๐๐$:G| = G ๐ธ๐ธ$ โ
๐๐$DG Immediate; Discrete G|๐๐$ = ๐๐$ โ ๐๐$:G| = G ๐ธ๐ธ$ โ
๐๐$DG Continuous G|๐๐$ = ๐๐$ โ ๐๐$:G| = G ๐ธ๐ธ$ โ
๐๐$DG
= ๐ฃ๐ฃ G ๐๐G
G ๐ธ๐ธ$
= ๐๐ R(SDo)G
Discrete ๐๐$ = 1 + ๐ฃ๐ฃ๐๐$ โ
๐๐$Dd ๐๐$:G| = 1 + ๐ฃ๐ฃ๐๐$ โ
๐๐$Dd:GRd| G|๐๐$ = ๐ฃ๐ฃ๐๐$ โ
GRd|๐๐$Dd Continuous ๐๐$ = ๐๐$:d| + ๐ฃ๐ฃ๐๐$ โ
๐๐$Dd ๐๐$:G| = ๐๐$:d| + ๐ฃ๐ฃ๐๐$ โ
๐๐$Dd:GRd| G|๐๐$ = ๐ฃ๐ฃ๐๐$ โ
GRd|๐๐$Dd
Relationship between Insurances and Annuities Discrete Continuous ๐ด๐ด$ = 1 โ ๐๐๐๐$ ๐ด๐ด$ = 1 โ ๐ฟ๐ฟ๐๐$ ๐ด๐ด$:G| = 1 โ ๐๐๐๐$:G| ๐ด๐ด$:G| = 1 โ ๐ฟ๐ฟ๐๐$:G|
Variances
Discrete
h
๐ด๐ด$ โ ๐ด๐ด$ h ๐๐ h h h ๐ด๐ด$:G| โ ๐ด๐ด$:G| Var ๐๐$:G| = Var ๐๐$:GRd| = h ๐๐ Continuous h ๐ด๐ด$ โ ๐ด๐ด$ h Var ๐๐$ = ๐ฟ๐ฟ h h h ๐ด๐ด$:G| โ ๐ด๐ด$:G| Var ๐๐$:G| = h ๐ฟ๐ฟ Increasing and Decreasing Annuities Var ๐๐$ = Var ๐๐$ =
$:G|
๐ผ๐ผ๐๐
Due; Discrete ๐๐$:G| = ๐๐$ โ G ๐ธ๐ธ$ โ
๐๐$DG
EPV under Constant Force of Mortality Discrete Continuous 1 + ๐๐ 1 ๐๐$ = ๐๐$ = ๐๐ + ๐๐ ๐๐ + ๐ฟ๐ฟ 1 + ๐๐ 1 ๐๐$:G| = 1 โ G ๐ธ๐ธ$ ๐๐$:G| = 1 โ G ๐ธ๐ธ$ ๐๐ + ๐๐ ๐๐ + ๐ฟ๐ฟ 1 + ๐๐ 1 โ
๐ธ๐ธ โ
๐ธ๐ธ G|๐๐$ = G|๐๐$ = ๐๐ + ๐๐ G $ ๐๐ + ๐ฟ๐ฟ G $ G ๐ธ๐ธ$
Recursive Formulas
$
๐ผ๐ผ๐๐
๐ท๐ท๐๐ ๐ผ๐ผ๐๐ ๐ผ๐ผ๐ผ๐ผ
=
=
$:G|
$:G| $:G|
G
O
๐ก๐ก๐ก๐ก # โ
# ๐๐$ d๐ก๐ก
1 ๐๐ + ๐ฟ๐ฟ
=
G
O
+ ๐ท๐ท๐๐
+ ๐ท๐ท๐ท๐ท
h
if ๐๐ is constant
๐๐ โ ๐ก๐ก ๐ฃ๐ฃ # โ
# ๐๐$ d๐ก๐ก
$:G| $:G|
= ๐๐๐๐$:G|
= ๐๐ + 1 ๐๐$:G|
Annuities with m-thly Payments UDD Assumption (f)
๐๐$
(f)
= ๐ผ๐ผ ๐๐ โ
๐๐$ โ ๐ฝ๐ฝ(๐๐)
๐๐$:G| = ๐ผ๐ผ ๐๐ โ
๐๐$:G| โ ๐ฝ๐ฝ(๐๐)(1 โ G๐ธ๐ธ$ ) (f) G|๐๐$
= ๐ผ๐ผ ๐๐ โ
G|๐๐$ โ ๐ฝ๐ฝ ๐๐ โ
G ๐ธ๐ธ$
Woolhouseโs Formula (3 terms) ๐๐ โ 1 ๐๐h โ 1 (f) ๐๐$ โ ๐๐$ โ โ ๐๐$ + ๐ฟ๐ฟ 12๐๐h 2๐๐ ๐๐ โ 1 f 1 โ G ๐ธ๐ธ$ ๐๐$:G| โ ๐๐$:G| โ 2๐๐ ๐๐ h โ 1 ๐๐ + ๐ฟ๐ฟ โ G๐ธ๐ธ$ ๐๐$DG + ๐ฟ๐ฟ โ 12๐๐h $ ๐๐ โ1 f โ G|๐๐$ โ ๐ธ๐ธ G|๐๐$ 2๐๐ G $ ๐๐ h โ 1 ๐ธ๐ธ ๐๐ + ๐ฟ๐ฟ โ 12๐๐h G $ $DG 1 1 ๐๐ + ๐ฟ๐ฟ ๐๐$ โ ๐๐$ โ โ 2 12 $
Recursive Formulas d ๐ผ๐ผ๐ผ๐ผ d $:G| = ๐ด๐ด $:G| + ๐ฃ๐ฃ๐๐$ โ
๐ผ๐ผ๐ผ๐ผ ๐ท๐ท๐ท๐ท
d $:G|
=
๐ด๐ด d $:G|
+ ๐ท๐ท๐ท๐ท
d $Dd:GRd| d $:GRd|
www.coachingactuaries.com
Copyright ยฉ 2016 Coaching Actuaries. All Rights Reserved. 2
PREMIUMS PREMIUMS Net Premiums PREMIUMS Net Premiums Calculate net premiums using the equivalence Calculate net premiums using the equivalence principle: principle: ๐ธ๐ธ๐ธ๐ธ๐ธ๐ธ(premiums) = ๐ธ๐ธ๐ธ๐ธ๐ธ๐ธ(benefits) ๐ธ๐ธ๐ธ๐ธ๐ธ๐ธ(premiums) = ๐ธ๐ธ๐ธ๐ธ๐ธ๐ธ(benefits) Name Type Name Type Fully Discrete ๐ด๐ด$ Fully Discrete 1 ๐๐๐ด๐ด$ ๐ด๐ด$ = 1 โ ๐๐ = ๐๐๐ด๐ด$ ๐๐$ = ๐๐$ โ ๐๐ = 1 โ ๐ด๐ด$ Whole ๐๐$ Fully Continuous 1 โ ๐ด๐ด$ ๐๐$ Whole Life Insurance Life Insurance ๐ด๐ด$Fully Continuous 1 ๐ฟ๐ฟ๐ด๐ด$ ๐ด๐ด$ = 1 โ ๐ฟ๐ฟ = ๐ฟ๐ฟ๐ด๐ด$ ๐๐$ = ๐๐$ โ ๐ฟ๐ฟ = 1 โ ๐ด๐ด$ ๐๐$ Fully Discrete ๐๐$ 1 โ ๐ด๐ด$ ๐ด๐ด$:G| Fully Discrete ๐๐๐ด๐ด$:G| 1 ๐ด๐ด$:G| = 1 โ ๐๐ = ๐๐๐ด๐ด$:G| ๐๐$:G| = ๐๐$:G| โ ๐๐ = 1 โ ๐ด๐ด$:G| Endowment ๐๐$:G| ๐๐$:G| 1 โ ๐ด๐ด Endowment Fully Continuous $:G| Insurance Insurance ๐ฟ๐ฟ๐ด๐ด$:G| ๐ด๐ด$:G| Fully Continuous 1 ๐ด๐ด$:G| = 1 โ ๐ฟ๐ฟ = ๐ฟ๐ฟ๐ด๐ด$:G| ๐๐$:G| = ๐๐$:G| โ ๐ฟ๐ฟ = 1 โ ๐ด๐ด$:G| ๐๐$:G| ๐๐$:G| 1 โ ๐ด๐ด Fully Discrete $:G| d Fully Discrete ๐ด๐ด d $:G| ๐ด๐ด$:G| ๐๐$:G| Term ๐๐$:G| Term Life Insurance Fully Continuous Life Insurance Fully Continuous ๐ด๐ด d $:G| ๐ด๐ด d $:G| ๐๐$:G| ๐๐$:G| Fully Discrete Deferred Life Fully Discrete Deferred Life Insurance G|๐ด๐ด$ Insurance G|๐ด๐ด$ ๐๐ $:G| (premiums ๐๐ $:G| (premiums Fully Continuous payable during Fully Continuous payable during deferral G|๐ด๐ด$ ๐ด๐ด deferral period) ๐๐G|$:G|$ period) ๐๐$:G| Fully Discrete Fully Discrete Deferred Life G|๐ด๐ด$ Deferred Life Insurance G|๐ด๐ด$ ๐๐$ Insurance ๐๐$ (premiums Fully Continuous (premiums Fully Continuous payable for G|๐ด๐ด$ payable for life) G|๐ด๐ด$ ๐๐$ life) ๐๐$ Fully Discrete Deferred Life Fully Discrete Deferred Life Annuity G|๐๐$ ๐๐ Annuity ๐๐G|$:G|$ (premiums ๐๐$:G| (premiums Fully Continuous payable during Fully Continuous payable during deferral G|๐๐$ ๐๐ deferral period) ๐๐G|$:G|$ period) ๐๐$:G| Note: Numerator and denominator of net premium Note: Numerator and denominator of net premium formula can be substituted with any other EPV formula can be substituted with any other EPV expression depending on premium payment expression depending on premium payment frequency and nature of death benefit (e.g. ๐๐-thly frequency and nature of death benefit (e.g. ๐๐-thly premiums, continuous premiums, death benefit premiums, continuous premiums, death benefit paid at moment of death). paid at moment of death). Gross Premiums Gross Premiums If gross premiums are calculated using the If gross premiums are calculated using the equivalence principle, then: equivalence principle, then: ๐ธ๐ธ๐ธ๐ธ๐ธ๐ธ(premiums) = ๐ธ๐ธ๐ธ๐ธ๐ธ๐ธ(benefits) + ๐ธ๐ธ๐ธ๐ธ๐ธ๐ธ(expenses) ๐ธ๐ธ๐ธ๐ธ๐ธ๐ธ(premiums) Net Future Loss = ๐ธ๐ธ๐ธ๐ธ๐ธ๐ธ(benefits) + ๐ธ๐ธ๐ธ๐ธ๐ธ๐ธ(expenses) Net Future Loss O๐ฟ๐ฟ = ๐๐๐๐(benefits) โ ๐๐๐๐(premiums) ๐๐๐๐(benefits) ๐๐O๐ฟ๐ฟ==face amount, ๐๐ โ = ๐๐๐๐(premiums) premium ๐๐ = face amount, ๐๐ = premium
www.coachingactuaries.com
Whole Whole Life Life
Discrete Discrete ๐๐ ๐๐ ๐ธ๐ธ O๐ฟ๐ฟ = ๐ด๐ด$ ๐๐ + ๐๐ โ ๐๐ ๐๐ ๐ธ๐ธ O๐ฟ๐ฟ = ๐ด๐ด$ ๐๐h + โ ๐๐ ๐๐ ๐๐ h h๐๐ Var O๐ฟ๐ฟ = ๐๐ + ๐๐ ๐ด๐ด โ ๐ด๐ด$ h h $ ๐๐ Var O๐ฟ๐ฟ = ๐๐ + ๐ด๐ด$ โ ๐ด๐ด$ h ๐๐ ๐๐ ๐๐ ๐ธ๐ธ O๐ฟ๐ฟ = ๐ด๐ด$:G| ๐๐ + ๐๐ โ ๐๐ ๐ธ๐ธ O๐ฟ๐ฟ = ๐ด๐ด$:G|h ๐๐ + ๐๐ โ ๐๐ ๐๐ ๐๐ ๐๐ h h
EndowEndowment ment Insurance Var O๐ฟ๐ฟ = ๐๐ + ๐๐ h ๐ด๐ด$:G| โ ๐ด๐ด$:G| h h Insurance Var O๐ฟ๐ฟ = ๐๐ + ๐๐ ๐ด๐ด$:G| โ ๐ด๐ด$:G| ๐๐ Continuous Continuous ๐๐ ๐๐ ๐ธ๐ธ O๐ฟ๐ฟ = ๐ด๐ด$ ๐๐ + ๐๐ โ ๐๐ Whole ๐ธ๐ธ O๐ฟ๐ฟ = ๐ด๐ด$ ๐๐h + ๐ฟ๐ฟ โ ๐ฟ๐ฟ Whole ๐ฟ๐ฟ ๐ฟ๐ฟ ๐๐ Life Var O๐ฟ๐ฟ = ๐๐ + ๐๐ h hh๐ด๐ด$ โ ๐ด๐ด$ h Life Var O๐ฟ๐ฟ = ๐๐ + ๐ฟ๐ฟ ๐ด๐ด$ โ ๐ด๐ด$ h ๐ฟ๐ฟ ๐๐ ๐๐ Endow๐ธ๐ธ O๐ฟ๐ฟ = ๐ด๐ด$:G| ๐๐ + ๐๐ โ ๐๐ ๐ฟ๐ฟ Endow๐ธ๐ธ O๐ฟ๐ฟ = ๐ด๐ด$:G|h ๐๐ + โ ๐ฟ๐ฟ ment h ment Var ๐ฟ๐ฟ = ๐๐ + ๐๐ h h๐ด๐ด ๐ฟ๐ฟ โ ๐ฟ๐ฟ๐ด๐ด Insurance ๐๐ O $:G| h h $:G| Insurance Var O๐ฟ๐ฟ = ๐๐ + ๐ฟ๐ฟ ๐ด๐ด$:G| โ ๐ด๐ด$:G| ๐ฟ๐ฟ Gross Future Loss รข Gross Future Loss O๐ฟ๐ฟรข = ๐๐๐๐(benefits) + ๐๐๐๐(expenses) O๐ฟ๐ฟ = ๐๐๐๐(benefits) + ๐๐๐๐(expenses) โ๐๐๐๐(premiums) โ๐๐๐๐(premiums) Portfolio Percentile Premium Principle Portfolio Percentile Premium Principle Under normal approximation and given the Under normal approximation and given the probability of a loss on a portfolio of ๐๐ policies probability of a loss on a portfolio of ๐๐ policies equals 1 โ ๐๐, solve for the premium per policy equals 1 โ ๐๐, solve for the premium per policy such that: such that: ๐๐๐๐๐๐ O๐ฟ๐ฟ ๐ธ๐ธ O๐ฟ๐ฟ + ๐ง๐งรฃ ๐๐๐๐๐๐ O๐ฟ๐ฟ = 0 ๐๐ = 0 ๐ธ๐ธ O๐ฟ๐ฟ + ๐ง๐งรฃ ๐๐ RESERVES RESERVES RESERVES Net Premium Reserve Net Premium Reserve Prospective Method Prospective Method # ๐๐ = ๐ธ๐ธ๐ธ๐ธ๐๐# (future ben.) โ ๐ธ๐ธ๐ธ๐ธ๐๐# (future prem.) ๐๐ = ๐ธ๐ธ๐ธ๐ธ๐๐ (future ben.) โ ๐ธ๐ธ๐ธ๐ธ๐๐ (future prem.) # # # Retrospective Method Retrospective Method ๐ธ๐ธ๐ธ๐ธ๐๐O (past prem.) โ ๐ธ๐ธ๐ธ๐ธ๐๐O (past ben.) # ๐๐ = ๐ธ๐ธ๐ธ๐ธ๐๐O (past prem.) โ ๐ธ๐ธ๐ธ๐ธ๐๐O (past ben.) # ๐ธ๐ธ$ # ๐๐ = # ๐ธ๐ธ$ Recursive Formula Recursive Formula bRd๐๐ + ๐๐bRd 1 + ๐๐ โ ๐๐b ๐๐$DbRd b ๐๐ = bRd๐๐ + ๐๐bRd 1 + ๐๐ โ ๐๐b ๐๐$DbRd ๐๐$DbRd b ๐๐ = ๐๐$DbRd โข If ๐๐b = FA + b ๐๐ (where FA is level) and โข premiums are level, then: If ๐๐b = FA + b ๐๐ (where FA is level) and b premiums are level, then: b ๐๐$DรชRd 1 + ๐๐ bRรช b ๐๐ = ๐๐๐ ๐ b| โ FA ๐๐ = ๐๐๐ ๐ โ FA ๐๐ 1 + ๐๐ bRรช b| b รชcd $DรชRd
รชcd Gross Premium Reserve Gross Premium Reserve Prospective Method รข Prospective Method # ๐๐ = ๐ธ๐ธ๐ธ๐ธ๐๐# (f. ben.) + ๐ธ๐ธ๐ธ๐ธ๐๐# (f. exp.) โ ๐ธ๐ธ๐ธ๐ธ๐๐# (f. prem.)
# ๐๐
รข
= ๐ธ๐ธ๐ธ๐ธ๐๐# (f. ben.) + ๐ธ๐ธ๐ธ๐ธ๐๐# (f. exp.) โ ๐ธ๐ธ๐ธ๐ธ๐๐# (f. prem.)
Retrospective Method รข Retrospective Method # ๐๐ รข = [๐ธ๐ธ๐ธ๐ธ๐๐O (p. prem.) โ ๐ธ๐ธ๐ธ๐ธ๐๐O (p. ben.) # ๐๐ = [๐ธ๐ธ๐ธ๐ธ๐๐O (p. prem.) โ ๐ธ๐ธ๐ธ๐ธ๐๐O (p. ben.) โ ๐ธ๐ธ๐ธ๐ธ๐๐O p. exp.) / # ๐ธ๐ธ$ โ ๐ธ๐ธ๐ธ๐ธ๐๐O p. exp.) / # ๐ธ๐ธ$ Recursive Formula รข Recursive Formula # ๐๐ รข = bRd๐๐ + ๐บ๐บbRd โ ๐๐bRd 1 + ๐๐ + ๐๐ # ๐๐ = bRd๐๐ + ๐บ๐บbRdโโ๐๐๐๐bRd 1 $DbRd ๐๐b + ๐ธ๐ธb /๐๐$DbRd Expense Reserve โ ๐๐$DbRd ๐๐b + ๐ธ๐ธb /๐๐$DbRd รฌ Expense Reserve # ๐๐ รฌ = ๐ธ๐ธ๐ธ๐ธ๐๐# (f. exp.) โ ๐ธ๐ธ๐ธ๐ธ๐๐# (f. exp. loadings) ๐๐ = ๐ธ๐ธ๐ธ๐ธ๐๐# (f. exp.) โ ๐ธ๐ธ๐ธ๐ธ๐๐# (f. exp. loadings) # exp. loadings = gross premium โ net premium exp. loadings = gross premium โ net premium รข รฌ # ๐๐ รฌ = # ๐๐ รข โ # ๐๐ # ๐๐ = # ๐๐ โ # ๐๐
Modified Reserve Modified Reserve Full preliminary term (FPT): one-year term Full preliminary term (FPT): one-year term insurance followed by an insurance issued to life insurance followed by an insurance issued to life one year older. one year older. โข FPT net premium d โข FPT net premium First-year valuation premium: ๐๐$:d| = ๐๐๐๐๐๐$ d =๐๐๐ด๐ด ๐๐๐๐๐๐$ First-year valuation premium: ๐๐$:d| $Dd Renewal valuation premium: ๐๐$Dd = ๐๐๐ด๐ด$Dd Renewal valuation premium: ๐๐$Dd = ๐๐$Dd ๐๐$Dd โข FPT reserve โข FPT reserve รฑรณรฒ # ๐๐$รฑรณรฒ = #Rd๐๐$Dd = #Rd๐๐$Dd # ๐๐$ Treat reserves after first year as if the policy were Treat reserves after first year as if the policy were issued one year later. issued one year later. Reserve between Premium Dates Reserve between Premium Dates M dRM b ๐๐ + ๐๐b 1 + ๐๐ M โ ๐๐bDd โ
M ๐๐$Db โ
๐ฃ๐ฃ dRM โ ๐๐bDd โ
M๐๐$Db โ
๐ฃ๐ฃ bDM ๐๐ = b ๐๐ + ๐๐b 1 + ๐๐ M ๐๐$Db bDM ๐๐ = M ๐๐$Db for 0 < ๐ ๐ < 1 for 0 < ๐ ๐ < 1 Thieleโs Differential Equation Thieleโs Differential Equation d d ๐๐ = ๐ฟ๐ฟ ๐๐ + ๐บ๐บ โ ๐๐ โ ๐๐ + ๐ธ๐ธ โ ๐๐ ๐๐ d๐ก๐ก ## ๐๐ = ๐ฟ๐ฟ## ## ๐๐ + ๐บ๐บ## โ ๐๐## โ ๐๐## + ๐ธ๐ธ## โ ## ๐๐ ๐๐ $$ D# D# d๐ก๐ก ๐บ๐บ = gross premium, ๐๐ = level expense, ๐บ๐บ = gross premium, ๐๐ = level expense, ๐๐ = face amount, ๐ธ๐ธ = settlement expense ๐๐ = face amount, ๐ธ๐ธ = settlement expense Eulerโs Method โขEulerโs Method From ๐ก๐ก + โ to ๐ก๐ก: โข From ๐ก๐ก +๐๐โ to ๐ก๐ก: #Dรถ โ โ ๐บ๐บ# โ ๐๐# โ ๐๐# + ๐ธ๐ธ# ๐๐ $ D# # ๐๐ = #Dรถ ๐๐ โ โ ๐บ๐บ# โ ๐๐# โ ๐๐# + ๐ธ๐ธ# ๐๐ $ D# 1 + โ ๐๐ $ D# + ๐ฟ๐ฟ = ๐๐ # 1 + โ ๐๐ $ D# + ๐ฟ๐ฟ โข From ๐ก๐ก to ๐ก๐ก โ โ: โข From ๐ก๐ก to ๐ก๐ก โ โ: #Rรถ ๐๐ = # ๐๐ 1 โ โ ๐๐ $ D# + ๐ฟ๐ฟ = ๐๐ 1 โ โ ๐๐ + ๐ฟ๐ฟ ๐๐ # #Rรถ ๐บ๐บ# โ ๐๐# โ ๐๐$# D# + ๐ธ๐ธ# ๐๐ $ D# โโ ๐บ๐บ โ ๐๐ โ ๐๐ + ๐ธ๐ธ# ๐๐ $ D# โโ # # # Policy Alterations Policy Alterations To calculate face amount or duration of new To calculate face amount or duration of new altered contract, use equivalence principle: altered contract, use equivalence principle: # ๐ถ๐ถ๐ถ๐ถ + ๐ธ๐ธ๐ธ๐ธ๐๐# future prem. = ๐ธ๐ธ๐ธ๐ธ๐๐# future ben. ๐ถ๐ถ๐ถ๐ถ + ๐ธ๐ธ๐ธ๐ธ๐๐ future prem. = ๐ธ๐ธ๐ธ๐ธ๐๐ future ben. # # # Surrenders Surrenders โข Paid-up term policy (extended term) d โข Paid-up term policy (extended term) # ๐ถ๐ถ๐ถ๐ถ$ = ๐ด๐ด d $D#:G| # ๐ถ๐ถ๐ถ๐ถ$ = ๐ด๐ด d $D#:G| ๐ถ๐ถ๐ถ๐ถ = ๐ด๐ด # $ $D#:G| + PEโ
GR# ๐ธ๐ธ$D# for endowment d # ๐ถ๐ถ๐ถ๐ถ$ = ๐ด๐ด$D#:G| + PEโ
GR# ๐ธ๐ธ$D# for endowment insurance, where PE = pure endowment amt. insurance, where PE = pure endowment amt. โข Reduced paid-up policy โข Reduced paid-up policy # ๐ถ๐ถ๐ถ๐ถ$ # ๐๐$ = # ๐ถ๐ถ๐ถ๐ถ$ ๐ด๐ด $D# = ๐๐ # $ ๐ด๐ด$D# ๐ถ๐ถ๐ถ๐ถ = cash surrender value, ๐๐ = face amount ๐ถ๐ถ๐ถ๐ถ = cash surrender value, ๐๐ = face amount MARKOV CHAINS MARKOV CHAINS MARKOV CHAINS Discrete Probabilities vรช Discrete Probabilities # ๐๐$vรช : probability that a life in state ๐๐ at time ๐ฅ๐ฅ is in # ๐๐$ : probability that a life in state ๐๐ at time ๐ฅ๐ฅ is in state ๐๐ (where ๐๐ may equal ๐๐) at time ๐ฅ๐ฅ + ๐ก๐ก vv state ๐๐ (where ๐๐ may equal ๐๐) at time ๐ฅ๐ฅ + ๐ก๐ก # ๐๐$vv : probability that a life in state ๐๐ at time ๐ฅ๐ฅ # ๐๐$ : probability that a life in state ๐๐ at time ๐ฅ๐ฅ remains in state ๐๐ until time ๐ฅ๐ฅ + ๐ก๐ก remains in state ๐๐ until time ๐ฅ๐ฅ + ๐ก๐ก ๐๐ ๐๐ : transition matrix ๐๐ ๐๐ : transition matrix Homogeneous Markov chain: Only one transition Homogeneous Markov chain: Only one transition matrix needed for all periods matrix needed for all periods Non-homogeneous Markov chain: One transition Non-homogeneous Markov chain: One transition matrix needed for each period vรช matrix needed for each period Perform matrix multiplication to calculate # ๐๐$vรช . Perform matrix multiplication to calculate # ๐๐$ .
Copyright ยฉ 2016 Coaching Actuaries. All Rights Reserved. 3
Continuous Probabilities vv # ๐๐$
#
= exp โ
Discrete Insurances ๐ด๐ด =
vรช
๐๐$DM d๐ ๐
O รชยฐv
#
vรช
vรช
=
Eulerโs Method vรช #Dรถ ๐๐$
vรช # ๐๐$
โ
vรช
bรช
vb # ๐๐$
bcO bยฐรช
+โ
vb # ๐๐$
bcO bยฐรช
โ
vรช
๐ด๐ด$ =
O
โ
vรช # ๐๐$
โ
รชb ๐๐$D#
bรช
๐๐ Ro# # ๐๐$vb โ
๐๐$D# d๐ก๐ก
bยฐรช
Annuity pays benefit as long as one remains in state j: vรช ๐๐$ vรช
]
=
๐๐$ =
๐๐$vv =
O ]
vรช ๐๐ Ro# # ๐๐$ d๐ก๐ก
G
โ
vรช
๐๐$D# ๐๐#
รชcO รชยฐv
v
vรช
+ # ๐๐
รช
G
รชcd รช
รชcO รชยฐv
vรช
๐๐$D# ๐๐#
vรช
+ # ๐๐
v
รช
โ # ๐๐
MULTIPLE DECREMENT MODELS MULTIPLE DECREMENT MODELS Probabilities =
รช # ๐๐$
=
รช
G
รชcd #Rd bcO
รช # ๐๐$
ยง b ๐๐$
๐๐$Db
ยง
#|3 ๐๐$ = # ๐๐$
Life Table Formulas ยง
๐๐$ = ยง
f
รชcd ยง
ยง b ๐๐$ ยง ยง ๐๐$ b ๐๐$
๐๐$Db = ๐๐$ รช
๐๐$Db =
#D3Rd bc#
ยง b ๐๐$
รช
๐๐$Db
รช
๐๐$
ยง
ยง
= ๐๐$ โ b ๐๐$ รช
๐๐$Db
รช
รช
๐๐$D# ๐๐# d๐ก๐ก
1
รช
(รช) ๐๐$D#
รชcd
www.coachingactuaries.com
(รช)
d # ๐๐$ d๐ก๐ก
ยง # ๐๐$ G
#
O
= exp โ #
=
โข(รช) # ๐๐$
O
O
(รช)
๐๐$DM d๐ ๐
โข รช
d # ๐๐$ d๐ก๐ก
v
ยฎ ยถร ยฉ
ยง
=โ
d โข รช ln # ๐๐$ d๐ก๐ก
= M๐๐$ ยถร , 0 โค ๐ ๐ โค 1 UDD in Associated Single Decrement Tables (UDDASDT) For 2 decrements: โข h ๐ก๐ก h ๐๐$ (d) โข d ๐ก๐ก โ , 0 โค ๐ก๐ก โค 1 # ๐๐$ = ๐๐$ 2 For 3 decrements: โข h โข โข โข h โข โข ๐ก๐ก h ๐๐$ + ๐๐$ ๐ก๐ก โข ๐๐$ ๐๐$ d โข d ๐ก๐ก โ + , # ๐๐$ = ๐๐$ 2 3
0 โค ๐ก๐ก โค 1 MULTIPLE LIVES MULTIPLE LIVES Joint Life ๐๐$ยจ = min ๐๐$ , ๐๐ยจ # ๐๐$ยจ
+ # ๐๐$ยจ = 1
= #๐๐$ยจ โ #D3 ๐๐$ยจ #D3 ๐๐$ยจ โ
๐๐$ยจ =
๐๐$ยจ =
=
#D3 ๐๐$ยจ
โ # ๐๐$ยจ
= # ๐๐$ยจ โ
3 ๐๐$D#:ยจD# ]
O ]
bcd
# ๐๐$ยจ
d๐ก๐ก
b ๐๐$ยจ
+ # ๐๐$ยจ = 1
O
โ
๐๐$DM + ๐๐ยจDM d๐ ๐
= # ๐๐$ยจ โ #D3 ๐๐$ยจ = ]
# ๐๐$ยจ
O ]
d๐ก๐ก
#D3 ๐๐$ยจ
โ # ๐๐$ยจ
b ๐๐$ยจ
bcd
๐ด๐ด$ยจ = 1 โ ๐ฟ๐ฟ๐๐$ยจ
Independent Lives # ๐๐$ยจ
= # ๐๐$ โ
# ๐๐ยจ # ๐๐$
๐๐$ยจ ๐ก๐ก =
โ # ๐๐ยจ ๐๐ยจD# + # ๐๐ยจ โ # ๐๐$ ๐๐$D# # ๐๐$ยจ
Relationship between (๐๐๐๐) Status and (๐๐๐๐) Status ๐๐$ยจ + ๐๐$ยจ = ๐๐$ + ๐๐ยจ # ๐๐$ยจ + # ๐๐$ยจ = # ๐๐$ โ โ โ โ ๐๐$ยจ + ๐๐$ยจ = ๐๐$ + ๐๐ยจ
๐๐$ยจ + ๐๐$ยจ = ๐๐$ + ๐๐ยจ
(ยง)
โข รช
# ๐๐$ยจ
๐๐$ยจ =
(ยง)
โข(รช) (รช)
1
= exp โ
๐๐$ยจ =
M ๐๐$ ๐๐$DM d๐ ๐
= # ๐๐$
#
# ๐๐$ยจ
#|3 ๐๐$ยจ
๐๐$DM d๐ ๐
#
Independent Lives # ๐๐$ยจ = # ๐๐$ โ
# ๐๐ยจ ๐๐$D#:ยจD# = ๐๐$D# + ๐๐ยจD# Last Survivor ๐๐$ยจ = max ๐๐$ , ๐๐ยจ
๐๐$DM d๐ ๐
#|3 ๐๐$ยจ = # ๐๐$ยจ โ
3 ๐๐$D#:ยจD#
รช
รช
(ยง) M ๐๐$
O
โข รช M ๐๐$
3 ๐๐$D# =
(รช)
# ๐๐$ UDD in Multiple-Decrement Tables (UDDMDT)
G
#
๐๐$D# = โ
โ # ๐๐
Eulerโs Method v v = # ๐๐ v 1 โ ๐ฟ๐ฟ# โ + โ๐ต๐ต# #Rรถ ๐๐
รชcd
= exp โ
โข(รช)
# ๐๐$
๐ต๐ต# : difference between benefit and premium in state ๐๐ vรช ๐๐# : benefit for transitioning from state ๐๐ to ๐๐ +โ
(รช)
๐๐$DbRd ๐๐b
Fractional Ages UDD in the multiple decrement table: (รช) (รช) 0 โค ๐ ๐ โค 1 M ๐๐$ = ๐ ๐ ๐๐$ , Constant forces of decrement: รช ๐๐$ รช ยง M 1 โ ๐๐$ M ๐๐$ = ยง ๐๐$ Associated Single Decrement Tables The associated single decrements are independent.
for constant force, where ๐๐ v โข is the
Thieleโs Differential Equation d v ๐๐ v = ๐ฟ๐ฟ# # ๐๐ v โ ๐ต๐ต# d๐ก๐ก #
ยง # ๐๐$
(ยง) # ๐๐$
vรช
bcO d
=
โข(รช) # ๐๐$
sum of forces of interest out of state ๐๐
(ยง) ๐๐$D#
๐ฃ๐ฃ b b ๐๐$
S ยข โข Do
ยง
=
(รช)
Premiums and Reserves Insurance pays benefit upon transition to state j: ]
รช
G
๐ฃ๐ฃ # # ๐๐$
๐๐$D# =
รชb
bรช ๐๐$D#
O
รช # ๐๐$
โ
๐๐$D# โ # ๐๐$ โ
๐๐$D# G
(ยง)
๐ฃ๐ฃ b bRd๐๐$
Forces of Decrement
Kolmogorovโs Forward Equations d vรช ๐๐ = Rate of entry into state ๐๐ d๐ก๐ก # $ โ Rate of leaving state ๐๐ G
]
๐ด๐ด =
รชรช
vv M ๐๐$ โ
๐๐$DM โ
#RM ๐๐$DM d๐ ๐
O
bcd
Continuous Insurances
For permanent disability model: # ๐๐$ =
]
+ # ๐๐ยจ
โ
โ
โ
โ
Cov ๐๐$ยจ , ๐๐$ยจ = Cov ๐๐$ , ๐๐ยจ + ๐๐$ โ ๐๐$ยจ ๐๐ยจ โ ๐๐$ยจ
Cov ๐๐$ , ๐๐ยจ = 0 if ๐๐$ and ๐๐ยจ are independent ๐ด๐ด$ยจ + ๐ด๐ด$ยจ = ๐ด๐ด$ + ๐ด๐ดยจ ๐๐$ยจ + ๐๐$ยจ = ๐๐$ + ๐๐ยจ G ๐ธ๐ธ$ยจ
+ G ๐ธ๐ธ$ยจ = G๐ธ๐ธ$ + G๐ธ๐ธยจ
d G ๐๐$ยจ
=
Contingent Probabilities
d G ๐๐$ยจ d G ๐๐$ยจ
h G ๐๐$ยจ
h G ๐๐$ยจ h G ๐๐$ยจ
d G ๐๐$ยจ d G ๐๐$ยจ d G ๐๐$ยจ
=
+
=
=
+
G
O
G
# ๐๐$ยจ
O
# ๐๐$ยจ
O
# ๐๐$
d G ๐๐$ยจ G G
O
โ ๐๐ยจD# ๐๐๐๐
= G ๐๐$ยจ
# ๐๐ยจ
h G ๐๐$ยจ
โ ๐๐$D# ๐๐๐๐
1 โ # ๐๐ยจ โ ๐๐$D# ๐๐๐๐
1 โ # ๐๐$ โ ๐๐ยจD# ๐๐๐๐
= G ๐๐$ยจ
h + G ๐๐$ยจ = G ๐๐$
h + G ๐๐$ยจ = G ๐๐ยจ
h = G ๐๐$ยจ + G ๐๐$ G ๐๐ยจ Contingent Insurance ๐ด๐ดd$ยจ + ๐ด๐ด d $ยจ = ๐ด๐ด$ยจ
๐ด๐ดh$ยจ + ๐ด๐ด h $ยจ = ๐ด๐ด$ยจ ๐ด๐ดd$ยจ + ๐ด๐ดh$ยจ = ๐ด๐ด$
๐ด๐ดd$ยจ โ ๐ด๐ด h $ยจ = ๐ด๐ด$ โ ๐ด๐ด$ยจ = ๐ด๐ด$ยจ โ ๐ด๐ดยจ Reversionary Annuities ๐๐$|ยจ = ๐๐ยจ โ ๐๐$ยจ
๐ด๐ด$ยจ = 1 โ ๐ฟ๐ฟ๐๐$ยจ
Copyright ยฉ 2016 Coaching Actuaries. All Rights Reserved. 4
PENSION MATHEMATICS PENSION MATHEMATICS Replacement Ratio, R
๐
๐
=
1st year pension after retirement salary in the final year of work
Salary Rate Assumption
โข Salaries increase continuously
๐ ๐ ยจ salary rate at age ๐ฆ๐ฆ = ๐ ๐ $ salary rate at age ๐ฅ๐ฅ
Salary Scale Assumption
โข Salaries increase at discrete intervals ๐ ๐ ยจ salary earned between age ๐ฆ๐ฆ and ๐ฆ๐ฆ + 1 = ๐ ๐ $ salary earned between age ๐ฅ๐ฅ and ๐ฅ๐ฅ + 1
Final average salary over the last 3 years (e.g. retire at age 65)
1 ๐ ๐ โคh + ๐ ๐ โคโข + ๐ ๐ โคโฅ =3 โ
Salary between age ๐ฅ๐ฅ and ๐ฅ๐ฅ + 1 ๐ ๐ $
Salary rate to salary scale: ๐ ๐ $ =
d
O
๐ ๐ $D# d๐ก๐ก
Salary scale to salary rate: ๐ ๐ $ = ๐ ๐ $RO.ยต
Normal Contribution
๐ถ๐ถ# = ๐ฃ๐ฃ d๐๐$OO #Dd๐๐ โ # ๐๐ + EPV(mid-year exits benefits)
โข TUC if the actuarial liability is calculated with the traditional unit method โข PUC if the actuarial liability is calculated with the projected unit method. Under constant and independent of salary accrual rate with no exit benefits: โข TUC: O๐๐
โรโโ GDd โร
G
โ 1 PUC: O๐๐
d
G
INTEREST RATE RISK INTEREST RATE RISK Replicating Cash Flows Spot rate, ๐ฆ๐ฆ# : effective interest rate paid by a zerocoupon bond maturing at time ๐ก๐ก ๐ฃ๐ฃ ๐ก๐ก : Present value of 1 paid at time ๐ก๐ก 1 ๐ฃ๐ฃ ๐ก๐ก = 1 + ๐ฆ๐ฆ# # Forward rate, ๐๐ ๐ก๐ก, ๐ก๐ก + ๐๐ : yield paid at time 0 by a zero-coupon bond bought at time ๐ก๐ก and maturing for 1 at time ๐ก๐ก + ๐๐ 1 + ๐ฆ๐ฆ#Db #Db ๐ฃ๐ฃ ๐ก๐ก b 1 + ๐๐ ๐ก๐ก, ๐ก๐ก + ๐๐ = = ๐ฃ๐ฃ ๐ก๐ก + ๐๐ 1 + ๐ฆ๐ฆ# # Variance of loss per policy ๐ฟ๐ฟรฃ ๐ธ๐ธ Var ๐ฟ๐ฟd ๐ผ๐ผ Var = Var ๐ธ๐ธ ๐ฟ๐ฟv ๐ผ๐ผ + ๐๐ ๐๐ PROFIT TESTS PROFIT TESTS Asset Shares b ๐ด๐ด๐ด๐ด = bRd๐ด๐ด๐ด๐ด + ๐บ๐บbRd โ ๐๐bRd 1 + ๐๐ ฯ
(ฯ)
โ๐๐$DbRd ๐๐b + ๐ธ๐ธb ฯ ๐๐$DbRd
โซ โ ๐๐$DbRd โซ ๐๐$DbRd
b CV
(โซ)
+ ๐ธ๐ธb
/
โ 1 โ ๐บ๐บ = gross premium, ๐๐ = level expenses, ๐๐ = face amount, ๐ธ๐ธ รช = settlement expenses paid on decrement ๐๐, ๐ถ๐ถ๐ถ๐ถ = cash value Profits for Traditional Products Profit Vector, Prb Profit per policy in force at the beginning of each year Prb = bRd๐๐ + ๐บ๐บbRd โ ๐๐bRd 1 + ๐๐ ฯ โ๐๐$DbRd ๐๐b + (ยง) โ๐๐$DbRd b ๐๐
ฯ ๐ธ๐ธb
โ
โซ ๐๐$DbRd
Profit Signature, ฮ b Profit per policy issued ฮ b = Prb โ
bRd๐๐$ , ๐๐ โฅ 1 ฮ b = Prb , ๐๐ = 0
Change in reserve ฮb ๐๐ = 1 + ๐๐
bRd๐๐
b CV
+
โซ ๐ธ๐ธb
Profit Margin The ratio of the NPV to the (expected) present value of future premiums.
Discounted Payback Period (DPP) Solve for lowest ๐๐ such that
f
bcO
ฮ b ๐ฃ๐ฃ b = 0.
Universal Life General AV# = AV#Rd + ๐๐# โ ๐๐# โ COI# 1 + ๐๐ COI# = ๐ฃ๐ฃu ๐๐$D#Rd DB# โ AV#
Type A (Death Benefit = Face Amount) AV#Rd + ๐๐# โ ๐๐# 1 + ๐๐ โ ๐๐$D#Rd FA AV# = 1 โ ๐๐$D#Rd
Type B (Death Benefit = Face Amount + AVโ ) AV# = AV#Rd + ๐๐# โ ๐๐# 1 + ๐๐ โ ๐๐$D#Rd FA
Corridor Factor, ฮณ AV#Rd + ๐๐# โ ๐๐# 1 + ๐๐ AV# = 1 + ๐๐$D#Rd ๐พ๐พ โ 1
If ๐พ๐พ โ
AV# > death benefit, set death benefit = ๐พ๐พ โ
AV# .
Note: For all types, replace ๐๐$D#Rd with ๐๐$D#Rd 1 + ๐๐ ๐ฃ๐ฃu if ๐๐ โ ๐๐u Gain by Source Total Profit = bRd๐๐ + ๐บ๐บb โ ๐๐b 1 + ๐๐
โ๐๐$DbRd ๐๐b + ๐ธ๐ธb โ ๐๐$DbRd b ๐๐
Total Gain = Actual Profit โ Expected Profit
Components of Gain (โ = assumed, โฒ = actual): Interest: ๐๐ โข โ ๐๐ โ bRd๐๐ + ๐บ๐บb โ ๐๐b Expense: ๐๐bโ โ ๐๐bโข 1 + ๐๐ + ๐๐$DbRd ๐ธ๐ธbโ โ ๐ธ๐ธbโข โ โข โ ๐๐$DbRd ๐๐b + ๐ธ๐ธb โ b ๐๐ Mortality: ๐๐$DbRd โซ โ
โซ โฆ
Lapse: ๐๐$DbRd โ ๐๐$DbRd
kCV
โซ
+ ๐ธ๐ธb
โ b ๐๐
(ยง)
โ ๐๐$DbRd b ๐๐
IRR: GbcO ฮ b ๐ฃ๐ฃ b = 0 b NPV = ] bcO ฮ b ๐ฃ๐ฃรธ , where ๐๐ = discount/hurdle rate Partial NPV NPV ๐ก๐ก =
#
bcO
ฮ b ๐ฃ๐ฃรธb ,
where ๐๐ = discount/hurdle rate
www.coachingactuaries.com
Copyright ยฉ 2016 Coaching Actuaries. All Rights Reserved. 5 Copyright ยฉ 2016 Coaching Actuaries. All Rights Reserved. 5 Personal copies permitted. Resale or distribution is prohibited.
View more...
Comments