Electromagnetic Formula
January 3, 2018 | Author: api-3698488 | Category: N/A
Short Description
Electromagnetic Formula...
Description
MIDTERM FORMULA SHEET VECTOR IDENTITIES G G G G G G G G G A ⋅ ( B × C ) = C ⋅ ( A × B ) = B ⋅ (C × A) G G G G G G G G G A × ( B × C ) = B( A ⋅ C ) − C ( A ⋅ B) ∇(Φ + Ψ ) = ∇Φ + ∇Ψ G G G G ∇ ⋅ ( A + B) = ∇ ⋅ A + ∇ ⋅ B G G G G ∇ × ( A + B) = ∇ × A + ∇ × B ∇(ΦΨ ) = Φ∇Ψ + Ψ∇Φ Φ Ψ∇Φ − Φ∇Ψ ∇ = Ψ2 Ψ
(
∇Φ n = nΦ n−1∇Φ G G G ∇ ⋅ (ΦA) = A ⋅∇Φ + Φ∇ ⋅ A G G G G G G ∇ ⋅ ( A × B ) = B ⋅∇ × A − A ⋅∇ × B G G G ∇ × (ΦA) = ∇Φ × A + Φ∇ × A G G G G G G G G G G ∇ × ( A × B ) = A∇ ⋅ B − B∇ ⋅ A + ( B ⋅∇) A − ( A ⋅∇) B G G G G G G G G G G ∇( A ⋅ B ) = A × (∇ × B ) + B × (∇ × A) + ( A ⋅∇) B + ( B ⋅∇) A ∇ ⋅∇Φ = ∇ 2Φ G ∇ ⋅∇ × A = 0 ∇ × ∇Φ = 0 G G G ∇ ×∇ × A = ∇∇ ⋅ A − ∇ 2 A VECTOR INTEGRAL THEOREMS G G G ∫∫∫ (∇ ⋅ A)dv = w ∫∫ A ⋅ ds (Divergence theorem, Gauss identity) v
S[ v ]
G G ∫∫ (∇ × A) ⋅ ds = S
v∫
G G A ⋅ dl (Curl theorem 1, Stokes’ theorem)
C[ S ]
G G G G ˆ ∇ × A dv = ds × A ≡ n × A ( ) ( )ds (Curl theorem 2) ∫∫∫ w ∫∫ w ∫∫ v
S[ v ]
SOME INTEGRALS OFTEN MET IN EM PROBLEMS 1 ∫ x dx = ln | x | +C 1 x ∫ (a 2 ± x 2 )3 / 2 dx = ± a 2 a 2 ± x 2 + C x 1 ∫ (a 2 + x 2 )3 / 2 dx = − a 2 + x 2 + C
S[ v ]
)
x2 x 2 2 ∫ (a 2 + x 2 )3 / 2 dx = − a 2 + x 2 + ln x + a + x + C 1 1 x ∫ a 2 + x 2 dx = a arctan a + C 1 1 a−x x 2a ln a + x = − a arctanh a ,| x |< a 1 ∫ x 2 − a 2 dx = 1 − arccoth x ,| x |> a a a x 1 2 2 ∫ a 2 + x 2 dx = 2 ln a + x + C x 2 2 ∫ a 2 + x 2 dx = a + x + C 1 2 2 ∫ a 2 + x 2 dx = ln( x + a + x ) + C 1 1 a + a 2 + x2 +C ln dx = − ∫ x a2 + x2 a x 1 ∫ x sin(ax)dx = a 2 [sin(ax) − ax cos(ax)] 1 ∫ x cos(ax)dx = a 2 [cos(ax) + ax sin(ax)]
(
)
MIDTERM FORMULA SHEET x ag − bf 1 = arctan ∫ (ax 2 + b) fx 2 + g b ag − bf b fx 2 + g dx
, (ag > bf )
π
∫ tan xdx = − ln | cos x | +C , x ≠ (2k + 1) 2 ∫ cot xdx = ln | sin x | +C , x ≠ 2kπ 1
x
x = R sin θ cos φ y = R sin θ sin φ z = R cos θ
x π
∫ cos x dx = ln tan 2 + 4 + C SOME USEFUL DEFINITE INTGERALS 2π 0 , m ≠ n ∫ sin mx ⋅ sin nx dx = π , m = n ≠ 0 0 2π
0
∫ cos mx ⋅ cos nx dx = π ,
0 2π
∫
, m≠n m=n≠0
sin mx ⋅ cos nx dx = 0
0
π
0
, m≠n m=n≠0
0
, m≠n m=n≠0
∫ sin mx ⋅ sin nx dx = π / 2, 0
π
∫ cos mx ⋅ cos nx dx = π / 2, 0
, 0 ∫ sin mx ⋅ cos nx dx = 2m , m 2 − n 2 0 π π (a − b cos x) , ∫ (a 2 + b2 − 2ab cos x) dx = a 0, 0 π
x = r cos φ y = r sin φ z=z
r = x2 + y 2 y φ = arctan x z=z
Rectangular ↔ Spherical
∫ sin x dx = ln tan 2 + C 1
COORDINATE TRANSFORMATIONS Rectangular ↔ Cylindrical
m + n = even number m + n = odd number a>b>0 b>a>0
R = x2 + y 2 + z 2
(
θ = arccos z / x 2 + y 2 + z 2 φ = arctan( y / x)
)
Cylindrical ↔ Spherical
r = R sin θ φ =φ z = R cos θ
R = r2 + z2 φ =φ θ = arccos z / r 2 + z 2
(
)
VECTOR TRANSFORMATIONS Rectangular Components ↔ Cylindrical Components ax = ar cos φ − aφ sin φ ar = ax cos φ + a y sin φ a y = ar sin φ + aφ cos φ aφ = − ax sin φ + a y cos φ a z = az az = az
Note: φ is the position angle of the point at which the vector exists. Rectangular Components ↔ Spherical Components ax = aR sin θ cos φ + aθ cosθ cos φ − aφ sin φ a y = aR sin θ sin φ + aθ cos θ sin φ + aφ cos φ az = aR cos θ − aθ sin θ aR = ax sin θ cos φ + a y sin θ sin φ + az cos θ aθ = ax cos θ cos φ + a y cos θ sin φ − a z cos θ aφ = − ax sin φ + a y cos φ
Note: φ and θ are the position angles of the point at which the vector exists.
MIDTERM FORMULA SHEET Cylindrical Components↔ Spherical Components ar = aR sin θ + aθ cos θ aR = ar sin θ + az cos θ aφ = aφ aθ = ar cos θ − az sin θ aφ = aφ a z = aR cos θ − aθ sin θ
Note: θ is the position angle of the point at which the vector exists. DERIVATIVES OF ELEMENTARY FUNCTIONS (const.)′ = 0 1 (arctan x)′ = ( x)′ = 1 1 + x2 1 ( x k )′ = kx k −1 (arc cot x)′ = − 1 + x2 (e x )′ = e x (sinh x)′ = cosh x (a x )′ = a x ln a (cosh x)′ = sinh x 1 1 (ln x)′ = (tanh x)′ = = 1 − tanh 2 x x cosh 2 x 1 (log a x)′ = , a ≠ 1, x > 0 1 (coth x)′ = − = 1 − coth 2 x x ln a 2 sinh x (sin x)′ = cos x 1 (cos x)′ = − sin x (arcsinh x)′ = 1 + x2 1 (tan x)′ = , x ≠ (2k + 1)π 1 cos 2 x (arccosh x)′ = ± , x >1 x2 − 1 1 (cot x)′ = − 2 , x ≠ kπ 1 sin x (arctanh x)′ = ,| x |< 1 1 1 − x2 (arcsin x)′ = ,| x |< 1 1 1 − x2 (arccoth x)′ = ,| x |> 1 2 1 − x 1 (arccos x)′ = − ,| x |< 1 1 − x2 DIFFERENTIAL OPERATORS Rectangular Coordinates ∂Φ ∂Φ ∂Φ ∇Φ = xˆ + yˆ + zˆ ∂x ∂y ∂z
G ∂F ∂Fy ∂Fz ∇⋅F = x + + ∂x ∂y ∂z G ∂F ∂Fy ∂Fx ∂Fz ∂Fy ∂Fx ∇ × F = xˆ z − − − + yˆ + zˆ ∂z ∂x ∂x ∂y ∂z ∂y ∂ 2Φ ∂ 2Φ ∂ 2Φ ∇ ⋅ (∇Φ ) ≡ ∇ 2 Φ ≡ ∆Φ = 2 + 2 + 2 ∂x ∂y ∂z G 2 2 2 2 ∇ F = xˆ∇ Fx + yˆ∇ Fy + zˆ∇ Fz Cylindrical Coordinates ∂Φ 1 ∂Φ ∂Φ ϕˆ + ∇Φ = rˆ + zˆ r ∂ϕ ∂r ∂z G 1 ∂ 1 ∂Fϕ ∂Fz (rFr ) + ∇⋅F = + r ∂r r ∂ϕ ∂z G 1 ∂Fz ∂Fφ ˆ ∂Fr ∂Fz 1 ∂ (rFφ ) 1 ∂Fr ∇ × F = rˆ − − − +φ + zˆ ∂z ∂r r ∂r r ∂φ ∂z r ∂φ 1 ∂ ∂Φ 1 ∂ 2 Φ ∂ 2 Φ ∇ ⋅ (∇Φ ) ≡ ∇ 2 Φ ≡ ∆Φ = + r + r ∂r ∂r r 2 ∂φ 2 ∂z 2 G ∂ 2 A 1 ∂Ar Ar 1 ∂ 2 Ar 2 ∂Aφ ∂ 2 Ar ∇ 2 A = rˆ 2r + − + − + 2 + r ∂r r 2 r 2 ∂φ 2 r 2 ∂φ ∂z ∂r ∂ 2 Aφ 1 ∂Aφ Aφ 1 ∂ 2 Aφ 2 ∂Ar ∂ 2 Aφ ˆ φ 2 + − 2 + 2 + 2 + + 2 2 ∂r r r φ ∂ ∂ r r r z φ ∂ ∂ 2 2 2 ∂ A 1 ∂Az 1 ∂ Az ∂ Az zˆ 2z + + 2 + 2 2 r r ∂ dr r φ ∂ ∂z Spherical Coordinates ∂Φ ˆ 1 ∂Φ ˆ 1 ∂Φ θ+ ϕˆ R+ ∇Φ = R ∂θ R sin θ ∂ϕ ∂R G 1 ∂ 1 1 ∂Fϕ ∂ ( R 2 FR ) + ( Fθ sin θ ) + ∇⋅F = 2 R sin θ ∂θ R sin θ ∂ϕ R ∂R
MIDTERM FORMULA SHEET G ∇ × A = Rˆ
∂ ∂Aθ ∂θ ( Aϕ sin θ ) − ∂ϕ 1 1 ∂AR ∂ θˆ ( RAϕ ) + − R sin θ ∂ϕ ∂R
ϕˆ
1 R sin θ
G ˆ + θˆRdθ + ϕˆ R sin θ dϕ ; dl = RdR G ˆ 2 ds = RR sin θ dθ dϕ + θˆR sin θ dRdϕ + ϕˆ RdRdθ ;
+
dv = R 2 sin θ dRdθ dϕ
1 ∂ ∂A ( RAθ ) − R R ∂R ∂θ
1 ∂ 2 ∂Φ 1 ∂ ∂Φ 1 R + 2 sin θ + 2 2 2 ∂R R sin θ ∂θ ∂θ R sin θ R ∂R 2 2 G ∂ AR 2 ∂AR 2 1 ∂ AR cot θ ∂AR ∇ 2 A = Rˆ + − 2 AR + 2 + 2 + 2 R ∂R R R ∂θ 2 R ∂θ ∂R ∂Aϕ ∂ 2 AR 2 ∂Aθ 2 cot θ 1 2 − − − A θ R 2 sin 2 θ ∂ϕ 2 R 2 ∂θ R2 R 2 sin θ ∂ϕ
∇ 2Φ =
∂ 2Φ ∂ϕ 2
+
∂ 2 Aθ 2 ∂Aθ Aθ 1 ∂ 2 Aθ cot θ ∂Aθ ˆ − + + 2 + θ 2 + R ∂R R 2 sin 2 θ R 2 ∂θ 2 R ∂θ ∂R ∂ 2 Aθ 1 2 ∂AR 2 cot θ ∂Aϕ + − + R 2 sin 2 θ ∂ϕ 2 R 2 ∂θ R 2 sin θ ∂ϕ 2 ∂ 2 Aϕ 2 ∂Aϕ Aϕ 1 ∂ Aϕ cot θ ∂Aϕ + − + + 2 + ϕˆ ∂R 2 R ∂R R 2 sin 2 θ R 2 ∂θ 2 ∂ θ R
∂ 2 Aϕ ∂AR 2 cot θ ∂Aθ 1 2 + + R 2 sin 2 θ ∂ϕ 2 R 2 sin θ ∂ϕ R 2 sin θ ∂ϕ
DIFFERENTIAL ELEMENTS Cartesian coordinates G G ˆ + ydy ˆ + zdz ˆ ˆ ˆ ; ds = xdydz ˆ dl = xdx + ydxdz + zdxdy ; dv = dxdydz Cylindrical coordinates G G ˆ + ϕˆ rdϕ + zdz ˆ ϕ dz + ϕˆ drdz + zrdrd ˆ ; ds = rrd ˆ dl = rdr ϕ ; dv = rdrdϕ dz Spherical coordinates
ELECTROMAGNETIC EQUATIONS Coaxial line 2πε µ b µ , F/m; L1 = 0 ln + 0 , H/m C1 = ln(b / a) 2π a 8π Twin-lead line 2 πε µ h h C1 = F/m; L1 = ln + − 1 H/m 2 π r h r h ln + − 1 r r
View more...
Comments