Estadistica
Short Description
Download Estadistica...
Description
UNIVERSIDAD NACIONAL DEL ALTIPLANO – FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA – ESCUELA PROFESIONAL DE INGENIERIA CIVIL
1: Al estudiar la regresión lineal entre los ingresos medios (Y en $) y el número de hijos por familia (X), se obtuvo la siguiente información: X´ =3, Y´ =700, S x =0.5 × √Cov xy Estimar los ingresos de las familias con 4 hijos, ¿a cuántos hijos por familia correspondería un ingreso estimado en $712? SOLUCION: ^y Usaremos la notación para representar un valor de Y calculado de la ecuación Y =a+bX cuando X es igual a ^x . Esto es. ^y =a+b ^x .
Calculo de los parámetros Cov xy S x2
a yb
=b , a=Y´ −b X´
Calculo del parámetro b S ¿ 1 2 Cov xy 0.5 × √ Cov xy ¿ = =4 2 0.25 Sx ¿ S x =0.5 × √ Cov xy ¿ b=4 Calculo del parámetro a ´ a=700−4 × 3 a=688 a=Y´ −b X Por lo tanto, la recta de regresión es: Y =688+ 4 X Calculo de ingreso de familias con 4 hijos: Y =688+ 4 × 4 Y =$ 704 Cantidad de hijos por familia con un ingreso de $712.
UNIVERSIDAD NACIONAL DEL ALTIPLANO – FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA – ESCUELA PROFESIONAL DE INGENIERIA CIVIL
712=688+ 4 X X =6 hijos
2: Si n valores
(x 1 , y 1), … ,(x n , y n)
de (x, y) tienen índice de correlación
r, compruebe que la recta de regresión en las variables estandarizados ZY y Zx cuyos valores son Zx = i
x i−´x y − ´y , Z y= i , para i=1,2,…,n, es sx sy i
Z Y =r × Z x
SOLUCION: Ecuacion lineal → Y = a + bx La recta pasa por (x , y) entonces: x=
∑ xi y= ∑ yi n
n
Por ecuación punto pendiente de una recta tenemos: y− y =b ( x−x ) luego dividimos entre Sy
( Y −Y ) b = ( X −X ) Sy Sy Zy =
b Sx ( X −X ) Sx ( X −X ) → Zy=b =b Zx … ….(I ) Sy Sy Sx Sy
Por otro lado: b = Cov xy / (Sx) Se obtienen lo siguiente: b=
Sx . Sy . r Sy .r = Sx . Sx Sx
y
r = Cov xy / (Sx.Sy)
UNIVERSIDAD NACIONAL DEL ALTIPLANO – FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA – ESCUELA PROFESIONAL DE INGENIERIA CIVIL
→
r=b
Rpta:
Sx Sy
reemplazando esta igualadad en I
Zy = r . Zx
3: En el estudio de la producción diaria (Y) de un bien y los años de servicio (x) de los empleados de la fábrica se usó una recta de regresión lineal simple aplicando una muestra de 4 empleados. Si producciones observadas fueron 10, 8, 6, 14 y las producciones estimadas respectivas resultaron: 10.8, 8.2, 5.6, 13.4, ¿Qué porcentaje de la varianza de la producción es explicada por la recta de regresión? SOLUCION: Para determinar la recta de regresión de mínimos cuadrados a partir de los datos, es decir para calcular a y b se dispone del cuadro: X 10 8 6 14 38 De donde se obtiene:
Y 10.8 8.2 5.6 13.4 38
X*Y 108 65.6 33.6 187.6 394.8
n=4, ∑ x=38, ∑ y=38, ∑ x y=394.8
∑ x 2=396, ∑ y 2=394.8 38 38 X´ = =9.5 Y´ = =9.5 4 4 Una forma de calcular b es: S xy =
∑ x y − X´ Y´ S n
xy
=
394.8 −9.5× 9.5=8.45 4
X2 100 64 36 196 396
Y2 116.64 67.24 31.36 179.56 394.8
UNIVERSIDAD NACIONAL DEL ALTIPLANO – FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA – ESCUELA PROFESIONAL DE INGENIERIA CIVIL
S 2x =
b=
∑ x 2 − X´ 2 S 2 = 396 −9.5 × 9.5=8.75
Cov xy Sx
2
x
n
=
4
8.45 =0.96 8.75
´ a=9.5−0.96 × 9.5 a=0.38 a=Y´ −b X
Por lo tanto, la recta de regresión es: Y =0.38+ 0.96 X
Calculamos la varianza y− ´y ¿2 ¿ 10.8−9.5¿ 2 ¿ ¿ 4
∑¿ 1
0.965 *100 = 96.5%
¿
n
∑¿ 1 2 y
S =¿
4: con el fin de tener un modelo de regresión lineal entre ingresos mensuales y gastos de educación de las familias, se obtuvo un coeficiente de determinación del 90.25%, medias respectivas de $420 y $120, y desviaciones estándar respectivas de $10 y 7$. Con el modelo de regresión obtenido a) ¿En cuánto se estima los gastos por educación de una familia cuyo ingreso mensual es de $300? b) Si una familia estima su gasto por educación en $370, ¿cuánto debería ser su ingreso mensual? c) Si una familia tiene un aumento de $50, ¿en cuánto se incrementaría la estimación de sus gastos en educación?
UNIVERSIDAD NACIONAL DEL ALTIPLANO – FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA – ESCUELA PROFESIONAL DE INGENIERIA CIVIL
SOLUCION: Datos: X´ =420 , Y´ =120, S x =10, S y =7
Calculamos r 2
r =90.25 ÷ 100=0.9025; r =0.95 r=
Cov xy Cov xy = =0.95; Cov xy =66.5 S x × S y 10 ×7
b=r ×
Sy Sx
b=0.95 ×
7 =0.665 10
´ a=120−0.665 ×420 a=−159.30 a=Y´ −b X
Por lo tanto, la recta de regresión es: Y =−159.30+0.665 X
Gasto mensual: Y =−159.30+0.665 X ; Y =−159.30+0.665 ( 300 ) ; Y =$ 40.2 Ingreso mensual: Y =−159.30+0.665 X ; 370=−159.30+0.665 X ; X =$ 795.93
Incremento de gastos: Y =0+ 0.665 X ; Y =0+ 0.665 ( 50 ) ; Y =33.25 5: (taller de regresión lineal simple). Se realizó un estudio estadístico para determinar un modelo de regresión lineal simple con el fin de predecir el monto de las ventas semanales de un producto en función de la demanda. De una muestra de montos de ventas (Y en cientos de soles) y demandas semanales X (en unidades del producto) resultaron las siguientes estadísticas:
UNIVERSIDAD NACIONAL DEL ALTIPLANO – FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA – ESCUELA PROFESIONAL DE INGENIERIA CIVIL
X´ =50 , Y´ =300, S x =4.487, S y =175, Cov xy =765.6
a) Obtenga el modelo de regresión planteado b) ¿quetanto porciento de la variabilidad de Y es explicada por la regresión? ¿Qué opina Ud. Sobre la bondad de ajuste del modelo a los datos de la muestra? c) Si el modelo obtenido es el adecuado, pronostique el monto de venta para una semana que tenga una demanda de 60 und del producto. d) ¿Cuánto fue la demanda en una semana donde el monto de venta llego a 1060.536? e) ¿es la variabilidad de las ventas menor que la variabilidad de la demanda? SOLUCION: X´ =50 , Y´ =300, S x =4.487, S y =175, Cov xy=765.6 b=
r=
Cov xy Sx
2
yr=
Cov xy S ; b=r × y Sx × S y Sx
765.6 175 =0.975 ; b=0.975× =38.02 4.487 × 175 4.487
´ a=300−38 ×50 a=−1600 a=Y´ −b X Por lo tanto, la recta de regresión es: Y =−1600+38 X Calculamos la varianza r=
765.6 =0.975 ; r 2=0.95 4.487 × 175
Pronostico Yest: Y =−1600+38 ( 60 )=680 Demanda:
1060.536=−1600+38 X ; x=70.01
UNIVERSIDAD NACIONAL DEL ALTIPLANO – FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA – ESCUELA PROFESIONAL DE INGENIERIA CIVIL
6: Al estudiar la relación entre el costos(X) y las utilidades (Y) en dólares de ciertos productos a partir de una muestra se obtuvo la siguiente información: ´ S x =5 S y =4 X=100 Y´ =50Y =−26+0.76 X a) ¿Qué porcentaje de la varianza de las utilidades es explicada por la regresión de utilidades sobre costos? b) ¿es la variabilidad conjunta mayor que 20? c) ¿se confirma que la variabilidad de los costos es mayor que la variabilidad de las utilidades? SOLUCION: De la ecuación tenemos: b=r ×
Y =−26+ 0.76 X
; a=-26 y b=0.76
Sy 4 ; 0.76=r × ; r=0.95 Sx 5
a) porcentaje de variabilidad 2
r=0.95; r =0.9025 ×100=90.25 b) La variabilidad conjunta r=
Cov xy Cov xy ; 0.95= ; Cov xy =19 Sx × S y 4 ×5
7: Una compañía de alimentos maneja una cadena de tiendas al menudeo. Para medir la eficiencia en las tiendas se estudio la relación del numero de empleados (X) y el promedio del volumen de ventas mensuales (Y) en cientos de dólares para todas las tiendas durante el año pasado. La grafica de los datos sugiere una relación lineal entre las variables. Se tienen la siguiente información.
n 100,
X 600, Y 1600, XY 13600, X
2
5200,
Y
2
37700
a) Obtenga el modelo de regresión lineal simple para predecir las ventas a partir del numero de empleados. ¿en cuanto se estiman las ventas para una tienda de 8 empleados? b) ¿Que porcentaje de la varianza de las ventas es explicada por la variabilidad del numero de empleados?
UNIVERSIDAD NACIONAL DEL ALTIPLANO – FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA – ESCUELA PROFESIONAL DE INGENIERIA CIVIL
c) ¿Cuántos empleados tiene la tienda cuya venta promedio se estima en $1,100? Solución a) la ecuación de la regresión lineal esta dado por y a bx
Donde:
n xy x y
b
a y bx
n x 2 x
2
Reemplazando datos hallamos b b
100 13600 600 1600 2 100 5200 600
b 2.5 Luego hallamos a a y bx a
1600 600 2.5 100 100
a 1 Reemplazando los valores de a y b tenemos la ecuación de la regresión lineal y 1 2.5 x
Luego: la estimación de ventas de 8 empleados será y 1 2.5 x y 1 2.5 8 y 21$ b) calculamos el coeficiente de correlacion
UNIVERSIDAD NACIONAL DEL ALTIPLANO – FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA – ESCUELA PROFESIONAL DE INGENIERIA CIVIL
r
xy nx y x y x nx y n y 2
r
2
2
2
13600 100 6 16 2 2 5200 100 6 37700 100 16
r 0.909 r 2 0.826
El porcentaje de varianza es de 82.6% c) el numero de empleados será y 1 2.5 x 11 1 2.5 x x4
8: (taller de regresión lineal simple). En una muestra de 10 adultos se registraron las siguientes mediciones de edad en años (X) y la hipertensión arterial (HTA) (Y): X Y
38 120
42 124
43 135
46 138
48 135
50 140
54 143
60 150
65 160
67 170
a) Indique la tendencia y obtenga la línea recta de regresión de la HTA en función de la edad por el método de minimos cuadrados. ¿Qué opina usted de correlacion entre dos variables? b) Compruebe la idoniedad del modelo lineal de regresión. Si el modelo es apropiado pronostique la HTA de un adulto de 70 años. c) De seguir la tendencia, ¿Cuánto se espera aumente la HTA para el próximo año? Solución De la tabla hallamos los siguientes valores
n 10,
X 513, Y 1415, XY 73913, X
2
27207,
Y
2
202319
a) la ecuación de la recta de regresión de la HTA esta dado por y a bx
UNIVERSIDAD NACIONAL DEL ALTIPLANO – FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA – ESCUELA PROFESIONAL DE INGENIERIA CIVIL
Donde:
n xy x y
b
a y bx
n x 2 x
2
Reemplazando datos hallamos b b
10 73913 513 1415 10 27207 263169
b 1.4869
Luego hallamos a a y bx a
1415 513 2.5 100 100
a 65.222 Reemplazando los valores de a y b tenemos la ecuación de la regresión lineal y 65.222 1.4869 x
Luego, calculamos el coeficiente de correlacion
r
xy nx y x y x nx y n y 2
r
2
2
2
73913 10 51.3 141.5 2 2 27207 10 51.3 202319 10 141.5
r 0.96885 0 Se dice que hay una correlacion directa positiva en ambas variables aumentan(disminuyen) simultaneamente r 2 0.93867
Concluimos que se realizo un buen ajuste y es mas útil la recta de regresión como instrumento de prediccion b) pronosticamos la HTA de un adulto de 70 años
UNIVERSIDAD NACIONAL DEL ALTIPLANO – FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA – ESCUELA PROFESIONAL DE INGENIERIA CIVIL
y 65.222 1.4869 x y 65.222 1.4869 70 y 169.305 c) pronosticamos la HTA del próximo año y 65.222 1.4869 x y 65.222 1.4869 71 y 170.792 Entonces el aumento de la HTA es
170.792 169.305 1.487 9: Un editor tomo una muestra de 7 libros anotando el precio y el numero de paginas respectivo, obteniendo los siguientes datos: No. De 630
550
400
250
370
320
610
paginas Precio
8
7
4
6
6
9
10
($) a) determine una función lineal entre el precio y el número de páginas con el fin de predecir precios ¿ que porcentaje de la varianza total de precios se explica por esta función?. b) ¿Estimar el precio de un libro de 300 páginas. Si este libro se le incrementa 20 páginas en una segunda edición, ¡en cuanto se incrementara su precio? c) ¿Cuántas paginas debería tener un libro cuyo precio se estima en $12.277 Solución De la tabla hallamos los siguientes valores
n 7,
X 3130, Y 50, XY 24130, X
2
1533300,
Y
2
382
UNIVERSIDAD NACIONAL DEL ALTIPLANO – FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA – ESCUELA PROFESIONAL DE INGENIERIA CIVIL
a) la ecuación de la recta de regresión para predecir precios esta dado por y a bx
Donde:
n xy x y
b
a y bx
n x 2 x
2
Reemplazando datos hallamos b b
7 24130 3130 50 7 1533300 9796900
b 0.0133
Luego hallamos a a y bx a
50 3130 0.0133 7 7
a 1.2 Reemplazando los valores de a y b tenemos la ecuación de la regresión lineal y 1.2 0.0133 x
Luego, calculamos el coeficiente de correlacion r
xy nx y x y x nx y n y 2
r
2
2
2
24130 7 44.71 7.14 2 2 1533300 7 44.71 382 7 7.14
r 0.945 r 2 94.5%
UNIVERSIDAD NACIONAL DEL ALTIPLANO – FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA – ESCUELA PROFESIONAL DE INGENIERIA CIVIL
b) estimamos el precio del libro de 300 paginas y 1.2 0.0133 x y 1.2 0.0133 300 y 5.19$ c) el numero de paginas sera y 1.2 0.0133 x y 1.2 0.0133 x y 832.33 833 paginas
10: Una muestra de 5 varones adultos de quienes se observaron las estaturas (X en pies, pulgadas) y los pesos (Y en libras)ha dado los siguientes resultados X Y
5’1” 125
5’2” 130
5’3” 140
5’4” 145
5’5” 160
a) realice una regresión lineal y utilice los datos para verficar que la varianza total de Y es igual a la varianza residual mas la varianza explicada por la recta de regresión r2 b) usando la descripción de la varianza calcule e interprete el resultado Solución
12. un fabricante quiere obtener un modelo de regresión lineal simple entre la edad en años (X) de un tipo de maquinas que vende para producir un bien y el numero de artículos (Y) producidos. A partir de la muestra de la tabla siguiente:
a) obtenga la recta re regresión producción para 4, 7 y 8 años
y realice la predicción de
la
UNIVERSIDAD NACIONAL DEL ALTIPLANO – FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA – ESCUELA PROFESIONAL DE INGENIERIA CIVIL
b) ¿en cuantos años aproximadamente las maquinas dejaran de producir por edad? c) Si realmente en cada maquina de la muestra produce 10 artículos menos determinar la recta de regresión ¿Cuánto es el porcentaje de la varianza explicada por la regresión de la producción? X 2 3
Y 95 7,.8
4 5 6 7 8 9
0 …. 75 60 … … 45,5
10
0 25
Solución De la tabla hallamos los siguientes valores
n 6,
X 35, Y 371.3, XY 1796.9, X
2
137863.69,
Y
2
25957.89
a) la ecuación de la recta de regresión para predecir precios esta dado por y a bx
Donde:
n xy x y
b
a y bx
n x 2 x
2
Reemplazando datos hallamos b
UNIVERSIDAD NACIONAL DEL ALTIPLANO – FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA – ESCUELA PROFESIONAL DE INGENIERIA CIVIL
b
6 1796.9 35 371.3 6 225 1225
b 7.259
Luego hallamos a a y bx a
35 371.3 7.259 6 6
a 455.04 Reemplazando los valores de a y b tenemos la ecuación de la regresión lineal y 455.04 7.259 x
12: sea Y el índice de precion al consumidor, tomando como base al año 2000 (es decir 2000=100). Para los datos que siguen: a) obtenga la recta de minimos cuadrados que se ajuste a los datos. b) Realice la predicción del índice de precios para el año 2008 y compararlo con el valor verdadero (144.4). ¿en que año podemos esperar que el índice de precios sea 150.57, suponiendo que las tendencias presentes continúen? Solución De la tabla hallamos los siguientes valores
n 7,
X 14028, Y 841.4, XY 1686287.2, X
2
28112140,
Y
2
101670.54
a) la ecuación de la recta de regresión para predecir precios esta dado por y a bx
UNIVERSIDAD NACIONAL DEL ALTIPLANO – FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA – ESCUELA PROFESIONAL DE INGENIERIA CIVIL
Donde:
n xy x y
b
a y bx
n x 2 x
2
Reemplazando datos hallamos b b
7 110.1 14028 841.4 7 28112140 196784784
b 4.3429
Luego hallamos a a y bx a
841.4 14028 4.3429 7 7
a 8582.97 Reemplazando los valores de a y b tenemos la ecuación de la regresión lineal y 8582.97 4.3429 x
b) pronosticamos los beneficios para un gasto de 5% y 8582.97 4.3429 x y 8582.97 4.3429 150.57 y ( año) 2010.99 2011
13. los porcentajes en gastos de publicidad y los porcentajes de beneficios netos de ventas en una muestra de 9 negocios de pequeños comerciantes es como sigue:
a) Halle la ecuación beneficios netos.
de
regresión
lineal
simpe
para
predecir
UNIVERSIDAD NACIONAL DEL ALTIPLANO – FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA – ESCUELA PROFESIONAL DE INGENIERIA CIVIL
b) ¿Es idóneo la recta de regresión propuesto?. Si lo es, pronostique el beneficio para un negocio que gasta 5% en publicidad. Solución De la tabla hallamos los siguientes valores
n 9,
X 22.2, Y 40.8, XY 110.1, X
2
61.92,
Y
2
197.98
a) la ecuación de la recta de regresión para predecir precios esta dado por y a bx
Donde:
n xy x y
b
a y bx
n x 2 x
2
Reemplazando datos hallamos b b
9 110.1 22.2 40.8 9 61.92 492.84
b 1.3212
Luego hallamos a a y bx a
40.8 22.2 1.3212 9 9
a 1.2744 Reemplazando los valores de a y b tenemos la ecuación de la regresión lineal y 1.2744 1.3212 x
c) pronosticamos los beneficios para un gasto de 5%
UNIVERSIDAD NACIONAL DEL ALTIPLANO – FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA – ESCUELA PROFESIONAL DE INGENIERIA CIVIL
y 1.2744 1.3212 x y 1.2744 1.3212 5 y 7.88
UNIVERSIDAD NACIONAL DEL ALTIPLANO – FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA – ESCUELA PROFESIONAL DE INGENIERIA CIVIL
UNIVERSIDAD NACIONAL DEL ALTIPLANO FACULTAD DE INGENIERIA CIVIL Y
ARQUITECTURA
ESCUELA PROFESIONAL DE INGENIERIA CIVIL
CURSO
: ESTADISTICA
TEMA
: TRABAJO ENCARGADO
SEMESTRE
:
DE
: CHAYÑA SANDOVAL JEHYSON ARNOL (Cod. 130359)
A
: ING. NESTOR TIPULA QUISPE
3ERO “B”
PUNO 14 de enero de 2016
View more...
Comments