Ejercicios Resueltos Ingenieria Sismica
May 22, 2024 | Author: Anonymous | Category: N/A
Short Description
Download Ejercicios Resueltos Ingenieria Sismica...
Description
UNIVERSIDAD PRIVADA ANTENOR ORREGO FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA CIVIL
TRABAJO 1 ALUMNO:
Zavaleta Nolasco, Julio
DOCENTE
Villareal Castro, Genner
CURSO:
Ingeniería Sísmica
TRUJILLO-2023
1. ANÁLISIS MATRICIAL. Determinar el desplazamiento lateral máximo y fuerzas internas máximas (N, V, V)
a. Esquematizamos los grados de libertad de la estructura 2
5 1
3 B
A
4 6
11
8
C
10
7 9
D
E
F
12
G
H
b. Determinamos las rigideces axiales y en flexión de vigas y columnas 3
0.4 × 0.6 ) 12
EA viga =2173706 ×0.4 × 0.6
EI viga =2173706.(
EA viga =521689 , 44 T
EI viga =15 650,6832T m
2 3
0.4 × 0.4 ) 12
EA columna=2173706 × 0.4 ×0.4
EI columna=2173706.(
EA columna=347 792.96 T
EI columna=4 637,2395 T m
2
c. Ensamblamos la matriz de rigidez de cada elemento 1 2 3 4 5 6
[ [ [
104 337,888 0 0 −104 337,888 0 0 0 1502,465 3 756,164 0 −1 502,465 3 756,164 0 3756,164 12 520,546 0 −3 756,164 6 260,273 K BC = −104 337,888 0 0 104 337,888 0 0 0 −1 502,465 −3 756,164 0 1 502,465 −3 756,164 0 3756,164 6 260,273 0 −3 756,164 12 520,546
4 5 6 7 8 9 104 337,888 0 0 −104 337,888 0 0 0 1 502,465 3756,164 0 −1502,465 3 756,164 0 3 756,164 12520,546 0 −3 756,164 6 260,273 K CE = −104 337,888 0 0 104 337,888 0 0 0 −1 502,465 −3756,164 0 1502,465 −3 756,164 0 3 756,164 6 260,273 0 −3 756,164 12 520,546
7 8 9 10 11 12
104 337,888 0 0 −104 337,888 0 0 0 1 502,465 3756,164 0 −1502,465 3 756,164 0 3 756,164 12520,546 0 −3 756,164 6 260,273 K EG= −104 337,888 0 0 104 337,888 0 0 0 −1 502,465 −3756,164 0 1502,465 −3 756,164 0 3 756,164 6 260,273 0 −3 756,164 12 520,546
] ] ]
1 2 3 4 5 6
4 5 6 7 8 9
7 8 9 10 11 12
0 0 0 1 2 3
[ [ [
2 060,995 0 −3 091,493 −2060,995 0 −3 091,493 0 115 930,987 0 0 −115 930,987 0 0 6 182,986 3 091,493 0 3 091,493 K AB= −3 091,493 −2 060,995 0 3 091,493 2 060,995 0 3 091,493 0 −115 930,987 0 0 115 930,987 0 −3 091,493 0 3 091,493 3 091,493 0 6 182,986
0 0 0 4 5 6
] ] ]
2 060,995 0 −3 091,493 −2 060,995 0 −3 091,493 0 115 930,987 0 0 −115 930,987 0 0 6 182,986 3 091,493 0 3 091,493 K DC = −3 091,493 −2 060,995 0 3 091,493 2 060,995 0 3 091,493 0 −115 930,987 0 0 115 930,987 0 −3 091,493 0 3 091,493 3 091,493 0 6 182,986
0 0 0 7 8 9
2 060,995 0 −3 091,493 −2 060,995 0 −3 091,493 0 115 930,987 0 0 −115 930,987 0 −3 091,493 0 6 182,986 3 091,493 0 3 091,493 K FE= −2060,995 0 3 091,493 2 060,995 0 3 091,493 0 −115 930,987 0 0 115 930,987 0 −3 091,493 0 3 091,493 3 091,493 0 6 182,986
0 0 0 1 2 3
0 0 0 4 5 6
0 0 0 7 8 9
0 0 0 10 11 12
[
2060,995 0 −3 091,493 −2 060,995 0 −3 091,493 0 115 930,987 0 0 −115 930,987 0 −3 091,493 0 6 182,986 3 091,493 0 3 091,493 K HG= −2060,995 0 3 091,493 2 060,995 0 3 091,493 0 −115 930,987 0 0 115 930,987 0 −3 091,493 0 3 091,493 3 091,493 0 6 182,986
d. Ahora, ensamblamos la matriz de rigidez de la estructura.
1 2 3 4 5 6 7 8 9 10 11 12
]
0 0 0 10 11 12
[
106 398,883 0 3 091,493 −104 337.888 0 117 433,452 3756,164 0 3 091,493 3 756,164 18 703,532 0 −104 337,888 0 0 106 398,883 0 −1 502,465 −3 756,164 0 0 3 756,164 6 260,273 3 091,493 K HG= 0 0 0 −104 337,888 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 −1 502,465 3756,164 0 −3 756,164 6 260,273 0 0 3 091,493 −104 337,888 118 935,917 0 0 0 31 224,078 0 0 0 210 736,771 −1 502,465 −3 756,164 0 3 756,164 6 260,273 3 091,493 0 0 −104 337,888 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 502,465 3756,164 0 −3 756,164 6260,273 0 0 3091,493 −104337,888 3 004,930 0 0 − 115 930,987 31224,078 0 − 0 0 106398,883 −1 502,465 −3756,164 0 1 3 756,164 6260,273 3091,493 −
e. El vector fuerza de los nudos del sistema es:
[]
8 0 0 0 0 S 0 F= 0 0 0 0 0 0
1 2 3 4 5 6 7 8 9 10 11 12
f. El vector de fuerzas de empotramiento perfecto de cada elemento será:
[] [] [] [] [] [] []
0 0 E F AB= 0 0 0 0
0 0 0 FE = 1 BC 2 3
0 0 0 0 0 0
1 2 3 FE = 4 DC 5 6
0 0 0 0 0 0
0 0 0 FE = 4 CE 5 6
0 0 0 0 0 0
4 5 6 FE = 7 FE 8 9
0 0 0 0 0 0
0 0 0 FE = 7 EG 8 9
g. Ensamblamos el vector fuerza de empotramiento perfecto del sistema
[]
0 0 0 0 0 E 0 F = 0 0 0 0 0 0
1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 0 0 0
7 8 9 FE = 10 HG 11 12
0 0 0 0 0 0
0 0 0 10 11 12
h. De esta manera, el vector de fuerzas internas del sistema será: S
F=F −F
E
[][][]
8 0 8 0 0 0 0 0 0 0 0 0 0 0 0 S 0 0 0 F= − = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
i.
Resolviendo la ecuación, obtenemos los desplazamientos y pendientes.
[ δ ] =K−1 × [ F ]
[ ] [][ ] δ1 δ2 δ3 δ4 δ5 δ6 −1 =K × δ7 δ8 δ9 δ 10 δ 11 δ 12
j.
8 −0.0000037367 m 0 −0.0000000985 m 0 −0.0000006642 rad 0 −0.0000805041 m 0 −0.0000007317 m 0 0.0000034498 rad = 0 −0.0000782554 m 0 −0.0000040282 m 0 0.0000208549 rad 0 −0.0000769346 m 0 0.0000008302 m 0 0.0000067118 rad
Ahora, calculamos las fuerzas internas de los elementos:
[ F ]ij =[ F ]ijE + [ K ] ij × [ δ ] ij
[] [ ][ ]
0 0 0.00976 T 0 0 0.01142 T 0 0 −0.01361 T .m [ F ] AB= + [ K ] AB × = 0 −0.0000037367 −0.00976 T 0 −0.0000000985 −0.01142 T 0 −0.0000006642 −0.01566 T .m
B
0.00976 T
0.01566T.m T.m 0.01569 0.01142 T 0.00976 T A 0.01361 T.m
[] [ ][ ]
0 0 0.15525 T 0 0 0.84828 T 0 [ F ] DC = 0 + [ K ] DC × = −0.23821 T . m 0 −0.0000805041 −0.15525 T 0 −0.0000007317 −0.84828 T 0 0.0000034498 −0.22755 T . m 0.15525 T C 0.22755 T.m 0.84828 T
0.84828 T
D
0.15525 T 0.23821 T.m
[] [ ][ ]
0 0 0.09681 T 0 0 0.46699 T 0 [ F ] FE= 0 + [ K ] FE × = −0.17745 T . m 0 −0.0000782554 −0.09681 T 0 −0.0000040282 −46699 T 0 0.0000208549 −0.11298 T . m
0.09681 T
E 0.17745 T.m
0.46699 T
0.46699 T 0.09681 T
F
0.17745 T.m
[] [ ][ ]
0 0 0.13781 T 0 0 −0.09625 T 0 0 [ F ] HG= + [ K ] HG × = −0.21709 T . m 0 −0.0000769346 −0.13781 T 0 0.0000008302 0.09625 T 0 0.0000067118 −0.19634 T . m G
0.13781 T
0.09625 T
0.01566 T.m 0.13781 T H 0.21709 T.m
0.09625 T
[] [ ][ ]
0 0 [ F ] BC = 0 + [ K ] BC × 0 0 0
0.01141 T
B
8.00975 T
0.01566 T.m 8.00975 T
−0.0000037367 8.00975 T −0.0000000985 0.01141 T −0.0000006642 = 0.01566 T . m −0.0000805041 −8.00975 T −0.0000007317 −0.01141 T 0.0000034498 0.04141 T . m
C -0.21805 T.m
0.01141 T
[] [ ][ ]
0 −0.0000805041 −0.23462 T 0 −0.0000007317 0.09624 T [ F ]CE = 0 + [ K ] CE × 0.0000034498 = 0.18613 T . m 0 −0.0000782554 0.23462 T 0 −0.0000040282 −0.09624 T 0 0.0000034498 0.29509 T . m 0.23462 T 0.29509 T.m
E E 0.23462 T W 0.09624 T
C 0.18613 T.m
[] [ ][ ] 0.09624 T
0 0 [ F ] EG= 0 + [ K ] EG × 0 0 0
0.13781 T
−0.0000782554 −0.13781 T −0.0000040282 0.09624 T 0.0000034498 = 0.28488 T . m −0.0000769346 0.13781 T 0.0000008302 −0.09624 T 0.0000067118 0.19634 T . m
0.09624 T E
G
0.13781 T
0.19634T.m
0.28488 T.m
0.09624 T
k. De esta manera, las reacciones en los apoyos y los diagramas finales de fuerza axial, fuerza cortante y momento flector son los mostrados en la figura: a) C
B
0.01142 T 0.84828 T A
0.00976 T
0.01361 T.m
D
E
G
0.46699 T F
H
0.13781 T
0.15525 T 0.09681 T 0.23821 T.m 0.21709 T.m 0.17745 T.m 0.09625 T
a. Esquematizamos los grados de libertad de la estructura 8
5
D C
4 9
6 2
B
3
A
7
11
E
1 12
F
10
b. Determinamos las rigideces axiales y en flexión de vigas y columnas 3
0.4 × 0.6 ) 12
EA viga =2173706 ×0.4 × 0.6
EI viga =2173706.(
EA viga =521689 , 44 T
EI viga =15 650,6832T m
2 3
0.4 × 0.4 ) 12
EA columna=2173706 × 0.4 ×0.4
EI columna=2173706.(
EA columna=347 792.96 T
EI columna=4 637,2395 T m
2
c. Ensamblamos la matriz de rigidez de cada elemento
1 2 3 10 11 12
[ [ [
104 337,888 0 0 −104 337,888 0 0 0 1 502,465 3 756,164 0 −1 502,465 3 756,164 0 3 756,164 12520,546 0 −3 756,164 6 260,273 K BE= −104 337,888 0 0 104 337,888 0 0 0 −1 502,465 −3 756,164 0 1 502,465 −3 756,164 0 3 756,164 6 260,273 0 −3 756,164 12 520,546
4 5 6 7 8 9
] ] ]
104 337,888 0 0 −104 337,888 0 0 0 1 502,465 3756,164 0 −1502,465 3 756,164 0 3 756,164 12520,546 0 −3 756,164 6 260,273 K CD = −104 337,888 0 0 104 337,888 0 0 0 −1 502,465 −3756,164 0 1502,465 −3 756,164 0 3 756,164 6 260,273 0 −3 756,164 12 520,546
0 0 0 1 2 3
2 060,995 0 −3 091,493 −2060,995 0 −3 091,493 0 115 930,987 0 0 −115 930,987 0 0 6 182,986 3 091,493 0 3 091,493 K AB= −3 091,493 −2 060,995 0 3 091,493 2 060,995 0 3 091,493 0 −115 930,987 0 0 115 930,987 0 −3 091,493 0 3 091,493 3 091,493 0 6 182,986
1 2 3 10 11 12
4 5 6 7 8 9
0 0 0 1 2 3
1 2 3 4 5 6
[ [ [
2 060,995 0 −3 091,493 −2 060,995 0 −3 091,493 0 115 930,987 0 0 −115 930,987 0 0 6 182,986 3 091,493 0 3091,493 K BC = −3 091,493 −2 060,995 0 3 091,493 2 060,995 0 3091,493 0 −115 930,987 0 0 115 930,987 0 −3 091,493 0 3 091,493 3 091,493 0 6 182,986
10 11 12 7 8 9 2060,995 0 −3 091,493 −2 060,995 0 −3 091,493 0 115 930,987 0 0 −115 930,987 0 0 6 182,986 3 091,493 0 3 091,493 K ED= −3 091,493 −2060,995 0 3 091,493 2 060,995 0 3 091,493 0 −115 930,987 0 0 115 930,987 0 −3 091,493 0 3 091,493 3 091,493 0 6 182,986
0 0 0 10 11 12
2 060,995 0 −3 091,493 −2 060,995 0 −3 091,493 0 115 930,987 0 0 −115 930,987 0 −3 091,493 0 6 182,986 3 091,493 0 3 091,493 K FE= −2060,995 0 3 091,493 2 060,995 0 3 091,493 0 −115 930,987 0 0 115 930,987 0 −3 091,493 0 3 091,493 3 091,493 0 6 182,986
] ] ]
1 2 3 4 5 6
10 11 12 7 8 9
0 0 0 10 11 12
d. Ahora, ensamblamos la matriz de rigidez de la estructura.
1 2 3 4 5 6 7 8 9 10 11 12
[
108 459,878 0 0 −2 060,995 0 −3 091,493 0 0 0 −104 337,888 0 233 364,439 3 756,164 0 −115 930,987 0 0 0 0 0 − 0 3 756,164 24 886,518 3 091,493 0 3 091,493 0 0 0 0 − −2 060,995 0 3 091,493 106 398,883 0 3 091,493 −104 337,888 0 0 0 −3 091,493 −115 930,987 0 0 117 433,452 3 756,164 0 −1502,465 3756,164 0 0 3 756,164 3 091,493 3 091,493 3 756,164 18 703,532 0 −3756,164 6260,273 0 K HG= 0 0 0 −104 337,888 0 0 106 398,883 1502,465 3091,493 −2 060,995 0 0 0 0 −1502,465 −3 756,164 0 112 174,823 −3 756,164 0 − 0 0 0 0 3 756,164 6 260,273 3 091,493 −3756,164 18 703,532 −3 091,493 0 0 0 0 0 0 −2 060,995 0 −3091,493 108 459,878 0 0 0 0 0 0 0 −115 930,987 0 0 2 0 0 0 0 0 0 3 091,493 0 3091,493 0 − 1 2 3 4 5 6 7 8 9 10 11 12
e. El vector fuerza de los nudos del sistema es:
[]
3 0 0 5 0 S 0 F= 0 0 0 0 0 0
1 2 3 4 5 6 7 8 9 10 11 12
f.
El vector de fuerzas de empotramiento perfecto de cada elemento será:
[] [] [] [] [] []
0 0 F EAB= 0 0 0 0
0 0 0 FE = 1 BC 2 3
0 0 0 0 0 0
1 2 3 FE = 4 BE 5 6
0 0 0 0 0 0
0 0 0 FE = 4 CD 5 6
0 0 0 0 0 0
4 5 6 FE = 7 ED 8 9
0 0 0 0 0 0
0 0 0 FE = 7 FE 8 9
0 0 0 0 0 0
g. Ensamblamos el vector de fuerza de empotramiento perfecto del sistema:
[]
0 0 0 0 0 E 0 F = 0 0 0 0 0 0
1 2 3 4 5 6 7 8 9 10 11 12
h. De esta manera, el vector de fuerzas internas del sistema será: S
E
[][][]
F=F −F
3 0 3 0 0 0 0 0 0 5 0 5 0 0 0 S 0 0 0 F= − = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 8 9 10 11 12
i.
Resolviendo la ecuación, obtenemos los desplazamientos y pendientes.
[ δ ] =K−1 × [ F ]
[ ] [][ ] δ1 δ2 δ3 δ4 δ5 δ6 −1 =K × δ7 δ8 δ9 δ 10 δ 11 δ 12
j.
3 0.0000859359 m 0 0.0000244003 m 0 −0.0001628829 rad 5 0.0018957418 m 0 0.0000373283 m 0 −0.0002157656 rad = 0 0.0018723506 m 0 −0.0000355964 m 0 −0.0002124172 rad 0 0.0000295245 m 0 −0.0000210537 m 0 −0.0002093806 rad
Ahora calculamos las fuerzas internas de los elementos:
[ F ]ij =[ F ]ijE + [ K ] ij × [ δ ] ij
[] [ ][ ]
0 0 0.32644 T 0 0 −2.82875 T 0 [ F ] AB= 0 + [ K ] AB × = −0.23788 T .m 0 0.0000859359 −0.32644 T 0 0.0000244003 2.82875 T 0 −0.0001628829 −0.74143 T .m 0.32644 T
B 0.74143 T.m 2.82875 T
A
0.32644 T 0.23788 T.m
2.82875 T
[] [ ][ ]
0 0 [ F ] BC = 0 + [ K ] BC × 0 0 0
0.0000859359 −2.55941 T 0.0000244003 −1.49875 T −0.0001628829 = 3.92086 T .m 0.0018957418 2.55941 T 0.0000373283 1.49875 T −0.0002157656 3.75737 T .m
C
B
[] [ ][ ]
0 0 [ F ] ED= 0 + [ K ] ED × 0 0 0 D
E
0.0000295245 −2.49407 T −0.0000210537 1.68595 T −0.0002093806 = 3.74580 T . m 0.0018723506 2.49407 T −0.0000355964 −1.68595 T −0.0002124172 3.75738 T . m
[] [ ][ ]
0 0 0.58645 T 0 0 2.44078 T 0 0 −0.55602 T .m [ F ] FE= + [ K ] FE × = 0 0.0000295245 −0.58645 T 0 −0.0000210537 −2.44078 T 0 −0.0002093806 −1.20332 T . m
E
[] [ ][ ]
0 0 F [ F ] BE= 0 + [ K ] BE × 0 0 0
0.0000859359 5.88585 T 0.0000244003 −1.32999 T −0.0001628829 = −3.17943 T . m 0.0000295245 −5.88585 T −0.0000210537 1.32999 T −0.0002093806 −3.47052 T . m
E
B
[] [ ][ ]
0 0 [ F ]CD = 0 + [ K ] CD × 0 0 0
C
0.0018957418 2.44059 T 0.0000373283 −1.49876 T −0.0002157656 = −3.75738 T . m 0.0018723506 −2.44059 T −0.0000355964 1.49876 T −0.0002124172 −3.73641 T . m
D
EJERCICIO 1 CON SAP2000: a)
b)
c)
d)
Ejercicio 2 con Sap2000: a)
b)
c)
d)
View more...
Comments