Emily Thompson The Soundscape of Modernity Architectural Acoustics and The Culture of Listening in America, 1900-1933 PDF

January 18, 2023 | Author: Anonymous | Category: N/A
Share Embed Donate


Short Description

Download Emily Thompson The Soundscape of Modernity Architectural Acoustics and The Culture of Listening in America, 190...

Description

 

T H E  S O U N D S C A P E   A R C H I T E C T U R A L

A C O U S T I C S 

N D T H E  C U L T U R E   O F  L I S T E N I N G   I N  A M E R I C A

1900-1933

E M I L Y  T H O M P SO N

The MIT  Press 

Cambridge M assachuset assachusetts ts 

O F  M O D E R N I T Y

London England

 

© 2002 Massachusetts Institute of Institute  of   Technology

A ll  rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing  fro m  the publisher.

This book  was set in Bembo   by The MIT   Press. Printed and bound in the  United  Stat es of A America. merica.

V-Room is a trademark of the   Wenger   Corporation, Owatonna, Minnesota.

Library  of   Congress Congress Cataloging-in-Pu Cataloging-in-Publication blication Data Thompson,  Emily Ann. The s oundscape of modernity : archit ectura l acoustics and the cul ture of listening in America,

1900-1933 /   Emily Thompson. p. cm.  bibliographicall referenc es and index. Includes  bibliographica ISBN 0-262-20138-0   (hc. : (hc.  :  alk. paper) 1 Architectural acous acoustics. tics. 2 Music—Acoustics  an d   physics.   I Title. NA2800  T48  2002 690 .2—dc2 .2— dc21 1

2001044533

 

T O 

F A M I L Y   A ND   F R I E N D S

TEACH ER S AND STU DENTS .

generouslyy supported  by the Th The e  production   of this  book has been generousl Graham Foundation   for  Advanced Studies  in the  Fine Arts

 

C O N T E N T S

A C K N O W L E D G M E N T S  v i i

C H A P T E R   1 : 

I N TR O D U C T IO N : S O U N D

C H A P T E R  2:

T H E   O R I G I N S   O F   M O D E R N A C O U S T I C S  1 3

M ODERNITY

I

INTROD UC TION: OPEN ING NIGHT

II

A C O U S T IC S A N D A R C H I T E C T U R E A N D  N I N E T E E N T H C E N T U R I E S

AT SYM PHO NY HALL

18

W ALLACE SABINE AND THE REV ERB ERA TION FORM ULA

IV 

MUSIC  AND THE CULTURE OF  LISTENING  IN  TURN OF



45

C O N C L U S I O N :  T H E   C R I T I C S

13

IN THE EIGH TEEN TH

I II II

THE CENTURY  AMERICA

CHAPTER  3:

A N D  HIS TO RY  1

S P E A K  5 1

T H E N E W   A C O U S T I C S 1900 1933  5 9 I 

I N T R O D U C T I O N  5 9

II

SABINE AFTER SYM PHO NY HALL

III

T H E   R E V E R B E R A T I O N S  O F   R E V E R B E R A T I O N

IV

N E W   T O O L S :  T H E   O R I G I N S   O F   M O D E R N

V

T H E N E W   A C O U S T I C I A N  9 9

VI

CON CLU SION: SABINE RESOU NDED

62

107

81

A C O U S T I C S  9 0

33

C H A P T E R   4 : 

N O I S E  A N D  M O D E R N C U L T U R E I

INTROD UC TION

115

II

NOISE AB ATEM ENT AS AC OU STICAL REFO RM

I I I 

N O I S E   A N D  M O D E R N  

M u si s i c 

IV  

E N G I N E E R I N G N O I SE

A B A T E M E N T  1 4 4



C O N C L U S I O N :  T H E   F A I L U R E   O F   N O I S E A B A T E M E N T   1 5 7

A C O U S T I C A L M A T E R I A L S  A N D   M O D E R N

ARCHITECTURE

1900 1933 

169



INTRODU CTION

II 

A C O U S T I C A L M A T E R I A L S  A T T H E

I II

A C O U S T IC A L M A T E R I A L S A N D A C O U S T I C A L

1 69

  T U R N  O F T H E   C E N T U R Y   1 7 3 M ODE RNITY:

S T .   T H O M A S S   C H U R C H 18 18 0 IV 

A C O U S T IC A L M A T E R I A L S  A N D   M O D E R N THE

V

NEW  Y ORK

L IF E IN S U R A N C E

VI

C H A P T E R   6 : 

COMPA NY

M O D E R N  A R C H I T E C T U R E   A N D  M O D E R N TH E  PHILA D ELPHIA   SAVING FUND  

C O N C L U S IO N

A C O U S T I CS : BUILDING  190

A C O U S T IC S :

SOCIETY BU ILDING

207

  227

E L E C T R O A C O U S T I C S  A N D M O D E R N  S O U N D 1900 1933  2 2 9 O P E N I N G   N I G H T  A T   R A D I O C I T Y   2 2 9



IN T R O D U C T I O N :

I I 

L I S T E N I N G   T O   L O U D S P E A K E R S :  T H E   E L E C T R O A C O U S T I C SOUN DSCA PE

2 35

III

THE M ODE RN  A U D I T O R I U M   2 4 8

IV

ARCHITECTURA L ELECTROA COUSTICS: THEATER AN D STUD IO DESIGN

256

120

130

 

C H A P T E R   5 : 

1900 1933  1 1 5



E L E C T R O A C O U S T IC

ARCHITECTURE:

THE ELECT RICAL CON STRU CTION

V I 

C H A P T E R  R   7 : 

SOUND

OF SPACE

E N G I N E E R S  A N D 272

CONCL USION: REFORM ULAT ING REVERBE RATION   285

C O N C L U S I O N :  R O C K E F E L L E R   C E N T E R   A N D T H E END

OF AN ERA

295

C O D A   3 17 N O T E S  32 5 BIBLIOGRAPHY  425

INDEX  4 7 1

 

  his page intentionally left blank

 

 

K N O W L E D G M E N T S

This project could never have been accomplished without the   financial,  institutional, and pe rsonal sup po rt that I have rec received eived over the years. The Nation al   Foundation provided    Science  Science a Graduate Fellowship that  first  allowed  me to begin thi thiss intellectual jou rne y   a s   a graduate student  in  history  o  f science  a t Princeton   University over  fifteen  years ago.  ore   recently,  the NSF  provided  a Research Fellowship   in  Science  a n   d Technology Studies that enabled  me to

draw that same jour ney to a close draw close by supp orting my work on the development of sound m otion pictures. Along the way, the M el ellon lon Found ation sponsored a year   of postdoctoral study at Harvard University and the National Endowment fo r   the Humanities provided a summer stipend that enabled me to experience, as  well as to  study,   from  the Department of  the noises of New Y ork. A fellowship from

H istory   a  t P rinceton U niversity subsidized    a semester's leave  from  teaching when I needed it most, and the Graham Foundation for Advanced Studies in the Fine Arts underw rote my proc urem ent of tthe he visual illustrat illustrations ions that, perhaps   ironica ironicall lly, y, add so mu ch to a book abo ut soun d.

have beckoned  from  far and  wide, leading T h e   Sirens of the  history  o sound f m e   places   I never would have anticipated visiting when    I began this project.  In each case,   I was  guided   safely  through   th   e uncharted w aters  b   y librarians, archivists,   and historians who helped me to follow the elusive strains of that always   compelling song. Speci Special al thank s to Janet Parks at the the Avery Arc hitectu ral and F ine A rts L ibrary of C olum bia U niversit niversity; y; Sheldon H o chheiser at the

A T T   A rchives; E m ily N ov ak  a n d  K a r e n F i n k s t o n  at the New  York  Life   Reed Insurance   C om pany; Jam es   at the  Rockefeller Center Archive Center; Charles Silver   at the  Celeste Bartos Film Study Center  of the  M u s e u m  o f Modern Art; Carol Merrill-Mirsky   at the  E d m u n d  D . E del delm m an M useum  of the Hol l ywood   Bowl; Steve Stevenn L acoste at tthe he Los Angeles Philharmon ic Archives; Jane W ard   a n d  B r i d g e t C a r  r at the  B oston Sym phony O rche stra A rchives; Nicholson Baker at the American Newspaper Repository; Alex Magoun at the

 

D a v i d S a r n o f f L i b r a r y ;  John  K o p e c   a n d   D a v i d M o y e r   at the   R i v e r b a n k Acoustical   Laboratories; and Kathleen Do rman at the the Joseph Joseph   H enr y   Papers of the Smithsonian Institution. Thanks also to the   staff  at the Harvard University Archives and the Baker Library   of the   Harvard B usiness School; School;   th e   Marquand Library   a t   Princeton

University;  th e   M u s e u m   of the   City  of New  York;  The New   York Municipal Reference Library and Archives; Archives; the N ew-York Historical Historical Society; the Hagley Hagley M u s e u m   a n d   Library;  the rchitect   of the   Capitol;   th e   Neils Bohr  th e   Office   of the  A rchitect ic a l L ibrary   of the   A m e r i c a n I n s t i t u t e   o f   Physics;   th e   A m e r i c a n P h i l o s o p h ic   UCLA

Society;   th e   T hom as   A .   Edison N ational Historic Sit Site; e;  th e   Film   a n d Television Televisi on Archive; the the U niversity o f Illinois Illinois at Urb ana -Cha mp aign A rchives; the Case W estern Reserve University Special Collections; Collections;   th e   Society   o f   M o t i o n

P ict ure   a n d   Television Engineers;   th e   Ins t it ut e   o f   E l ect rical   a n d   E l ect ronic Engineers; and the  A cous tical Society  o f  A m erica. erica. Because   my study is centered around the material culture of sound and lis-

tening it is particularly gratifying to thank those who contribu ted to the   material construction of the physical   artifact  that you no w hold in your hands. For t h e i r   e f f o r t s   i n   p h o t o g r a p h y i n d e x i n g a n d   p r o o f r e a d i n g I   t h a n k   John Blazejewski Dwight  Primiano Carol Thom pson M artin   W h i t e a n d   Laraine Lach. Am anda Sobel Sobel   a n d   Jason Rifkin also provided   helpful  research assistance. The MIT Press makes publishing a pleasure and I particu larly than k Lar ry Coh en Michael Si Sims ms and Yasuyo Iguchi for their their invaluable con tributions to th e   final  product. It is   also   a   pleasure as   well   as a   privilege to   express   m y   gratitude   to   those acousticians   w h o   shared with   m e   their technical expertise   a n d   personal  memo-

ries. Sincere thanks  to Dr. Leo   Beran ek Professor Cyril Harris Russell Russell Johnson David   W .  Robb Robert   M .   Lilkendey Raymond  Pepi Gerald Marshall a n d Thom as Horrall. Special thanks to Carl Rosenberg who has bee n a good   friend as  well   as a  valuabl  valuablee technical consu ltant.

M y   colleagues   in the   D epart m ent   o f  History   an d   Sociology   o f  Science   at the University   o f   P e n n s y l v a n i a — s t u d e n t s staff a n d   faculty alike—have always University  enco urag ed me to do my best and the book that foll follows ows is is better for having been written in such a collegial and stimulating environment. I also thank my technology Leigh Schmidt fellow-travelers   in au ral history and in the history of technology Dou glas Kahn Bi Bill ll Leslie Leslie and Su san Dou glas for helping me to hear the signal signal of my story amid the noise of history and for the friendship they have   offered along   with  their support.

 

C K N O W L E D G M E N T S

 

From  m y   very  first   days   a s a   graduate gradua te student Charles Gillis Gillispie pie  ha s  educated

a nd   encouraged  me in   ways that  I can   never begin  t o   repay.   Peter Galison  h a s generously presented  me  with  valuable opportunities  to  push  my work in new directions directi ons and he has always always provided invaluable guidance guida nce along the t he way. way. Charles Rosenberg  has a   wonderful ability  to   identify   what  is   most important about  a story; my own story has benefitted enormously from his scrutiny scrutiny and counsel counsel

and I  appreciate even more  h is   conviction that  it  matters. Finally without the friendship of John  Carson Angela Creager Creager and Carolyn

the   love  of my  family it  would  all be   nothing  bu t   noise. Goldstein a s  well  as the

i x 

 

C K N O W L E D G M E N T S

  his page intentionally left blank

 

C H A P T E R  1  

I N T R O D U C T I O N : S O U N D , M O D E R N I T Y ,  A N D   H I S T O R Y

T h e   Soundsc ape of 

odernity  is a  history  of  aural culture  in   early twentieth-century

America.  It  charts dramatic transformations  in  what people heard,  and it explores equally  significant   changes  in the  ways that people listened  to  those sounds. What  they heard was a new  kind  of sound that was the  product  of  moder n   technology.  They  listened  listened  in   ways that acknowledged this  fact,   a s  critical consumers  of aural commodities.  By examining  the  technologies that produced those sounds,  sounds,  a s  well  well   as the the   culture that consumed them,  them,  we can  begin  begin   to   recover er   more  fully   the  texture  of an era known  as  The Machine Age, and we can comprehend more completely the experience of change, particularly  technolog-

change, ge, that characterized cha racterized this era. ical   chan identifying a  soundscape  soundscape as subject of B y   identifying a  as the the   primary subject  of the   story that follows, I   pursue  a way of  thinking about sound  first  developed  by the  musician  R.

Murray  Schafer   about twenty-five years ago.  Schafer   defined  a   soundscape  as a with  th e   environsonic   environment,  a  definition that  reflected   h is   engagement with  sonic mental movements  of the  1970s  and  emphasized  his  ecologically based concern about  the  polluted nature  of the  soundscape of that era.1 While  Schafer s   work remains socially socially   a n d   intellectually relevant today, th today, thee   issues   that influenced  influenced  it are n o t   what  what  h a s  motivated  motivated   m y o w n   historical study,  study, and I use the  the   idea  idea  o f a   soundscape   somewhat  differently.   Here, following  the  work  of Alain  Corbin,  I define th e   soundscape  as an   auditory  o r   aural landscape. Like  a  landscape, a  a  soundscape

simultaneously  a  physical environment  environment  and a way of   perceiving that environis   simultaneously  2

ment; it is both  a world  and a  culture constructed  to  make sense  of that  world.

The  physical aspects of a soundscape consist  not  only  of the  sounds themselves,

energy permeating  the  atmosphere  in  which people live, the  waves of acoustical energy but  also  the  material objects that create,  and  sometimes  A sometimes destroy, destroy, those sounds. A

soundscape s  s   cultural aspects incorporate scientific  scientific  a n d   aesthetic ways  ways  o f   listen-

ing,  a  listener's relationship  to  their environment,  and the  social circumstances

 

3

that dictate who gets to hear what.   A soundsc ape, like like a landscape, ul ultimately timately ha s   m ore to do with civil civilizat ization ion than with nature, and as such, it is constantly

under construction and   always  undergoing chan change. ge. The A merican soundscape u n d e r we n t  t   a  particularly dramatic transformation  transformation  in the  1900.  B y the  years  after  1900.  1933, both   th e  nature  o f sound  and the  culture  o f listening were u nlike anything that   h a d  come before. that

T h e   sounds themselves were increasingly  th e  result  o f  technological mediation. Scientists Scientists and engineers discove discovered red ways to m anipulate traditional materials o f   architectural construction  in  order  to  control  th e  behavior  o f s ou n d  in  space. N e w   kinds  to  control sound were developed, kinds  o f  materials  specifically  designed  designed  to 

a n d   were  soon  followed  by ne w  electroacoustic devices that effected  even greater results by converting sounds into electrical signa signals. ls. Some of the soun ds that resulted from these mediations were objects of   scientific  scrutiny; others were   th e  unintended consequences—the noises—of  a n  everever-more more mec hanized society; others, llike ike musical concerts, ra radio dio broadcasts, and mo tion pictu re so und tracks,  were comm oditi odities es consumed  by an  acoustically ravenous public.  T h e conto urs of change were the same for aall ll..

Ac c om p a n y i n g t h e s e c h a n g e s   in the  n a t u r e  o f  sound were equally  n e w trends   in the  culture  o f  listening.  A  f u n d a m e n t a l c om p u l s i on  to  control  t h e behavior o f ssound ound drov drovee technological developments in architectural acoustics, to  listen more critically,  to  determine and this imperative stimulated auditors  auditors   to  critically,  to  whether that control had been accomplished.   This  desire for control stemmed partly from new worries abou t noise noise,, as traditi traditionally onally bothersom e sources of sound like animals, peddlers, and musicians were increasingly drowned out by the technological crescendo of the m oder n city. city. It was aals lsoo dri driven ven by a preoccuall things unnecessary, pation   with  efficiency  that demanded  demanded  th e  elimination  elimination  of all things includin g unne cessary sou nds. Final Finally, ly, control was a me ans by which to exercise exercise choice in a market   filled  w ith aural comm oditi odities; es; it aall llowed owed produ cers and consumers  alike to   evaluate whether  alike   to  identify  what constituted  good  sound, and to   products achie achieved ved it. particular products particular

Perhaps the most signifi significant cant result of thes thesee physical and cultural changes was the reform ulation o f tthe he relat relationship ionship between sound and space. Indee d, as the new soundscap e took shape, sound was gr graduall aduallyy dissoci dissociated ated from space until th e   relationship ceased  to  exist. T h e  dissociation began  with  th e  technological manipulations of sound-ab sorbing building m aterial aterials, s, and the severance was made complete   when  electroacoustic devices claimed sound  sound  a s  their own.  own.  A s scientists   a n d  engineers engaged increasingly  with  electrical representations  o f



C H A P T E R  1

 

acoustical phenomena, sounds became indistinguishable from   th e  circuits that produced them.  When  electr electroacoustic oacoustic instrume nts llik ikee microphon es and  loud speakers moved out of the laboratory and into the world, this new way of thinkin g   migrated with them,  and the  result  w a s  that sounds were reconceived  a s signals. When  soun ds becam e signa signals, ls, a new criterion by  which  to evaluate them w a s   established, a   criterion whose origins, like  th e  sounds themselves, were

located   in the new electrical technologies. Electri Electrical cal syst systems ems were e valuated by measuring the   strength  o f  their signals against  th e  inevitable encroachments  o f electrical  noise, noise, and thi thiss measure now became the m eans by which to judg e all sounds. The   desire  fo r  clear, controlled, signal-like sound became pervasive, an  andd

anything that interfered  with  this goal was now engineered out of existence. Reverberation,   th e  lingering over time  o f  residual sound  in a  space,  h a d always  been  a  direct result  the  architecture that created  a function   o f both result  of the  created  it, a function th e   size  o f a  room  and the  materials that constituted  it itss  surfaces.  A s  s uch,  it sounded   th e  acoustic signature  of   each particular place, representing  th e  unique character   for better  o r  worse)  of the  space i  inn  which  it was  heard. With  th e  rise

of the mo dern soundscape this this would no longer be the   case. Reverberation now became just another kind of noise, unnecessary and best eliminat eliminated. ed. A s   th e  new, nonreverberant criterion gained hold,  and as the  architectural and electroacoustic technologies designed to achieve it were more widely deployed, the so und th at those technologies pro duc ed no w prevailed. The result w a s  that  th e  many  different  places that made  up the  modern soundscape began to   sound alike. From concert  halls  to   corporate  o f f i c e s from   acoustical laboratories  to the soundstages   o f  motion picture studios,  studios,  the new  rang  out for the   soundstages new  sound rang  all al l  to   hear. Clear, direct,  an d  nonreverberant, this modern sound  w as   easy  to

understand, but it had  little to say abo ut the places in which it was produced and consumed. This  new sound was modern  for a number  of reasons. First, it was  modern because   it was  efficient.  It   physically embodied  th e  idea  o f  efficiency  b y  being all elements   n o w   deemed unnecessary,  and it exemplified it exemplified   an an   aesthetic stripped   of all elements stripped  unnecessary, and o f   efficiency  in its  resultant signal-like clarity. I t  additionally fostered  efficient behavior   in  those  w h o  heard it, a s the  connection between minimized noise  a n d maximizedd productivi maximize productivity ty was convinci convincingly ngly de mon strated. Second, iitt was m odern

because   it was a  product.  It  constituted  a  commodity  in a  culture increasingly because  defined   by the act of  consumption,  and was  evaluated  b y  listeners  w h o  tuned

 itt was modern because it was  pertheir ears  to the  sounds of the  market. Finally, i



I N T R O D U C T I O N :

S O U N D

M O D E R N IT Y

A N D  H I S T O R Y

 

ceived to   demon strate man s technical mastery ove overr   hi s   physical environment, and it did so in a way  th at transform ed ttradit raditional ional rel relations ationships hips between sound , space,  an d   time. Technical mastery over nature   and the   annihilation   o f   time   an d space  have   long  been recognized   as  definitive aspects   o f   modern culture. From cubist   art and Einsteinian physics to Joycean stream-of-consciousness storytelling, modern   artists   an d   thinkers were united   b y   their desire   to   challenge   th e  a s traditional bounds  bounds   o f   space   an d   time Modern  acousticians shared this desire,  as well as the   ability   to   fulfill   it. By   doing   so ,  tthey hey m ade   th e   soundscape modern. Telli Tel ling ng the story of the com plicated tran sform ation s outlined above presents its   o w n   challenge   to the   writer   w h o   strives   to   control   a   narrative that moves through historical   time  a n d   space.  T h e   story that follows begins   in   1900   an d

ends in   1933,   but it   traverses this chronological trajectory several times over,

returning to the start to explore new themes and phenomena, reexamining recurrent   phenomena along   th e   way, reiterating cen tral theme s,  a n d   ultimately— I   hope— creati creating ng a resounding resounding whole in wh ich all the disparate elements combine to characterize   fully   and compellingly the construction of the modern soundscape. I  begin  at the   turn  of the   century  with opening night  a t   Symphony   Hall  in  Radio City Boston, and I end  with Boston, and  with Radio  City  Music Hall   in New  York,  which opened just as   the Machine Age in America came to a grinding halt at the close of 1932.

Symphony   Hall  was a secular temple in which devout listeners gathered to worship   the great symphonic masterpieces of the the p ast, particularly the music of Ludwig   v an   Beethoven, whose name   w as   inscribed   in a   place   o f   ho no r   at the center  of the gilded proscenium.  Radio  City Mu sic Hall, in co ntrast, w as a celebration  of the sou nd of modernity. Its gilded gilded proscenium was cr crowned, owned, not with th e   name   o f   some long-dead composer,  composer,   b u t   with  state-of-the-art loudspeakers that b roadcast the m usi usicc of the day ttoo thousands of auditors gat gathered hered bene ath it. Yet,  even   as   Symphony Hall   w as  dedicated   to the   music   of the   past,   it   her-

alded   a new   acoustical era,  an era in   which science   an d   technology would exert alded  ever-greater degrees of control over sound. Symphony Hall was recognized as the first first auditorium  auditorium   in the   world   to be  constructed according   to  laws   o f   mo d e r n

science. Indeed,   it not   only embodied,  embodied,   b u t   instigated, t instigated,  thh e   origins   of the   m o d e r n science   of acoustics.  When  a yo ung physicist at Ha rvard University nam ed Wallace   Sabine was asked to consult on the acoustical design of the hall, he

responded   by  developing   a  mathematical formula,  an   equation   fo r   predicting   th e acoustical quality   o f   rooms. This form ula would prove crucial  for the  subsequent transformation   of the soundscap e into som ething disti distinctly nctly mode rn.



CHAPTER  1

 

While  Radio  City Music Hall  w a s  intended  to  celebrate that soundscape,

facing   optimistically toward the  future  rather than gazing longingly back at the past,  it  actually signaled  the end of  this period  o f  change. Radio  City  demonstrated   an unprecedented degree of control over the behavior of sound, but this demonstration   was no  longer compelling  in a  culture  n o w  facing  f a r  greater

challenges. In America in 1933, the technological enthusiasm that had fed the  Thh e  Machine Age was long  drive  fo r  such mastery  w as  fundamentally shaken. T  a nd Radio  City  w as  immediately recognized  as a relic  of that bygone era. over,  and Since   Wallace Sabine's work on Symphony Hall was recognized at the time as   something distinctly new, i  itt  must  be  examined closely  in  order  to understand

its it s   significance f or  what would follow. Chapter  2  presents this examination  b y exploring  th e  scientific details  of  Sabine's research  and his  application  of  those

results  to the design of Symphony  Hall. The equations and form ulas he  devel-

oped   a re  crucial historical  artifacts  for the  story that follows  and it  would  be inappropriate   not to include them, but their importance will be  fully  explained in   nonmathematical prose, f o r  readers  n o t  accustomed  to  confronting  scientific equations. Just   a s  important  f o r  understanding  th e  nature  a n d  reception  o f  Sabine's work  is the  work is context  in  which  it place, so chapter  chapter 2 also presents presents a  brief ef surthe  context  in  which  it   took place, so  2   also  a bri ve y   of earlier  efforts  to control sound, and it considers why Sabine's  work  w as perceived   to be  perceived valuable b y  both architects  architects  an d  listeners . Finally, an  be  valuable b an  examination of the  the   critical reception  the  acoustics  of   Symphony Hall demonstrates  reception  of the  acoustics  of demonstrates  th e complicated combination complicated combination   of of social,  social, cultural, an cultural, andd  physical factors  that  that  g o  into  into  th e process   of  defining, as well  as creating,  good  sound. process Chapters   3 through  6  cover  th e period  1900—1933 from  four different perspectives.   C h a p t e r  3  focuses  on t h e  work  of the  scientists who , following Sabine's   lead, devoted their careers to the study of sound and its behavior in

architectural  spaces.  Like Sabine before them, these men were initially  frustrated by a  lack  of suitable scientific  tools  fo r  measuring sound. sound. With  th e  development of new  electrical instruments  in the  1920s,  no nott  only  did it  become  possible  to

measure   sound, but the tools also stimulated new ways of thinking about it. Scientists   drew conceptual analogies between the sounds that they studied and the circuits that measured those sounds, and the result was a new interest in the

signal-like signal-l ike aspe cts of sound. By 193 1930, 0, new tools, new techn iques, and a new lang u a g e f o r d e s c r i b i n g s o u n d h a d f u n d a m e n t a l l y t r a n s f o r m e d t h e   field  o f acoustics.  T he  N ew  Acoustics w as  proclaimed,  and its  success  a s a science  an d a   profession was acknowledged with the founding of the Acoustical Society of

America. 5 

I N T R O D U C T I O N : S O U N D , M O D E R N I T Y ,  A N D  H I S T O R Y

 

The New   Acousticians  the   modern  Acousticians   of the modern   er a   sought  sought   a   larger sphere  sphere   in   whi ch to apply their science to attract public attention to that science and to earn respect for   their expertise   a n d   their   efforts.  T h e   problem   o f  city noise provided   a challenging and highly visible forum. Chapter 4 thus moves out into the public realm and charts changes in the problem and meaning of noise. While  noise has been a perennial problem through out hum an histor historyy the

urban   inhabitants of early-twentieth-century America perceived that they lived in an era unprecedentedly loud.   More   troubling than the level of noise was its nature as traditional audito ry irr itan ts were increasingly drowned out by the din

o f   modern technology:  technology:   th e   roar  roar   o f   elevated trains th e   rumble  rumble   o f   internal combustio n en gines the crackle and hiss of radio transmissions. As the physical nature   of noise noise changed so too did attempts ttoo eliminate it. At the t urn of the

century noise abatement   was a  type   o f   progressive reform where   influential  citizens   attempted   to   legislate changes   in   personal behavior   to   quiet  th e   sounds   o f the city. As tthe he sou nds of m od ern technology swell swelled ed it became clear that only technical   experts could quell these sounds and in the 1920s acoustician s were called   u p o n  the   modern   city. n   to   reengineer  reengineer   th e   harmony  harmony   of the While  the majority of those who engaged with noise sought to eliminate it

some were stimulated more creatively by the sounds that surrounded them. The modern soundscape  w as  filled   with music   as  well   as  noise an d   chapter   4   consider s   how both jazz musicians and avant-garde composers redefined the meaning o f   sound  sound   and the  the   distinction between music  music   an d   noise. Acousticians  Acousticians   d id   mu c h the same thing but with   scientific rather than musical instruments.

Noise abating engineers ultimately   failed however to   master  master   th e   mo d e rn urban   soun dscape. Their new abilit abilityy to m easure nois noisee only am plified the   problem a nd did not translate into a solution w ithin the pub lic sphere of legislati legislation on an d   civic   action.  action.  Nonetheless a private   alternative   would   succeed   where  this public   approach did not and chapter 5 retr retreats eats back indoors to consider how the tech nology of archite ctural acoustics was deployed to alleviat alleviatee the the problem of noise and to create a new mod ern sound. Cha pter 5 ffollows ollows the the rise of the a coustical ma terials industry cha rting the development of a range of new building technologies dedicated to isolating and absorbing sound. Acousticians devised new materials and supervised their installation   in   offices apartments hospitals an d   schools as  well   as in   traditional places of acoustica l desi design gn llike ike church es and auditoriu ms. These sound -engin eered buildings   offered   refuge   from   th e   noise without a n d   transformed qui quiet et  from   a n unenforceable   public right into   a   private commo dity avail available able  fo r   purchase   b y anyone   w h o   could   afford   it .



C H A P T E R  1

 

Acoustical   building materials demonstrated technical mastery over sound a nd   embodied the values of  efficiency.  By minimizing reverberation and other unnecessary   sounds,  th e  materials created  a n  acoustically  efficient  environment a n d   engendered  efficient  behavior  in  those  w h o  worked  within  it, and  began

the process by which sound and space would ulti ultimately mately be sepa rated. Through a series   o f  case  studies of representative materials and the buildings in which they were installed, installed, chapter 5 wi will ll describe the architectural constru ction of mo dern sound and will conclude by demonstrating how that sound made an integral contribution  to the  establishment  of modern  architecture  in  America. With  the silencing of  space  came a desire to  fill  it with a new kind of sound,   th e  sound  of the  electroacoustic signal. Chapter  6  examines  h o w  electroacoustic technology moved out of the lab and into the world, and, by  returnin g to p e rforman ce   spaces,  emphasizes how much things had changed since 1900.   Microphones loudspeakers, radios,   public  address systems,  a n d  soun d motion pictures now   filled  the sounds cape with new electroacoustic products. Consumers   o f  those products, like acoustical scientists  an d  engineers, learned  to in   ways that distinguished  listen   in listen  distinguished  th e  signals from  from  th e  noise. This distinc tion became   a  basis  fo r  defining what constituted good sound: clear  a n d  controlled, direct and nonreverberan t, denying the   space  in which it was produced.

This mod ern sound w as not excl exclusi usivel velyy tthe he prod uct o f electri electrical cal technologies,  and it was  constructed architecturally  in  auditoriums  where  loudspeakers were neither required  required   n o r  desi desired. red. Nonetheless, most Am ericans heard this sound most   often  on the radio or at the movies, and chapter 6  focuses  on the  transformation   o f  motion picture theaters a n d  studios  a s bot h w ere wired  fo r  sound. T h e   technologies  o f  electroacoustic control that were developed  in the soun d   motion  pictu re industry highlighted questions ab ou t  t h e  relationship between sound and spac space, e, forcing sound engineers and mo tion picture produ cers alike   to  decide just  what  their  n e w  sound tracks should sound like. Th e  technology also provided new means by which to construct the sound of   space, as  a s engineers learned   to  create electrically  a  spatialized sound that  w e  would  call   virtual. virtual. The sou nd of space was now a qual quality ity tthat hat could be added electri electrically cally to any sound signal in any proportion; it no longer had any relationship to the physical spaces   o f  architectural construction.  This  ne w  sound  bore  little  resemto   that which  b lan ce  ce   to which  h a d  b e e n h e ard  ard  i n  1900.  1900.  It was so  different,  Wallace Sabine'ss fund am ental rever Sabine' reverberati beration on equation   failed  to describe it. Sabine's equation wa s revised to fit the m od ern sound scape, and with this revision, the transformation   was complete.

7

I N T R O D U C T I O N : S O U N D , M O D E R N I T Y , A ND

HISTORY

 

T h e   revision   o f   Sabine s eq uatio n expressed   t h e   t r a n s f o r m a t i o n   of the soundscape   in a   cryptic ma thematical language that spoke only   to   acousticians and sound engineers. That sam e transfo rma tion was more widely and unm istakably he ard   in the   s o u n d s   a n d   s t r u c t u r e s   o f   R o c k e f e l l e r C e n t e r ,   a n d   T h e f odernity  closes   b y   examining   the th e   critical reception   of the   center Sounds cape  cape  o 

i n   order   t o   u n d e r s t a n d   t h e   conclusion   of the era   that de f ined   t h e   m o d e r n sound. From   th e   office   spaces   of the RCA   tower   to the NBC   studios   to the   auditorium   o f  Radio  City Music Hall,   th e   modern soundscape   w a s  epitomized   a n d celebrated. Even before   th e   construction   of the   center   w a s   complete, however, such   celebration   w as   immediately perceived   to be   inappropriate   a n d   outdate d. N ew   economic conditions   and new   attitudes regarding   th e   previously unques-

tioned promise   o f   mod ern tec technology hnology brought   the era of   modern acoustics  t too a close.   T h e   M achine   Ag e wa s n o w   over,   and the   m odern soundscape w ould begin   to   transform itself again into something new. With  the b asic outline of the story in p lace, it is   useful   to consider   briefly

ho w   this story will relate   to   others doubtlessly more familiar   to its  readers. W hat does   Th e  Sounds cape  o f odernity  accomplish, beyond providing   a   sound track   to a   previously silent historiography? Most   basically,   my story builds and expands upon past histories   of the   science   a n d   technology  o f   acoustics. Much   o f   this work has been written by practitioners, and they have constructed a solid foundation upon which   I  have built   my o wn   understanding  of the   intellectual devel4 opments   of the field.   Historians   o f   science have only recently begun   to   turn their attention to the science of sound, and have so far  focused   on periods that 5 precede   m y   own  These  studies have   offered   important  insights   into  general questions concerning   t h e   rise   o f   m od ern scie nce   and the   role   o f   scientific instruments   in its   creation.  T he   history   o f   twentieth-century acoustics si simila milarl rlyy addresses  fundamental questions about the relationships between science, industry,   and the military, military, and it elucidat elucidates es the instrum ental con nections between the

material culture   o f   science   and its  intelle  intellectual ctual accomplishments. 6   M y   work only begins to examine these   issues,   but it demonstrates the   fruitfulness   of the history of acoustics in a way that m ay enco urage others to follow. follow. A s   a con tributio n to the history of ttechnology, echnology, my story is situated at the intersection   of two   different,   b u t   equally important, strands  o f   scholarship.  While some   of the   best work   in   this  field has  been devoted   to the   history   o f  radio,   th e accomplishments   o f   Hugh Aitken   an d   Susan Douglas have rrecently ecently been complemented   by the   output   of an   emerging community   o f   scholars focusing upon



C H A P T E R  1

 

7

a   whole range   o f   technological topics   associated   with music   a n d   sound.   M y work  adds architectural acoustics   to  this mix but  perhaps   more  importantly

addresses  th e   history   o f  listening   in a way  t ha t   m a y  influence   o ur   understanding 8 of the   entire range   o f   aco ustical technol technologies ogies currently being   explored. The environmental trend in the history of technology is equally vibrant and 9 particularly   valuable  for its   considerati consideration on   of the   urban context.   M y   examination of the  the   problem   o f  noise  noise   in  Am erican ci citi ties es bui builds lds upon   th e   work  work   o f   others  others   w h o have   explored this phenomenon but my   perspective  is  i s  distinct. Instea d   of   draw-

ing  upon   late twentieth century  concerns about   pollution  and the  degradation

of the env ironmen t I turn instead to the cultura l mea ning o f noise in the earl earlyy decades   of the century to demonstrate how musicians and engineers created a new culture out of the noise of the modern   world.10  By doing so I hope to

argue more generally that culture   is   much m ore than   a n   interesting context   in which  to place technologi technological cal accom plishments; it is insepara ble   from   technology itself.

T h e   history   o f   acoustics intersects  with  th e   history   of the   urban environment not only through the problem of city noise but   also   through technologies of   architectural construction a n d my   work addresses  a n   aspect  of   construction long neglected   b y   visually oriented architectural historians.  I  challenge these historians to   listen   to as  well   as to   look   at the   buildings   of the   past and I   thereby suggest   a   different   w ay to   understand   th e   advent   o f   modern  architecture   in Am erica. As a n   outsider   to   this   field I   leave   it to   others   to   evaluate   th e   useful11 ness  of my   approach   and its   conclusions. I  a m   similarly   a n   outsider   to the field of film   studies bu t   some   of the   most interesting and thoughtful work on the history of sound technology and the culture of liste listening ning is foun d here and my ow n   work  has benefitted enormously 12 from   th e   insights   of  this scholarship.   Still here as in   a rchitect rchitectural ural studi studies es ma ny historians   continue  continue   to   operate with  with   a   predominantly visual orientation under standing  sound  sound film  film  prima rily rily   in its relation its  relation   to the  the   earlier traditions o traditions  o f  silent  silent film  film production.  In   contrast I  approach sound  film  from   th e   perspective  of the   wider range   of aco ustical technologies th at were developed an d deployed a longside iit. t. B y   doing   so I am   able   to   demonstrate that in   deciding what sound   film  should

sound like filmmakers  functioned   in a   larger cultural sphere.  T h e   decisions they the   larger made reflected  reflected   n o t   only  only   th e   conditions  conditions   o f   their  their   o w n   industry but the  soundscape  in which that industry flour flourished. ished. A ny   exploration   of a   soundscape should ultimately inform   a   more general understanding   of the soci society ety and culture that prod uced it. The reverbe reverberations rations of



I N T R O D U C T IO N : S O U N D

MODERNITY

A N D  H I ST O R Y

 

aural  history within the larger l arger intellectual framework of historical studies studies are just beginning  to be  heard, but the  the  successes   already accomplished speak well well  for the future  future   of this approach. approac h. Leigh Schmidt, for example, has examined the meaning mean ing of  of  sound  in the  the  American Enlightenment,  and has thereby  not  only recovered the sensory experience of religion religion in American history, but also documented the forging of both science and popular culture out of those experiences. Mark

Smith  has identified  a  previously unacknowledged unacknowle dged site  of  sectional tension tensi on  in antebellum America America  masters, and   by  reconstructing  the  soundscapes of  slaves masters,  and 13

abolitionists.   And such su ch studies of soundscapes are by no means me ans limited to the American context . Bruce Smith has restored the lost sound of Shakespearian drama as it originally reverbera r everberated ted through thro ugh the t he Globe Theatre and across Early

Modern  England,  and in  those reverberations  he  hears  the  transition from oral to literate culture. cult ure. James James Johnson has detected the rise of romanticism and  bourgeois geoi s sensibility sensibility within the soundscape of the French concert conce rt hall, and Alain

Corbin  has perceived  in the  peals  of village bells  in  nineteenth-century France the changing structures of religious and political authority.

14

Clearly, these historie his tories s have have much to say about the larger historical hist orical processes

at  work within their soundscapes, and all highlig issues   that histohighlight ht themes and  and  issues  have long considered to be constitutive of the rise r ise of modern moder n society and and rians   have 15 culture  in the West.   Until  recently, that  long-term  process  of modernization

w a s   perceived as a part icul arl y visual one, one, but but the new aura l hist ory now demonstrates that, to paraphrase Schmidt, there is more to modernity than meets 16

the eye.   This This is particularly true for the period of so-ca so-called lled high modernism, and  the  long-standing absence of the  aural dimension  in cultural histories of the late nineteenth  and early twentieth  centuries  is perhaps most striking  of all.   Modernism has been read r ead and looked at in detail but rarely heard, heard,

con-

cludes  Douglas Kahn, in spite of the  fact   that this culture entailed more sounds and produced  a greater emphasis on listening to and produced  to things,  things, and on  on  listening  differ17 ently than ever before.  Those new sounds, and that  that  different  different   way of of listening, were created  and  constructed through  new  acoustical technologies. James Lastra

also   asserts  asserts   that the experience  we  describe  describe  as 'modernity'—an 'modernity' —an experience  experience  of profound  temporal  and  spatial displacements, of  often   accelerated and diversified shocks, of new  modes  of society  and of  experience—has been shaped decisively

by the technological  media.

18

  To exclude acoustical technologies and sound

media  from   scrutiny is to miss the very nature media  n ature of that experience. e xperience. Scholars Scholars who

assume  that consideration  of the   visual an d   textual  is  sufficient  fo r  understanding modernity, modernit y, seem, well, well, shortsighted shortsi ghted to say the least.

1 0 

C H

P T E R 

1

 

Restoring  the  aural  dimension of modernity to our  understanding  of it

promises   n o t  only  to  rende r that und erstan ding

acoustical acoustically ly correct correct,, it   also

provides   a  means  by which  to  understand,  more  generally  a n d  significantly,  th e rol rolee of ttechnology echnology in the cons truction of that culture. This,  after  all, was the era

in   which  th e  adjective  m o e r n  achieved  a new  resonance  through  th e  self-conscious   efforts  o f  artists,  writers, musicians, musicians, and architects, all of whose work was characterized   by a pervasive  engagement with  technology. Histories  o f  modernism have long recognized  th e  importance  o f technology as   inspiration  to the  artists  who are credited  with  creating  the new  culture.  B u t these histories histories have ttoo oo seldom engaged w ith techn ology as intensely as did

those artists.  T o o  often,  th e  machines  of the  Machine  Age are  characterized  as the uninteresting products of naive engineers that only achieved   cultural significance   when  transmitted  through the  lens  o f  art. The impact  o f  technology 19 upon these   artists,  not the technology  itself, is wh at drives drives these accoun ts. It   is not my  intent  to  deny  th e  importance  o f  those artists  a n d  their  work; indeed their music and architecture are crucial elements of the story that follows.   But by  juxtaposing  th e  creations  o f  mu ndane engineers  with  those  o f extraordinary   artists,  I implicitly argue that the works of both were equally significant  a n d  equally  modern.  Unrem arkable objects  like  s o u n d m e t e r s  a n d acoustical   tiles have  a s m u c h  to say about  th e  ways that people understood their

world   as do the  paintings  o f  Pablo Picasso, t  thh e  writings  o f John  d o s  Passos,  th e music of Igor Stra Stravins vinsky, ky, and the architecture of Walter Gropius. All are cultural constructions tha t epitomized epitomized an era defined by tthe he shocks and di displacements splacements of it s ver a   society reformulating  its  veryy experience  o f time  an d space. Karl  Marx  h a d  these displacements  in  mind  wh e n  h e  famously summarized 20 All that  is  solid melts into air. th e   condition  o f  modernity  by  proclaiming , All Marx   h a d  very particular ideas about Marx  about   th e  material  aspects  o f life  a n d  their role  role  in h i s t o r i c a l c h a n g e , i d e a s   n o t  n e c e s s a r i l y  a t  play  in the  s t o r y t h a t f o l l o ws . Nonetheless, like Marx, I believe that the essence of history is found in its  m a te rial. I   argue against  th e  idea  o f  modernity  as a  cultural  Zeitgeist,  a matrix  of  disembodied ideas perceived and translated by great   artists  into material  forms  that

then trickle   down  to a m or e  popular level of consciousness. In the story that follows, mo dernity was bbuil uiltt   from  the ground up. It was constructed by the actions and through the exp eriences of ordinary indivi individuals duals as they struggl struggled ed to m ake 21 sense   o f their  world. If

 Z eitgeist, eitgeist,  some  mo dern culture iiss not a   not an immaterial cluster of ideas how in the   air, it   must  be  acknowledged that sound most certainly  is there,  in

1 1 

I N T R O D U C T I O N :  S O U N D , M O D E R N I T Y ,

AN D H I S T O R Y

 

air.. This ephem eral quality  of  sound  has  long  frustrated  those  who  have the  air

sought  to  control  it, and the  architect  Rudolph  Markgraf expressed  the  frustrations   of many  when  he complained in  1911 that  sound has no  existence, shape or form, it must be made new all the time, it slumbers until it is awaken[ed], and after   it  ceases  its place of being it is  unknown.

22

  Markgraf was perplexed by

  the mysteries  of the  acoustic, and  historians  of  soundscapes  are  similarly challenged by sound's myste rious ability ability ttoo m elt into air, its tenden cy— even in a postphonographic age—to   efface  itself from the historical record. But if most sounds of the past are   gone  fo r  good,  they have nonetheless  left  behind a rich record   of  their existence  in the  artifacts,  the  people,  and the  cultures that once brought them forth. By  starting here,  with  the  solidity  of  technological objects an d   the  material practices  of  those  who  designed, built, and  used them,  we can begin   to  recover  the  sounds th at have long since melted into air. air. Along  with those sound s, we can recove recoverr  more fully  our past.

1 2 

C H A P T E R  1

 

C H A P T E R  2

T H E  O R I G I N S  O F  M O D E R N  A C O U S T I C S

Symphony Hall,  th e  first  auditorium  in the  world  to be  built  i n  known c onformit y with acous tical laws,  laws,  w as designed with  h i s  specifications  an d  matheas designed   in  in  accordance with  matical   formul a e, t he  fru it  o f lo lo n g a n d a r d u o u s r e s e a r c h . T h r o u g h  self-effacing devotion   to  science,  hh e  nobly served  the art of  music . H ere s t aands nds hi s  m o n u m e n t . P laque dedicated dedicated   to  physicist Wallace Sabine Located   in the  lobby  o f  Symphony Hall, Boston

I   I N T R O D U C T I O N : O P E N I N G  N I G H T  A T 

S Y M P

O N Y 

HALL

O n 1 5   O ctober 1900, 1900,  th e  doors  o f  Symphony Hall opened wide, welcoming Boston's   music lovers  lovers  to  their  n ew e  f or  to  their  ew   hom e  or  orchestral music. (See  figures  2 .1 and 2.2.) A s people entered and took their   seats,  they noted with approval the tasteful  appointments of tthe he interior, but the question of great greatest est perm anent 1 interest w a s   that  o f  the the acoustical proper ties  of the new  hall.   T h e  pa pers reported that T he grea greatt question concerning which   n o t  only  th e  thousands  i n the hall, but tens of thous ands not in it, were on the tiptoe of exp ectation wa was, s, 2 'I s   th e  hall satisfactory acoustically?'   I n  fact,  th e  question  o f acoustics  h ad  een raised   long befor e opening n ight; it originated eight years ea earlier, rlier, whe n the construction  of a new  auditorium  ha d  first  been considered. I n   1892, 1892, tthe he adminis trators of tthe he city of Bos ton ann ounced plans ttoo lay a

n ew   road through  th e  downtown site  of the  city's  o ld  M usic H al alll. While  th e venerable auditorium   h ad  housed  a variety  o f  programs over  th e  past forty ye years, ars, i ts   most notewor notewor thy occupant was the Boston S ymphony O rchestra. Wholl Whollyy owned and controlled by   financier  and philanthropist philanthropist H enry Lee H igginson, tthe he orchestra   was one of the the nation's forem ost musical ensembles. H igginson wel wel-comed this opportunity   to  build  a new, exclusive home  for his musicians, and he immediately began to raise the   funds  necessary to cons truct a new hall. T he

 

2.1 Symphony Hall, Boston (McKim, Mead  & White, 1900). Exterior, c. 1900. This new home for the Boston Symphony Orchestra embodied a romantic, even religious dedication  to  symphonic music that characterized  elite culture in turn-

of-the-century America. America. Courtesy Boston Symphony Orchestra Archives.

 

Symphony Hall, Boston (McKim, Mead & White, 1900). Interior,  c.  1900.  To   auditorium ensure  that the  the  w as  aco ustically worthy  of

the great music with  which

it   would be ffilled, illed, architect

Ch arl es  McKim consulted

Harvard University physicist Harvard University Wallace Sabine on the design  of this hall. The  The  gild crest at the top  center of ed ed crest

the  proscenium is inscribed   Beethoven.

Courtesy

Boston Symphony Orchestra Archives.

 

C H A P T E R 2

 

commission went to McKim, Mead &  White,  a renowned architectural firm then in the m idst of building Boston's new pu blic llibrary. ibrary. Charles McKim took new  project, a charge   of the new  charge project, a n d  Higginson immediately underscored  underscored  th e  importance   o f  acoustics. H acoustics. H e  wanted  wanted  a  hall that would shelter  shelter  its from  th e it s  audience from  do  justice   to the  the  great music  the  past, particu  sounds from  from  th e  world and do justice music  of the  larly   that  of his  favorite composer, Ludwig  v an  Beethoven.  Our present  hall, h e   inform ed M cKim, gi give vess  a  piano better than  a f orte , gi gives ves  a n  elegant rather 3

than   a  forcible return  of the  instruments—noble  b u t  weak—I  w n t both. T o   obtain this  effect,  H iggins igginson on suggested setting  th e  stage  in an  alcove whose slanted roof would direct   th e  sound of the  orchestra  o u t  toward  th e audience.   H e  also identified several European halls well reputed  fo r  their sound, a n d he en couraged M cKim to visi visitt and sstudy tudy thes thesee hal halls ls.. McK im contacted  John Galen Howard, a former employee then enrolled at the Ecole des Beaux Arts in Paris,   a n d in s tru c te d h im to in q u ire in to th e p rin c ip le s o f th e a te r d e s ig n .

Howard spoke with musical and architectural authorities in Europe and worked 4 up three plans, which McK im submitted   to  Higginson  in  July  o f  1893.   O n e

plan was rectangular (a form   recommended  by Charles Lamoureux,  director  of the P aris Op era), one was elli elliptical ptical (the for m pre ferre d by Howard' Howard'ss architec tural  professor, Victor  Laloux), Laloux), and a thir third— d— McKim 's favorite—was semic semicir ircul cular. ar. McKim developed   h is  favorite into  a  more finished design  in the  style  o f a Greek theater. (See figure 2.3.)   In  Janua ry 189 1894, 4,  a  model  w as  displayed  in the newly open ed p ublic library, wh ere ere   th e  patron s expressed themselves highly 5 p l e a s e d   with  the th e  b e a u t y , s i m p l i c i t y  and an d  c o n v e n i e n c e  of the design. Nonetheless, this building   w a s never built, as an  economic downturn that spring developed into a severe and ultimately lengthy depression. In April, Higginson informed   McK im that the cit city's y's plans of transit were on hold, thus removing th e   immediate necessity  to  build.  It was  also  n o w  difficult  to  raise  funds  for a 6 n ew   hall, so the  project  w as tem poraril porarilyy  b u t  indefinitely  se t aside. B y   1898, conditions had imp roved, the city' city'ss roa roadway dway proposal reapp eared , an d   Higginson  renewed  h is commitment  to  build  a new  hall—but  not the one McK im had earli earlier er des designed. igned. Higgins Higginson on inform ed his architect that, durin g the

hiatus,  th e  board  o f  directors  for the new  hall  h a d  decided that  h is  semicircular design   was unacceptable.  While  we hanke r for tthe he Greek Theatre pla plan, n, he explained, we think the risk ttoo oo great as regards results, so we have definitely 7 abandoned that idea.   T h e  risk to   which  which  h e  referred  referred  w a s acoustical;  acoustical;  n o  concert hall   h a d  ever been built  in the  form  o f a semicircul  semicircular ar am phitheater before, an d   there w as no w ay ttoo know ahead of time how such a hal halll would sound. The

15

T H E 

O R I G I N S 

O F 

M O D E R N

C O U S T I C S

 

  3

Plan for the   Boston Music Hall, second floor, drawing by Charles  McKim,  1892. This  Greek  Theater design

w as  ultimately rejected by the building committee  for

the new music music hall because

its   semicircular form  w as unprecedented in an auditorium  intended  for symphonic

music.  © Collection  of The New-York  Historical Society. S ociety.

board proposed  a  rectangular hall,  to   replicate  th e   form, and,  it was   hoped,  th e 8

acoustical   success of the New Gewandhaus in Leipzig. acoustical

McKim's own devotion to the Greek theater design had weakened over the

years. While  traveling in Europe during the project's  hiatus he had discussed auditorium design with a number of eminent musical directors.  None  could support the unusual form of his amphitheater, and one  confessed

I don't know

anything about acoustics, but my   first   violin tells  m e we   always  get the   best 9

results   in a  rectangular hall.

Higginson,   however, required something more than  a  v violini iolinist's st's opinion  to

ensure  that his new hall would be worthy of the great music that he so admired. After all, there were plenty of rectangular concert halls that were not considered

acoustical  successes.  Higginson thus sought  th e   advice  o f a  technical expert,  on e who could ensure with the perceived authority of  scientific   laws that his hall

1 6 

C H A P T E R  2

 

would sound   as he  desir desired. ed. W hile  he had  acknowledged acknowledged that musicians must decide the the poin ts eevent ventual ually, ly, Higginson confide d to McKim , I al always ways feel  like hearing their opinions most   respectfully  and then decidi deciding. ng. Cross' opinion s s to me   better, h e   admitted, citing  a  local scientific  authority.10   In the  end, Higginson preferre d the counsel o f scient scientists ists to th at of m usicians. This preference led him to consult his   friend  Charles Eliot, the  scientifically  trained president   o f  Harvard University. dent University. Eliot recom men ded that Higginson con tact Wallace Sabine, a   young  assistant  professor  o f  physics  a t  Harvard  who had  recently worked to improve the acoustics of a university lecture hall. Wallace   Sabine fir first st met Henry Lee Higgins Higginson on in January 189 1899. 9. The men carefully   studied McKim's plan  a nd  Sabine expressed numerous opinions regard-

ing the length of the hall, the number of galleries, the rake of the floor, the s h ap e   of the  the  stage,  stage,  and the  the  system  system  o f  ve nt il il a t iion. on. H i ggi ns on i mm e di a t e l y be  wiser  to  await important letter going telegraphed McKim, advising:  advising:   It may be  wiser  to  11

tonight before more work  work   o n  plans.   I n  that lengthy letter,  letter,  h e  described Sabine's   ideas and made clear that they were to be incorporated into the architect's   design: The room itsel itselff I think w e can settl settlee betwe en y our  office, Professor   Sabine's  office  and our  office;  in  fact  w e  shall have do  so. Perh aps have   to do  fear   o f  offending  McKim's  sense  o f  authority  le d  Higginson  to add a  short, hand-written postscript  to the  typed letter, reassuring the  architect that  We  will

have a  perfect hall under your guidance.

12

  A ny  such fear  must have been short-

lived, however,   fo r  upon  meeting  Sabine,  McKim  w as  much  impressed  by the force  an d  reasonableness  of his  arguments,  as by the  modest manner  in  which

they were   presented. H e   also expressed  h is  confidence that  th e  acoustics  of the 13

halll would ben efit greatl hal greatlyy  from  Sabine's counsel and advice. Sabine   an d  McKim worked together, resol resolving ving iss issues ues rais raised ed  by the  design a nd   th e  construction  the  hall, construction  of the  hall, throu gho ut 189 18999  a n d  1900.  1900.  O n  opening night, Higginson highlighted highlighted  Sabine's contribution  in his address  to the  hall's inaugural audie nce. If it is a  success, h e   announced, the credit  a n d  your thanks  are due to  four  men. He  acknowledged McKim,  the  builder  Otto  Norcross,  and the f i n a n c i a l   m a na g e r C ha r l e s C ot t i ng, a nd he a l ssoo t ha nk e d S a bi ne , a ddi ng ,  h as as applied   Professor Sabine  Sabine  ha s  studied thoroughly  thoroughly  ou r  questions  questions  o f acoustics,  acoustics, h  applied

hi hiss  knowledge  to our problem;  and I think with success.

14

Before   th e  nature  a n d  extent  o f  Sabine's success  can be  determined,  h is

work must be examined and contextualized in order to illuminate his accomplishments as  well  as his audience's expectations. To understand  what  Sabine accomplished, a   brief survey  o f  earlier attempts  by  both scientists and  a nd  architects

17

T H E   O R I G I N S  O F  M O D E R N  A C O U S T I C S

 

to   study   and to   control sound will   first   b e   presented.  A   detailed examination   o f Sabine s ow n investigation   will   follow, follow, outlining his derivation of a m athema tical formula   for predicting the a coustical character of rooms. A survey of musical culture   in   turn of the century A merica merica   will  then   consider   why the   audience   a t

Symphony Hall cared   so   deeply about what they heard there. Finally, their   evaluation   o f   what they heard will   b e   examined.   B y   listening   carefully   to the   creation   an d   critical reception   of the   acoustics  o f   Symphony Hall,   we can  begin   to comprehend   th e   complex conjunction   o f   science, architecture,   an d   music that constituted this building building and this mom ent in Am erica s cultu ral history. history. I I A C O U S T I C S A N D A R C H I T E C T U R E I N T H E 

IG H T

N T H 

AN D

NINETE ENTH CENTURIES

For as  long  as sound has been reflecting off the   surfaces   of architectural construction, auditors have have reflected upon the subject of architectural acoustics. T he ancient Greeks were some   of the   first   to   examine   th e   p h e n o m e n a   o f   sound, considering  how it   propagated through space   an d   questioning   why it   behaved differently   in   different   kinds of   spaces.   In what is considered to be the oldest

e x t a nt a r c h i t e c t u r a l t r e a t i s e   in the   W e s t e r n t r a d i t i on,   t h e   Roman  a r c h i t e c t

Vitruvius articulated ideas about   how to   control sound   in   theaters. Philosophers

an d   builders   alike, from ancient times   through   th e   Middle  Ages   a n d   into  th e R enaissance, believed believed that   th e   p h e nom e na   o f   sound   a n d   music were inherently linked   to   architecture through   th e   underlying harmony   of the   universe. Simple num eric ratios expressed the the o rder of the cosm os as well as the ha rmo nies of m u s i c ,  a n d   a r c h i t e c t s — w h os e g oa l   was to   re-create that divine order   o n a 15 human scale—based their designs   o n   those same proportions. T his belief belief   in the   harmony   of the   universe,   a   belief that integrated music, architecture, astronomy,  astronomy,   an d   mathematics,   w as   gradually transformed   a s   m od e r n science took shape during   th e   sixteenth   a n d   seventeenth centuries. T  h e n e w   science presented   an   understanding   of the   world   fundamentall fundamentallyy   different   from   th e divine ratios   of the   premodern cosmos. cosmos.  A s  this   new way of   thinking took hold, 16 science parted ways  with  both music   a n d   architecture. N e w   theories   a n d   experimental techniques enabled scientists   to   explore more  fully   th e   physical   dimensions  o f   sound.  M athema ticians analyzed   th e behavior   o f   vibrating strings   via the new   calculus   o f   Isaac   Newton;  experimenters like Galileo Galilei   a n d   M a r i n M e r s e nne e x a m i ne d   t h e   m ot i on   o f vibrating bodies   a n d   measured   th e   speed   o f  sound   in   different   media;  a n d   count-

1 8 

C H A P T E R  2

 

less   natural historians collected anecdotes of interesting acoustical phenomena, from   unusual echoes  to the  feats  o f  ventriloquists  a n d  talking automata,  an d recorded   them  in the  pages of new  scientific journals.17 A s   mo dern science took shape, architecture si simila milarl rlyy lost  its it s  cosmological

significance  and was rrecast ecast as a set of ttechniques echniques that manipulated but no  longer transcended the   physical world. Alberto Perez-Gomez  h as  shown that this  n e w kind  of architecture,  which  began  to  appear  in the  middle  of the  seventeenth

century,   ulti ultimately mately becam e thoroughl thoroughlyy speciali specialized, zed, an d  composed  of laws of an

exclusively prescriptive character that purposely avoid all reference to   philosophy or   cosmology.

18

  A s  science  a n d  architecture parted ways, t h e  subject  o f

architectural acoustics  fell  into  the gap that  opened  between them. This   g ap  only widened over  th e  eighteenth  an d  nineteenth centuries, as the acoustical  interests  to  diverge  from  th e  needs  interests  o f  scientists continued  continued  to  needs  o f  architects.   Mathematical elaborations of the behavior of sound reached their apotheosis   in the  work  of  Lord Rayleigh, whose  Th eo ry  o f  o u n d  w as  considered  the th e 19 last  word  o n th e  s u b j e c t  f o r  m a n y y e a r s  after  i t s  p u b l i c a t i o n  i n  1877.

to  m easur e  to  examine Experimentalists continued continued   to  e  th e  speed speed   o f  sound,  sound,  and to  to  render visible  vibrating bodies, contriving ingenious ways  ways   b y  which  which  to  visible  th e minute movements movements   o f  objects  objects  an d  air. Ernst  Chladni,  fo r  example, dusted  dusted  th e surfaces   of  vibrating plates with  fine  sand that collected  at the  nodes  of  those

plates,  creating geometric patterns beautiful enough  to  impress  a n  emperor. Upon  viewing the phenomenon in 1808, Napoleon  offered  a prize to whoever

could explain   fully  the form ation of the patterns , and thi thiss prize was clai claimed med in 20 1816   by the  1816 Koenig  w as  awarded a the  mathematician Sophie Germain.   Rudolph  Koenig  as awarded  a gold medal at the 1862 Crystal Palace Exposition in London for a device that transformed   vibrations o f sound  in air into flickering flames,  and he brought this device, along with  an  impressive  set of  tuning  forks  an d  other acoustical appara21

tus,  to  to Am erica' erica'ss Centenn ial Expositi Exposition on in Phila Philadelphia delphia in 1876.   Other  investigators   developed means to inscribe the vibrations of sound on various media,

attempting to create   sound-writing instruments that might record sounds in a 22 readable  form , and st stiill others continue d to attempt to build talking machines. A ll   these  efforts,  however, were  of  little  use to  arch itects. Koenig's  flames failed   to illuminate ideas about how best to control the behavior of sound; the talking   machines remained silent on this point; and even Rayleigh's voluminous tome  devoted only  a  few, inscrut inscrutably ably m athematical pages  to  aerial vibrations  in a  rectan gular chamber.

23

  In  1782, th  t h e  French architect Pierre Patte  h ad searched

in   vain  fo r  scientific  advice  on the  problem  of  acoustics, and his  colleagues  a

19

T H E 

O R I

I N S 

O F  M O D E R N  A C O U S T I C S

 

24

  4

Pierre Patte's 1782 design design for  for a theater whose elliptical shape theater whose was intended to reinforce the was intended

sound  of the performers on

century later were no better  off.   Left  to their t heir own o wn devices, architects archit ects like Patte constructed their  own creative solutions  to the problem  of controlling sound. Pierre Patte's search for  scientific  advice at the end of the eighteenth centu-

ry had  been compelled  by  conditions that  had  recently rendered  the  need  to

eighteenth-century ntury stage.  Late  eighteenth-ce

control sound particularly acute. The  commercialization  of  theater  in  Europe

  architects li like ke Patte European  European

created  new social and acoustical conditions that were perceived to demand

were c oncerned tha t the pl players ayers

expertise not no t readily availab available. le. Theaters Theat ers built at this time were far larger than

would  be  unable to fill such would   such a  a

theirr royall thei royally y sponsored predecessors, predecess ors, and their size presented present ed unprecedent unprec edented ed

large   space with sound, and large attempted to  identify  one they  attempted to they 

best  form to make the most of the  sound. Reproduced

from   George Saunders, 

here

acoustical   challenges challenges.. Additionally, Additionally, the commercial commercial nature natur e of the th e performances perfo rmances taking place within them heightened  the  importance  of  delivering good sound,

as   this  accommodation  was now  considered  the  right  of a public  that  had  paid 25

fo r   admission.

reatise   on  h ea t er s  (London:  I.

The  Margrave's Opera House  at  Bayreuth exemplified  the older, royal tradi-

and J.  Taylor, 1790), plate I V .

tion in theate th eaterr design. Built in 1748, 1748, its 5,500 5,500 cubic meters met ers of space were  filled

with   an audience of just 450 courtly courtl y attendants. In contrast, contrast , Milan Milan's 's La Scala, Scala, built thirty years later, filled  its  11,250  cubic meters  with  almost 2,300 auditors 26

who  gained  access  not by  royal invitation, but by purchasing tickets.  The new need for pecuniary return, return,

27

  as the architect Benjamin Dean Wyatt put it, led

architects   to build theaters larger than ever before, but the need to build large large had  to be  limited  by the  equally important requirement that every member  of the audience be able to see and to hear. The goal goal was thus to identify i dentify the most capacious form  which  can  possibly  be  constructed,  to  admit  of  distinct  VISION

an d   S O U N D .

28

Di fferent  architects  had  different  ideas about  about  how to identify form  and to identify this form  what it might be. Some turned to analogical thinking, for example, assuming that,, because that becaus e a bell was a sonorous objec o bject, t, a bell-shaped theater the ater would also also be sonorous. Others, including the Italian Count Francesco Algarotti, considered these analogies an absurdi absurdity, ty, and promoted promo ted instead a more analytical approach approa ch that  drew  on the  mathematical certainty  of the  principles  of geometry.29  Pierre Patte, for example, picked  up his compass his compass and rule  and applied them  to  architectural  drawings  in  order  to to  to    determine which form  was best suited  suited  to   make  the

most  of

30

the power of the  voice.

Patte evaluated  the  acoustical properties  of  differently shaped theaters  by analyzing  the  propagation  of  sound within them.  He  drew lines representing

rays  of sound emanating from a performe perf ormerr on stage, stage, then, following the rule that the angle of incidence is equal equal to the angle of reflection, he plotted the reflections of those  rays  off the walls. walls. Patte concluded co ncluded that an elliptic elliptically ally shaped the-

20

 

C H A P T E R 

ater  would generate  th e  best acoustic  effect,  believing that  it s  dual  foci  would actually   augm ent  to   Patte, t ent  th e  sound within. According  According  to Patte, t h e  rays  o f  sound emanating   from  o n e  focus  (the performer  o n  stage)  would, upon reconvening  at the

the  auditorium), constitute  second   (in the  second  constitute  a  second source. This  would  effectively double the sound of the performer, which he   feared  would be too weak on its 31 own to fill fill a  large thea thea ter with  sound.   (See figure 2.4.) The ritish  architect  George   Saunders carried  out his own  investigation an d   arrived  a t results different  from  those  of Patte. Saun ders w  waa s  concerned with the ex tension, rather than ref lection, of the voi voice. ce. In designi designing ng a ttheatre, heatre, he argued,   the first que stion that natura lly arises is, In what f orm does the voice

21

T H E   O R I G I N S  O F  M O D E R N

A C O U S T IC S

 

Plate   I  

  5

George Saunders's analyses of the  propagation  of sound. His figure 6 illustrate illustratess the focusing property of ellips ellipses es that was

Fig

I

Fig

Fig 3

Fig 4

th e   basis   fo r   Patte's design. Figure 4 shows the results of

Saunders s   own experiments on the the    extension of the  voice,

Fig 9

Fig 10

Fig 13

Fig 11

illustrating  the maximum range of   audibility  for a  listener encircling a  speaker located  at point A .  George Saunders,

A   Treatise   on   Theaters   (London: I.  and J. Taylor,  1790), plate I.

Fig 12

Fig 14 Fig 6

Fig 8

Fig 7

2 2 

 

2.6

C H A P T E R  2

George S aunders's design  for

a  theater, based on the results of his experiments  on the

extension  of the  voice. Both th e   size  and the shape of his design were   determined by the  dimensions he had  meas-

ured   in his  experiments. George Saunders,   rea tise on   h e a t e r s  (London:

I. and J.

Taylor, 1790), plate   XI.

expand?

32

question, h e  placed  placed  a  speaker  speaker  at a  fixed  location out  T o  answer this question, h

doors   in  open  space,  then  had an  auditor encircle  th e  speaker, listening  as he traveled   in  front  of around,  and  behind  the  speaker. The  listener determined  the most distant point   from  which  he  could hear  as he  encircled  th e  speaker, thus marking   out the  extent  of the  voice  in all  directions. Saunders then used this figure as the   basis  for his  design. (See figures  2.5 and  2.6.)

23

T H E   O R I G I N S  O F  M O D E R N

A C O U S TI C S

 

Algarotti promoted   a  semicircular theater,  a n d W yat yattt  a  variant  of the  fo rm  buu t  while each writer  o n  acoustics  recommended   a  difproposed  by  Saunders, b ferent   form, all agreed that form was the key to good sound. They   shared their concern that too littl littlee sound would be generated by the perform ers, and they all identified   as their goal the e ncou ragem ent, even am plification , of the voices on stage. They  ass   also uniformly warned against  the use of  absorbent materials, a 33

absorption would only impede   th e  accomplishment  o f  this goal.   Their   shared geometrical approach took advantage of   skills  they already posse possessed, ssed, and w as additionally reinforced by a neoclassi additionally neoclassical cal aesthetic that promo ted the be auty of an 34 architecture based on simple geometrical forms. T h e   arguments  arguments  o f  these authors, however, ultimately represent theories that thrived in books but not in buildings. Algarotti's treatise   offered  n o  specific  plans fo forr   construction , whil whilee Saunders  a n d  Patte presented plans that were never built. Wyatt's ideas were realized in his Dr ury Lane Thea tre in L ond on; however, be  completely remodeled  ts  completion, D ru ry L a ne  ne   had to be  remodeled  n o t  long  after  i ts  35

because   of problems  with   sight and sound.   In  fact,  the acoustical realities of different  from  the problems that these men cheomodern buildings were quite   different  rized,   and the  the  means  to   control those realities would ultimately prove equally means  to different.

The American architect Benjamin Latrobe initially shared many   ideas  about   h is  is  European contemporaries, even though  not   familiar with sound  with though  he was not   th e  acoustics  an  actual building, their works.   Upon   engaging directly  with acoustics  of an  however, L atrobe reevalu ated th ose ideas. Asked   by a  friend  in  1803  to  offer advice on the design for a Quaker meeting house, Latrobe turned to geometry to discover the best form for sound. Seeking to maximize the   effect  of the voice, he determ ined that a spher spheree constituted the best acoust acoustical ical form , for a ring of first   echo perfectly coincident will  be  produced,  an d  rings  o f  reechoes,  a d   i n f i n i tum many   of   them   nearly  coincident would   follow.

Recognizing  that  the

sphere was not a   particularly practical architectural form, Latrobe suggested,  In 36

proportion   as a  room approaches this this form , it  approaches perfection. A   fe w  years later,  a s  surveyor  o f  public buildings  for the  United States, Latrobe supervised   th e  construction  of the  Capitol Building  in  Washington. Shortly   after  its 18 1807 07 opening, the new spapers reporte d upo n a very ma terial defect  in the  the  hall  the  house  the  speakers is hall  of the  house  o f  Representatives.  Representatives.  T h e  voice  voice  of the  speakers is completely lost in echo, before it reaches the ear.   othing   distinctly can be 37

heard   from  the chair or the members.   Latrobe disc discovered overed that not all echoes were beneficial,   and he now  sought  to  eliminate them. Curtains were hung,

2 4 

C H A P T E R  2

 

  tastefully  and  usefully, between the columns of the hall, and the architect reported that though there is less sound, there is much more heard.

38

  The The real-

ization that less  is more  came  as a surprise  to  Latrobe,  and he now  emphasized that  it was  the duty  of the  architect  to  suppress  or  exclude  the  echoes that would  confuse  the distinctness distinc tness of the species of sound which whi ch it is the object objec t of 39

the  edifice to exhibit. While  Latrobe believed that his  efforts  to improve the acoustics of the hall had  met  with  the  fullest  success,

40

  the  Congress  and the  press continued  to

complain. The  troublesome echoes were eliminated temporarily  in  1815 when British troops burned  the  Capitol  to the  ground during their invasion  of Washington, but  when  the  building  was rebuilt  in  1819,  the new  hall proved as

unsatisfactory   as its  predecessor. Over  the  next  few  decades, Congress regularly solicited  and received advice on how to  improve  the  acoustics of the  Hall, but to 41

little avail.  One creative suggestion, actually acted up upon on in 1837 1837,, was to reverse the seating arrangement of the Representatives. (See   figure  2.7.) The  result was not considered an acoustical acous tical improvement, however, and before befo re long Congress 42

was back to  facing forward.

mid- century ry the House had outgrown its still ill-sounding chamber. ch amber. By  mid-centu By  Plans were drawn  up for the  expansion  of the  Capitol  and the  construction project  was  assigned  to the  Army Corps  of  Engineers under  the  direction  of Captain Montgomery Meigs.  In  1853, Meigs  was  ordered  by his  commander, Secretary   of War Jefferson  Davis:

Y ou   will  examine the arrangements for warming, v entilation, entilation, speaking and h earing. earing. T he   great  object  of the  extension of the  Capitol is to provide rooms  suitable  for the meeting   of the two  houses  of Congress—rooms in which  no vitiated air shall  injure th e   health  of the  legislators,  and in  which  th e  voice  from  each  m em ber's  desk  shall be made  easily  audible in all parts of the  room. These problems are of difficult  solu43 tion,  an d will require your  careful  study.   By direction of the President, President , who is desirous of obtaining the best  scientific authority within reach upon this subject,

44

  Meigs invited Joseph Henry, secre-

tary  of the Smithsonian Institut Inst itution, ion, to review his ideas ideas on s sound ound as they applied

to the new  Hall of the  House  of Representatives. Henry, along with  his scientific  colleague Alexander Dallas Bache, subsequently subseque ntly reported repo rted to Davis that tha t

the

principles presented  to  them  by  Captain Meigs  are  correct,  and  that they  are judiciously applied.

45

  Nonetheless, when  the new  hall  was finished  and put to

 predecessor. u se  it was found to be no  better than its  its predecessor.

  5

T H E   O R I G I N S   O F  M O D E R N

A C O U S T I C S

 

Joseph Henry's experience  with   hall  may  have emphasized  to him   the new that   attention  to that   form was  insufficient  to   ensure good sound.46  Others were cer-

tainly questioning  the old   approach, approach, complaining complaining that form  is the   only point 47

  the that   architects seem  to that    consider  of  importance.   hile   role  of  materials in controlling sound  had   been previously acknowledged, architects seeking that

control could only conclude that the  different  degrees  in   which substances derived   from  the   mineral, vegetable  and   animal kingdoms  are   favourable to the 48 transmission   of  sound, appear to be   regulated  by  laws not   easily  demonstrable.

  6 

C H

P T E R 

 

2.7

Seating Plan,   United  States House of  Representatives,

1837-1838.  This plan shows

49 Attempts to   identify  these laws were generally unconvincing,   but new ideas about the p hysical natu re of sound would begin to provide a new m eans by which to unde rstand the action of material materials, s, and Henry himse himself lf would help f or-

a   reverse seating arrangem ent that  was recommended by

mulate those ideas ideas.. Shortly   after  h is consultati consultation on on the House C hamber, Joseph Henry under-

the  architect  Robert Mills.

took  a  series  o f  experiments  to  investigate  th e  effect  o f  materials upon sound.

By  having  the  member s

sounded  a tuning  fork, placed  placed t stem of the  fork  against th against th e  material to material to be H e   sounded   thh e  stem of tested,  t  then hen measured how long the  fork  con tinued to vibrate. Believing his eyes

  curve of the   speak to the the 

chamber's rear  wall,  Mills

cessful  and the  desks were

to be more sensitive than his   ears,  Henry marked the cessation of vibration at th e   m om e nt w he n  h e  could  n o  longer visually perceive  th e  movement  of the fork. Thi  Thiss m easure of ti time me represent represented ed the sound-absorbing property of the different  materials he tested, including c ork, rubber, wood, and stone. Unlike eigh-

 their normal returned to to their

teenth-century   neoclassical architects, Joseph  Henry  had no  interest  in  repre-

positions  in the  subsequent

senting sound   as geometric  rays. A  Ass a  mid-nineteenth-century physicist physicist,, he was instead   committed  to  exploring  the new  idea of the  conservation  o f energy  a n d this  energetic co ncep tion of soun d was at tthe he h eart of his investigation. to   this new of thinking,   th e  moving  fork,  th e  emitted sound, According   to According this new way of thinking, a n d   th e  material with which  which  th e  f or k  k  was in  contact  a ll d  a  given in  contact  ll   c ont a i ne d  amount of energy.  While  this energy could manifest itself in  different  ways,  it

believed  that  the  sound of

the  hall would be improved. The experiment was  unsuc-

session   of Congress.  Plan of the Hall the Hall of  of the House of  Repre sentatives 18 1837 37  &

1838,   2nd  Session  of the 25th Congress, drawn by

David   H. Burr. Architect of the Capitol.

could   not be  destroyed. Henry observed that, while   a vibrating  fork  suspended  in air  from  a thread continued  in  motion  for 252  seconds,  th e  same  fork  vibrated  f o r  only  te n  seconds w he n pl a c e d   i n  c ont a c t w i t h  a  large thin board  o f  p i n e .  T h e  b o a r d increased   the volume of sound, and Henry explai explained ned that the sho rtness of 50 duration   w a s  compensated  for by the  greater intensity  of  effect  produced. When the   fork  was placed in contact with a piece of India rubber, the sound remained very feeble,   yet it  quickly died away. Where  was the  compensating

effect  here? Henry proved that  that  th e  energy  energy  w as  converted  to  as  converted  to  heat rather than

sound, by   measuring  a n  increase in  in the  temperature of the  rubber  as itit absorbed 51

th e   vibrations of the  tuning fork. vibrations of the  Joseph Henry's experiments constituted an innovative attempt to analyze and to   quantify  the soun d-absorbing prop erties of materials, and this att attemp emp t w as   a direct result of a new energetic way of understanding the physical properties   o f sound. It is not  apparent, however, that  h e  applied  h is results  to the  design of any structure. Even though these experiments were condu cted by Henry to evaluate   th e  design  of a lecture hall  for his own  Smithsonian Institution, Henry's evaluate practical   contributi contributions ons  to  that project focused  strictly  on its f or m .  In his  experi-

 

T H E 

O R I

I N S 

O F  M O D E R N A C O U S T I C S

 

merits   on materials, he w as ulti ultimately mately m ore interested in tracking the conserv conservaa52

tion of energy than with gene rating knowledge of  p ractical ractical use to architects.

Although Joseph Henry did not apply his new knowledge about materials directly to design of the Smithsonian lecture hall, he did use the publication of those results  as an  opportunity  to  speak  o ut  against  th e  architecture that housed that hal hall. l. Am erican architecture   a t  mid-century  w as  characterized  b y a  historically   i n s p i r e d e c l e c t i c i s m i n w h i c h v i r t u a l l y a n y s t y l e — f r o m G o t h i c t o

Egyptian—was appropriate,   as long  as it was  from  th e  past.  Henry disl disliked iked this approach, and he particularly disliked the crenellated  castle  that James Renwick had designed designed to house the Sm ithsonian Institution. As head of that organization, Henry worked   a n d  lived within  it s  Rom anesque tower towers, s,  but not  w i t hout complaint. Every vestige   o f  ancient architecture, h e   explained,  which  n o w remains on the   face  of the earth sh ould be preserved with religious care; but to servilely servil ely copy these, and to atte m pt to apply them to the   uses  o f ou r day, is as civili lizati zation on of the preposterous   as to end eavor to harm onize the refine m ent and civi present  ag e with  th e  superstition  a nd  barbarity  of the  times  of the  Pharaohs. It is only   when  a buildi building ng expresses the do m inant se ntim ent of aann aage, ge, he continued,  when  a  perfect  adaptation to its use iiss joined to harm ony of proportions and an outward expression of its character, that it is entitled to our 53 admiration. Henry's opinions  about architecture  were  n o t  widely  shared  b y  architects, an d   th e  historicism that  h e  decried would become even  more  prevalent  in the 54 years   to come.   Just as the geometry of neoclassicism had provided architects

with  a means to attem pt to control soun d, so, too, did did the historical eclec eclectici ticism sm

of the nineteenth century   offer  its oown wn approach. Practitioners of an aesthetic of imitation,   no t  surprisingly, turned  to  imitation  a s  they attempted  to  solve  their problems of  acoustical  design. At m id-century the cit cities ies of New York, Boston, and Phila Philadelphia delphia were al alll engaged in the construction of new m usic ha hallls aand nd opera house s, and in each case   the architects  drew  on t he f or m of a n e xt a nt Eur op e a n t he a t e r i n a n

attem pt to re-create the acoustical quali qualities ties of that theate r in their ow n desi design. gn. The New York Academy of Music was patterned   after  the Berlin Opera House; theater  a t Bordeaux;  Bordeaux; and Philadelphi delphiaa Academ y th e   Boston Theatre  after  th e  theater   and the the   Phila 55 of Music   after  L a Scala  in Milan.   In no  case  was the attem pt at imitation complete,  nor were the acoustical re-creations that the architects accomplished. plete,  While  these projects were more fortunate than many others in being judged acoustically   successful,  th e  m e t hod  of replication was not  considered  a definitive

2 8 

C H A P T E R  2

 

approach to aco ustical design. The architects of the Ph iladel iladelphia phia Academ y admitted that popular und erstandin g of acoustics amo ng arch itects was very vague and indistinct. While  tthey hey asserted that an architect wh o had properly applied   himself himself to this bra nch of his profession could certai certainly nly do a great deal  i s  founded upon toward   th e  accomplishment  of his object, especially if his study is practical   experience, combined with the observations and results deducted  from other buildings buildings   of a  similar nature, they they   had to  to  admit that there  always remains 56

something  left  to chance. Almost   fifty  years  later, Henry Higginson  a nd  Charles McKim would  find fe w   options beyond this method of replication  when  they sought to ensure  This  approach  led Higginson to  reject good  sound  in their own  music  hall. This

McKim's Greek the ater plan, as it was unprecedented in housing a modern conMcKim's cert   hall, and it drove their decisi decision on to b uild a rectangu lar hal hall, l, in im itation of the old  old   Music Hall  in   Boston  the  L eipzig Hall  in Boston  and the  eipzig Gew andhaus. An other precedent t ha t  t  Higginson surprisingly rejected  w a s  Carnegie Hall  in New  Y or k.  H is orchestra   had performed there numerous times since its opening in 1891, and he reported   to  McKim, our peopl peoplee  al l  think Carne gie Hal Halll horri horrible. ble. Very noisy music produces considerable  effect, he explained, explained, but the mo me nt an orchestra plays   th thee  older music  an d  relies  on  delicate  effect,  everything  is  gone.  I  have

always   disliked the hall very much, and I expected to like it very much before 57

t r yi ng   it.

  Higginson's critiq ue may have been idiosync ratic, for even iiff

Carnegie Hall  had not yet  acquired  th e  reputation  it would later  enjoy,  th e  hall's

acoustics   were the accomplishment of an a rchitect who, alone am ong his peers, w as  considered  a master o f sound.

Dankmar Adler learned   h is  craft  while rebuilding Chicago  after  th e  great 1871.  H e  established  established  an  practice  in  1879  an d  received  received  his fire   of of   1871.  an  independent practice  in  1879  hi s first  theater comm issi ission on that same year year.. Adler soon prom oted  hi s talented associ associ-at atee   Lo uis Sul Sulli livan van to p artnersh ip, and Adler & Sull Sulliva ivann ex ecuted a dozen more 58

t h eat er  and auditorium commissions over the next decade.   These projects were uniformly judged acoustical   successes,  a n d  Adler became known  as an

expert o n so und , serving at various ttimes imes as a consultant on acoustics.

59

  O ne

such   pro ject was Willi William am Bu rnet Tuthi Tuthill ll's 's desi design gn for Ca rnegie Hall in New 60

York.   H is  most famous accomplishment, however,   however,  was the  partnership's  o w n Auditorium Building   in  Chicago, which  w as com plet pleted ed  in  1890. As   architects, Adler & Sull Sullivan ivan stood out  from  their colleagues by echoing Joseph Henry's earlier  frustrations  with  th e  historicist tendencies  tendencies  o f  their  field. Adler castigated castigated nine teenth -cen tury theater desi design gn for  for its reverence its reverence   for the  the  his-

29

 

  8

Auditorium Building and   Chicago  (Adler  & Theater,  Theater,

 The  movable Sullivan,   1889). The partitions   that  could block off the two uppermost balconies

a re   indicated  here,  in both in both open and  closed  positions, with dotted  lines.  Dankmar Adler,  Theater-Building for American  Cities,

ngineering

Magazine   (August  1894):

723.

T H E   O R I G I N S  O F  M O D E R N  A C O U S T I C S

torically torical ly transm transm itted type, type, a reverence reverence that was the result of a men tal attitude which   sees  in a brilliant and admirable achievement of the  past,  not a legitimate evolution   from  the conditions of its own environment, but a creation standing out for all ages to be blindly idolized and imitated.

61

  The Auditorium, in sharp

contrast,  was a  complete expression  of the  needs  of its own  environment—the excitement   an d  energy  excitement energy  o f  late ninete enth-c entury Chicago.  It was a  ballroom,  a a  ballroom,  convention hall, hall, and an a udito rium for a rapidly rapidly growing ci city. ty. The theate r held over   four  thousand people,  people,  a n d  Adler incorporated movable ceiling panels that could   b e  pulled down  to  block  off the two  uppermost galleries  a n d  reduce  th e capacity when a smaller space was more appropriate. (See   figure  2.8.) Adler & Sullivan surrounded the theater with a hotel and   offices  to render the building financially   self-sustaining. Sullivan designed  a  simple granite  facade  that  height-

ened   th e  effect  of the  ornament within. T h e  theater glittered with gilded moldings and ornate gri grill llwork. work. Mu rals and a stained-glass stained-glass skylight added color, wh ile t h e   whole  w a s  illuminated  b y a  tiara o f   electric lights em bedded  in the 62 ceiling.   (See figures  2.9 and 2.10.) Opening  ceremonies were held  o n 9  December 1889. President Benjamin

Harrison   was aa   special guest  Harrison guest  of  honor,  and a musical program  w as presented  by of  honor,  a musical program  as   presented  Adelina Patti, opera's opera's reigning reigning diva. Patti pro nou nce d, The Au ditorium   is  per63

fect.   The acoustics are simply perfect, and everyone agreed.   A rchitectural

 

 

2.9

Auditorium Theater, Chicago   Adler  Sullivan, 1889).

Interior, looking toward the  stage. The   Auditorium

 renowned Theater  was   for its  for

excellent excel lent acoustics. Architect Dankmar Adler contested h contested h is reputation as an  expert  in acoustics   and was  was  ultimately

unable  to   explain  why his  explain   good.  good. buildings sounded  so   uditorium  Building  Chicago:

C H A P T E R  2

J.W. Taylor,  c.   1890),  p. 15. Courtesy Marquand Library  Archaeology, of Art and and Archaeology, Princeton University.

2.10 Auditorium  Theater,   Chicago  Adler  Sullivan, 1889),  looking toward  the  rear balconies.

In  this photograph,  the two

uppermost balconies have been blocked o blocked  o ff by by movable  movable partitions   the upper  one tions   curved, the lower  one flat),  thereby

reducing  the   capacity of the hall from over 4,000  to   about  about 2,500.  uditorium Building

  Chicago: Chicago: J.W. Taylor,

c. c.   1890),  p. 17.   Courtesy M a r q u a n d  d  Library of Art an d   Archaeology, Princeton University.

31

T H E   O R I G I N S   O F  M O D E R N A C O U S T I C S

 

critic  Montgomery  Schuyler wrote,  It is pleasant to  know that  in  this instance

th e   science o f  acoustics, which  so many architects deny  to be for  their purpose a science at all has  been vindicated,  aa n d  that  th e  auditorium  is in  fact  a n  excellent

place in which  to  hear. 64 Adler articulated his ideas  on  theater acoustics in a paper that he  read  to the American Institute  of Architects  in  1887.  He  offered  advice  on  situation, construction,  fireproofing, lighting,  and  ventilation,  and  concluded  with  the  caveat

that all  of  these  will  be as naught unless  th e  acoustic properties  ar e  such  as to

permit  the  easy  and  distinct transmission  of  articulated sound  to its  remotest parts.

65

  In  order  to  secure this  effect,  Adler proposed that  th e  architect should

avoid hard, smooth  surfaces,  a n d  instead inste ad design well-broken walls walls  a n d  ceilings arranged  to  direct  the  sound toward  the  audience. T  The he  proscenium should  be low,  with  the  width and height of the hall increasing toward  the rear, to  promote the  passage of sound.

Adler later  justified  these recommendations with explanations that drew upon  th e  scientific  language of the  conservation  o f  energy, but it is not  apparent that   the  science of energy actually helped  him to  generate his designs. designs. According to   Sullivan, Adler's  success  in  architectural acoustics  w as intuitive.  It was not a

matter  o f  mathematics,  nor a  matter  of  science, he   explained.  There  is a  feeling, perception, instinct, and  that  Mr. Mr.  Adler had.  Mr. Mr. Adler  had a  grasp  of the subject  o f acoustics which  he  could  n o t  have gained  from study, for it was not in

books. He must have gotten  it by  feeling. 66 Adler himself described  hi hiss  technique,  not as an  instinctive  one as Sullivan portrayed  it, but as a  simple program  o f  independent thought  a n d  action.  In 1894, he  warned  his fellow architects that  he would  not  provide  a  repository  of historical   information about  th e  theaters of the  past,  nor a description  o r  critical

disquisition upon  the  theaters of the  present day, nor yet a compendium  of  scientific   formulae  fo r  solving  th e  various problems  o f  theater design. With   a view  to  stimulating original  and  independent thought  and action, he  explained,

  I  shall  call attention  to  certain  facts  a n d  conclusions,  th e  recognition  a n d  for-

mulation  of  which  are  within  the  reach  of  every intelligent observer  and of every industrious student  of  objects  a n d  events. 67  T o Adler,  th e  theater  was an   organic  whole, and he  took issue with those who  would design  a structure  in strict   accordance with  the  tenets of any 'style,' then leave the  resolution  of prac-

tical problems  to  engineers  and 'specialists.' 68 He  even contested his own  reputation  as an  alleged  expert, and  proposed that anyone capable of clear and inci69

sive   thought could join  the  ranks of such experts.

3 2 

C H A P T E R  2

 

But  here, too, Adler's ideas were  not  widely  shared  by his  colleagues. As

early   as  1811, Benjamin Latrobe  ha d  called  for a  system  by  which  an architect early 70 could   be  guided  in his  design,   and  throughout  the  century, architects  had

echoed this plea   fo r  experts  to  provide them with  a set of  fixed rules.

71

  Most

shared   the  willingness  of  architect  Rudolph  Markgraf  to buy any  books, articles,   pamphlets  o r  liter[a]ture setting  force  [sic]  a  practical metho d whereby

to make sure of the   successful  properties of an Aud itorium , or to employ the service of  experts, if there  ar e such experts, and if the  services of  such experts  or specialists,  can be  secured a t a reasonable fe  feee and  with  an assurance on  their part

of  satisfactory  results.

72

Adler's assertion that every architect could   be his own  acoustical expert  fell on deaf   ears,  and Adler's  success  in this field remained uniquely his own. While he  used  the  language  of  science  to  describe  his  approach  to the  problem  of

acoustics,  he  failed  to  provide  a scientifically based system  of  design,  an d  there w as   n o  means  b y  which  h e  could share  h is  success  w ith others. Adler  passed

away   in  1900,  and his  acoustical expertise  died with  him.  At the  time  of his  byy  which death, however, however, architects architects were suddenly presented w ith   a new  means b to   achieve that success f  for or  themselves. Just  a few pages away from Adler's Adler's obituary in the   American  Architect   a n d   Building News American architects would  byy  Wallace Sabine. Like encounter  the first of a  series  of  papers  on  acoustics b

Adler's intuitive approach,   th e  system that Sabine outlined would consistently produce   acoustically successful  structures. B u t  Sabine would additionall additionallyy succeed where Adler   ha d  failed,  by  offering  architects a  compendium  of  scientific  formulae   that he, as a  specialist, could simply  an d  easily easily apply to  their designs. L A C E S A B I N E  A N D T H E  R E V E R B E R A T I O N 1 1 1  W A L LA

F O R M U LA

Wallace   Sabine  wa was s  born  in  1868  in  Richwood,  Ohio.  He was an  intelligent

child   with  an  ambitious mother  who  apparently demonstrated  an  abnormal conscientiousness  in the exercise of her material duties.

73

 Mrs. Sabine was cer-

tainly intent upon providing Wallace  with every  opportunity to  develop  his abilities.   S h e  enrolled  h er  young  son at  Ohio  State U niversity, niversity, where  h e  studied physics   with T ho homas mas  Corwin Mendenhall  and  graduated  in  1886  at the age of

eighteen. Mrs. Sabine then   left  h er  less  ambitious husband behind  an d  moved with her son and daughter to Boston so that both could continue their studies, Wallace   at H74arvard Wallace  arvard U niversi niversity ty  and his sister Ann at the  Massachusetts Massachusetts Ins titute of T echnology. echnology.

33

 

T H E   O R I G I N S  O F  M O D E R N

A C O U S T IC S

Sabine received   h is   M . A .   from   th e   D e p a r tme n t   o f   Physics   a t   Harvard   in 1888,  a n d h e   s u b s e q u e n t l y c o l l a b o r a t e d   with  h i s   s e n i o r c o l l e a g u e   John 75

Trowbridge on a series series of studies exploring   different different   aspects   of electricity.   O n e investigation followed   th e   research   o f   Heinrich Hertz,   wh o h ad   recently prod u c e d   th e   first   evidence   for the   existence   o f   electr electrom om agnetic waves. waves. Hertz s

work   h a d   drawn upon analogies   to   sound,   a n d  Trow bri bridge dge   a n d   Sabine followed suit when they con cluded that Hertz s equation s   did no t   fully   represent   th e behavior  o f   electrical oscillations   in   air: Since  th e   latter   writer  h a s  taken  th e   term  r e s o n

  from   th e   subject   o f  acoustics,   a n d

nce

has  given  it a new  significance  in  relation  to electrical  waves we are tempted to

draw  also   a n   analogy from   th e   subject   o f  sound.  Laplace   showed  that   th e   discrepan-

c y  between  the value for the   velocity  of sound in air   calculated from   th e   theoretical equation and  that   obtained  by  experiment was due to a  transformation transformation   of energy in heating  and  cooling  the air during and  cooling  air during   the  passage   of the  sound   wave. Our  experiments on the  transm ission ission   of  electrical   waves  through  the air show  also that   the  values  calculated  from   the theoretical equation do not  agree  with  with  the the   experimental we  believe can be explained be values.  The  discrepancy,   we  76  explained  also  by a  consideration   of the transformation   of energy in the  the  dielectric.

Almost   fifty   years earlier earlier,, Joseph Henry s exploration of the acoustical prop erties

o f  materials   h a d   constituted   a n   early   foray   into   the new   energetic physics. Now, physicists   like Sabine thought nothing   o f   drawing drawing upo n   th e   properties   a n d  prindiverse as light, heat, electricity, electricity, and ciples   of energy to con nect phe no m ena as diverse ciples  sound. Sabine was studying electricity, however, not sound, and this analogical 77

thinking was about as close close as he cam e at this ti tim m e to the science of acoustics. When  he turne d to acoustics just a few years years later, later, however, however, and initiated initiated wh at

would   b e c ome   a   lifelong investigation   of the   behavior   o f   sound, this energetic framework would prove crucial  i n   shaping   h is   work. In   1895, Sabine   w as  asked  b y   President Eliot   to   improve   th e   faulty   acoustics o f a   university lecture hall   in   Harvard s   n e w   Fogg   A rt   M u s e u m .   T h e   room   w a s too reverberant, generating su ch a prolonged echoing of soun d that a speaker speaker s it .   (See figvoice   w a s  unintelligible  to the   listeners   w h o   gathered   there   to   hear   it. u re   2.11.) Disappointed   with  this loss   o f   valuable teaching   space,   Eliot asked Sabine   to   find   a way to   reduce   th e   reverberation   in the   r o o m .   H e   suggested that Sabine develop   a   quantitative measure   o f   acoustical   quality,   in   order   to   compare acoustically superb Sanders Theatre. Eliot   h o ped th e   faulty   room with Harvard s acoustically 78 that  the new  hall   could then be altered   to  match   the  acoustics  of the  theater.

3 4 

C H A P T E R  2

 

2.11 L ect ure   Hall, Fogg Art

Museum, 1895   (since demolished). ished ). H arvard's president Charles Eliot assigned the   task of improving  the  acoustics of

this   excessively reverberant room  to  Wallace Sabine, a y o u n g  assistant  professor o professor o f

physics at the the   university. Courtesy   of the  H arv ard University   Art  M use ums, ©  President  and  Fellows of Harvard  College.

It   was not  obvious  to  Sabine what that measure should  be, as the  measurement  of  s o u n d  was a  problem that  had  long  challenged acoustical  experi-

menters.  Throughout  th e  past century, scientists  h ad  approached this problem primarily   b y  attempting  to  render vis visibl iblee acoustical phe nom ena . Sabine iinitial nitially ly adopted this strategy   a n d  employed  a  variant  o f  Rudolph  Koenig's

dancin g

flame device   to  study  the  sound  in the  Fogg Lecture Room, but  there  was no

useful way to  interpret  the  results. Sabine thus abandoned  all attempts  to  look  at

sound,  and  instead chose  the  seemingly obvious, but  long  neglected, alternative discovered that the  ear  itself,  aided  by a  suitable electrical of  listening  to it. He  discovered chronograph, ment.

gave   a  surprisingly sensitive  and  accurate method  of  measure-

79

 W hat Sabi Sabine ne chose  to  measure was the  time  of  reverberation: the  dura-

tion  of  audibility  of  residual sound  as it  echoed through  the  room  and  slowly

died   away. Sabine's   technique consisted of sounding a source, an organ pipe with a pitch Sabine's of 512 cycles per second   (cps), until a steady volume of sound was achieved in the room.  He  then shut off the  source  of sound  and listened  to the  residual sound, or

35

T H E 

O R I G I N S 

O F 

M O D E R N

C O U S T I C S

 

2.12 Experimental apparatus employed by Wallace Sabine in his investigation  of  reverbera-

tion. The  large tank of  com-

pressed air was used to  sound the organ pipe mounted  on top of it.  Sabine then shut off the

ai r  supply and listened  to the

continuation   of sound,  or reverberation, until it was no longer audible. The  chronograph on the  table recorded  the interval,  or reverberation  time. Wallace Sabine,  Collected  Papers on

coustics   (Cambridge, Mass.:

Harvard University Press, 1922),  p. 15.

reverberation, until  it was no  longer audible. A torsion pendulum silently recorded the th e   duration  duration  of of audibility  audibility   to  to   hundredths  hundredths  of a second. (See figure  2.12.) Sabine   carefully  measured the reverberation times of the Fogg Lecture Room a n d  Sanders Theatre,  and he  studied numerous other rooms throughout  the Harvard campus, campus, a  well   as in  Cambridge  an d  Boston.  Boston.  In  order  to  minimize  the  ass well in  Cambridge  In   order  to   minimize  th e disturbing   effects  of  streetcars, students, sources  of  noise, hee  conducted of streetcars, of   noise, h  students,  an d  other sources  80

all  of his research his research late  late  at at night.  night.   Sabine emphasized  emphasized  to his  his  undergraduate student studentss th e   importance  importance  of of   experimental precision  precision  an d  accuracy,  and he  he  clearly practiced

what  he preached. He  He  once threw  out  over three thousand measurements, representing   several  months' work,  after  determining that  the  clothing worn  by the observer   himself)  had a  small  b u t  measurable  effect  upon  th e  outcome  of his experiments. Subsequently, Subsequently, he  he   always wore  wore   th e  same outfit  ( blue winter coat  coat  a nd 81 vest,  winter trousers, thin underwear, high shoes ) when  experimenting.

Sabine measured Sabine  measured  the  reverberation times  of rooms as he  found them,  and he additionally manipulated those reverberation times  by  introducing  different materials. Thh e  removable  seat  cushions from quantities   o f  sound-absorbing materials. T Sanders   Theatre proved Sanders proved conve conveniently niently portable porta ble  and  standardized absorbers  of

sound, and  Sabine could  be  glimpsed  on any  given night  if one  happened  to be out  between midnight  and  four  o'clock  in the  morning) lugging heavy  stacks  of

cushions   across the cushions  the  dark campus in  order  to  make  his measurements.

3 6 

C H A P T E R  2

 

Sabine's   experimental method derived  from  h is  is  earlier collaborations  with

Trowbridge, and was based on his fundam enta l assum ption that soun d, like like John  Trowbridge, virtually   a ll  other physical phenomena,  w as  best defined  a s a  body  of  energy. When  Sabine studied electrical phenomena,  he had  focused  o n  transformations through which  it  passed. Having  n o w  turn e d o f   electrical energy  in the  material through to   acoustical phenomena, Sabine retained that  focus  a n d  based  h is  examination on the   transformation  o f  sound energy  in a  room into heat  a n d  motion  by the architectural materials of which the   room   was constituted. It is not evident that Sabine   knew   o f Joseph   Henry s   earlier studies,  but he  shared  Henry s   emphasis on energy and materials. Sabine's work   differed,  however, in that the practical application of his   results was always always foremo st in his mind. Sabine's energetic treatment   o f sound  w a s nonetheless  insufficient  to  genera te   the quantitative understanding that he sought. Indeed, for a long time he was

n o t   sure what  to do  with  h is  measurements, except  to  keep making more  o f them.  After  several several years of experimentation experimentation and thousa nds of hou rs devoted to the painstaking collection of   data,  he was stil stilll unable to derive a fun dam enta l mathematical relationship between the architectural properties of a room and its reverberation time.   Until   he had  achieved that understanding, Sabine would  n o t consider   h i s  work complete. Meanwhile,  th e  Fogg Lecture  Room   remained unusable and un and  un us e d. By 1897, President Eliot   had run out of  patience. When   h e  prompted  th e young  professor  for a  progress progress report, S abine respond ed,  I  certainly hope  to

bring it to   success  in time, but only  after  a variety of experiments and a training

of my   hearing which will require several years,  and the  working  o f  some rather 82 remote  side issues.   Eliot s   o w n  response  was now  unequ ivocal: You have m a de   sufficient  progress to be able to prescribe for the Fogg Lecture Room,  a n d 83 you are going to make that prescription.   Thus forced , Sabine had panels of sound-absorbing  felt  hun g on variou s wall wall  surfaces  in the lecture room, and the a udi tori um w a s   finally  usable, althou gh far  from  the a coustical equivalen t of Sanders  Theatre.

T h e   con clus i on  o f  this episode might have signaled  the end of Wallace 84 time, however, that that He nry Higginso n Sabine's   work on acoustics.   It was at this time, approached Charles Eliot   to  solicit scientific  advice  on his new  concert hall, a n d Eliot passed Higginson's request   on to  Sabine. Knowing  th e  limitations  of his understanding   o f  sound, Sabine  w a s  initially reluctant  to  undertake this  important  n e w  assignment. A ccording  to his  biographer,  h e  went home that evening and devoted himself feverishly feverishly to to a perusal of his notes, representing the labors

37

T H E   O R I G I N S  O F  M O D E R N  A C O U S T I C S

 

of the   preceding three  years. Then,  suddenly, at  a t a moment when   h is mother  w a s gratified  satisfacwatching him anxious anxiously, ly, he tu rned to her, hi hiss  face  lighted  with   gratified  85 tion, and a nnounce d quietly,' quietly,'II have foun d it at last ''"" What  S a b in e fo u n d  d  w a s  th a t wh en  en  h e  plotted  plotted  t h e  q u a n tity  tity  o f  S a n d ers

T h ea tre  seat  cushions  x )  versus  th e  corresponding reverberation time  for a room   y ) ,  th e  resulting graph  was a rectangular hyperbola, a   standard mathematica l   curve characterized by the  equation: 2.13  Sabine ine s plots s plots of  of  reverWallace Sab beration  time  versus  the  amount

of sound-absorbing  material in a room,   1900.  The  first  graph shows his  experimentally shows his experimentally derived  data.   The second graph shows how he extrapolated discover   the this   curve  to  to   discover  hyperbolic  relationship

between the two  quantities. Collected   Papers Wallace Sabine,  Collected

on Acoustics  (Cambridge,   Mass.: Harvard University   Press, Harvard University 1922),  pp. 21, 22.

86

hi s  data before,   bu t  this time,  where  k  is a  constant. Sabine  Sabine  ha d  graphed  graphed  his time,  by extrapolating beyond the points representing data that he had collected, he was able to see his   experimentally   derived   fragm ent as part of a larger curve, a hyperbola. (See   figure  2.13.) Sabine's earlier preoccupation with the precision and accuracy of his data points had prevented him   from  seeing this curve. Only after  he had been forced to stop experimenting was he able to consider the   data at   hand without thinking about  to  improve  to  collect more  about  how to  improve  it or to  more  of it. Only

he  discover  then   did he  then discover  th e  hyperbolic relationship. Sabine   realized that  h is  discovery  was a breakthrough  for his  understandi understanding ng

o f   r e v e r b e r a t i o n . .  N o w   ea g er  the  a c o u s tic s  er  t o  assume responsibility  responsibility  for the  s  o f to   President Eliot: Higginson's   n e w  music hall, h Higginson's hall, h e  immediately wrote  wrote  to 

FIG 5

Curve showing   the   relation   of the   duration  of the   resi residual dual sound   to the added the added  absorbing material

FI G 6

Curve  5   plotted  as   part   of its  corresponding  rectangular part  was  hyperbola The The  solid   part  was  determined  experimentally; measures  the absorbing the displacement of  this  to the  right   measures  power   of the   walls   of the   room

38 

C H

P T E R 

2

 

When  you  spoke  to me on  Friday in  regard  to a  Music Hall  I met the  suggestion impress ion of which which I now desire to correct c orrect . At this time, I with  a hesitancy the impression

w as  floundering i inn a  confusion  of  observations  an d  results which  last   night resolved themselves  in the  clearest manner.  You may be  interested  to  know  that  the  curve, in which the duration of the residual sound is plotted against against the the absorbing abso rbing materidisplac splacement ement of the orial,   is a rectangular hyperbola with displaced origin; that the di

gin is the  absorbing  power of the  walls  of the  room;  and  that  the  parameter  of the hyperbola is very nearly a linear linear func tion of the volume of the room. This opens up

a  wide  field.

87

Ever the experimenter, experim enter, he he added, It is only only necessary to collect  f u r t h e r   data in order  to  predict  the  character  of any  room  that  may be  planned,  at  least  as

respects  reverberation.

88

Sabine s  development  of  this wide  field   resulted,  by   1900,  in a   comprehen89

sive   and quantitative analysis of reverberation.   He initially represented his hyperbola with  the  equation:

where a   =  absorbing power  of  r  room oom (walls, (walls, ceiling, etc.), x

absorbing power  of materials added  to the  room,

t   =  reverberation time,  an d

k   =   th e   hyperbolic constant.

In   this form, Sabine's equation  differentiated   the absorbing power of the room itself  a )  from the absorbing power of the materials added  to it  itself  it  (x).This distinction

reflected  h is   experimental practice, in   which  he first  measured  th e  reverberation time in a room, then introduced additional sound-absorbing objects to alter that reverberation time. As his   focus   moved away from   experimentation  an d   toward  a

fuller   understanding of the mathematical relationship  itself,   the distinction

 o f  absorbing factors  would become  less  significant. between these different   types of Sabine   initially expressed expressed the total absorbing absor bing power power of each room in terms of its equivalent  in  Sanders Theatre  seat cushions. While  this unit  of  absorption

w as   convenient  for fo r   Sabine himself,  it was  clearly problematic  as a   more general scientific   standard, and Sabine replaced it with a new new  open-window  unit

of

absorption. This unit was equivalent to the complete absorption of sound energy provided by b y an open window one square meter in  area.  Since all energy energy impinging on on    with  no  reflection   such  an  opening would escape  to the  space beyond, with

  9

T H E   O R I G I N S   O F  M O D E R N   A C O U S T I C S

 

back into   the   room the   unit represented  one  s q u ar e m e t e r  of a  perfectly absorbent material. Hereafter, Hereafter,

Sabine reported, al alll  results,  thoug h ordinarily

obtained  by  means  of  cushions, will  be  expressed  in  terms  of the  absorbing power of open windows—a unit as perm ane nt, universal universally ly accessi accessible, ble, and as nearly absolute   as  possible.

90

Sabine   next broke  down  the  total absorbing power  of a  room into  its individSabine ua l   components, including such items as plaster walls, wooden floors, rugs, and

power  of  each component with  the quantity: curtains. He  expressed the  absorbing power

where a n 

coefficient of absorption, absorption, or absorbing power per unit  area  o f material   n and

sn 

total   surface  area o area o f  material  n  in the  room  (i (inn square meters).

Now,  the  total absorbing absorbing power of any  room could be  represented by the  quantity:

For any  given room, Sabine could experimentally derive  the  value  of  this  sum

measuring  its equivalent cushions. Hee  also  knew,  after by   measuring  its equivalent   in  in  Sanders Theatre  seat  cushions. H making some measurements, the  surface area  of each  different  material in the room. His  H is  task  was thus to determine the absorption  coefficients  of all those difsystems ms of equation s repreferent  materials. To acc omplish this, Sabine set up syste senting   different  rooms, each of which contained a  different  pro portion of a range of materials. When  he had as many equations equations as he had u nknow n  coefficients,  Sabine Sabine was able able to solve solve the equ ations and determine the values of the different  absorption  coefficients.  Once  determined,  th e  coefficient  for a  given

material   was  available  for any  future  calculation,  and  Sabine published tables  of 91

these  coefficients  fo r  others  to  use.   Sample values included: Open window 

Woo d-sheathing (hard pine) 

1.000 061

Plaster  on  wood  lath 

034

Plaster  on  wire lath 

033

Glass,  single thick ness

027

Plaster  on  tile 

025

Brick   set in Portland cement

025

4 0 

C H A P T E R  2

 

These numbers   m a y  generally  b e  interpreted  as  indicating  th e  percentage  o f energy absorbed by each type of   surface  when it is exposed to sound. In other words, every every time a body of sound energy en coun ters a  surface  of plaster on tile, 2.5  percent  of  that energy  will be  absorbed  by the  material,  and  97.5 percent  of

th e   energy will  b e  reflected  o ff  that  surface  back into  th e  room. Th e  complete absorption of an open   window  was represented by a coefficient  of 1.00, or 100 percent. Sabine's next   task was to  determine  th e  value of the  hyperbolic constant,  k fo r   each  room.  By com paring hyperbolae for  different  room s, he determined

that   the  constant  was  directly proportional  to the  volume  of the  room. Before this  proportion  could  be  satisfactorily derived, however, Sabine  had to  deal with a  difficult  complication.  complication.  H is  form  in a sysis  hyperbolae varied slightly  from  pure form  tematic manner, and he attributed this variation to the lack of a constant initial intensity   of  sound in his  experiments. Each succeeding value of the  duration  of the residual sound was   less  as more and more absorbing material was brought

into   the  room, Sabine explained, not merely beca use   the  rate  of  decay was greater,   but also because the initial intensity was less. greater,

92

  The lack of a suitable

source,  one  that could generate sound  of a  constant intensity  no  matter  what  the condition  of the  room,  led  Sabine into  a  complicated side-investigation  to  cor93

rect   for the  variations that  he  could  not  eliminate  or  control.   He  ultimately determined that the hyperbolic parameter   k   was propo rtional to the volum e o f a room according to the  equation:

Sabine's equation   coul could d now be written in the  form:

where: t  V

time  (in =   reverberation time  (i n seconds), volume   of room  (in  cubic meters),

a n   =   absorption  coefficient  of  material n , and s n   =   surface  area  of material  n   (i meters).. (inn  square meters)

This formula could   now be  used  to  predict  th e  reverberatory quality  o f a room in advance of its construction, a privilege long sought, but never before enjoyed, by   architects or  o r  their clients. T h e  absorption  coefficients  o f  comm only employed

41

T H E 

O R I G I N S 

O F M O D E R N 

C O U S T I C S

 

building materials were already determined  determined   an d  tabulated, an  an d  values f values f o r  an d could  b e  calculated o calculated o ff blueprints ff blueprints   o r other scaled drawings. With  these known s n   could  quantities   in  hand,  the  equation could generate  the  unknown quantity  t the reverberation   time of the  proposed room. reverberation such  a  calculation calculat ion were deemed If  t h e  reverberation time that resulted from  such  unsatisfactory,  a n  architect needed only  only  to to   modify  modify  h is is   design—changing  design—changing  th e

overall volume  of the  room,  or the  type  or  proportion  of  materials employed within  it—until  a satisfactory  result was achieved. With this equation, Sabine  had

achieved  th e  fundamental, quantitative understanding  understanding  o f  reverberation finally   achieved  that   he had  long sought, and he now  welcomed  the  opportunity  to  work with Charles McKim  on the  design  for  Henry Higginson's  new music hall.

When  Sabine first  met  with Higginson  in January 1899,  to  review McKim's

design, he was unable  to  estimate  on the  spot  its prospective reverberation time, as  it  took some time  to  calculate th  the e  volume  of the  room  and the  different  sur-

face   areas  of  number  of of  materials  from  th e  drawings.  H e  nonetheless  offered  a  number 

preliminary suggestions. Most  significantly,  as as   Higginson Higginson reported reported   to to   McKim,   Professor  Professor  Sabine thinks  the  hall altogether  too  long. How  long  it  should  be he does   n o t  venture  does venture  to  to  say say,, considering consideri ng that partly  partly  a matter  matter   of of experiment  experiment   an d  partly a   matter  matter  o f calculation, which  which  he has not yet  yet  reached,  but he is  is  very much afraid  of the long tunnel which  we have laid out.

94

While  th e  reverberation time that Sabine later calculated from  this design  design  is not  recorded, it  appears not to  have been  in  line with Higginson's acoustical cri-

as embodied  embodied   in the old  old  Music Hall  Hall  and the  the  Leipzig Gewandhaus. In Gewandhaus. In March,  March, teria  as McKim informed Higginson that  he  would revise his  design, following Sabine's suggestions.   It  will  be no  improvement  to the  proportion  of th the e large hall to cut down   its  down its  length, th e   architect admitted, admitte d, but  if if,,  acoustically, yo  yo u  consider that you  have reason  to  believe that it will  be better, we  we shall not  oppose.

95

 Th The e  result

to  reduce  reduce  th thee  overall volume  volume  of the  the  hall,  an d  thus also  also  its its   reverberation.  In w as   to  order  to  maintain  the  original o riginal seating seati ng capacity, McKim followed Sabine's suggestion to add a second gallery to the one he had  origi originally nally specified. In his published his  published account  account  of the  the  derivation  derivation  of his reverberation his reverberation equation  equation  an d its  application to the  design  of Boston's  new music hall, Sabine outlined  how he verified  that this  new  plan would achieve  the  desired acoustical result.96  He

obtained scaled drawings  of  Boston's  old ol d  Music Hall  and the  Leipzig Gewandhaus   and he  Gewandhaus that  h e he  calculated their reverberation times  from  th e  data that  seconds  for the  seconds  for the read off off   these drawings; 2.30 seconds  the  former,  an d  2.44 seconds  latter. (See figure 2.14.)  2.14.)   H e  then turned  turned  to to   McKim's revised  plans  for the new hall, calculating i ts overall volume,  as well  as the  total  surface  area  of  each  of the 4 2 

 

2 14

Architectural sectio sections ns of the Leipzig Gewandhaus, the

Old  Boston Music Hall,  and

the New Boston  Music  Hall   Symphony Hall).  The two older structures served a s ac ous t i c al  models  models  for for   Symphony

C H

P T E R 

2

Hall. Sabine analyzed their designs and used his reverbera-

FIG 20

The Leipzig G ewandhau ewandhauss

tion formula to ensure that  the new hall would possess the same amount  of reverberation same amount as   the

models. Wallace Sabine,

Collected  Papers  on  coustics   Cambridge, Ma ss.: Harvard University Press, 1922),  p. 66.

FIG 21

F I G 22

43

The Old  Boston Music  Hall

The New Bosto Boston n  Music  Hall

T H E  O R I G I N S   O F  M O D E R N   A C O U S T I C S

 

d i f f e r e n t   materials  materials  out of  h  it was  ter  o n  lath, of  w h ic h  was  c o n s tr u c ted , in c l u d in g p l a s ter 

p l a s t e r   o n  tile,  glass,  wood a n d   d r a p e r i e s .  H e  a l s o f a c t o r e d  i n t h e  h ig h l y a b s o r b e n t  surface  th a t  t  t h e  a u d i e n c e  e  a n d  o r c h es tr a m em b er s w o u l d c o n s titu te

w h en th e h o u s e w a s   filled  to capacity. Plugging all these  data  in to h is eq u a tio n , h e   dete rmin ed that McKim's hall hall would have  have  a  reverberation time  time  o f  2.31 seconds. The   closeness  o f this value  to  those  of the other  halls ensured that  t he n e w hall  would  faithfully  r ep r o d u c e  e  t h e  a m o u n t  t  o f  r ev er b er a tio n p r es en t  t  i n  those

acoustical exemplars. Sabine's   t e c hn i qu e  enabled  McKim  to re-create the  sound o f   p as as t s tr u c tu r e s w ith o u t h a v in g  g  t o  r e- c r ea te  te  t h e  s tr u c tu r es th em s el v es ,  a n d Sabine   highlighted  this  fact  when he emphasized that  n e i t h e r  hall serve d as a 97

model architecturally. Sabine, M c K i m ,  ,  a n d  Higginson were were   i n  constant contact over  over  t h e  course  course  o f 1899 1899 and 1900 1900,, working out the details of design design and addre ssing new   issues  th a t arose   durin g the constructio n of the hall. hall. Sabine advised on questions rangin g 98

from   where to place the organ pipes to what kind of  seats  should be installed.

M a n y   of t he  q u e s t i o n s t h a t  h e  a d d r es s ed c o u l d  n o t b e  a n s w er ed s im p l y  b y churning  o u t  another reverberation calculation,  a n d he  clearly  drew  o n a more general knowledge  knowledge   o f  s o u n d th a t  t  he had  had  g a in ed d u r in g  g  h i s  years  o f r es ea r c h . Sabine even recognized   th e  role  o f  audience  psychology  in  affecting judgments about the acoustical quality of the hall.  When  asked if a wood lining should be applied   to the  stage area,  h e  in f o r m ed H ig g in s o n th a t  t h e  small quantity  o f

w o o d   in question would not significantly affect  the acoustics one way or  a n o t h e r.   H e  n ote d , however, that, subjectively even this small small displ display ay  o f  wood  will increase   the acceptability of the hall to the public by  gratifying  a long estab99 l is h ed — a n d   n o t  wholly wholly unreasonable— prejudice. Sabine's  m a th em a tic a l l y q u a n tif ied u n d er s ta n d in g  the  b eh a v io r  g  of the  r  o f  s o u n d provided   t he  basis  o f  expertise that accredited  all his  suggestions, even those  f o r whi c h   the reverberation equation itself itself did not provide provide a direct answer. answer. It also also in s p ir ed th e c o n f id en c e   with  w h ic h h e r en d e r ed h is a d v ic e. Th a t a d v ic e w a s attractive   t o  McKim  n o t o n ly  because  i t wa s perceived  t o b e  scientifically authoritative, but als alsoo because it did n ot significantly con strain the architect's creative freedom. Sabine   di d not  dictate  o n e  best form;  h is  technique  w a s applicable   to any form or styl stylee of building. Although based on the man ipulation of

b u i ld i n g   materials, here, too,  h i s  tec h n iq u e l a id  out no  strict prescriptions  o r p r o s c r ip tio n s .  With  S a b in e' s tec h n iq u e,  a n y  d es ir ed a c o u s tic a l  e n d  could  b e achieved through an endless variety of architectural means. If an architect were comm itted to on e par ticular aspect of his design, he could simultaneously ensure

4 4 

 

C H A P T E R  2

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF