December 28, 2022 | Author: Anonymous | Category: N/A
Download Electric Power Systems Research...
Electric Power Systems Research
Methodological evaluation for the use of the tram infrastructure with the inclusion of charging stations for vehicles and electric buses using OpenDSS --Manuscript Draft- Manuscript Number:
EPSR-D-21-02156
Article Type:
Research Paper
Keywords:
Power grid, Tram, Electric Car (EV), Electric Bus (BEB), Charging Station, Electromobility
Corresponding Author:
Marco Antonio Toledo, Ing. UPV Universitat Politècnica de València Valencia, Valencia SPAIN
First Author:
Marco Antonio Toledo, PhD(c)
Order of Authors:
Marco Antonio Toledo, PhD(c) Eddy Bravo, Msc. Luis Gonzales, PhD Diego Morales, PhD Carlos Álvarez, PhD
Abstract:
Modern mass electric mobility systems present opportunities to optimize their infrastructure, it is necessary to address challenges from a technical point of view, the oversizing of the electrical infrastructure is generalized in public transport systems such as the tram, plus the stochasticity of the initial variables with which executed the project in intermediate cities and developing countries, require continuous and planned adjustments in the technical evaluation of installed demand. Therefore, this research presents a novel methodology to determine the technical feasibility of using the infrastructure of the tramway system to recharge a fleet of public transport electric buses or taxis. The investigation determines that the tram's electrical system under current operating conditions would house the recharge of 42 BOE, B OE, which represents 9% of the current fleet of internal combustion buses. With this increase, the utilization factor of the tram's electrical system would increase from 11% to 32%. However, the fast charging of Electric Vehicles is not entirely feasible due to the increase in losses in the circuit's power due to the overloading of its elements. The study is validated using computational tools based on real data from the tram system of Cuenca in Ecuador. Ec uador.
Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation
Click here to view linked References
Manuscript
Methodological evaluation for the use of the tram infrastructure with the inclusion of charging stations for vehicles and electric buses using OpenDSS. Abstract: Modern mass electric mobility systems present opportunities to optimize their infrastructure, it is necessary to address challenges from a technical point of view, the oversizing of the electrical infrastructure is generalized in public transport systems such as the tram, plus the stochasticity of the initial variables with which executed the project in intermediate cities and developing countries, require continuous and planned adjustments in the technical evaluation of installed demand. Therefore, this research presents a novel methodology to determine the technical feasibility of using the infrastructure of the tramway system to recharge a fleet of public transport electric buses or taxis. The investigation determines that the tram's electrical system under current operating conditions would house the recharge of 42 BOE, which represents 9% of the current fleet of internal combustion buses. With this increase, the utilization factor of the tram's electrical system would increase from 11% to 32%. However, the fast charging of Electric Vehicles is not entirely feasible due to the increase in losses in the circuit's power due to the overloading of its elements. ele ments. The study is validated using computational tools based on real data from the tram system of Cuenca in Ecuador. Ecuador. Keywords: Power grid, Tram, Station, Electromobility. Electromobility.
Electric
Car
(EV),
Electric
Bus
(BEB), Charging
1. Introduction
The transition towards electric mobility is growing exponentially in the world, according to the International Energy Agency (IEA) in [1], it estimates that the world fleet of electric vehicles (EV) by 2030 will be 125 million. Despite this technology advancement, adoption levels are still relatively low in most developing countries such as Latin America, unlike more industrialised countries that lead the market technologically and commercially. However, studies [2] show essential indications of this process, mainly in public transport systems. The main problem for the countries of the region in the transition to electric mobility is their high dependence on fossil fuels as an energy source for the current transportation system. By 2050, according to the International Energy Agency (IEA) in [3], the growth of the automobile fleet in the Latin American region could triple, reaching over 200 2 00 million units, which would have a d dramatic ramatic effect on the demand for fossil fuels and the increase in greenhouse gas (GHG) emissions into the atmosphere, which could increase up to 70%, and other pollutants emitted by this sector. In Ecuador, the current public transport system represents the main energy consumption sector, demanding 48.8% of the total available energy, equivalent to an average consumption of 46 MBEP per year [4]; therefore, the state seeks to change the current paradigm and propose strategies that allow the adoption of a more sustainable, efficient and clean transportation system. To this end, the renewal of the public transport fleet is planned for more efficient and less polluting systems such as electric traction through the establishment of enabling conditions, the application of emission standards and stricter energy efficiency policies for vehicles with engines internal country currently has policies and laws that encourage thethe acquisition of goodscombustion. and services The in favour of the decarbonisation of transport and thus promote efficient, rational and sustainable use of energy, such as the Organic Law for the Productive Development [5], which exempts from income tax (IR) and value-added tax (VAT) to EV for private use, public transport and cargo. The electric charge for all 100% electric vehicles is also exempted from VAT, and the special consumption tax (ICE) was also eliminated for EVs with a
price higher than USD 40,000.00 [6]. The Organic Law on Energy Efficiency [7] proposes the mandatory use of electric traction vehicles for public service for those who join in 2025. Mobility in intermediate cities such as the city of Cuenca is closely related to the supply of all available means of transport and their use in relation to the needs of citizens. Thus, the primary means of transport is the light vehicle, followed by urban ur ban and rural public transport buses, cargo trucks and motorcycles, respectively [8]. According to the perception survey published in [8] , the bus has the highest motorisation rate (30%) and, therefore, the one with the most significant influence and acceptance among users from an economic and social point of view, closely followed by the private car and the pedestrian, and a little more distant the taxi, the bicycle and finally the motorcycle. The public transport system in Cuenca consists mainly of a fleet of 475 buses and 3,553 light vehicles used as taxis. The bus fleet fle et covers 29 route lines, where each unit travels an average of 216 km per day, considered an average route of approximately 32 km of each line [8]. Public transport by taxi covers a total total daily route of approximately 360 km, of which 242 km correspond to routes without passengers are used 118 km routes with passengers about [9]. With this background, Table 1 specifies the daily performance of a bus and a taxi for their commercial operation in Cuenca. These data show that the energy required by the urban public transport system (buses and taxis) is approximately 800 GWh / year (471 kBEP) from fossil fuels, which equivalent to public 11.78%transportation of the total consumption the transport the city [4]. GHGisemissions from in the city areofaround 200 t of sector CO 2 e /ofyear, equivalent to 30% of the total generated by the transportation sector. Therefore, the local government seeks to promote energy efficiency in i n this sector and incorporate it as a public policy with energy, economic and environmental focus. These proposals support the optimising resources that contribute to the decarbonisation of the transport sector and the replacement of inefficient technologies and techniques. Table 1. Comparison of the performance of public transport units in the city of Cuenca.
INDICATOR Bus Taxi Amount of Fuel required [L / day] 103.83 49.17 Amount of Energy required [kWh / day] 1,034.00 478.42 Energy Consumption [kWh / 100km] 478.08 132.94 Energy Efficiency [km / kWh] 0.21 0.75
In order to initiate the transition to a more sustainable transport system, in the city of Cuenca, studies have been carried out on the integration of BEB and test EVs to the public transport system and the installation of recharging stations (CS) in different points of the city and province to encourage the acquisition of this type of vehicle. So far, thanks to the management and impulse of the academy, there is only one public slow charging station in alternating current (AC) ( AC) with a capacity of 7.2 kW located in the “Parque de la la Madre” and the first station multi-connector multi -connector (CCS combos 1 and 2, CHAdeMO and Mennekes) of fast charging in direct current (DC) of 50 kW of capacity located in the Microgrid Laboratory of the University of Cuenca [10]. Despite the tax incentives available, the city has not had a significant advance in comparison to eelectric lectric mobility due to factors such as the cost of the units, the limited supply of manufacturers in the local automotive market, ignorance and fear from citizens to the use of EV, in addition to not yet having an adequate charging infrastructure. However, the city has one of the most emblematic
projects, such as the Cuenca Tram System, considered the most significant public transport system designed to solve mobility problems and environmental pollution. During a period of commercial operation with tram passengers, around 11 Citadis 302 [11] units circulate per day in 16 hours between 06h00 and 22h00 uninterrupted basis with an arrival frequency of the units at the stops of 10 minutes. In this period, the approximate energy consumption of 11 MWh / day is recorded, taking into account aspects such as the traction of the rolling stock, installations at
stops, auxiliary services and traction and facilities in garages and workshops. The maximum demand of the tram system can reach 1.60 MW at the time of most significant user demand, which occurs around 5:00 p.m. on the day.
From the review(DN) of state of the concerning theand study behaviour electrical distribution networks against the art penetration of EV BEB,ofthethe authors agree of that, for this transition to carry out in the best technical conditions, they must be considered significant integration challenges [12]. It proposed three types of analysis in the literature: a static analysis, a probabilistic analysis and a time series analysis [13]. In static analysis, it is generally considered that the loading process is carried out in the same time range [14]. Time-series studies use EV load profiles as inputs for a load flow analysis [14], essential for evaluating the technical impact on DN by incorporating load stations. Other studies propose probabilistic models to represent the load profile more realistically than the deterministic load profiles used in a static analysis. Due to the stochastic nature of the load, in [13] and [15], it proposes the solution of the probabilistic load flow using the Monte Carlo technique, which solves the problem for various energy production and consumption scenarios. The scenarios are randomly generated from a probability density function. Although the Monte Carlo method provides a high degree of precision in the results of this type of study, on the other hand, it requires a large number of iterations to converge, causing the computation time to increase significantly [16]. Studies such as [17], [18, [19], [20], show that the incorporation of CS can, in many cases, cause negative impacts on DNs, reducing the quality of the energy supplied and the availability of the network. Thus, in [17] a prototype developed in the Open Distribution System Simulator (OpenDSS) and Matlab software is presented, where it i t is visualised that the uncontrolled EV load causes variations in the voltage profile at the level of the primary feeders, phase imbalance, frequency variations and transformer and line overloads. In [18], a methodology based on probabilistic methods is proposed to simulate EV load curves and a test DN in OpenDSS. The main problems detected are related to those identified in [17] and the increase in power losses. In [19], the study of the impact impact of recharging a BEB in a test system (IEEE 33 Bus Test System) is considered through power flow simulations in Matlab. The addition of this load, which demands more power than an EV, causes severe se vere problems with the stability and reliability of the DNs, as well as increased power losses in the system; it is therefore suggested that the charging of a BEB be done from a medium voltage level For example in [20], The operation of Chiang Mai substation (SE) 4 over 24 hours is modelled and simulated in the DIGSILANT Power Factory software, including in the load profile of each primary feeder the load profile of a particular EV fleet corresponding to a. percentage (10% to 50%) of peak feeder load. These simulations show that the load due to the EVs can cause overloading of the power transformer in the SE due to the increase in the peak load, variations in the MV profiles, and harmonic distortion. One of the most significant EV penetration studies, called the MEA (My Electric Avenue) project [21], agrees with the problems previously described. As in [17] and [18], this project model simulates the DN for
different EV penetration scenarios in OpenDSS.
In [22], [23], [24],is[25], [26]and hasvoltage been investigated the effects of used loading thetime EVseries on loading transformer feeders levels at the output of feeders 24-hour simulations. The results show that uncontrolled charging causes grid congestion, thus requiring reinforcement of the available electrical infrastructure. The study presented in [27] agrees with this theory, concluding that electro mobility requires construction of electrical infrastructure and the support of DN to guarantee its reliability and stability. Finally, in [28], a study is presented that argues that the adoption of EV causes substantial problems in LV networks, mainly fluctuations in voltage levels and network congestion. To mitigate these impacts, a strategy dynamically intelligent load based on a flow model d proposed and constant load impedance
by simulations with projections EV charging, residential electricity demand and generation photovoltaics, where the charge power to Optimum EV depends on available network capacity. At the local level, studies such as [29] present the impacts produced in the distribution network of the historic centre of Cuenca by incorporating EV charging stations. st ations. The study focuses on harmonic voltage distortion, which in the worst case is less l ess than 1.36%. From the point of view of the capacity of the networks, it is determined that in some cases, a re-sizing is required. In [30] it is determined that the electric stations affect the quality of the energy supplied by the city's distribution networks, since it is determined that the level of harmonics in the voltage are in the order of 15.74% above the established limits in the IEEE 519-2014 standard and CONELEC 004/01 [31] regulation, while the harmonics produced in the current barely reach 1.54%. At present, there are no studies that show the impacts on DNs due to the operation of the tram; however, in the country, studies such as [32] and [33] analyse the impacts on the networks due to the incorporation of the “Quito Metro”, concluding that the main impacts are evidenced in the voltage levels, harmonic distortion and overload of the network. However, according to Ecuadorian regulations, these parameters are within acceptable ranges, and they would not affect the availability of the networks and the quality of the energy supplied when these systems begin their commercial operation. A novel study is presented in [34], where possible integration scenarios of the electrical infrastructure available for the supply of fast charging stations are proposed, taking advantage of low-voltage transformers of the distribution networks and giving a double use to the infrastructure of trains and meters. In contrast, studies like [35] show that intermediate cities are probably capable of integrating several BEB lines in their MV DN, in a scenario of night load or lower demand, without causing significant effects on the DN. Table 2 presents a summary of the state of the art review. Table 2 summarises the state of the art review, where se several veral studies show made in identifying the main technical impacts on DN due to the integration of charging stations and methodology is presented in each of them. Table 2. Summary of the review of state of the art in identifying technical impacts in DNs due to the incorporation of CS.
Analysis
Methodology
Static
Power flow
Probabilistic
Impact Voltage Drop Power Loss Voltage Drop Phases Unbalanced
Reference
[19] , [27], [28]
Probabilistic
Time Series
Power Flow
Time Series Power Flow
[13] , [18], [21] Frequency Deviation Overload Power Loss Voltage Drop Phases Unbalanced Frequency Deviation [17] , [20], [21], [22], [23], [24], [25], [26 Overload Harmonic Distortion
The contribution of this study is to propose the simulations of time series power flows based on the Monte Carlo method using OpenDSS software as a solver to determine the impacts generated by probabilistic predictions of the voltage profiles, power consumption, load profiles and power losses in MV power grids due to the penetration of EV and BEB, where there is currently no massive adoption of this type of technology. This article prioritises public transport systems and proposes the use of the technology and electrical infrastructure available of the tram system of the city of Cuenca, whose utilisation factor is approximately 11%, for energy integration
between the tram and EV and BEB within a comprehensive electric public transport system that is intended to be implemented to replace the current one. In other words, this study evaluates the technical feasibility of installing charging stations in the tram power network that will supply a specific fleet of EV and BEB. This approach represents a novel study for intermediate cities with a view to the energy sustainability of their public transport system, mainly those who wish to take advantage of the electrical infrastructure of their electric mass transport systems such as the tram and the metro, for the incorporation of charging stations without major modifications and investments in electrical infrastructure. The distribution of the document is as follows: Section S ection 2 describes the methodology used in the case study described in Section 3. Next, the results obtained from methodological implementation through simulations performed for different EV and BEB penetration operating scenarios are reported in Section 4. Finally, Section 5 reviews and discusses the results obtained and presents the conclusions of the study. 2. Methodology 2.1. Description The detail of the proposed methodology is shown in Figure 1 . The architecture of the software used for the solution of the probabilistic load flow to determine the impacts on the DN of the tram due to the integration of the loading stations is described. Once the solver has been determined, as a first action, the simulation scenarios are established considering the commercial operation of the tram and the percentage of penetration of EV and BEB according to the specificities of the public transport system in the city. According to the operational scenarios and the information available, as a second action, the load profiles of both the commercial operation of the tram and the EV and BEB loading process are modelled to be included as input in the simulation software according to the available information. As a third action, the electrical circuit of the tram is implemented in the simulation software. The fourth action is to establish the geographical location of the charging stations and the connection to the MV network of the
tram. The fifth action presents the results of the simulations si mulations that will be presented graphically to show the performance of the monitored indices. In addition, as part of the analysis, a
mathematical model is proposed to calculate the energy efficiency of a BEB from real data obtained from the tests of the commercial operation in the city, and that will be used to determine the need for partial recharges during the day d ay due to its re retail tail operation.
Figure 1. Proposed methodology for determining the impacts generated in the tram network due to incorporating charging stations for EV and BEB.
2.2. Simulation Software Architecture The architecture of the proposed simulation model is observed in Figure 2. For the analysis of time series through probabilistic load flows using the Monte Carlo method, the
OpenDSS software is used as a solver. The solver has integrated modelling model ling capabilities that allow elements of an electrical system structured in different libraries containing electrical characteristics scripted programming languages like Matlab, which I used as an interface between the user instructions and solver. The information exchange between OpenDSS and Matlab is done through the COM (Component Object Model) interface. Matlab modules are responsible for generating random numbers, execution control, data collection and presentation of results. In contrast, the OpenDSS modules are responsible for assembling the positive sequence circuit and its solution through a flow of time series loading. The positive sequence circuit model and the addressing to the different libraries containing the elements' technical characteristics are stored in the “Master.DSS” file. The file. The solution mode is considered daily (24 hours) with an hourly resolution of 15 minutes.
Figure 2. The architecture of the proposed simulation software.
2.3. Simulation Scenarios
The simulation scenarios are proposed according to the operating conditions of the city's public transport system, including the Tram, and the technical characteristics of the electric traction units considered as taxis and buses. Although tests have been carried out in the city to integrate BEB and EV into the public transport system, there is no conclusive information on the charging habitswith of this type oftheir unitbehaviour. in an accurate commercial operation that allows modelling and predicting certainty However, from the available information, a static analysis is proposed with two reload rel oad simulation scenarios for PVCs and BEBs. Thus in this study, a slow night load scenario will be considered in the hours of minimum demand of the tram system considered from 23h00 to 05h00 the following day exclusive to BEB, And a fast loading scenario in the commercial operation period of the tram between 05h00 and 23h00 for the EV and BEB they require. For each simulation scenario, the maximum number of units of each type that can charge their batteries based on the nominal charge available in the tram's electrical system and the power required by the charging stations will be considered.
Figure 3. Proposed simulation scenarios. 2.4. Cargo Profiles According to the proposed operation scenarios, the load profiles obtained from the information available on the EV and BEB test loading processes and the actual commercial operation of the tram system are handled. For the slow night charge process of the BEB, the charge profile in Figure 4 is considered, from which it is observed that the process is carried out
with a power of 80 kW.
Figure 4. Daily Demand Profiles for BEB Slow Night Load Simulation
For the fast charging process during the day, the daily charge profiles of Figure 5 are considered. Figure 5 (a) shows the charge profile for each EV with a power of 80 kW, while in Figure 5 (b), the load profile is observed for each BEB where a load power of 500 kW is considered.
(a)
(b)
Figure 5. Daily Demand Profiles for the Simulation of the Fast Loading Scenario. (a (a) Demand Profile for EV Charging; (b ( b) Demand Profile for BEB Cargo.
To implement the load l oad profile of the tram system, the typical daily load profile of Figure 6 is considered, which corresponds to its commercial operation, where it is observed that the maximum demand is around 1.6 MW between 4:00 p.m. and 5:00 p.m.
Figure 6. Cuenca Tram Freight Profile.
2.5. Implementation of the Electric Circuit of the Tram
The implementation of the model of the electrical circuit of the tram is carried out through specific programming scripts in the different libraries contained in the OpenDSS “Master. DSS” file. The description and content of each of the libraries li braries are written in detail in Table 3. Table 3. Description of the libraries in the "Master. DSS" file [36].
LIBRARY LineCodes. DSS
DESCRIPTION Values of the characteristic impedance matrix of cables and conductors used in connections
Electrical and constructive characteristics of the different cables and WireData. DSS conductors used in connections to calculate the impedance based on the geometry or arrangement of the lines LineGeometry DSS
Defines the conductors used in connections and their spatial position of these used for connections
LoadShape DSS
It contains the data of the daily load profile of the variable loads in the circuit time. This library includes the data of the demand profiles of the Tram and the demand of the electric el ectric stations for EV and BEB charging
Transformers DSS
It contains the electrical characteristics of the circuit transformers and the way of interconnection with the other circuit elements through the different connection nodes.
Lines.DSS
Loads.DSS
It contains the MV and LV lines used in the circuit, the connection with the different nodes of the circuit, their spatial arrangement and their length It establishes loads of the circuit, its electrical characteristics, identification of the nodes to which it is connected and its type (fixed or variable in time)
2.5. Selection of the Location of Charging Stations
In this study, a charging station is considered to be the physical place that encompasses a set of electric stations from which a specific fleet of EV and BEB will be supplied. The charging stations to be fed from the MV electrical network of the tram system will be strategically located along the tram route based on the fulfilment of two selection criteria that consider the following variables: a) The first criterion considers the variable distance between the traction SE of the tram and the place where the operation of the charging station is planned. To reduce the voltage drop and power losses in the lines that supply the transformer of the charging station, potential places are in the vicinity of the traction SE of the tram system, such as gas stations, supermarkets, commercial premises, transfer stations and bus stops. b) The second criterion considers the physical space available in the potential places determined with the first criterion that allows the installation of a group of electric in fleet addition to providing the conditions f acilities necessary facilities accommodate astations specific of EV and BEB that will accessand throughout the day totorecharge their batteries, without significant interventions and structural modifications of these places. The places that provide facilities to host a fleet of EV and BEB in the city are the public transport transfer stations located in the "Feria Libre" and "Terminal Terrestre" and the premises of "Expo Azuay" near the courtyard of the workshop trolley car. 2.6. Analysis Indices (With what indicators is it compared - I suggest IEEE in a table)
Based on state of the art on impacts on the DN due to the incorporation of charging stations in the study monitoring real-time arises indices such as voltage s in bars MV of the SE of traction of the Tram, maximum power, energy consumption, power losses, percentage of the utilisation factor of the electrical installations of the electric tram system and the power factor. According to [37], some of the acceptable levels of the indices according to the norm and the characteristics of the network and that will be considered as referential in the present study are specified in Table 4: Table 4. Acceptable levels of variation of the analysis indices.
INDEX MIN MAX Voltage 0.8 pu 1.2 pu Power 4 MW Power factor 0.92 1
The data collection of the variables to be measured is implemented in the simulation software, monitors in the power transformer in the SE and each tram transformer of the tram, and an energy meter at the feeder head. Monitors record complex variables such as voltage, current and power of all phases over time, while whil e energy meters record active and rreactive eactive energy consumed, peak load, power losses, and overloads on circuit elements. The application proposes the presentation of results graphically through Matlab's graphical user interface (GUI module).
2.7. Mathematical Model to determine the Energy Efficiency of EV and BEB
To determine reference data for the energy efficiency of the BEB on a particular route, a model is proposed that determines the energy consumption based on the variation in the state of charge (∆SOC) of the battery when making a specific route. This model was calibrated with the data obtained from a test BEB under commercial operating conditions in Cuenca. The (∆SOC) depends on the variation of the altitude level of the route (∆h), the variation of the speed (∆v) in that section, and a calibration constant (k) that depends on the scenario in which it is mobilises the unit, according to expression (1):
∆ = ± ∗ ∆ℎ ∗ ∆
(1)
To determine the value of k, the scenarios and values described in Table 5 are considered, which were established in such a way that the value resulting from expression (1) agrees with a minimum error concerning the actual value of the variation of the SOC of the BEB battery after a particular commercial commercial test run. For an acceleration scenario, a harmful k is considered due to the increase in energy consumption that decreases the SOC of the battery. In contrast, a positive k is considered for a deceleration scenario due to the minimum increase in SOC due to the load contribution of the brake regenerative of the BEB.
Table 5. Reference values of the calibration constant k.
CALIBRATION SCENARIO k Rising Acceleration -1 Downhill Acceleration -0.32 Rising deceleration 0.11 Downhill deceleration 0.42
Thus, the model proposed to determine the current SOC ( SOCactual) of the battery is based equation considers at the ( SOCinitial ) and a percentage of the on variation of (2), the which SOC ( ∆SOC ( ∆SOC) ) of the theSOC battery thatbeginning represents the consumption of energy inherent in the operation of the BEB.
= + 0.01689 0.01689 ∗ ∆
(2)
To determine the energy consumed by the BEB on the journey, equation (3) is applied, where, depending on the difference di fference in SOC and the capacity iin n kWh of the battery, the equivalent energy demanded is calculated.
= ( − ) ∗ í
(3)
The algorithm that describes the calculation process described to determine the energy consumed by an EV in a particular route is shown in Figure 7.
Figure 7. Algorithm of the mathematical model to calculate calcula te the energy efficiency of a BEB in a commercial route in an intermediate city.
3. Case Study - Determination of the Technical Impacts on the Electricity Network of the Cuenca Tram
In order to test the proposed methodology, the application is submitted in a case study s tudy that presents the implementation of the power grid of the Cuenca tram incorporating charging stations for EV and BEB. 3.1. Description of the Tram System Network
The tram system is supplied with electricity at a level of 22 kV in MV from feeders 0528 in SE 05“El Arenal” and 0428 in SE 0404- “Industrial Park” in the concession area of the local distributor, Regional Electricity Company Centrosur CA (EER CS), as shown in Figure 8. The total demand of the tram facilities is 4 MVA, where each SE of power contributes with 2 MVA. In the event of possible contingencies or the eventual exit of one of the feeders, each SE can supply the total demand of the system. The main SEs supply six secondary traction SEs in cascade, distributed
along the tram route, and manage the energy required by design and provide adequate voltage to the catenary. The SE-01 and SE-05 are traction traction SE end-of-line feed rectifiers (SEF) supplied by the connections from feeders 0428 and 0528. The SE-02, SE-03 and SE-04 are traction intermediate power rectifiers (SEI) that the SEF supplies, except for SE-02, which is supplied by a power rectifier SE that serves the facilities of garages and workshops (SE-T / C) and that The SE-01 supplies it. The SE-02 and SE-03 can be interconnected in a cascade to supply all the own traction SE when the output of one of the feeders fee ders occurs.
M a rr ii s c s ca ll a L a a m a r r
s a i c r é m A s a L e D . v A
a a ñ s p E . A v
G r a an C n o l l o om b ii a a
Figure 8. Location diagram of the SE of the Tram along its route.
In Figure 9 (a), the one-line diagram of the electrical system for the SEF and SEI is observed, while in Figure 9 (b), the one-line diagram of the SE-T / C of the tram. In the SEF and SEI, there is a 250 kVA three-phase transformer for f or supplying auxiliary and shutdown services and two 1,000 kVA three-phase transformers for the energy supply of rolling stock. One of these transformers (TR-L2) is kept as a reserve against any contingency. In the SE-T/C, a 1,000 kVA three-phase transformer is intended to supply the auxiliary services of the tram and facilities of the garage/workshop premises, and a 630 kVA transformer for the energy supply of the rolling stock exclusively in the yard of garages and workshop is. The circuits in Figure 9 with their characteristics will be implemented in the simulation software.
FEEDER 0428 - 0528
SE-01
22 kV
22 kV
22 kV 50+200 kVA TSA 22/0.22/0.48 kV Dyn11-Dy11
TR-L1 1,000 kVA 22/0.59/0.59 kV Dd0-Dy11
TSA
TR-L2 1,000 kVA 22/0.59/0.59 kV Dd0-Dy11
TR-L3
50+950 kVA 22/0.22 kV Dyn11
630 kVA 22/0.59/0.59 kV Dd0-Dy11
VCC
AA A.S .SS S
T. T.B B S TOP TOPS S
AA.SS
VCC
0.75 KV
0.75 KV
NEXT SE FEEDER
NEXT SE FEEDER
ASYNCHRONOUS THREE-PHASE MOTOR 120 kW
ASYNCHRONOUS THREE-PHASE MOTOR 120 kW
(a)
(b)
Figure 9. Single Line Diagram of the Traction SEs of the Tram Electrical System. (a) Single Line Diagram of SEF and SEI; (b) Single line diagram of SET / C.
3.2. Types of EV and their characteristics
In Ecuador, successful cases of electric public transport have been applied in the taxi modality, such as that of [38], where vehicles such as the BYD E5 and Kia Soul EV have been chosen. According to the manufacturer's manufacturer's specifications, these units have 48 and 27 kWh [10]. In a practical way to determine the performance of the Kia Soul EV in an intermediate city such as Cuenca, the route in Figure 6 was carried out with this vehicle, simulating the operation as a taxi on the tram route. The road began and ended at the same point (start /end) /end ) to act a whole way, at stop 1 of the tram route, located on Av. De las Américas. For this type of vehicle, circulation is restricted in certain sections of the route, mainly in the historic centre, since they are exclusively trafficked by the tram so that on the EV route, there was a deviation of 12.7% from the original route carried out by the tram, a situation that is evident in the route indicated in Figure 10 (deviations). The entire way made is 24.37 km.
The experimental data of the SOC profile of the EV battery is observed in Figure 11 (a). The tour began with a SOC of 97% to conclude with a SOC of 85.50%, consuming 11.50% of the energy available in i n the battery, that is, approximately 3.01 kWh, considering the t he battery is around 27 kWh at full load. The energy consumption of the route is shown in i n Figure 11 (b), ( b), where it can be seen that the EV consumed a total of 3.30 kWh from the energy storage system, from which 5.40 kWh were consumed on the route and 2.10 kWh was contributed to the battery due to regenerative braking. According to the data obtained, the energy efficiency eff iciency of the Kia Soul EV vehicle in its commercial operation in an intermediate city cit y such as Cuenca can be approximately 6.95 km / kWh. If we consider according to the data obtained in the study [9] that a taxi in the city travels an average of 360 km/day (this data is determined from studies), the energy required would be approximately 51.80 kWh, almost twice the energy available in the Kia Soul EV's battery, so based based on this analysis, these units would require a full partial recharge recharge during the day day to complete their commercial operation.
(a)
(b)
Figure 11. Kia Soul EV Battery Charging-Discharging Process on the Tram Tra m Route Route. (a (a) Battery SOC Profile; (b (b) Energy Consumption.
3.3. Types of BEB and their characteristics
Since March 2019 and the city of Guayaquil, Guayaquil, it has had a fleet of 20 BEB model K9G of the manufacturer BYD integrated into the mass transit systems (some technical specifications) [39]. E n the city of Quito is planned in the near future the incorporation of a fleet of 300 BEB its urban public transport system [40]. In the city of Cuenca, although there is no BEB integrated into the public transport system, technical tests of commercial operation were carried out to estimate the energy consumption of the BEB BYD K9G from the data collected from the routes made on the commercial roads of lines 27 (“ Sinincay-Huizhil (“ Sinincay-Huizhil ”) and 100 (“Ricaurte(“Ricaurte Baños”). According Baños”). According to the manufacturer's data, this unit has a 324 kWh battery [41]. From the data obtained from the technical tests in [42], it is determined that in intermediate cities such as Cuenca, the BEB BYD K9G presents an average energy efficiency of 0.75 km / kWh, with a range of 242 km in the best of cases considering the total energy available in the battery and 206 km if 15% of the battery's energy capacity is preserved. To estimate the energy consumption of a BEB on the tram route in Figure 10, the model proposed in section 2.7 is app applied. lied. Data elevation profile and speed are shown in Figure 12. The SOC profile of the determined battery is observed in Figure 13, considering that the BEB would carry out the same route and at a similar speed as the Kia Soul EV on the tram route.
Figure 12. Elevation and Speed Profile on the Tram Route.
From Figure 13, it is obtained that the final SOC of the battery is 88.23%, that is, that a BEB can consume approximately 36.49 kWh, which corresponds to 11.77% of the capacity of the storage system. Based on these results, a BEB like the BYD K9G on the tram route could have an average efficiency of 0.67 km / kWh, and they have to say very little data for the test, it is only to focus on it so that it is not noticed, then I write)
Figure 13. Estimated profile of the SOC of the BEB battery on the Tram Route.
3.4. Geographic Location of Charging Stations
Based on the criteria set out in section 2.5, 3 places have been selected. They are close to the tram station SEs and have a large l arge parking lot to accommodate a specific fleet of EV and BEB, and will be located geographically distributed load as shown in Figure 14. In this study, it is considered to place charging stations at the facilities of “Expo Azuay ( -2.901183819994391, 79.02858310855605 ) ” on Av. México, “Estación de Transfer del Arenal ( Arenal ( -2.898543308308573, 79.02715505615377 ) ” on Av. De las Américas and “Terminal Terrestre Transfer Station ( Station ( 2.8914083190509303, -78.99357412488041 ) ” in Av. España.
Figure 14. Geographical Location of the SE of the Tramway and Charging Stations.
The SE that will take the demand of each charging station raised are identified in Table 6. It is considered that in each charging station is available electro lines with a capacity of 80 kW, which are supplied through a station fed transformation from the network MV at a level of 22 kV from the traction SE of the tram. Table 6. SE of the Tranvía that supply the Loading Stations.
SE Tram SE-02
Charging Point Transfer Station "El Arenal"
SE-04
Transfer Station "Terrestrial Terminal"
SE-T / C
Esplanade of "Expo Azuay"
3.4. Operation Scenarios
According to what is specified in sections 3.2 and 3.3, an EV such as a taxi and a BEB in the city of Cuenca may require partial recharges during the day. Thus, in [43], it is determined that 46.4% of the 29 commercial lines in the city of Cuenca would require a partial recharge during the day if the service was provided by a BEB. As there is no information on the driving habits and recharging of taxi units, a static analysis analysi s scenario is proposed with two periods of recharging the units. For the slow night charging scenario, the complete charging of a fleet of 48 BEB distributed in the 3 charging points will be considered, which represent 10% of the current public transport system by bus in the city of Cuenca. This process will be carried out with electric stations of 80 kW of power. The approximate recharge time is 4 hours. For the scenario of fast charging during the day, EV and BEB charging is considered in each hour of the period of most significant demand for the Tram, that is, from 7:00 a.m. to 6:00 p.m. The charge is assessed in each hour of the proposed period of 16 EV, exclusively at the charging point of the “Expo Azuay” esplanade. For this to happen, the process will be considered with electric stations of 80 kW of power. The average full charge time is 20 minutes. In the case of BEB, the hourly load of 1 unit in the indicated period is considered, with 500 kW electric stations. It is assumed that the loading
will occur in the period in which the units remain parked between the arrival at the transfer stations at the end of the tour and the start of the new term, which is approximately 15 minutes. The information related to the scenarios proposed, where the number of EVs and BEBs that access the slow and fast charge at night are detailed, are specified in Table 7. Table 7. Number of EV and BEB units that charge their batteries daily in the different simulation scenarios.
Stage Night Slow Charging Fast Charge in the Day
EV No. No. BEB
0 192
48 12
Load Power [kW] (EV-BEB) 0-80 80-500
3.5. Scenario Simulation
For the simulation of the proposed scenarios, the architecture of Figure 2 is considered to implement without the circuitincorporating of Figure 9. the In the first fi rst instance, the electrical circuitcalled of the the Tram is simulated charge of the electro line stations base scenario. The load profile in Figure Fi gure 6 is considered to affect the operation of the tram system. For the simulation of the load scenarios, the implementation of the scheme in Figure 15 is assumed. An exclusive transformer is incorporated in each SE indicated i ndicated that supplies the electric stations of each charging station. The loads to simulate in the slow load scenario correspond to the load profiles in Figures 4 and 6 that model the BEB load and the tram operation, respectively. The loads corresponding to the load profiles in Figures 5 (a), 5 (b) and six that model EV and BEB load and tram operation are included in the simulation for the fast charging scenario. Additionally, the simulation of the combination of slow and fast charging scenarios on the day called the combined scenario is considered. For the simulations, the worst operating scenario is considered, where the system syste m is supplied with energy through SE 04 of the EERCS.
Figure 15. General circuit diagram implemented in OpenDSS for the simulation of operational scenarios.
4. Analysis of Results
The simulation analyses focus on the MV bus voltage profile of the Tram SEs and the system load profile for each scenario. In addition to providing information such as energy consumption, utilisation factor, power losses and power factor of the circuit. 4.1. Voltage Profiles
The voltage profile for each simulation scenario is seen in Figure 16. The maximum and minimum voltage values input are detailed in Table 8. In all cases, the maximum level is reported in the MV bar of SE-05, which is the closest to the power SE, while the lowest level is presented in the MV bar of SE-01, considering the farthest from the source. For the combined and overnight trickle charging scenarios, the voltage level drops the moment BEB trickle starts below the minimum value set se t in [44]. Under these conditions, such methods could not technically be considered. However, a new simulation considering the slow charge of 14 BEB at each point for a total of 42 BEB maintains a minimum voltage level within the allowed range, a situation evidenced in Figure 17. Based on this consideration, for the implementation to be technically feasible, BEB's slow charge at night will wi ll be considered under these conditions. For the other simulated scenarios, the voltage levels are within the allowable ranges.
(a) (a)
(b)
(c)
(d)
Figure 16. Voltage profiles in MV were obtained from the simulation of the operating scenarios. (a) Base scenario. (B) Night-time slow charging scenario. (c) Fast charging char ging scenario. (d) Combined scenario. Table 8. Voltage levels in the MV bars of the electrical tram system for the different simulation scenarios.
Stage Base Night Slow Charging Fast Charge in the Day Combined (Slow + Fast Charge)
(a) (a)
Voltage level Max [pu] Min [pu] 0.992 1,016
1,014 1,016 1,014
0.928 0.944 0.928
(b)
(b) Figure 17. Voltage profiles in MV were obtained from the simulation of the modified operating scenarios. (a) Night-time slow charging scenario. (b) Combined C ombined scenario. (c) 4.2. Peak Load of the Tram Electrical System (d)
For the different simulated scenarios, the load profiles in Figure 18 are obtained, from which it is observed that in no case is the installed load of the system exceeded, which is 4 MW. The peak load the levels for each scenario are presented in of Table For the slow night charging scenario, highest demand occurs at the start the 9.charging period (11:00 p.m.). The highest demand for fast and combined charging scenarios is at
the beginning of the commercial tram operation ( around 08:00). Under these operating conditions, all simulated scenarios are technically feasible to implement
(a) (a)
(b)
(c)
(d)
Fig. 18. Load profiles at the head of the primary feeder were obtained from the simulation of the operational scenarios. (a) Base scenario. (B) Night-time slow charging scenario. (c) Fast charging scenario. (d) Combined scenario. Table 9. Maximum load level of the electrical tram system for the different simulation scenarios.
Stage Base Night Slow Charging Fast Charge in the Day Combined (Slow + Fast Charge)
Load [MW] 1.60 3.58 3.62 3.62
4.3. Energy Consumption and Utilization Factor
The energy consumption data and the utilisation factor corresponding to each simulation si mulation scenario are presented in Table 10. The highest energy consumption, and therefore the one with the highest utilisation factor, occurs in the combined system, where it can be increased by 29% about the baseline scenario.
Table 10. Required energy and utilisation factor of the electrical tram tra m system for the different simulation scenarios.
Stage Base Night Slow Charging Fast Charge in the Day Combined (Slow + Fast Charge)
Required Energy Utilisation Factor [%] [MWh] eleven 11.02 32 31.04 18.96 twenty 38.52 40
Figure 19 shows a typical monthly load profile for the commercial operation of the tram system, including the power required by the charging stations for the combined scenario. It is observed that the peak power is within the established maximum limit (4 MW). Therefore, it is feasible the technical implementation of scenarios that consider both the quiet night-time of BEB and the fast charge in the day for EV and BEB from the point of view of power required from the network.
Figure 19. Monthly load profiles of the tram system, including includi ng the demand for charging stations. 4.4. Active Power Losses
Concerning active power losses, the data are presented in Table 11. In the base scenario, the losses reach 5.03 kW, representing 2.33% of the total load of the circuit. Thus, the slow night charging scenarios present a low level of losses considering the base scenario. However, the highest level of casualties is present in the fast and combined charging procedures on the day, reaching around 11.74% and 15.28%, respectively, with the circuit load, making them technically unlikely scenarios to consider. Table 11. Power losses of the electrical tram system for the different simulation scenarios.
Power Losses [kW] [% of total circuit load] Base 2.33 5.03 Night Slow Charging 4.29 17.11 Fast Charge in the Day 24.74 11.74 Combined (Slow + Fast Charge) 48.01 15.28 Stage
4.5. Power factor
Circuit power factor data for each simulation scenario is shown in Table 12. It is observed that for all the methods, the power factor is within the range allowed by [45]; therefore, according to this criterion, all the scenarios are technically feasible to implement. Table 12. Power factor of the electrical tram system for the different simulation scenarios.
Stage Base Night Slow Charging Fast Charge in the Day Combined (Slow + Fast Charge)
Power factor 0.99
0.97 0.94 0.94
5. Discussion
In the development of the presented methodology, some limitations arose. The first limitation is the lack of information to simulate real load scenarios of electric traction transport units. Due to this, a static recharge simulation analysis is proposed for EV and BEB, instead of intelligent charge analysis, taking as reference data from tests carried out in the city with EV and BEB. However, this option could be considered in future works to reduce the technical effects on the distribution networks and increase the utilisation factor of the system since the application of demand management strategies for EV and BEB such as those presented in [46 ] [47], make the network much more economical, efficient and reliable. The second limitation is related to the selection of the location of the charging stations since they were established according to the availability of physical space to accommodate a fleet of EV and BEB and the proximity to the traction SE of the tram to these places. The main problem of the transition towards electric mobility in intermediate cities such as Cuenca is the lack of adequate intelligent charging infrastructure and the establishment of tariff incentives that are viable and attractive for the transport sector. That is why this study proposes an innovative solution to the problem, taking advantage of the available electrical infrastructure of the tram system to supply energy to electric el ectric stations and provide the city with charging stations without making significant investments. The proposal aims to improve the utilisation factor of the tram system facilities, which is currently under-utilised. The proposed methodology was applied considering the characteristics of public mobility in Cuenca, involving simulation scenarios based on the period of commercial operation of the tram system and the installed power in the distribution network from which it has supplied. In addition, in this study, the free access software OpenDSS is used to implement the Tram's electrical network and the simulations of operating scenarios, capable of carrying out the proposed technical impact study with a high degree of precision. As a result of the simulations, it has been determined that incorporating slow charging stations for BEB is technically feasible. At the same time, the scenarios involving fast charging of EV and BEB are unlikely to be implemented in the electrical network of the Tram under certain conditions due to the overhead that is presented in network elements as MV lines. The present study also presents an alternative business attractive to the business manager of the Tranvia the city of Cuenca, such as obtaining income from the sale of energy in times of low and high demand inclusive of the tram system operators public p ublic transport buses and taxis, taking taking advantage of current fare benefits in Ecuador. In this regard, regard, the managing company could consider as an incentive for the sale of energy only one item for energy consumed for the charging of the batteries of the EV and BEB, since the manager of the tramway would assume the required power item without variations because the addition of the demand from the loading stations does not exceed the power contracted in its supply contract.
6. Conclusions
This research provides a methodology to evaluate the technical impacts generated in distribution networks due to the incorporation of charging stations through simulations of time series power flows based on the Monte Carlo method, using the OpenDSS software as a solver. The distribution network considered as a case study is the available electrical system of the Cuenca city tram, where the incorporation of charging stations is proposed with a view to energy integration between the tram, EV and BEB within a comprehensive system of electric public transport that is intended to be implemented in the city. This research proposes a novel solution to the lack of charging infrastructure for EV and BEB in intermediate cities to decarbonise their public transport systems, which proposes the incorporation of charging stations without making significant modifications and investments in infrastructure electricity the quality and reliability of the network. Cuenca's tram system allows the incorporation of charging stations to its network since the maximum demand for its commercial operation is around 1.60 MW, being able to take advantage of the remaining 2.40 MW approximately. The utilisation utili sation factor under these operating conditions is barely 11%, a situation that can be technically exploited. As a result of the simulations, it is i s determined that night-time slow charging of a fleet of up to 42 BEB is technically feasible, which represents 9% of the current bus public transport system. The period of this process is considered within the non-operational interval of the tram system. In this scenario, a substantial increase of up to 32% of the grid utilisation factor is projected, keeping the electrical parameters within limits established in the standard and with power losses very similar to the base case. Furthermore, in this scenario, no overload of the network elements was recorded. For the EV and BEB and combined daytime fast f ast charging scenarios, and under the conditions in which it was considered for the simulations, it is not technically feasible to view due to the substantial increase in power losses concerning the entire load circuit due to overloading of MV lines. To mitigate the problem, it could be considered to reduce the charging power of the EVs set to 500kW; however, this action directly impacts the charging time ti me of the units. Additional and as future work based on these results, it could be considered the development of a prototype that allows simulating intelligent load scenarios by managing the demand of the units, in such a way that the parameters such as voltage levels in busbars MV and load of the system elements remain within allowable values by the standard. For this, more precise information on EV and BEB recharging habits must be available following the reality of the local transport system.
References
[1]
M. G. Mechthild Wörsdörfer, Pierpaolo Cazzola, “Global EV Outlook 2019 to electric
[2]
(IEA), 2019. mobility,” International Energy Agenciy (IEA), G. Mañez, E. Bermúdez, and M. Araya, “Movilidad eléctrica: Avances en América Latina y el Caribe y Oportunidades para la colaboración regional,” ONU Medio Ambient. 2018. 2018.
[3]
United Nations Environment Programme (UNEP), “Electric Mobility: O pportunities For
Latin America,” p. 81, 2016. [4]
IIGE, “Balance Energético Nacional 2018,” Dirección de Análisis y Prospectiva Eléctrica
(DAPE) -MERNNR, -MERNNR, 2018. [5]
“Reglamento para la Aplicación de la Ley Orgánica para el Fomento Productivo,” Decreto Ejec. No. 617, Pres. la República del Ecuador , pp. 1 –62, 2018.
[6]
AEADE, “Anuario 2019,” vol. I, p. 145, 2019, [Online]. Available: https://www.aeade.net/wp-content/uploads/2020/07/AEADE-ANUARIO-2019OK_1.pdf.
[7]
“Ley orgánica de eficiencia energética,” Asam. Nac. del Ecuador. Regist. Of. No 449 449,, 2019.
[8]
Ilustre Municipalidad de Cuenca, “Plan de movilidad de Cuenca 2015 -2025,” Ilus. Munic. Cuenca,, 2015. Cuenca
[9]
J. Zhunio Morocho, “Metodología para la obtención de los indicadores que describen la operación de taxis en la ciudad de Cuenca,” Universidad del Azuay, 2017.
[10]
J. L. Espinoza, L. G. Gonzalez, and R. Sempertegui, “Micro grid lab oratory as a tool for research on non-conventional energy sources in Ecuador,” in 2017 IEEE International Autumn Meeting on Power, Electronics Electronics and Computing (ROPEC) (ROPEC),, Nov. 2017, pp. 1 –7, doi: 10.1109/ROPEC.2017.8261615.
[11]
P. A. Medina R, D. Morales, B Tapia, D Criollo, J Romero, P Guamán, “Modelado del Tranvía Citadis-302 Implementado en la Ciudad de Cuenca Utilizando Matlab - Simulink ®,” pp. 284–293, 2016.
[12]
N. Banol Arias, S. Hashemi, P. B. Andersen, C. Traeholt, and R. Romero, “Distribution System Services Provided by Electric Vehicles: Recent Status, Challenges, and Future Prospects,” IEEE Trans. Intell. Transp. Syst., Syst., vol. 20, no. 12, pp. 4277 –4296, 2019, doi: 10.1109/TITS.2018.2889439.
[13]
D. Betancur et al., “Methodology to Evaluate the Impact of Electric Vehicles on Electrical Networks Using Monte Carlo,” Energies Energies,, 2021.
[14]
D. Mao, Z. Gao, and J. Wang, “An integrated algorithm for evaluating plug -in electric Syst. , vol. vehicle’s impact on the state of power grid assets,” Int. J. Electr. Power Energy Syst., 105, pp. 793 –802, Feb. 2019, doi: 10.1016/j.ijepes.2018.09.028.
[15]
S. Conti and S. Raiti, “Probabilistic load flow for distribution networks with photovoltaic generators part 1: Theoretical concepts and models,” 2007 Int. Conf. Clean Electr. Pow er, er, ICCEP ’07 , pp. 132 –136, 2007, doi: 10.1109/ICCEP.2007.384199.
[16]
F. Diop and M. Hennebel, “Probabilistic load flow methods to estimate impacts of distributed generators on a LV unbalanced distribution grid,” 2017 IEEE Manchester PowerTech, Powertech 2017 , 2017, doi: 10.1109/PTC.2017.7981107.
[17]
Z. Gao, D. Meyer, and J. Wang, “Visualising the Impact of PEV Charging on the Power Grid,” 2018 IEEE Transp. Electrif. Conf. Expo, ITEC 2018, 2018 , pp. 545 –549, 2018, doi:
10.1109/ITEC.2018.8450103. [18]
N. K. Neto and L. Piotrowski, “Methodology for Analysis of the Impact of Residential Charging of Electric Vehicles,” IEEE Lat. Am. Trans., Trans., vol. 17, no. 6, pp. 953 –961, 2019, doi: 10.1109/TLA.2019.8896818.
[19]
T. Boonraksa, A. Paudel, P. Dawan, and B. Marungsri, “Impact of Electric Bus Charging on the Power Distribution System a Case Study IEEE 33 Bus Test System,” 2019 IEEE PES GTD Gd. Int. Conf. Expo. Asia, GTD Asia 2019, 2019 , pp. 819 –823, 2019, doi:
10.1109/GTDAsia.2019.8716023. [20]
T. Pothinun and S. Premrudeepreechacharn, “Power Quality Impact of Charging Station on MV Distribution Networks: A Case Study in PEA Electrical Power System,” Proc. 2018 53rd Int. Univ. Power Eng. Conf. UPEC 2018, 2018 , no. Dc, pp. 1 –6, 2018, doi: 10.1109/UPEC.2018.8541921.
[21]
J. Quirós-Tortós, L. Ochoa, and T. Butler, “How electric vehicles and the grid work
together: Lessons learned from one of the largest la rgest electric vehicle trials in the world,” IEEE Power Energy Mag., Mag., vol. 16, no. 6, pp. 64 –76, 2018, doi: 10.1109/MPE.2018.2863060. [22]
M. Nour, H. Ramadan, A. Ali, and C. Farkas, “Impacts of plug -in electric vehicles charging on low voltage distribution network,” Proc. 2018 Int. Conf. Innov. Trends Comput. Eng. ITCE 2018, 2018, vol. 2018-March, pp. 357 –362, 2018, doi: 10.1109/ITCE.2018.8316650.
[23]
A. Carrillo, A. Pimentel, E. Ramirez, and H. T. Le, “Mitigating impacts of plug -in electric vehiclesElectrif. on localConf. distribution feeders using a charging system,” Transp. Expo, ITEC 2017 , no. iii, pp. 174 –management 179, 2017, doi: 10.1109/ITEC.2017.7993267.
[24]
2017 IEEE
Q. Dang, “Electric Vehicle (EV) Charging Management and Relieve Impacts in Grids,” 2018 9th IEEE Int. Symp. Power Electron. Distrib. Gener. Syst. PEDG 2018, 2018 , pp. 1 –5, 2018, doi: 10.1109/PEDG.2018.8447802.
[25]
T. Aljohani, A. Saad, and O. Mohammed, “On the Real -Time Modeling of Voltage Drop
and Grid Congestion Due to the Presence of Electric Vehicles on Residential Feeders,” Proc. - 2020 IEEE Int. Conf. Environ. Electr. Eng. 2020 IEEE Ind. Commer. Power Syst. Eur. EEEIC / I CPS Eur. 2020, 2020 , 2020, doi: 10.1109/EEEIC/ICPSEurope49358.2020.9160855. [26]
R. A. Biroon, Z. Abdollahi, and R. Hadidi, “Fast and Regular Electric Vehicle Charging 2019 , Impacts on the Distribution Feeders,” 2019 IEEE Ind. Appl. Soc. Annu. Meet. IAS 2019, pp. 1 –7, 2019, doi: 10.1109/IAS.2019.8912036.
[27]
S. Skok, L. Havas, V. Radosevic, and M. Cvitanovic, “Impact of Electromobility to the Power Distribution System,” 2020 IEEE PES/IAS PowerAfrica, PowerAfrica 2020, 2020, pp. 29 – 33, 2020, doi: 10.1109/PowerAfrica49420.2020.9219914.
[28]
M. Verhoog, N. Brinkel, and T. Alskaif, “Congestion management in LV grids using static and dynamic EV smart charging,” SEST 2020 - 3rd Int. Conf. Smart Energy Syst. Technol., Technol., 2020, doi: 10.1109/SEST48500.2020.9203191.
[29]
J. R. Gómez, L. G. González, P. C. Vide, N. S. Gameiro, and G. Guerron, “Impact of electric vehicle charging on the distribution system in cuenca, Ecuador,” 2017 IEEE PES Innov. Smart Grid Technol. Conf. - Lat. Am. ISGT Lat. Am. 2017 , vol. 2017-Janua, pp. 1 –6, 2017, doi: 10.1109/ISGT-LA.2017.8126756.
[30]
C. Enriquez, D. Chacón-Troya, H. Romero, and F. Quizhpi, “Simulation of harmonics produced by electroliners in the electrical network of cuenca city,” 2017 Chil. Conf. Electr. Electron. Eng. Inf. Commun. Technol. CHILECON 2017 - Proc., Proc., vol. 2017-Janua, no. CD, pp. 1 –6, 2017, doi: 10.1109/CHILECON.2017.8229554.
[31]
ARCONEL, “Calidad del Servicio Eléctrico de Distribución,” Regulación No. CONELEC 004/01.. pp. 1 –7, 2012. 004/01
[32]
J. A. Marín, M. F. Jurado, F. E. Pérez, H. N. Arcos, and F. L. Quilumba, “Study and
analysis of harmonic disturbances in the network of the quito electric company to the incorporation of the metro system in quito,” 2017 IEEE PES Innov. Smart Grid Technol. Conf. - Lat. Am. ISGT Lat. Am. 2017 , vol. 2017-Janua, pp. 1 –6, 2017, doi: 10.1109/ISGTLA.2017.8126747. [33]
A. J. R. M. S. C. J. C. C. Y. L. F. C. M. A. Mora, “Probabilistic Assessment of Underground Railway Systems Impact Over Distribution Grids,” 2019 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America) America),, 2019.
[34]
M. Stiene Stieneker, ker, B. J. Mortimer, A. Hinz, Hinz, A. Müller-Hellmann, and R. W. De Doncker, “MVDC Distribution Grids for Electric Vehicle Fast-Charging Infrastructure,” 2018 Int. Power Electron. Conf. IPEC-Niigata - ECCE Asia 2018, 2018, pp. 598 –606, 2018, doi: 10.23919/IPEC.2018.8507594.
[35]
D. Stahleder, D. Reihs, S. Ledinger, and F. Lehfuss, “Impact Assessment of High Power Po wer Electric Bus Charging on Urban Distribution Grids,” IECON 2019 - 45th Annu. Conf. IEEE Ind. Electron. Soc., Soc., vol. 1, pp. 4304 –4309, 2019, doi: 10.1109/iecon.2019.8927526.
[36]
R. C. Dugan, “Reference Guide: The Open O pen Distribution System Simulator (OpenDSS),” Electr. Power Res. Institute, Inc., Inc. , vol. I, no. November, pp. 1 –177, 2018.
[37]
D. Committee of the IEEE Power and E. Society, IEEE Recommended Practice for Monitoring Electric Power Quality Developed by the Transmission and Distribution Committee IEEE Power and Energy Society , vol. 2019. 2019.
[38]
W. Jaramillo, “Taxis eléctricos en la ciudad de Loja - Electric taxis in the city of LojaEcuador,” Revista Espacios, Espacios, no. 2013, Loja, p. 27, Jun. 2019.
[39]
BYD, “Guayaquil entra de lleno a la movilidad eléctrica con incentivos a los transportistas y nueva flota de buses eléctricos BYD,” 201 9. https://bydelectrico.com/guayaquil-entra-de-lleno-a-la-movilidad-electrica-conincentivos-a-los-transportistas-y-nueva-flota-de-buses-electricos-byd/.
[40]
“El sistema de transporte público eléctrico en América Latina | O Observatorio bservatorio Económico Latinoamericano OBELA.” http://www.obela.org/analisis/el-sistema-de-transportepublico-electrico-en-america-latina (accessed Jul. 16, 2021).
[41]
B. E.-M. ECUADOR, “BUS ELÉCTRICO K9G,” 2020. https://bydelectrico.com/ec/portfolio/bus-electrico-k9g/ (accessed Apr. 25, 2021).
[42]
L. González, “Informe de estudio de eficiencia energética autobús auto bús eléctrico (Comportamiento en ruta comercial del autobús eléctrico BYD modelo K9G),” Cuenca Ecuador, 2019.
[43]
W. E. Luzuriaga Carrillo, “Estimación de la energía requerida pa ra la sustitución de la flota de autobuses públicos por autobuses eléctricos de la Ciudad de Cuenca,” Universidad de Cuenca, 2019.
[44]
ARCONEL, Regulación Nro. ARCONEL- 053/18. 053/18. 2018, pp. 1 –40.
[45]
ARCONEL, “Pliego tarifario para las empresas eléctricas de distribución,” vol. 18, p. 35, 2020, [Online]. Available: https://www.regulacionelectrica.gob.ec/resoluciones-pliegostarifarios/.
[46]
K. L. Lopez, C. Gagne, and M. A. Gardner, “Demand-side management using deep learning for smart charging of electric v ehicles,” IEEE Trans. Smart Grid , vol. 10, no. 3, pp. 2683 –2691, 2019, doi: 10.1109/TSG.2018.2808247.
[47]
A. Keyhani and B. Ramachandran, “Real-time simulation of demand side management and vehicle to grid power flow in a smart distribution grid,” IEEE Int. Conf. Electro Inf. Technol.,, pp. 1 –5, 2017, doi: 10.1109/EIT.2017.8053426. Technol.
Manuscript
Ingeniero Eléctrico INGENIERO ELÉCTRICO
MARCO ANTONIO TOLEDO OROZCO
CURRICULUM VITAE 1. DATOS PERSONALES:
NOMBRES: Marco Antonio APELLIDOS: Toledo Orozco CÉDULA DE IDENTIDAD: 0103047650 DIRECCIÓN: Calle del Anís y Calle del Arriero. CEL: 593 - 984364210 TELÉFONO: 07-409-6825 – CEL:
EMAIL:
[email protected] [email protected] -
[email protected] [email protected] FECHA DE NACIMIENTO: 12 Diciembre de 1981 NACIONALIDAD: Ecuatoriana TIPO DE LICENCIA DE CONDUCIR: Tipo E (Especial) TIPO DE SANGRE: A RH +
2. ESTUDIOS REALIZADOS: ESCUELA: Hernán Cordero Crespo (1987-1993). SECUNDARIA: B Bachiller achiller Técnico Industrial con especialidad en Electricidad. Colegio Técnico “Daniel Córdova Toral” (1993-1999).
UNIVERSIDAD: Tecnólogo en Electromecánica con Énfasis en Sistemas Eléctricos de Potencia “Universidad Politécnica Salesiana” (2003-2007).
INGENIERO ELÉCTRICO – – “Universidad Politécnica Salesiana” (2011). DIPLOMADO EN ECONOMÍA DE REGULACIÓN – “Universidad San Andrés, Argentina (2013).
MAESTRÍA EN INGENIERÍA ELÉCTRICA EN REDES INTELIGENTES – “Universidad de Cuenca” (2019).
DOCTORADO EN INGENIERÍA ELÉCTRICA (C), Universitat Politècnica de València (Valencia - España).
CONTACTO CEL: 593 -98 – -98 – 436 436 - 4210
[email protected] -
[email protected] [email protected]
Ingeniero Eléctrico INGENIERO ELÉCTRICO
MARCO ANTONIO TOLEDO OROZCO
3. CAPACITACIÓN O CURSOS: Curso de AUTOCAD 2002 “Universidad Politécnica Salesiana”
Seminario Seminario – – Taller Taller de Sistemas de puesta a Tierra “I Congreso Internacional de
Ingeniería Eléctrica y Electrónica en la Universidad Politécnica Salesiana.” Sistemas de Distribución “Universidad Politécnica Salesiana”
Cableado Estructurado “Universidad Politécnica Salesiana”
Regulación del Mercado Eléctrico “ELECAUSTRO”
Mantenimiento de Subestaciones “Universidad Politécnica Salesiana” Gestión de Proyectos “Universidad Politécnica Salesiana”
Auxiliar Técnico en computación “Ministerio de educación y cultura de la Dirección N acional
de Educación Permanente “
Seminario Seminario – – Taller, Taller, Alcanzando la excelencia en el servicio a nuestro Cliente.
“Soluciones gerenciales Integrales - MANL”
Conferencia, Riesgos Eléctricos “Empresa Eléctrica Regional Centro Sur C.A.”
Curso Curso – – Taller Taller de Innovación “Gestión y promoción Universitaria (GPU)”
Taller de Creatividad para la Innovación “Gestión y promoción Universitaria GPU” Manual de Políticas Comerciales “Corporación Nacional de Electricidad (CNEL)”
Energías Renovables y Ambiente “Colegio de Ingenieros eléctricos del Azuay CIELA ”
Administración de Proyectos – Proyectos – EPMEPM- “Corporación Nacional de Electricidad (CNEL)”
Sistema de puesta a tierra y pararrayos “SIEMENS – CENELSUR CENELSUR Ecuador ”
Seminario taller con abogados y responsables de Reducción de pérdidas de energía de
las empresas distribuidoras. “CONELEC” Curso de INGLES BÁSICO II (SECAP)
Curso de INGLES INTERMEDIO I (SECAP)
Curso de INGLES INTERMEDIO II (SECAP)
GRIDS – IEEE – IEEE – ISGT-LA ISGT-LA 2013-Brasil. Conferencia de SMART GRIDS –
Dirección Exitosa de Proyectos (PMBOK) “Project Management Institute – TEN TEN STEP
Ecuador”.
CONTACTO CEL: 593 -98 – -98 – 436 436 - 4210
[email protected] -
[email protected] [email protected]
Ingeniero Eléctrico INGENIERO ELÉCTRICO
MARCO ANTONIO TOLEDO OROZCO
TRADUREP-MEER”. Curos CYMDIST BÁSICO “CIEEPI– TRADUREP-
Uso de Biocombustibles para la Generación Eléctrica “OLADE - Organización
Latinoamericana de Energía”.
Seminario Internacional “SMART GRID” El reto reto de las Empresas Eléctricas
“Colegio de Ingenieros eléctricos y Electrónicos del Azuay CIELA ”.
Taller para la Socialización de los Lineamientos Instructivos y Formularios, para la
presentación de planes de inversión de los Sistemas de Distribución. “CONELEC”. Seminario Capacitación del Software CYMDIST – CYMDIST – Nivel Nivel Básico, Quito “TRADUREP”.
Curso de Excel Avanzado 2010, “New Horizons Computer Learning Center”. Curso de Excel 2010 MACROS, “New Horizons Computer Learning Center”.
Sistemas de Información Geográfica, Niveles Básico e Intermedio, Intermedio , “Centro
Panamericano de Estudios e Investigaciones Geográficas” .
Análisis Sistémicos de Electrificación Rural con Energías Renovables , “ZENTRUM
Fur Entwicklungsforschung”.
Segundo Seminario Internacional de Smar Grid – Redes Inteligentes, “Colegio de
Ingenieros Eléctricos y Electrónicos de Pichincha – CIEEPI CIEEPI-”.
Gestión de Proyectos Eléctricos, Evaluación Técnica, Económica y Social , “La
Organización Latinoamericana de Energía - OLADE”.
Mercado Eléctrico Mayorista II, “La Organización Latinoamericana de Energía -
OLADE”.
Licencias Ambientales, “La Organización Latinoamericana de Energía - OLADE”.
Mercado Eléctrico Mayorista I, “La Organización Latinoamericana de Energía -
OLADE”.
POWERMAP, “Information Tecnology Solution”.
Metrología y Calibración, “Diaman Consulting Services – Universidad Santiago de
Chile”. Instalación de Transformadores PADMOUNTED, “Fábrica INATRA”.
I Seminario Internacional Smart Cities y II Seminario Internacional Smart Grid,
“Colegio de Ingenieros Eléctricos y Electrónicos del Azuay”.
CONTACTO CEL: 593 -98 – -98 – 436 436 - 4210
[email protected] -
[email protected] [email protected]
Ingeniero Eléctrico INGENIERO ELÉCTRICO
MARCO ANTONIO TOLEDO OROZCO
Aprobado IV ciclo de inglés Intermedio en el CDI.
Seminario Nacional del Sector Eléctrico Ecuatoriano, Quito, Noviembre 2016.
Seminario Nacional del Sector Eléctrico Ecuatoriano, Santa Elena, Noviembre 2017.
Curse of “Why the More More and All Electric Aircraft Needs Power Electronics” Electronics ” IEEE –
8 marzo de 2017. Participación en el Curso de la “Innovative Smart Grid Technology” Technology” – ISGTISGT- 9-12
October 2016, EUROPA – Ljubljana. Ljubljana. Curso de Manejo de Maleta de Pruebas Secundarias CMC356 y software nivel de
Protección Package de OMICON” duración 16h, 24 y 25 de octubre de 2016. II Seminario Internacional Smart Cities y III Seminario Internacional Smart Grid,
“Colegio de Ingenieros Eléctricos y Electrónicos del Azuay – Universidad Católica de
Cuenca”. Curso en Organización Latinoamericana de la Energía OLADE "Análisis y
Automatización de Redes Inteligentes", realizado del 6 al 29 de noviembre de 2017.
Participación en el Curso de “Innovative Smart Grid Technology” Technology” – ISGTISGT- 20-22
September 2017, Latin America – Quito. Quito.
Expert – PMEPME- de Schneider Electric, realizado del 6 al 29 Curso de Power Monitoring Expert – de noviembre de 2017.
Curso “Medidas de Eficiencia con la Implementación de Auditorías Energéticas e
Integración de Energías Renovables” Renovables” en la Universidad Politécnica Salesiana, 40 horas, diciembre 2018. Curso “Research “Research Radian WECO 4150X Automated Test Plataform” Plataform ” realizado en la
Empresa Eléctrica Regional Centro Sur C.A. del 20 al 22 de Febrero 2019. Curso “Taller en Data Analítica” realizado por la firma NOUX y el Ministerio de
Energía y Recursos Naturales No Renovables con una duración de 80 horas desde el 11 al 22 de noviembre de 2019. Curso "Formulación y Estructuración de Proyectos, Instrumentos Financieros" ,
realizado del 14 de mayo al 16 de junio de 2020, con un total de 60 horas, como parte del
CONTACTO CEL: 593 -98 – -98 – 436 436 - 4210
[email protected] -
[email protected] [email protected]
Ingeniero Eléctrico INGENIERO ELÉCTRICO
MARCO ANTONIO TOLEDO OROZCO
Programa de Capacitación Virtual de la Organización Latinoamericana de la Energía – OLADE-. Curso “Industria 4.0 Fundamentos y Alcances en el Sistema Eléctrico” , emitido el 12
de junio de 2020, con un total de 20 horas como parte del programa EDx courses. Curso "Conceptos Básicos de Finanzas Corporativas", realizado del 21 de abril al 5 de
mayo de 2020, con un total de 30 horas, como parte del Programa de Capacitación Virtual de OLADE. Curso “Diseño “Diseño arquitectónico para la eficiencia energética en edificios” edificios ”, culminado
exitosamente la capacitación en línea de 60 horas, del 2 de marzo del 2020 al 23 de abril del 2020. Supported by: Federal Ministry for the Enviroment, Nature Conservation and Nuclear Safety. Curso “Sistemas “Sistemas Solar Térmico” Térmico”, capacitación en línea de 60 horas, del 29 de junio al 06
de agosto de 2020. Supported by: Federal Ministry for the Enviroment, Nature Conservation and Nuclear Safety.
Curso Microrredes ‘Introdución a las Microrredes Eléctricas Inteligentes’,
capacitación 21 horas, desarrollado de manera virtual 23 de septiembre al 25 de noviembre de 2020. – MEIHAPER. MEIHAPER. Curso ‘Planeamiento ‘Planeamiento de Sistemas de Distribución de Energía Eléctrica’, Eléctrica ’, capacitación
20 horas, desarrollado de manera virtual 26 de octubre al 10 de noviembre de 2020. – Certificado por el comité ecuatoriano ECUACIER. Curso ‘Eficiencia ‘Eficiencia Energética y Energía Alternativas Aplicadas a la Distribución
Eléctrica’, Eléctrica ’, capacitación 20 horas, desarrollado de manera virtual 26 de octubre al 10 de noviembre de 2020. – Certificado Certificado por el comité ecuatoriano ECUACIER. Curso ‘Inteligencia ‘Inteligencia Artificial y Aplicaciones en Sistemas Eléctricos’, Eléctricos ’, capacitación 25
horas, desarrollado de manera presencial del 25 de octubre al 29 de noviembre de 2020. – Certificado por la Universidad de Cuenca.
4. TEMAS DE INVESTIGACIÓN:
CONTACTO CEL: 593 -98 – -98 – 436 436 - 4210
[email protected] -
[email protected] [email protected]
Ingeniero Eléctrico INGENIERO ELÉCTRICO
MARCO ANTONIO TOLEDO OROZCO
EXPOSITOR: XXII Seminario del Sector Eléctrico Ecuatoriano. (Quito - Marzo
2007). “Análisis de las pérdidas por armónicos en los contadores de inducción”.
EXPOSITOR: XXIII Seminario del Sector Eléctrico Ecuatoriano. (Salinas- Mayo
2008) “Experiencia de la centrosur en la revisión de sistemas de medición que registran consumos menores a los 10 kwh/mes.”
EXPOSITOR: XXVI Seminario del Sector Eléctrico Ecuatoriano. (Ibarra-Abril 2011)
“Análisis y propuestas para la mitigación de la contaminación armónica en las subestaciones ”
EXPOSITOR: XXVII Seminario del Sector Eléctrico Ecuatoriano. (Guayaquil-Mayo
2012) “Estrategías aplicadas para reducción de pérdidas comerciales mediante la facturación de clientes con cargas de uso instantaneo ”.
EXPOSITOR: III Semana cultural de la asociación de ingenieros técnicos de la
CENTROSUR (Cuenca - mayo 2012), “Estrategías aplicadas para reducción de pérdidas comerciales mediante la facturación de clientes con cargas de uso instantaneo” .
Abril EXPOSITOR: XXVIII Seminario del Sector Eléctrico Ecuatoriano. (Cotopaxi – – Abril
2013) “Determinación del modelo para la proyección de la demanda y efecto en las inversiones de la distribución eléctrica a partir de la inclusión de la cocción con electricidad ”.
AUTOR: en la edición n° 8 de la revista técnica “E nergía CENACE” con el artículo “Análisis y propuestas para la mitigación de la contaminación armónica en las subestaciones de la empresa eléctrica regional CENTROSUR ”. (QUITO- Mayo 2012).
EXPOSITOR: En el Congreso INTERNACIONAL de la IEEE-ISGTLA-2013 con el
artículo “Efficient measurement and control of customers with instant loads by taking advantage of AMI”, realizado en Sao Paulo - Brasil en Abril de 2013.
AUTOR: De Artículo para la revista internacional de la IEEE-PES-ISGTLA-2013
con el artículo “Efficient measurement and control of customers with instant loads by taking advantage of AMI”, 8 pag , Brasil, abril de 2013.
EXPOSITOR: En el XXX Seminario Nacional del Sector Eléctrico – Eléctrico – 2015, 2015, con el
tema “Aplicación de Técnicas de Análisis Multivariante en la asignación presupuestaría para la reducción de pérdidas de energía eléctrica en Ecuador”.
CONTACTO CEL: 593 -98 – -98 – 436 436 - 4210
[email protected] -
[email protected] [email protected]
Ingeniero Eléctrico INGENIERO ELÉCTRICO
MARCO ANTONIO TOLEDO OROZCO
EXPOSITOR invitado a las Universidades de Cuenca, Politécnica Salesiana y
Católica de Cuenca, para dictar la Charla “Cambio de la Matriz Energética a través de la Inclusión de cocinas de Inducción”.
EXPOSITOR en el evento de SMART GRID EUROPA, sites.ieee.org/isgt-europe-
2016, con el tema “Smart multivariate techniques applied in the budget assignment for loss reduction in Ecuador ””..
EXPOSITOR en el evento de SMART GRID EUROPA, sites.ieee.org/isgt-europe-
2016, con el tema “Impact study of new loads and time of use schedule in the low voltage network ””.. EXPOSITOR en el XXXI Seminario del sector Eléctrico con el tema “Metodología
para la determinación ddee pérdidas en estaciones de transfo transformación rmación particulares particular es en sistemas de medición instalados en el lado secundario ”.
EXPOSITOR en el XXXII Seminario del sector Eléctrico con el tema “Errores en la
medición de energía en utilizadores eléctricos monofásicos a 220 v instalados en redes
trifásicas”.
EXPOSITOR en el XXXII Seminario del sector Eléctrico con el tema
“Determinación de la demanda máxima unitaria proyectada por rango de consumo, con la
inclusión de las cocinas de inducción y sistemas eléctricos utilizados para el calentamiento de agua”.
EXPOSITOR en el evento de SMART GRID ECUADOR, http://ieee-isgt-
latam.org/2017, con el tema “Applications of Geothermal Energy in the Ecuadorian Context, Case Study: Baños of Cuenca – Ecuador. Ecuador.
EXPOSITOR
en
el
evento
de
CHILECON
https://easychair.org/cfp/IEEE_CHILECON_2017, con el tema “
–
IEEE
Power Transformer
Risk Index Assessment for an Asset Management Plan.
IEEE, del trabajo ID 24 “Errors in the EXPOSITOR en el evento de CHILECON – IEEE,
measurement systems with the inclusion of single-phase loads at 220V in three-phase distribution networks” en el congreso 2019 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON)..
CONTACTO CEL: 593 -98 – -98 – 436 436 - 4210
[email protected] -
[email protected] [email protected]
Ingeniero Eléctrico INGENIERO ELÉCTRICO
MARCO ANTONIO TOLEDO OROZCO
EXPOSITOR en el evento de IEEE-CIGRE-FISE Capítulo Colombia y el Comité
Nacional CIGRÉ certifica que el artículo “Forecast of solar radiation with the application of neural networks in rural zones of Ecuador" presento la ponencia oral en FISE-IEEE/CIGRE CONFERENCE 2019 celebrado entre el 4 de diciembre y el 6 de diciembre de 2019, Medellín Colombia.
AUTOR de Artículo “Energy Autonomy of Electric Vehicles in in Topologically
Irregular Cities: Case Study Cuenca- Ecuador” Ecuador”,, para la conferencia de “Transmision and Distributión T&D Latin America a realizarse en Uruguay en el mes de septiembre 2020.
AUTOR de Artículo “Innovative Methodology Aplicated to Identificationof Errors
in Electric Energy Measurement Systems in Utilities”, Utilities ”, revista ENERGIES - A special issue of Energies (ISSN 1996-1073)-Q1. This special issue belongs to the section "Electrical Power and Energy System". 02 de diciembre de 2020 - - https://www.mdpi.com/1996-1073/14/4/958 https://www.mdpi.com/1996-1073/14/4/958 .
AUTOR de la publicación “Integrati “Integration on of Renewable Energy in Large Industrial
Consumers connected in Distribution Systems ” Conferencia 2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC 2020). Ixtapa, Mexico.
INVESTIGADOR externo en el proyecto: Evaluación de l impacto de nuevos
servicios como cocinas de inducción, generación distribuida y vehículos eléctricos en la red urbana de distribución de energía eléctrica de la isla Santa Cruz en Galápagos”; Grupo de
Investigación Energía; Universidad Politécnica Salesiana Sede Cuenca; mayo de 2015 a diciembre de 2016.
INVESTIGADOR externo en el proyecto “Smart Energy Simulation Lab”
perteneciente al grupo de investigación en redes inteligentes, Carrera de Ingeniería Eléctrica de la Universidad Católica de Cuenca; inicio junio de 2017 hasta la fecha.
INVESTIGADOR externo en el proyecto “Smart UNIVERSITY 2.0” perteneciente al
grupo de investigación de la Carrera de Ingeniería Eléctrica de la Universidad Católica de Cuenca; inicio Noviembre de 2016 hasta la fecha.
INVESTIGADOR externo en el grupo “ENERGÍA” de la Carrera de Ingeniería Eléctrica de la Universidad Politécnica Salesiana; inicio febrero 2020 hasta la fecha.
GANADOR
con
el
Proyecto
de
INVESTIGACIÓN
“METODOLOGÍA
INNOVADORA PARA LA RESPUESTA DE LA DEMANDA ELÉCTRICA
CONTACTO CEL: 593 -98 – -98 – 436 436 - 4210
[email protected] -
[email protected] [email protected]
Ingeniero Eléctrico INGENIERO ELÉCTRICO
MARCO ANTONIO TOLEDO OROZCO
APLICADA CON ANALÍTICA DE DATOS Y APRENDIZAJE AUTOMÁTICO S” en la Corporación Ecuatoriana para el Desarrollo de la Investigación y la Academia. CEDIA con la Universidad Católica de Cuenca.
5. DIRECTOR DE TESIS: Director por la Empresa Eléctrica Regional CENTROSUR del trabajo de titulación
previo a la Obtención del Título de Ingeniero Eléctrico con el tema “ Metodología para
Determinar las Pérdidas No Técnicas de Energía en el Sistema de Distribución de la Empresa Eléctrica Regional CENTROSUR ” de los autores Carmen Valeria Cabrera Brito y Pedro Francisco Rodas Rivera de la Universidad Politécnica
Salesiana. Director por la Empresa Eléctrica Regional CENTROSUR del trabajo de titulación
previo a la Obtención del Título de Ingeniero Eléctrico con el tema “Determinación de
Pérdidas de Energía en Transformadores de Distribución mediante el Algoritmo de Compensación en Sistemas de Medición de Energía” nergía” de los autores Juan Carlos Maldonado y Paúl Marcelo Cando de la Universidad Politécnica Salesiana. Director por la Empresa Eléctrica Regional CENTROSUR del trabajo de titulación
previo a la Obtención del Título de Ingeniero Eléctrico con el tema “Programa para la
Gestión Activa de la Demanda de Energía Eléctrica en Grandes Clientes de la Empresa Eléctrica Regional CENTROSUR C.A. a través de la Medición Inteligente y la Aplicación de Incentivos Tarifarios” Tarifarios” de los autores Luis Geovanny Pulla Sánchez y Luis Aníbal Sanango Tenelema de la Universidad Politécnica Salesiana. Director por la Empresa Eléctrica Regional CENTROSUR del trabajo de titulación
previo a la Obtención del Título de Ingeniero Eléctrico con el tema “Metodología para
la Identificación de sistemas de Medición de Energía Eléctrica con Errores de Registro de Consumo Dentro de Sistemas de Distribución Distribución”” de los autores Carlos Eduardo Árias y Dario Xavier Gómez de la Universidad Politécnica Salesiana. Director por la Empresa Eléctrica Regional CENTROSUR del trabajo de titulación
previo a la Obtención del Título de Ingeniero Eléctrico con el tema “Desarrollo de una CONTACTO CEL: 593 -98 – -98 – 436 436 - 4210
[email protected] -
[email protected] [email protected]
Ingeniero Eléctrico INGENIERO ELÉCTRICO
MARCO ANTONIO TOLEDO OROZCO
Metodología para Valorar los Beneficios de la Generación Distribuida en Ecuador ” de los autores Jhonny Pachar Sari y Walter Adrían Quishpi de la Universidad
Politécnica Salesiana. Director del trabajo de investigación previa titulación de Ingeniero Eléctrico de la
Universidad Politécnica Salesiana con el tema “APLICACIÓN DE TÉCNICAS DE
ANALÍTICA DE DATOS PARA EL PRONÓSTICO DE LA COMPRA DE ENERGÍA EN UNA EMPRESA DISTRIBUIDORA.” DISTRIBUIDORA. ” de los autores Miguel Figueroa y Jordy Pintado.
Director del trabajo de investigación previa titulación de Ingeniero Eléctrico de la
Universidad Politécnica Salesiana con el tema “APLICACIÓN DE TÉCNICAS DE
MACHINE LEARNING PARA LA DESAGREGACIÓN Y PRONÓSTICO DEL PERFIL DE CARGA EN EL SECTOR INDUSTRIAL” de los autores Franklin Guartan y Cristian Celi. Director del trabajo de investigación previa titulación de Ingeniero Eléctrico de la
Universidad Politécnica Salesiana con el tema “GESTIÓN DE LA DEMANDA PARA PARA
LA
RECARGA
DE
REGULACIÓN
VEHÍCULOS
ECUATORIANA
ELÉCTRICOS CON
APLICADA
GENERACIÓN
A
LA
SOLAR
FOTOVOLTAICA”, de los autores Hernán Quito y Luis Martinez. 6. EXPERIENCIA LABORAL: Superintendente de Mercado Eléctrico Mayorista del Departamento de Control de la
Medición en la Empresa Eléctrica Regional CENTROSUR, (Septiembre 2016 – En En actividad). Jefe del Departamento de Control de la Medición en la Empresa Eléctrica Regional
Agosto 2016). CENTROSUR, (Noviembre 2014 – Agosto Especialista Técnico de Distribución de la Dirección de Planificación en el Consejo
Nacional de Electricidad “CONELEC” (Agosto 2012 hasta Febrero 2014, comisión de servicios).
CONTACTO CEL: 593 -98 – -98 – 436 436 - 4210
[email protected] -
[email protected] [email protected]
Ingeniero Eléctrico INGENIERO ELÉCTRICO
MARCO ANTONIO TOLEDO OROZCO
Asistente de Ingeniería de la Dirección de Distribución de la ZONA 2 “Departamento
de distribución de la Empresa Eléctrica Regional Centro Sur .CA” .CA”. (Inicio Marzo 2012 – Agosto 2012). Asistente de Ingeniería “Servicio al cliente – Encargado Encargado del plan de mantenimiento de
Acometidas y medidores del cantón Cuenca (2010-2012). Asesor de la Dirección Comercial . “CNEL Regional Los Ríos”. (2010)
Contrato por seis meses desde el 01 de Junio de 2010 hasta el 30 de noviembre de 2010. Jefe Directo: Ing. Manuel Canales Gómez; Celular N° 0996805863. Director de Recaudación de “CNEL Corporativa”. Desde el 04 de Noviembre de 2009
hasta el 31 de mayo de 2010; Jefe Directo: Ing. Manuel Canales Gómez; Celular N° 0996805863
Jefe del departamento de Control de Pérdidas “CNEL Regional Los Ríos”. (2010).
Jefe Directo: Ing. Marco Monserratte; Celular N° 099792521 Revisor Especial (E), Departamento de Control de la Medición. (2007-2008-2009).
CENTROSUR. Laboratorio de Medidores de la CENTROSUR. (2002-2007)
Laboratorio de Transformadores de la CENTROSUR.(2001)
7. EXPERIENCIA EN DOCENCIA UNIVERSITARIA: Profesor a tiempo parcial en reemplazo de Ing. Diego Morales Ph.D durante 45 DÍAS
laborables en las materias de Electrónica de Potencia, AUTOCAD. (Noviembre 2015 – Diciembre 2015) en la Universidad Católica de Cuenca. Profesor a tiempo parcial en reemplazo de Ing. Xavier Gutierrez Mgs. durante 15 DÍAS
laborables en las materias de Sistemas Eléctricos de Potencia, Electrotecnia (Julio 2016) en la Universidad Católica de Cuenca. Profesor a tiempo parcial en reemplazo de Ing. Santiago Pulla Mgs. durante 15 DÍAS
laborables en las materias de Subestaciones Eléctricas, Metodología de la Investigación,
CONTACTO CEL: 593 -98 – -98 – 436 436 - 4210
[email protected] -
[email protected] [email protected]
Ingeniero Eléctrico INGENIERO ELÉCTRICO
MARCO ANTONIO TOLEDO OROZCO
Diciembre 2017) en la Universidad Católica de Calidad de Energía. (Noviembre 2017 – Diciembre Cuenca. Profesor a tiempo parcial en reemplazo de Ing. Pablo Árias Mgs. durante 15 DÍAS
laborables en las materias de Subestaciones Eléctricas, Metodología de la Investigación,
Calidad de Energía. (Noviembre 2019) en la Universidad Católica de Cuenca. 8. ACTIVIDADES DE INVESTIGACIÓN NO PUBLICADAS Diagnóstico y Evaluación de Confiabilidad de los alimentadores de la subestación La
Troncal usando el Método de Simulación de Montecarlo. Eficiencia energética “Disminución de la demanda, factores de penalización en clientes
industriales en el área de concesión de la CENTROSUR”.
9. PROYECTOS
Participación en la Consultoría Internacional para la Planificación de la Automatización de
los Sistemas de Distribución de la Empresa Eléctrica Regional CENTROSUR, en conjunto con la firma QUANTA de los Estados Unidos de Norteamérica. Participación en el análisis y mediciones para el estudio de la Demanda Máxima Unitaria
Proyectada en la CENTROSUR por la inclusión de Cocinas de Inducción. Participación en la Compra Corporativa de Materiales para los Circuitos Expresos del Plan
Eficiente de Cocción, -CENTROSUR-. Participación en el Estudio Técnico de Pre factibilidad para el cambio de la matriz
Energética a través de la Sustitución de GLP por Electricidad desarrollado en el Consejo Nacional de Electricidad -CONELEC-. Participación en la elaboración del PLAN MAESTRO DE ELECTRIFICACIÓN 2013 –
2022 en el Consejo Nacional de Electricidad -CONELEC-. Participación en la elaboración de los Diseños de Lineamientos, instructivos y formularios
para la presentación de los Planes de Inversión de los Sistemas de Distribución en el Consejo Nacional de Electricidad -CONELEC-, 6 participantes.
CONTACTO CEL: 593 -98 – -98 – 436 436 - 4210
[email protected] -
[email protected] [email protected]
Ingeniero Eléctrico INGENIERO ELÉCTRICO
MARCO ANTONIO TOLEDO OROZCO
Plan de Reducción de Pérdidas de energía en la Corporación Nacional de Electricidad
Regional – CNELCNEL- Los Ríos, 15 participantes, Jefe del Proyecto. Plan de Reducción de consumos ceros en la CENTROSUR, 6 personas, Encargado del
Proyecto. Participación en el proyecto para el Sistema Integrado para la Gestión de la Distribución –
SIGDE- , Varios participantes, proyecto en proceso. Levantamiento del catastro y actualización del Sistema de Información geográfica de
95.000 clientes de la Corporación Nacional De Electricidad Regional Los Ríos, 20 participantes, Jefe de Proyecto. Proyecto de telemetría a través de la provisión e instalación de módulos para la
transmisión remota de datos vía GPRS; revisión de instalaciones eléctricas y equipos de medición a dos cientos (200) clientes catalogados como especiales, ubicados en el área de concesión de la corporación nacional de electricidad -CNEL-, 40 participantes, Regional los Ríos.