Est Formulas

Share Embed Donate


Short Description

Download Est Formulas...

Description

1|E S T F o rmul as

BASIC COMMUNICATIONS Wavelength

Frequency

Bandwidth

Audio Power π‘ƒπ‘ƒπ‘Žπ‘Ž = 0.5𝑉𝑉𝑐𝑐𝑐𝑐 𝐼𝐼𝑐𝑐

πœ†πœ† =

𝑐𝑐 𝑓𝑓

Amplifier Efficiency

𝑓𝑓 =

1 𝑇𝑇

Load Impedance

𝐡𝐡 =

π‘“π‘“π‘œπ‘œ 𝑄𝑄

Load Resistance

1

Collector Voltage

2πœ‹πœ‹βˆšπΏπΏπΏπΏ

Varactor’s Capacitance 𝐢𝐢 =

πΆπΆπ‘œπ‘œ

√1 + 2𝑉𝑉

Crystal Thickness

β„Ž=

65.5 𝑓𝑓𝑛𝑛

Oscillator Operating Frequency @ Certain Temperature 𝑓𝑓𝑇𝑇 = π‘“π‘“π‘œπ‘œ + π‘˜π‘˜π‘“π‘“π‘œπ‘œ (𝑇𝑇 βˆ’ π‘‡π‘‡π‘œπ‘œ )

Audio Power

Audio Power

π‘ƒπ‘ƒπ‘Žπ‘Ž = 0.5𝑃𝑃𝑠𝑠 π‘ƒπ‘ƒπ‘Žπ‘Ž = οΏ½

π‘šπ‘š2 οΏ½ 𝑃𝑃𝑠𝑠 2

π‘ƒπ‘ƒπ‘œπ‘œ 𝑃𝑃𝑠𝑠

π‘π‘π‘Žπ‘Ž =

𝑉𝑉𝑐𝑐𝑐𝑐 𝐼𝐼𝑐𝑐

𝑉𝑉𝑐𝑐𝑐𝑐 2 𝑅𝑅𝐿𝐿 = 2𝑃𝑃𝑐𝑐

Resonant Frequency π‘“π‘“π‘œπ‘œ =

πœ‚πœ‚ =

𝑉𝑉𝑐𝑐 (π‘šπ‘šπ‘šπ‘šπ‘šπ‘š ) = 4𝑉𝑉𝑐𝑐𝑐𝑐

Quality Factor

Shape Factor

𝑄𝑄 =

𝑆𝑆𝑆𝑆 =

Image Frequency

𝑋𝑋𝐿𝐿 𝑅𝑅

π΅π΅βˆ’60𝑑𝑑𝑑𝑑 π΅π΅βˆ’6𝑑𝑑𝑑𝑑

𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑠𝑠 + 2𝑓𝑓𝐼𝐼𝐼𝐼

Image Frequency Rejection Ratio 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =

𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

Compiled by: MIT - TEAM4A [Santos, Moreno, Mallari, Malana, Lineses, Jimenez, Garcia, Gamboa, Dahilog, Baduria]

2|E S T F o rmul as

Image Frequency Rejection Ratio 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = οΏ½1 + 𝑄𝑄2 𝜌𝜌2 𝑓𝑓𝑖𝑖 𝑓𝑓𝑠𝑠 𝜌𝜌 = βˆ’ π‘“π‘“π‘œπ‘œ 𝑓𝑓𝑖𝑖

π‘“π‘“π‘ˆπ‘ˆπ‘ˆπ‘ˆπ‘ˆπ‘ˆ = 𝑓𝑓𝑐𝑐 + π‘“π‘“π‘šπ‘š 𝐡𝐡𝐡𝐡 = 2π‘“π‘“π‘šπ‘š

π‘‰π‘‰π‘œπ‘œ 𝛿𝛿

Total Transmitting Power

Coupling Coefficient π‘˜π‘˜π‘π‘ =

𝑓𝑓𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑓𝑓𝑐𝑐 βˆ’ π‘“π‘“π‘šπ‘š

Bandwidth (AM)

VCO Sensitivity

π‘˜π‘˜π‘‘π‘‘ =

Upper and Lower Sideband Frequency

1

�𝑄𝑄𝑝𝑝 𝑄𝑄𝑠𝑠

π‘šπ‘š2 𝑃𝑃𝑇𝑇 = 𝑃𝑃𝑐𝑐 οΏ½1 + οΏ½ 2

Total Sideband Power

Optimum Coupling Coefficient

Bandwidth

𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷 =

π‘˜π‘˜π‘π‘ = 1.5π‘˜π‘˜π‘π‘

Power Saving of Double Sideband Suppressed Carrier

𝐡𝐡 = π‘˜π‘˜π‘“π‘“π‘œπ‘œ

%𝑃𝑃. 𝑆𝑆. =

MODULATION

π‘šπ‘š =

𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇 βˆ’ 𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 Γ— 100 𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇

Peak Envelope Power

𝑉𝑉𝑝𝑝 2 𝑃𝑃𝑃𝑃𝑃𝑃 = 2𝑅𝑅𝐿𝐿

Modulation Index π‘šπ‘š =

𝑃𝑃𝑐𝑐 π‘šπ‘š2 2

π‘‰π‘‰π‘šπ‘š 𝑉𝑉𝑐𝑐

Emitter Modulator Voltage Gain

π‘‰π‘‰π‘šπ‘šπ‘šπ‘šπ‘šπ‘š βˆ’ π‘‰π‘‰π‘šπ‘šπ‘šπ‘šπ‘šπ‘š π‘‰π‘‰π‘šπ‘šπ‘šπ‘šπ‘šπ‘š + π‘‰π‘‰π‘šπ‘šπ‘šπ‘šπ‘šπ‘š

𝐴𝐴𝑣𝑣 = π΄π΄π‘žπ‘ž (1 Β± π‘šπ‘š)

Modulation Index for Single Sideband

Total Modulation Index (AM) π‘šπ‘š 𝑇𝑇 = οΏ½π‘šπ‘š1 2 + π‘šπ‘š2 2 + β‹― + π‘šπ‘šπ‘›π‘› 2

Upper and Lower Sideband Voltage 𝑉𝑉𝐿𝐿𝐿𝐿𝐿𝐿 = π‘‰π‘‰π‘ˆπ‘ˆπ‘ˆπ‘ˆπ‘ˆπ‘ˆ =

π‘šπ‘šπ‘‰π‘‰π‘π‘ 2

𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 π‘šπ‘š = 2οΏ½ 𝑃𝑃𝑐𝑐

Quality Factor 𝑄𝑄 =

𝑓𝑓𝑐𝑐 οΏ½(𝑙𝑙𝑙𝑙𝑙𝑙 βˆ’1 𝑑𝑑𝑑𝑑/20 ) 4βˆ†π‘“π‘“

Compiled by: MIT - TEAM4A [Santos, Moreno, Mallari, Malana, Lineses, Jimenez, Garcia, Gamboa, Dahilog, Baduria]

3|E S T F o rmul as

FM Modulator Sensitivity

Deviation Ratio

π‘˜π‘˜π‘“π‘“ =

π‘šπ‘šπ‘“π‘“ =

𝛿𝛿 π‘“π‘“π‘šπ‘š

π›Ώπ›Ώπ‘šπ‘šπ‘šπ‘šπ‘šπ‘š

π‘“π‘“π‘šπ‘š (π‘šπ‘šπ‘šπ‘šπ‘šπ‘š )

Percent Modulation (FM) %𝑀𝑀 =

Carrier Swing

π›Ώπ›Ώπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž Γ— 100 π›Ώπ›Ώπ‘šπ‘šπ‘šπ‘šπ‘šπ‘š

𝐢𝐢. 𝑆𝑆. = 2π›Ώπ›Ώπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž

FM Bandwidth Carson’s Rule 𝐡𝐡𝐡𝐡 = 2οΏ½π›Ώπ›Ώπ‘šπ‘šπ‘šπ‘šπ‘šπ‘š + π‘“π‘“π‘šπ‘š (max ) οΏ½

NOISE Effective Noise Bandwidth 𝐡𝐡𝑒𝑒𝑒𝑒𝑒𝑒 =

πœ‹πœ‹ 𝐡𝐡 2 𝑠𝑠

Total Harmonic Distortion %𝑇𝑇𝑇𝑇𝑇𝑇 =

π‘‰π‘‰β„Žπ‘–π‘–π‘–π‘–β„Žπ‘’π‘’π‘’π‘’

Noise Power

𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

Noise Voltage

𝑃𝑃𝑛𝑛 = π‘˜π‘˜π‘˜π‘˜π‘˜π‘˜

𝑉𝑉𝑛𝑛 = �𝑉𝑉𝑁𝑁1 2 + 𝑉𝑉𝑁𝑁2 2 + 𝑉𝑉𝑁𝑁3 2 + β‹― + 𝑉𝑉𝑁𝑁𝑁𝑁 2

Shot Noise

𝐼𝐼𝑛𝑛 = οΏ½2π‘žπ‘žπΌπΌπ‘œπ‘œ 𝐡𝐡

FM Exact Bandwidth

𝐡𝐡𝐡𝐡 = 2𝑛𝑛𝑓𝑓𝑛𝑛

Signal-to-Noise Ratio

𝐡𝐡𝐡𝐡 = 2π‘“π‘“π‘šπ‘š

Signal-to-Noise Ratio

𝐡𝐡𝐡𝐡 = 2𝛿𝛿

Noise Factor

FM Narrow Bandwidth

FM Wideband Bandwidth

𝑆𝑆/𝑁𝑁(𝑑𝑑𝑑𝑑) = 10log(𝑃𝑃𝑠𝑠 /𝑃𝑃𝑛𝑛 ) 𝑆𝑆/𝑁𝑁(𝑑𝑑𝑑𝑑) = 20log(𝑉𝑉𝑠𝑠 /𝑉𝑉𝑛𝑛 )

Noise Phase Shift

𝑉𝑉𝑛𝑛 𝑉𝑉𝑛𝑛 πœ™πœ™ = π‘ π‘ π‘ π‘ π‘ π‘ βˆ’1 οΏ½ οΏ½ ; πœ™πœ™ β‰ˆ οΏ½ οΏ½ 𝑉𝑉𝑠𝑠 𝑉𝑉𝑠𝑠

PM Modulator Sensitivity π‘˜π‘˜π‘π‘ =

πœ™πœ™ π‘£π‘£π‘šπ‘š

Γ— 100

Noise Figure

𝐹𝐹 =

(𝑆𝑆/𝑁𝑁)𝑖𝑖 (𝑆𝑆/𝑁𝑁)π‘œπ‘œ

𝑁𝑁𝑁𝑁 (𝑑𝑑𝑑𝑑) = (𝑆𝑆/𝑁𝑁)𝑖𝑖 𝑑𝑑𝑑𝑑 βˆ’ (𝑆𝑆/𝑁𝑁)π‘œπ‘œ 𝑑𝑑𝑑𝑑

Total Noise Factor 𝐹𝐹𝑇𝑇 = 𝐹𝐹1 +

𝐹𝐹2 βˆ’ 1 𝐹𝐹3 βˆ’ 1 𝐹𝐹4 βˆ’ 1 + + 𝐴𝐴1 𝐴𝐴1 𝐴𝐴2 𝐴𝐴1 𝐴𝐴2 𝐴𝐴3

Compiled by: MIT - TEAM4A [Santos, Moreno, Mallari, Malana, Lineses, Jimenez, Garcia, Gamboa, Dahilog, Baduria]

4|E S T F o rmul as

Equivalent Noise Temperature

Power Density

𝑇𝑇𝑒𝑒𝑒𝑒 = 290(𝐹𝐹 βˆ’ 1)

𝑃𝑃𝐷𝐷 =

𝑃𝑃𝑇𝑇 𝐺𝐺𝑇𝑇 4πœ‹πœ‹π‘Ÿπ‘Ÿ 2

Electric Field Intensity

RADIO WAVE PROPAGATION

𝐸𝐸 =

Velocity of Propagation 𝑐𝑐 𝑣𝑣 = βˆšπœ€πœ€π‘Ÿπ‘Ÿ

Effective Antenna Area 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 =

Characteristic Impedance 𝐸𝐸 𝑍𝑍 = 𝐻𝐻

Received Power

𝑃𝑃𝑅𝑅 =

Relative Permittivity πœ€πœ€π‘Ÿπ‘Ÿ =

πœ€πœ€ πœ€πœ€π‘œπ‘œ

Characteristic Impedance of a Medium

Power Density

𝑍𝑍 =

377 βˆšπœ€πœ€π‘Ÿπ‘Ÿ

Power Density

𝐸𝐸 2 𝑃𝑃𝐷𝐷 = 𝑍𝑍

Power Density

𝑃𝑃𝐷𝐷 = 𝐸𝐸𝐸𝐸

𝑃𝑃𝐷𝐷 =

𝑃𝑃𝑑𝑑 4πœ‹πœ‹π‘Ÿπ‘Ÿ 2

Effective Isotropic Radiated Power

οΏ½30𝑃𝑃𝑇𝑇 π‘Ÿπ‘Ÿ 𝑃𝑃𝑅𝑅 𝑃𝑃𝐷𝐷

𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 𝑃𝑃𝑇𝑇 𝐺𝐺𝑇𝑇 4πœ‹πœ‹π‘Ÿπ‘Ÿ 2

Effective Antenna Area

Snell’s Law

𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒

πœ†πœ†2 𝐺𝐺𝑅𝑅 = 4πœ‹πœ‹

𝑛𝑛1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1 = 𝑛𝑛2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2

Refractive Index

𝑛𝑛 = οΏ½πœ€πœ€π‘Ÿπ‘Ÿ

Snell’s Law

π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ1 πœ€πœ€π‘Ÿπ‘Ÿ1 =οΏ½ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 πœ€πœ€π‘Ÿπ‘Ÿ2

Critical Angle

πœƒπœƒπ‘π‘ = π‘ π‘ π‘ π‘ π‘ π‘ βˆ’1 οΏ½

𝑛𝑛2 οΏ½ 𝑛𝑛1

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑃𝑃𝑇𝑇 𝐺𝐺𝑇𝑇 Compiled by: MIT - TEAM4A [Santos, Moreno, Mallari, Malana, Lineses, Jimenez, Garcia, Gamboa, Dahilog, Baduria]

5|E S T F o rmul as

Maximum Usable Frequency 𝑀𝑀𝑀𝑀𝑀𝑀 =

𝑓𝑓𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1

Optimum Working Frequency 𝑂𝑂𝑂𝑂𝑂𝑂 = 0.85𝑀𝑀𝑀𝑀𝑀𝑀

Distance between Transmitting and Receiving Antennas 𝑑𝑑 = οΏ½17β„Ž 𝑇𝑇 + οΏ½17β„Žπ‘…π‘…

Distance between Transmitting and Receiving Antennas 𝑑𝑑 = οΏ½2β„Ž 𝑇𝑇 + οΏ½2β„Žπ‘…π‘…

Free Space Loss

𝐹𝐹𝐹𝐹𝐹𝐹 = 32.4 + 20𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 20𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

Time between Fades 𝑇𝑇 =

Number of Cells

𝑁𝑁 =

𝑐𝑐 2𝑓𝑓𝑓𝑓

𝐴𝐴 3.464π‘Ÿπ‘Ÿ2

ANTENNAS

Antenna Efficiency πœ‚πœ‚ =

Dipole Gain

π‘ƒπ‘ƒπ‘Ÿπ‘Ÿ ; 𝑃𝑃𝑇𝑇

πœ‚πœ‚ =

π‘ƒπ‘ƒπ‘Ÿπ‘Ÿ π‘ƒπ‘ƒπ‘Ÿπ‘Ÿ + 𝑃𝑃𝑑𝑑

𝐺𝐺 (𝑑𝑑𝑑𝑑𝑑𝑑 ) = 𝐺𝐺 (𝑑𝑑𝑑𝑑𝑑𝑑 ) βˆ’ 2.14𝑑𝑑𝑑𝑑

Antenna Power Gain

𝐺𝐺 = πœ‚πœ‚πœ‚πœ‚

Effective Isotropic Radiated Power 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑃𝑃𝑇𝑇 𝐺𝐺𝑇𝑇

Folded-Dipole Impedance 𝑍𝑍 = 73𝑛𝑛2

Helical Antenna Gain 𝐺𝐺 =

15𝑁𝑁𝑁𝑁(πœ‹πœ‹πœ‹πœ‹ )2 πœ†πœ†3

Helical Antenna Beamwidth πœƒπœƒ =

52πœ†πœ† πœ†πœ† οΏ½ πœ‹πœ‹πœ‹πœ‹ 𝑁𝑁𝑁𝑁

Parabolic Antenna Beamwidth πœ‚πœ‚πœ‹πœ‹ 2 𝐷𝐷2 πœƒπœƒ = πœ†πœ†2

Passive Reflector Gain Radial Length 142.5 𝐿𝐿 = 𝑓𝑓

𝐺𝐺𝐴𝐴 = 20𝑙𝑙𝑙𝑙𝑙𝑙

4πœ‹πœ‹πœ‹πœ‹πœ‹πœ‹πœ‹πœ‹πœ‹πœ‹πœ‹πœ‹ πœ†πœ†2

Parabola Coupling Factor

Radiation Resistance 𝑅𝑅 =

𝑃𝑃 𝐼𝐼 2

𝑓𝑓 = 𝐷𝐷′�

πœ‹πœ‹ 4𝐴𝐴

Compiled by: MIT - TEAM4A [Santos, Moreno, Mallari, Malana, Lineses, Jimenez, Garcia, Gamboa, Dahilog, Baduria]

6|E S T F o rmul as

TRANSMISSION LINES

Characteristic Impedance of Balanced wire near Ground

Wavelength

Velocity Factor

𝑐𝑐 πœ†πœ† = 𝑓𝑓 1 βˆšπœ€πœ€π‘Ÿπ‘Ÿ

𝑉𝑉𝑓𝑓 =

𝑉𝑉𝑓𝑓 =

𝑉𝑉𝑝𝑝 𝑐𝑐

Velocity of Propagation 𝑉𝑉𝑝𝑝 =

Propagation Time

𝑑𝑑

√𝐿𝐿𝐿𝐿

𝑇𝑇 =

𝐿𝐿 𝑉𝑉𝑝𝑝

Characteristic Impedance 𝐿𝐿 π‘π‘π‘œπ‘œ = οΏ½ 𝐢𝐢

276 2𝐷𝐷 𝐷𝐷 2 οΏ½ π‘π‘π‘œπ‘œ = 𝑙𝑙𝑙𝑙𝑙𝑙10 οΏ½ 1+οΏ½ οΏ½ οΏ½ 𝑑𝑑 2β„Ž βˆšπœ€πœ€π‘Ÿπ‘Ÿ

Characteristic Impedance of Wires in Parallel near Ground

π‘π‘π‘œπ‘œ =

69

βˆšπœ€πœ€

𝑆𝑆 π‘π‘π‘œπ‘œ = log οΏ½ οΏ½ π‘Ÿπ‘Ÿ βˆšπœ€πœ€ Characteristic Impedance of Balanced 4-wire 𝐷𝐷2 2 138 2𝐷𝐷2 οΏ½ π‘π‘π‘œπ‘œ = 𝑙𝑙𝑙𝑙𝑙𝑙10 οΏ½ 1+οΏ½ οΏ½ οΏ½ 𝑑𝑑 𝐷𝐷1 βˆšπœ€πœ€π‘Ÿπ‘Ÿ

4β„Ž 2β„Ž 2 οΏ½1 + οΏ½ οΏ½ οΏ½ 𝑑𝑑 𝐷𝐷

Characteristic Impedance of Balanced 2-wire near Ground π‘π‘π‘œπ‘œ =

2𝐷𝐷 𝐷𝐷2 𝑙𝑙𝑙𝑙𝑙𝑙10 οΏ½ οΏ½1 + οΏ½ οΏ½οΏ½ 𝑑𝑑 4β„Ž1 β„Ž2 βˆšπœ€πœ€

276

Characteristic Impedance of Coaxial Cable π‘π‘π‘œπ‘œ =

138 𝐷𝐷 𝑙𝑙𝑙𝑙𝑙𝑙 οΏ½ οΏ½ 𝑑𝑑 βˆšπœ€πœ€π‘Ÿπ‘Ÿ

Reflection Coefficient Ξ“=

Characteristic Impedance of ParallelWire Cable 276

𝑙𝑙𝑙𝑙𝑙𝑙10 οΏ½

𝑍𝑍𝐿𝐿 βˆ’ 𝑍𝑍𝑂𝑂 𝑍𝑍𝐿𝐿 + 𝑍𝑍𝑂𝑂

Reflection Coefficient

Phase Shift

Ξ“=

𝑆𝑆𝑆𝑆𝑆𝑆 βˆ’ 1 𝑆𝑆𝑆𝑆𝑆𝑆 + 1

πœ™πœ™ = (360Β°)

Standing Wave Ratio 𝑆𝑆𝑆𝑆𝑆𝑆 =

𝐿𝐿 πœ†πœ†

π‘‰π‘‰π‘šπ‘šπ‘šπ‘šπ‘šπ‘š π‘‰π‘‰π‘šπ‘šπ‘šπ‘šπ‘šπ‘š

Compiled by: MIT - TEAM4A [Santos, Moreno, Mallari, Malana, Lineses, Jimenez, Garcia, Gamboa, Dahilog, Baduria]

7|E S T F o rmul as

Standing Wave Ratio 𝑆𝑆𝑆𝑆𝑆𝑆 =

Stripline Characteristic Impedence

1 + |Ξ“| 1 βˆ’ |Ξ“|

Standing Wave Ratio

𝑍𝑍𝐿𝐿 𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑍𝑍𝑂𝑂 𝑍𝑍𝑂𝑂 𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑍𝑍𝐿𝐿

𝑍𝑍𝑂𝑂 =

60

βˆšπœ€πœ€

ln οΏ½

𝑆𝑆𝑆𝑆𝑆𝑆 =

Load Power

𝑃𝑃𝐿𝐿 =

1 βˆ’ οΏ½π‘ƒπ‘ƒπ‘Ÿπ‘Ÿ /𝑃𝑃𝑖𝑖

4𝑆𝑆𝑆𝑆𝑆𝑆 𝑃𝑃 (1 + 𝑆𝑆𝑆𝑆𝑆𝑆)2 𝑖𝑖

Reflected Power

Load Power

π‘ƒπ‘ƒπ‘Ÿπ‘Ÿ = Ξ“ 2 𝑃𝑃𝑖𝑖

𝑍𝑍𝑂𝑂 =

βˆšπœ€πœ€

ln οΏ½

πœ‹πœ‹β„Ž οΏ½ 𝑀𝑀 + 𝑑𝑑

FIBER OPTICS Index of Refraction 𝑛𝑛 =

𝑐𝑐 𝑣𝑣

𝑛𝑛 = οΏ½πœ€πœ€π‘Ÿπ‘Ÿ

Snell’s Law

Critical Angle

Impedance Matching

2

Quarter-wavelength Transformer Characteristic Impedance 𝑍𝑍𝑂𝑂 = �𝑍𝑍𝑂𝑂 𝑍𝑍𝐿𝐿

Microstrip Characteristic Impedance 87

120

𝑛𝑛1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1 = 𝑛𝑛2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2

𝑃𝑃𝐿𝐿 = 𝑃𝑃𝑖𝑖 (1 βˆ’ Ξ“ 2 ) 𝑍𝑍1 𝑁𝑁1 =οΏ½ οΏ½ 𝑍𝑍2 𝑁𝑁2

𝑑𝑑 οΏ½ 0.67πœ‹πœ‹πœ‹πœ‹ οΏ½0.8 + β„ŽοΏ½

Open-Wire (Microstrip) Transmission Line

Standing Wave Ratio

1 + οΏ½π‘ƒπ‘ƒπ‘Ÿπ‘Ÿ /𝑃𝑃𝑖𝑖

4𝑑𝑑

5.98β„Ž 𝑍𝑍𝑂𝑂 = ln οΏ½ οΏ½ 0.8𝑀𝑀 + 𝑑𝑑 βˆšπœ€πœ€ + 1.41

πœƒπœƒπ‘π‘ = π‘ π‘ π‘ π‘ π‘ π‘ βˆ’1 οΏ½

Numerical Aperture

𝑛𝑛2 οΏ½ 𝑛𝑛1

𝑁𝑁𝑁𝑁 = �𝑛𝑛1 2 βˆ’ 𝑛𝑛2 2 𝑁𝑁𝑁𝑁 = π‘ π‘ π‘ π‘ π‘ π‘ π‘ π‘ π‘šπ‘šπ‘šπ‘šπ‘šπ‘š

Maximum Acceptance Angle πœƒπœƒπ‘šπ‘šπ‘šπ‘šπ‘šπ‘š = π‘ π‘ π‘ π‘ π‘ π‘ βˆ’1 (�𝑛𝑛1 2 βˆ’ 𝑛𝑛2 2 )

Acceptance Cone

πœƒπœƒπ‘π‘π‘π‘π‘π‘π‘π‘ = 2πœƒπœƒπ‘šπ‘šπ‘šπ‘šπ‘šπ‘š

Compiled by: MIT - TEAM4A [Santos, Moreno, Mallari, Malana, Lineses, Jimenez, Garcia, Gamboa, Dahilog, Baduria]

8|E S T F o rmul as

Single Mode Cutoff Wavelength πœ†πœ†π‘π‘ =

2πœ‹πœ‹πœ‹πœ‹π‘›π‘›1 √2Ξ” 2.405

Maximum Radius

π‘Ÿπ‘Ÿπ‘šπ‘šπ‘šπ‘šπ‘šπ‘š =

Number of Modes

Bandwidth

0.383πœ†πœ† 𝑁𝑁𝑁𝑁

2 πœ‹πœ‹πœ‹πœ‹ οΏ½ πœ†πœ† 𝑁𝑁𝑁𝑁� 𝑀𝑀 = 2

1 𝐡𝐡 = 2Δ𝑑𝑑

Bit Rate for NRZ Code 𝑓𝑓𝑏𝑏 =

1 𝑇𝑇𝑅𝑅𝑅𝑅

Bit Rate for RZ Code 𝑓𝑓𝑏𝑏 =

1 2𝑇𝑇𝑅𝑅𝑅𝑅

𝐡𝐡𝐡𝐡 =

500 𝐷𝐷

Bandwidth-Distance Product

Responsivity

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =

Responsivity

Electrical Bandwidth

0.35 𝐡𝐡 = π‘‘π‘‘π‘Ÿπ‘Ÿ

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =

Irradiance

Fiber Attenuation

𝑃𝑃 = 𝑃𝑃𝑇𝑇 Γ— 10

βˆ’π΄π΄π΄π΄/10

Photon Energy

Total Rise Time

𝐼𝐼𝐼𝐼 =

𝐼𝐼 𝑃𝑃

πœ‚πœ‚πœ‚πœ‚ 1234

𝑃𝑃 𝐴𝐴

𝐸𝐸 = β„Žπ‘“π‘“

𝑇𝑇𝑅𝑅𝑅𝑅 = �𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅 2 + 𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅 2 𝑇𝑇𝑅𝑅𝑅𝑅 2

Bit Rate for UPRZ Code 𝑓𝑓𝑏𝑏 =

1 βˆ†π‘‘π‘‘ Γ— 𝐿𝐿

𝑓𝑓𝑏𝑏 =

1 2βˆ†π‘‘π‘‘ Γ— 𝐿𝐿

Bit Rate for UPNRZ code

Compiled by: MIT - TEAM4A [Santos, Moreno, Mallari, Malana, Lineses, Jimenez, Garcia, Gamboa, Dahilog, Baduria]

9|E S T F o rmul as

TELEPHONY

Total Channel Capacity in a Cellular Area

Pulse Dialing Duration 𝑑𝑑 = βˆ‘π‘‘π‘‘(0.1) + (𝑛𝑛 βˆ’ 1)𝑑𝑑𝑖𝑖

𝐢𝐢 = π‘šπ‘šπ‘šπ‘š

Frequency Reuse Factor

Tone Dialing Duration

𝑑𝑑 = 𝑛𝑛𝑛𝑛 + (𝑛𝑛 βˆ’ 1)𝑑𝑑𝑖𝑖

DC Loop Resistance 𝑅𝑅𝑑𝑑𝑑𝑑 =

Grade of Service

0.1095 𝑑𝑑 2

𝐺𝐺𝐺𝐺𝐺𝐺 =

Traffic Intensity

Carried Traffic

𝑇𝑇𝐿𝐿 𝑇𝑇𝑂𝑂

𝐴𝐴 = 𝐢𝐢𝐢𝐢

𝑇𝑇𝐢𝐢 = 𝑇𝑇𝑂𝑂 (1 βˆ’ 𝐺𝐺𝐺𝐺𝐺𝐺 )

Trunk Utilization

Via Net Loss

πœ‚πœ‚ =

𝑇𝑇𝐢𝐢 𝑁𝑁

𝑉𝑉𝑉𝑉𝑉𝑉 = 0.2𝑑𝑑 + 0.4(𝑑𝑑𝑑𝑑)

Crosstalk Decibel Unit

𝑑𝑑𝑑𝑑𝑑𝑑 = 90 βˆ’ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑

Number of Full-Duplex Cellular Channels 𝐹𝐹 = 𝐺𝐺𝐺𝐺

𝐹𝐹𝐹𝐹𝐹𝐹 =

𝑁𝑁 𝐢𝐢

Co-Channel Reuse Ratio 𝑄𝑄 =

𝐷𝐷 𝑅𝑅

Co-Channel Reuse Ratio 𝑄𝑄 = √3𝑛𝑛

AMPS Transmit Carrier Frequency 𝑓𝑓𝑑𝑑 = 0.03𝑁𝑁 + 825

𝑓𝑓𝑑𝑑 = 0.03(𝑁𝑁 βˆ’ 1023) + 825

AMPS Receive Carrier Frequency π‘“π‘“π‘Ÿπ‘Ÿ = 𝑓𝑓𝑑𝑑 + 45π‘€π‘€β„Žπ‘§π‘§

GSM Frequency Shift between Mark and Space π‘“π‘“π‘šπ‘š βˆ’ 𝑓𝑓𝑠𝑠 = 0.5𝑓𝑓𝑏𝑏

GSM Maximum Transmitted Frequency π‘“π‘“π‘šπ‘šπ‘šπ‘šπ‘šπ‘š = 𝑓𝑓𝑐𝑐 + 0.25𝑓𝑓𝑏𝑏

GSM Minimum Transmitted Frequency π‘“π‘“π‘šπ‘šπ‘šπ‘šπ‘šπ‘š = 𝑓𝑓𝑐𝑐 βˆ’ 0.25𝑓𝑓𝑏𝑏

CDMA Radiated Power

𝑃𝑃𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑 = βˆ’76𝑑𝑑𝑑𝑑 βˆ’ π‘ƒπ‘ƒπ‘Ÿπ‘Ÿ

Compiled by: MIT - TEAM4A [Santos, Moreno, Mallari, Malana, Lineses, Jimenez, Garcia, Gamboa, Dahilog, Baduria]

10 | E S T F o r m u l a s

MICROWAVE DEVICES

Phase Velocity

Waveguide Longer Dimension π‘Žπ‘Ž =

πœ†πœ†π‘π‘ 2

Rectangular Waveguide Cutoff Frequency 𝑓𝑓𝑐𝑐 =

𝑐𝑐 2π‘Žπ‘Ž

2π‘Žπ‘Ž π‘šπ‘š

Group Velocity

2πœ‹πœ‹πœ‹πœ‹ π‘˜π‘˜

𝑉𝑉𝑔𝑔 = 𝑐𝑐 οΏ½1 βˆ’ οΏ½

Group Velocity

πœ†πœ† οΏ½ 2π‘Žπ‘Ž

2

2

Phase Velocity

𝑐𝑐

Group and Phase Velocity 𝑉𝑉𝑔𝑔 𝑉𝑉𝑝𝑝 = 𝑐𝑐 2

𝑍𝑍𝑂𝑂 =

377

2 οΏ½1 βˆ’ �𝑓𝑓𝑐𝑐 οΏ½ 𝑓𝑓

οΏ½1 βˆ’ οΏ½ πœ†πœ† οΏ½ 2π‘Žπ‘Ž

πœ†πœ†π‘”π‘” =

Guide Wavelength

𝑓𝑓𝑐𝑐 𝑉𝑉𝑔𝑔 = 𝑐𝑐�1 βˆ’ οΏ½ οΏ½ 𝑓𝑓 𝑉𝑉𝑝𝑝 =

2 οΏ½1 βˆ’ �𝑓𝑓𝑐𝑐 οΏ½ 𝑓𝑓

Guide Wavelength

Circular Waveguide Cutoff Wavelength πœ†πœ†π‘π‘ =

𝑐𝑐

Waveguide Characteristic Impedance

Rectangular Waveguide Cutoff Wavelength πœ†πœ†π‘π‘ =

𝑉𝑉𝑝𝑝 =

2

πœ†πœ†π‘”π‘” =

𝑉𝑉𝑝𝑝 𝑓𝑓 πœ†πœ†

2 οΏ½1 βˆ’ �𝑓𝑓𝑐𝑐 οΏ½ 𝑓𝑓

Magnetron Average Power π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž = 𝑃𝑃𝑝𝑝 𝐷𝐷

Magnetron Duty Cycle 𝐷𝐷 =

Horn Antenna Gain 𝐺𝐺 =

𝑇𝑇𝑂𝑂𝑂𝑂 𝑇𝑇𝑇𝑇

7.5𝑑𝑑𝐸𝐸 𝑑𝑑𝐻𝐻 πœ†πœ†2

Compiled by: MIT - TEAM4A [Santos, Moreno, Mallari, Malana, Lineses, Jimenez, Garcia, Gamboa, Dahilog, Baduria]

11 | E S T F o r m u l a s

TERRESTRIAL MICROWAVE

H-Plane Beamwidth πœƒπœƒπ»π» =

E-Plane Beamwidth

70πœ†πœ† 𝑑𝑑𝐻𝐻

56πœ†πœ† πœƒπœƒπΈπΈ = 𝑑𝑑𝐸𝐸

Radar Equation

πœ†πœ†2 𝑃𝑃𝑇𝑇 𝐺𝐺 2 𝜎𝜎 𝑃𝑃𝑅𝑅 = (4πœ‹πœ‹)3 π‘Ÿπ‘Ÿ 4

Radar Distance

𝑅𝑅 =

𝑐𝑐𝑐𝑐 2

Distance between Transmitter and Receiver 𝑑𝑑(π‘šπ‘šπ‘šπ‘š ) = οΏ½2β„Žπ‘‡π‘‡(𝑓𝑓𝑓𝑓 ) + οΏ½2β„Žπ‘…π‘…(𝑓𝑓𝑓𝑓 )

𝑑𝑑(π‘˜π‘˜π‘˜π‘˜ ) = οΏ½17β„Ž 𝑇𝑇(π‘šπ‘š ) + οΏ½17β„Žπ‘…π‘…(π‘šπ‘š )

K-Factor

𝐾𝐾 =

1 1 βˆ’ 0.04665𝑒𝑒 0.005577 𝑁𝑁𝑠𝑠

Effective Earth Radius

Maximum Unambiguous Range π‘…π‘…π‘šπ‘šπ‘šπ‘šπ‘šπ‘š =

𝑐𝑐𝑐𝑐 2

π‘…π‘…π‘šπ‘šπ‘šπ‘šπ‘šπ‘š =

𝑐𝑐 2𝑓𝑓

π‘…π‘…π‘šπ‘šπ‘šπ‘šπ‘šπ‘š =

𝑐𝑐𝑇𝑇𝑝𝑝 2

Minimum Usable Frequency

Doppler Shift Frequency 𝑓𝑓𝐷𝐷 =

2𝑣𝑣𝑓𝑓𝑖𝑖 𝑐𝑐

𝑅𝑅𝑒𝑒 = 𝐾𝐾𝐾𝐾

Earth Curvature 𝑒𝑒𝑐𝑐 =

𝑒𝑒𝑐𝑐 =

Fresnel Zone

𝑑𝑑1(π‘šπ‘šπ‘šπ‘š ) 𝑑𝑑2(π‘šπ‘šπ‘šπ‘š ) 1.5𝐾𝐾

𝑑𝑑1(π‘˜π‘˜π‘˜π‘˜ ) 𝑑𝑑2(π‘˜π‘˜π‘˜π‘˜ ) 12.75𝐾𝐾

𝑛𝑛𝑑𝑑1(π‘˜π‘˜π‘˜π‘˜ ) 𝑑𝑑2(π‘˜π‘˜π‘˜π‘˜ ) 𝑅𝑅𝑛𝑛 = 17.3οΏ½ 𝑓𝑓(𝐺𝐺𝐺𝐺𝐺𝐺 ) �𝑑𝑑1(π‘˜π‘˜π‘˜π‘˜ ) 𝑑𝑑2(π‘˜π‘˜π‘˜π‘˜ ) οΏ½ 𝑛𝑛𝑑𝑑1(π‘šπ‘šπ‘šπ‘š ) 𝑑𝑑2(π‘šπ‘šπ‘šπ‘š ) 𝑅𝑅𝑛𝑛 = 72.1οΏ½ 𝑓𝑓(𝐺𝐺𝐺𝐺𝐺𝐺 ) �𝑑𝑑1(π‘šπ‘šπ‘šπ‘š ) 𝑑𝑑2(π‘šπ‘šπ‘šπ‘š ) οΏ½

Fresnel Zone Clearance 𝐹𝐹𝑐𝑐 = 0.6𝐹𝐹1

Compiled by: MIT - TEAM4A [Santos, Moreno, Mallari, Malana, Lineses, Jimenez, Garcia, Gamboa, Dahilog, Baduria]

12 | E S T F o r m u l a s

Fresnel Zone Clearance 𝑛𝑛𝑑𝑑1(π‘šπ‘šπ‘šπ‘š ) 𝑑𝑑2(π‘šπ‘šπ‘šπ‘š ) 𝑅𝑅 = 43.3οΏ½ 𝑓𝑓(𝐺𝐺𝐺𝐺𝐺𝐺 ) �𝑑𝑑1(π‘šπ‘šπ‘šπ‘š ) 𝑑𝑑2(π‘šπ‘šπ‘šπ‘š ) οΏ½

𝑛𝑛𝑑𝑑1(π‘˜π‘˜π‘˜π‘˜ ) 𝑑𝑑2(π‘˜π‘˜π‘˜π‘˜ ) 𝑅𝑅 = 10.4οΏ½ 𝑓𝑓(𝐺𝐺𝐺𝐺𝐺𝐺 ) �𝑑𝑑1(π‘˜π‘˜π‘˜π‘˜ ) 𝑑𝑑2(π‘˜π‘˜π‘˜π‘˜ ) οΏ½

Nth Fresnel Zone Radius 𝐹𝐹𝑛𝑛 = 𝐹𝐹1 βˆšπ‘›π‘›

Effective Isotropic Radiated Power (EIRP) 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑃𝑃 𝑇𝑇(𝑑𝑑𝑑𝑑𝑑𝑑 ) + 𝐺𝐺𝑇𝑇(𝑑𝑑𝑑𝑑 ) 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑃𝑃𝑇𝑇 𝐺𝐺𝑇𝑇

Unavailability π‘ˆπ‘ˆ =

Reliability

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝑅𝑅 = (1 βˆ’ 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂) Γ— 100

Antenna and Feedline Equivalent Noise Temperature π‘‡π‘‡π‘Žπ‘Ž =

(𝐿𝐿 βˆ’ 1)290 + 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 𝐿𝐿

Equivalent Noise Temperature 𝑇𝑇𝑒𝑒𝑒𝑒 = 290(𝐹𝐹 βˆ’ 1)

Energy per Bit per Noise Density Ratio

Free Space Loss

𝐹𝐹𝐹𝐹𝐹𝐹 = 32.4 + 20𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑(π‘˜π‘˜π‘˜π‘˜ ) + 20𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓(𝑀𝑀𝑀𝑀𝑀𝑀 )

𝐸𝐸𝑏𝑏 =

𝑃𝑃𝑅𝑅 𝑓𝑓𝑏𝑏

𝐹𝐹𝐹𝐹𝐹𝐹 = 92.4 + 20𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑(π‘˜π‘˜π‘˜π‘˜ ) + 20𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓(𝐺𝐺𝐺𝐺𝐺𝐺 )

Noise Power Density

𝐹𝐹𝐹𝐹𝐹𝐹 = 96.6 + 20𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑(π‘šπ‘šπ‘šπ‘š ) + 20𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓(𝐺𝐺𝐺𝐺𝐺𝐺 )

Carrier-to-Noise Ratio

𝐹𝐹𝐹𝐹𝐹𝐹 = 36.6 + 20𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑(π‘šπ‘šπ‘šπ‘š ) + 20𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓(𝑀𝑀𝑀𝑀𝑀𝑀 ) Isotropic Radiated Power (IRL)

𝐼𝐼𝐼𝐼𝐼𝐼(𝑑𝑑𝑑𝑑𝑑𝑑 ) = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑 βˆ’ 𝐹𝐹𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑

Ratio of the Received to Transmitted Power 𝑃𝑃𝑅𝑅 (𝑑𝑑𝑑𝑑) = 𝐺𝐺𝑇𝑇(𝑑𝑑𝑑𝑑𝑑𝑑 ) + 𝐺𝐺𝑅𝑅(𝑑𝑑𝑑𝑑𝑑𝑑 ) βˆ’ 𝐹𝐹𝐹𝐹𝐹𝐹(𝑑𝑑𝑑𝑑 ) 𝑃𝑃𝑇𝑇

Availability

𝐴𝐴 =

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅

𝑁𝑁𝑂𝑂 = π‘˜π‘˜π‘˜π‘˜

𝐢𝐢 (𝑑𝑑𝑑𝑑) = 𝑅𝑅𝑅𝑅𝑅𝑅(𝑑𝑑𝑑𝑑𝑑𝑑 ) βˆ’ 𝑁𝑁𝑑𝑑𝑑𝑑 𝑁𝑁

Receive Signal Level (RSL)

𝑅𝑅𝑅𝑅𝑅𝑅(𝑑𝑑𝑑𝑑𝑑𝑑 ) = 𝑃𝑃𝑇𝑇(𝑑𝑑𝑑𝑑𝑑𝑑 ) + 𝐺𝐺 𝑇𝑇(𝑑𝑑𝑑𝑑 ) + 𝐺𝐺𝑅𝑅(𝑑𝑑𝑑𝑑 ) βˆ’ 𝐹𝐹𝐹𝐹𝐹𝐹(𝑑𝑑𝑑𝑑 )

Fade Margin

𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑 = 30𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 10 log(6𝐴𝐴𝐴𝐴𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺 ) βˆ’ 10 log(1 βˆ’ 𝑅𝑅) βˆ’ 70

Compiled by: MIT - TEAM4A [Santos, Moreno, Mallari, Malana, Lineses, Jimenez, Garcia, Gamboa, Dahilog, Baduria]

13 | E S T F o r m u l a s

DIGITAL AND DATA COMMUNICATIONS

BPSK Minimum Double-Sided Nyquist Bandwidth 𝑓𝑓𝑁𝑁 = 𝑓𝑓𝑏𝑏

Coding Efficiency

Hamming Code

𝑁𝑁𝐷𝐷 πœ‚πœ‚ = 𝑁𝑁𝑇𝑇

QPSK Nyquist Bandwidth

2 β‰₯ π‘šπ‘š + 𝑛𝑛 + 1

Baud-to-Bit rate Conversion

𝑓𝑓𝑁𝑁 =

𝑓𝑓𝑏𝑏 3

𝑓𝑓𝑁𝑁 =

𝑓𝑓𝑏𝑏 4

16-PSK / 16-QAM Nyquist Bandwidth

Processing Gain

𝐺𝐺𝑝𝑝 (𝑑𝑑𝑑𝑑) = (𝑆𝑆/𝑁𝑁)𝑖𝑖 𝑑𝑑𝑑𝑑 βˆ’ (𝑆𝑆/𝑁𝑁)π‘œπ‘œ 𝑑𝑑𝑑𝑑

𝑓𝑓𝑏𝑏 2

8-PSK / 8-QAM Nyquist Bandwidth

𝑛𝑛

𝐢𝐢 = 𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙2 𝑀𝑀

𝑓𝑓𝑁𝑁 =

Bandwidth Efficiency

Shannon-Hartley Theorem on Information Capacity

𝐡𝐡𝐡𝐡𝑒𝑒𝑒𝑒𝑒𝑒 =

𝐢𝐢 = 𝐡𝐡𝑙𝑙𝑙𝑙𝑙𝑙2 (1 + 𝑆𝑆/𝑁𝑁)

Dynamic Range

π‘“π‘“π‘Žπ‘Ž = 𝑓𝑓𝑠𝑠 βˆ’ π‘“π‘“π‘šπ‘š

Dynamic Range

Aliasing Frequency

𝐷𝐷𝐷𝐷 = 1.76 + 6.02π‘šπ‘š(𝑑𝑑𝑑𝑑)

M-ary Encoding

π‘šπ‘š = 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑁𝑁

FSK Frequency Deviation |π‘“π‘“π‘šπ‘š βˆ’ 𝑓𝑓𝑠𝑠 | βˆ†π‘“π‘“ = 2

𝐷𝐷𝐷𝐷 =

Dynamic Range

FSK Baud Rate

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑓𝑓𝑏𝑏

π‘‰π‘‰π‘šπ‘šπ‘šπ‘šπ‘šπ‘š π‘‰π‘‰π‘šπ‘šπ‘šπ‘šπ‘šπ‘š

𝐷𝐷𝐷𝐷 = 2𝑛𝑛 βˆ’ 1

Maximum Quantization Error

FSK Minimum Bandwidth 𝐡𝐡 = 2(βˆ†π‘“π‘“ + 𝑓𝑓𝑏𝑏 )

𝑓𝑓𝑏𝑏 𝑓𝑓𝑁𝑁

Data Rate

𝑄𝑄𝑒𝑒 =

π‘‰π‘‰π‘šπ‘šπ‘šπ‘šπ‘šπ‘š 2

𝐷𝐷 = 𝑓𝑓𝑠𝑠 π‘šπ‘š

Compiled by: MIT - TEAM4A [Santos, Moreno, Mallari, Malana, Lineses, Jimenez, Garcia, Gamboa, Dahilog, Baduria]

14 | E S T F o r m u l a s

πœ‡πœ‡-Law Companding π‘‰π‘‰π‘œπ‘œπ‘œπ‘œπ‘œπ‘œ = π‘‰π‘‰π‘šπ‘šπ‘šπ‘šπ‘šπ‘š

Sound Intensity Level (SIL)

𝑉𝑉 ln οΏ½1 + πœ‡πœ‡ 𝑉𝑉 𝑖𝑖𝑖𝑖 οΏ½

𝐼𝐼 𝑆𝑆𝑆𝑆𝑆𝑆 = 10𝑙𝑙𝑙𝑙𝑙𝑙10 ( ) πΌπΌπ‘œπ‘œ

π‘šπ‘šπ‘šπ‘šπ‘šπ‘š

ln(1 + πœ‡πœ‡)

𝑆𝑆𝑆𝑆𝑆𝑆 = 10 𝑙𝑙𝑙𝑙𝑙𝑙10 𝐼𝐼 + 120

Intersymbol Interference

β„Ž 𝐼𝐼𝐼𝐼𝐼𝐼 = 20 log οΏ½ οΏ½ 𝐻𝐻

ACOUSTICS & BROADCASTING Sound Loudness

Nth Decade

𝑓𝑓2 = 𝑓𝑓1 Γ— 10𝑛𝑛

Reverberation Time Stephen and Bate Equation 3

𝑅𝑅𝑅𝑅60 = π‘Ÿπ‘ŸοΏ½0.012βˆšπ‘‰π‘‰ + 0.1070οΏ½

Sabine Equation π‘ƒπ‘ƒβ„Žπ‘œπ‘œπ‘œπ‘œ = 40 + 10 𝑙𝑙𝑙𝑙𝑙𝑙2 (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)

Sound Power Level (PWL) 𝑃𝑃𝑃𝑃𝑃𝑃 = 10𝑙𝑙𝑙𝑙𝑙𝑙10 (

π‘Šπ‘Š ) π‘Šπ‘Šπ‘œπ‘œ

𝑃𝑃𝑃𝑃𝑃𝑃 = 10 𝑙𝑙𝑙𝑙𝑙𝑙10 π‘Šπ‘Š + 120

Sound Power Level from an Isotropic Source 𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑆𝑆𝑆𝑆𝑆𝑆 + 20 𝑙𝑙𝑙𝑙𝑙𝑙10 𝑑𝑑 + 11

𝑃𝑃 𝐼𝐼 = 4πœ‹πœ‹π‘‘π‘‘ 2

𝑉𝑉 𝐴𝐴

𝑉𝑉 𝑆𝑆𝑆𝑆

𝑅𝑅𝑅𝑅60 = 0.049

𝑉𝑉 𝑆𝑆𝑆𝑆

𝑅𝑅𝑅𝑅60 = 0.049

Sound Pressure Level (SPL)

Sound Intensity

𝑅𝑅𝑅𝑅60 = 0.049

𝑅𝑅𝑅𝑅60 = 0.161

𝑅𝑅𝑅𝑅60 = 0.161

𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑆𝑆𝑆𝑆𝑆𝑆 + 20 𝑙𝑙𝑙𝑙𝑙𝑙10 𝑑𝑑 + 8

𝑆𝑆𝑆𝑆𝑆𝑆 = 20 𝑙𝑙𝑙𝑙𝑙𝑙10 π‘Šπ‘Š + 94

𝑉𝑉 𝐴𝐴

Norris-Eyring Equation

Sound Power Level from a Source at Ground Level

𝑃𝑃 𝑆𝑆𝑆𝑆𝑆𝑆 = 20𝑙𝑙𝑙𝑙𝑙𝑙10 ( ) π‘ƒπ‘ƒπ‘œπ‘œ

𝑅𝑅𝑅𝑅60 = 0.161

𝑉𝑉 βˆ’π‘†π‘†(1 βˆ’ 𝛼𝛼 ) 𝑉𝑉 βˆ’π‘†π‘†(1 βˆ’ 𝛼𝛼 )

Helmholtz Resonator Frequency

f-rating

𝑓𝑓 =

𝑉𝑉𝑠𝑠 π‘Žπ‘Ž οΏ½ 2πœ‹πœ‹ 𝑉𝑉 𝐼𝐼

𝑓𝑓 =

𝐹𝐹 𝑑𝑑

Compiled by: MIT - TEAM4A [Santos, Moreno, Mallari, Malana, Lineses, Jimenez, Garcia, Gamboa, Dahilog, Baduria]

15 | E S T F o r m u l a s

Channel Frequency (Ch.2-4)

Alumination 𝐿𝐿 =

Y-signal

𝑃𝑃𝑐𝑐 𝑑𝑑 2

𝑓𝑓𝑛𝑛 = 54 + 6(𝐢𝐢𝑛𝑛 βˆ’ 2)

Channel Frequency (Ch.7-13) 𝑓𝑓𝑛𝑛 = 174 + 6(𝐢𝐢𝑛𝑛 βˆ’ 7)

π‘Œπ‘Œ = 0.30𝑅𝑅 + 0.59𝐺𝐺 + 0.11𝐡𝐡

Channel Frequency (Ch.14-83)

𝐼𝐼 = 0.60𝑅𝑅 βˆ’ 0.28𝐺𝐺 βˆ’ 0.32𝐡𝐡

Picture Carrier Frequency

𝑄𝑄 = 0.21𝑅𝑅 βˆ’ 0.52𝐺𝐺 βˆ’ 0.31𝐡𝐡

Sound Carrier Frequency

I-signal

𝑓𝑓𝑛𝑛 = 470 + 6(𝐢𝐢𝑛𝑛 βˆ’ 14)

Q-signal

𝑃𝑃𝑛𝑛 = 𝑓𝑓𝑛𝑛 + 1.25

C-signal magnitude 𝐢𝐢 =

C-signal phase

�𝐼𝐼 2

+

𝑄𝑄2

𝑄𝑄 πœ™πœ™ = 𝑑𝑑𝑑𝑑𝑑𝑑 βˆ’1 οΏ½ οΏ½ 𝐼𝐼

𝑆𝑆𝑛𝑛 = 𝑓𝑓𝑛𝑛 + 1.25 + 4.5

Color Sub-Carrier Frequency 𝐢𝐢𝑛𝑛 = 𝑓𝑓𝑛𝑛 + 1.25 + 3.58

Velocity of Sound in Terms of Young’s Modulus and Density

Video Frequency Response 𝑓𝑓 =

Differential Gain

𝑁𝑁 80

π‘₯π‘₯ 𝐷𝐷𝑔𝑔 = οΏ½1 βˆ’ οΏ½ 100 𝑦𝑦

𝐸𝐸 𝑉𝑉𝑠𝑠 = οΏ½ 𝑑𝑑

Horizontal Scanning Time in terms of number of pixels π‘‘π‘‘β„Ž = 𝑛𝑛 Γ— 0.125πœ‡πœ‡πœ‡πœ‡πœ‡πœ‡πœ‡πœ‡πœ‡πœ‡πœ‡πœ‡πœ‡πœ‡πœ‡πœ‡

Tape Recorded Wavelength πœ†πœ† =

𝑠𝑠 𝑓𝑓

From: ECE Solutions in Electronics Systems & Technologies (Arceo & De Vera) Compiled by: MIT - TEAM4A [Santos, Moreno, Mallari, Malana, Lineses, Jimenez, Garcia, Gamboa, Dahilog, Baduria]

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF