Ejercicios Resueltos Ecuaciones Diferenciales
Short Description
Download Ejercicios Resueltos Ecuaciones Diferenciales...
Description
dy + 2y 2y = 0 dx p( p(x) = 2
´
e
2dx
e2x e2x ddxy + 2e 2e2x = 0
d 2x dx [e y ]
=0
´
d 2x dx [e y ]
=0
´
dx + c
e2x y = c y = ce−2x dy = 3y 3y dx dy dx
− 3y = 0 p( p(x) = −3
´
e −3dx e−3x
e−3x ddxy
− 3e−3xy = 0
´ dy −3x ´ [ e y = 0 dx + c dx e−3x y = c y = ce3x
3
dy + 12y 12y = 4 dx dy dx
+ 4y 4y =
4 3
p( p(x) = 4 ´
e
4dx
e4x e4x ddxy + 4e 4e4x y = 43 e4x
´
d 4x dx [e y ]
=
´
e4x dx + c
e4x y = 14 e4x + c y=
1 4
+ ce−4x
y = 2y 2 y + x2 + 5
y
− 2y = x2 + 5
´
e −2dx = e−2x e−2x y
´
5e−2x − 2e−2xy = e−2xx2 + 5e
d 2x y] dx [e
−
=
´ −2x 2 ´ e x + 5 e−2x + c
(2x2 + 2x 2x + 1) + C − 52 e−2x − 14 e−2x(2x y = − x2 − x2 − 14 + 52 + ce2x
e−2x y =
2
ydx
4(x + y 6 )dy )dy = 0 − 4(x
ydx = 4(x 4( x + y6 )dy )dy dx dy
=
4(x+y6 ) y
dx dy
=
4x y
+
4y6 y
dx dy
e−4
´
1 y dy
− 4yx = 4y5
log(y) e−4 log( elog(y )
4
−
1 dx y4 dy
− y1 4yx = y1 4y5 4
4
d 1 dy [ y 4 x] d 1 dy [ y4 x]
´
y −4 =
1 y4 x
= 4y
=4
´
ydy
= 2y2 + C
x = 2y6 + cy4 xy + y = ex
y + x1 y =
´
e
1 x dx
= elog x = x
xy + xx y =
d xy] dx [xy]
´
ex x
d xy] dx [xy]
=
xex x
= ex
´
ex dx + c
xy = ex + c y = ex x−1 + cx−1 x dy dx
dy 2 +y = 2 dx y
+
y x
=
2 xy2
u = y 1−n
n=
−2
u = y1−(−2) = y 3 u1/3 = y
1 2/3 du 3u dx
−
=
dy dx
1 y4
1 2/3 du 3u dx
−
u1/3 x
+
=
2(u1/3 )2 x 1 2/3 3u
du dx
e3
´
1 x dx
+ 3 ux =
6 x
3
= e3log x = elog x = x3
x3 du 3x3 ux = x3 x6 dx + 3x d 3 dx [x u]
´
d 3 dx [x u]
= 6x2
=6
´
x2 + c
x3 u = 2x3 + c u = 2 + cx−3 u = y3 y 3 = 2 + cx−3 dy y 1/2 dx + y 3/2 = 1 dy dx
+
y 3/2 y 1/2
1 y 1 /2
=
u = y 1−n n =
−1/2
y (0) = 4
dy + y = y −1/2 ↔ dx
u = y 1−(−1/2) = y 3/2
u2/3 = y 2 1/3 du dx 3u
−
2 1/3 du dx 3u
−
=
dy dx
+ u2/3 = (u ( u2/3 )−1/2 2 1/3 3u
du dx
3
e2
´
dx
3
= e2x
+ 32 u =
3 2
3
3
3
3 3 2x u = e2x e 2 x du dx + e 2 2 3 d 2 x u] dx [e
´
3 d 2 x u] dx [e
=
3
= 32 e 2 x
´ 3
2e
3
3 2x
dx + c
3
e 2 xu = e 2 x + c 3
u = 1 + ce− 2 x u = y3/2 3
y 3/2 = 1 + ce− 2 x y (0) = 4 43/2
3 = 1 + ce− 2 0
8 1=c c=7
−
3
y 3/2 = 1 + 7e 7e− 2 x y +
u = y 1−n
2 y= x
−2xy2
n =2
u = y 1−2 u = y −1 u−1 = y
−u−2 ddux = ddxy −u−2 ddux + x2 u−1 = −2x(u−1)2 −u2 du dx
2x − x2 u = 2x p( p(x) = − x2
e−2
´
1 x dx
x−2 ddux
= elog x
2
−
= x−2
− x−2 x2 u = x−22x
d 2 dx [x u]
−
= 2x−1
´
d 2 dx [x u]
−
=
´
2x−1 dx + c
x−2 u = 2 log log x + c u = 2x2 log x + cx2 u = y−1 1 2x2 log x+cx2
y=
y + xy = xy −1/2
n=
−1/2 u = y 1−n u = y 1−(−1/2) u = y 3/2 y = u2/3 dy dx
2 1/3 3u
= 23 u−1/3
+ xu2/3 = x(u2/3 )−1/2
−
2 1/3 3u du dx
+ 32 xu = 32 x
p(x) = 32 x
3
e2 3
e4x
´
2
du dx
´
xdx 3
2
+ e4x
2
3
= e4x
3
3 2 xu
2
= e4x
3 2x
d 34 x2 u dx e
= 32 xe 4 x dx + c
d 34 x2 u dx e
=
3
2
2
3
3 2
´ 3
2
3
xe 4 x dx + c 2
e4x u = e4x + c 3
2
u = 1 + ce− 4 x u = y3/2
3
y 3/2 = 1 + ce− 4 x
2
1.(2x (2x M ( M (x, y) = 2x 2x ∂M ∂y
=
1)dx + (3y (3y + 1)dy 1)dy = 0 − 1)dx
N (x, y) = 3y 3y + 1 − 1; N (
∂N ∂x ∂M ∂y
=0
∂N ∂x
=0
f x (x, y) = M (x, y) f x (x, y) = 2x
−1 g (y )
´ ∂M ∂x
=2
´
xdx
f ( f (x, y) = x2
∂f ∂y
− ´ dx + g(y)
− x + g (y ) = g (y )
g (y ) = 3y + 1
´ ´ ´ g (y) = 3 ydy + dy + c g(y ) = 32 y2 + y + c
x2
(seny
− x + 32 y2 + y = c
ysenx)dx + (cosx (cosx + xcosy − y )dy = 0 − ysenx) M ( M (x, y) = seny − ysenx N ( N (x, y) = cosx + xcosy − y ∂M − senx ∂y = cosy ∂N ∂x = −senx + cosy
∂M ∂y
=
∂N ∂x
f x (x, y) = seny
´
− ysenx ´
f x (x, y)dx = (seny
f ( f (x, y) = xseny
ysenx)dx − ysenx)
cosx ) + g (y )... − y(−cosx)
f y (x, y) = cosx + xcosy + g (y ) = cosx + xcosy g (y ) =
−y
−y
´ ´ g (y ) = − ydy + c
− 12 y2 + c
g (y ) =
f ( f (x, y) = xseny + ycosx
xseny + ycosx (3x (3x2 y + ey )dx =
− 12 y2
− 12 y2 = c
−(x3 + xey − 2y)dy
M ( M (x, y) = 3x 3 x2 y + ey N ( N (x, y) = x3 + xey
− 2y
M y (x, y) = 3x 3 x2 + ey N x (x, y) = 3x2 + ey M y (x, y) = N x (x, y) f x (x, y)
g (y ) f ( f (x, y) = (3x (3x2 y + ey )dx
´
f ( f (x, y) = x3 y + xey + g (y )
f y (x, y) = x3 + xey + g (y) = x3 + xey g (y ) =
− 2y
− 2y
−2 ´ ydy + c g ( y ) = −y 2 + c
g (y ) =
x3 y + xey
− y2 = c
)dx + (3x (3x2 − 4xy)d xy )dyy = 0 − 2y2)dx M y (x, y) = 6x − 4y N x (x, y) = 6x − 4y (6xy (6xy
f x (x, y)
´
f ( f (x, y) = (6xy (6xy 3 x2 y f ( f (x, y) = 3x
− 2xy2 + g(y)
f y (x, y) = 3x2
3x2
− 2y2)dx
− 4xy + g(y)
− 4xy + g(y) = 3x2 − 4xy
g (y ) = 0
g (y ) = c
3x2 y
− 2xy2 = c
4x + 6)dx 6)dx + (2x (2x − 3x2 y 2 − 1)dy 1)dy = 0 − 2xy3 + 4x y(−1) = 0 M y = 2 − 6xy 2 = N X
(2y (2y
f x (x, y)
´
f ( f (x, y) = (2y (2y f ( f (x, y) = 2xy 2 xy
4x + 6)dx 6)dx − 2xy3 + 4x
− 3x2y3 + 2x 2x2 + 6x 6x + g (y )
f x (x, y) = 2x
− 3x2y2 + g(y)
N ( N (x, y) 2x
2 x − 3x2 y 2 − 1 g (y ) = −1 − 3x2y2 + g(y) = 2x
g (y ) =
2xy
−y + c
2x2 + 6x 6x − y = c − x2y3 + 2x y (−1) = 0 2(−1)2 + 6(−1) = c c = −4
2xy
− x2y3 + 2x 2x2 + 6x 6 x − y = −4
( xy sin x + 2y 2y cos x)dx )dx + 2x 2x cos xdy = 0;
−
µ(x, y) = xy M y (x, y) =
−x sin x + 2 cos cos x N x (x, y) = −2x sin x + 2 cos cos x N X = M y xy( xy ( xy sin x + 2y 2y cos x)dx )dx + xy(2 xy (2x x cos x)dy )dy = 0
−
( x2 y2 sin x + 2xy 2xy 2 cos x)dx )dx + (2x (2x2 y cos x)dy )dy = 0
−
−2yx2 sin x + 4xy 4xy cos x N X (x, y) = 4xy cos x − 2x2 y sin x
M y (x, y) =
M Y Y = N X
f x (x, y) =
−x2y2 sin x + 2xy 2xy 2 cos x
f ( f (x, y) = ( x2 y 2 sin x + 2xy 2xy 2 cos x)dx
´
−
f ( f (x, y) = x2 y 2 cos x + g (y )
f y (x, y) = 2x2 y cos x + g (y )
N x 2x2 y cos x + g (y) = 2x 2 x2 y cos x
g (y ) = 0
g (y ) = c
f ( f (x, y) = x2 y 2 cos x + c
y = 2x2
´
y =2
´
x2 dx + c
y = 23 x3 + c1
´
y =
2 3
(x3 + c1 )dx + c2
´
y = ( 23 )( 14 )x4 + xc1 + c2 y = 16 x4 + c1 x + c2
y
´
= sen( sen(kx) kx)
sen(kx) kx)dx + c1 = ´ sen( y = −kcos( kcos(kx) kx) + c1 ´ ´ ´ y = −k cos( cos(kx) kx)dx + c1 dx + c2 y = −k 2 sen( sen(kx) kx) + xc1 + c2 ´ ´ ´ ´ 2 y = −k sen( sen(kx) kx)dx + c1 xdx + c2 dx + c3 y
y = k 3 cos( cos(kx) kx) + 12 c1 x2 + c2 x + c3 y
´
y
= x1
= ´ x1 dx + c1
y = log x + c1
´
y =
´
log xdx + c1
´
dx + c2
y = x log x
− x + c1x´ + c2 ´ ´ y = x log xdx − xdx + c1 xdx + c2 dx + c3 y = x2 (log x − 12 ) − 12 x2 + c1 12 x2 + c2 x + c3 y = x + sin x
´
´
2
´
y =
y y
= 12 x2 y = 12 = 16 x3
´
y
´
´
xdx +
´
sin xdx + c1
− cos x +´ c1 ´ x2 dx − cos xdx + c1 dx + c2 − sin x + c1x + c2 y = x sin x, y(0) = 0 y (0) = 0 y (0) = 2 ´
= ´ x sin xdx + c! y = sin x − x cos x + c1 ´ ´ ´ ´ y = sin xdx − x cos xdx + c1 dx + c2 y = − cos x − (cos x + x sin x) + c1 x + c2 ´ ´ ´ ´ ´ ´ y = − cos xdx − cos xdx − x sin xdx + c1 xdx + c2 dx + c3 y = − sin x − sin x − (−x cos x + sin x) + 12 c1 x2 + c2 x + c3 y = −3sin x + x cos x + 12 c1 x2 + c2 x + c3
xy + y = 0
dy dx
p( p(x) =
dp dx
d2 y dx2
=
xp + p = 0
1 x dx
− p1 d p ´ 1 ´ 1 d x = − x p d p + c1 log x = − log p log p + log c1 =
log x = log( c p1 ) x=
c1 p
p( p(x) = x=
dy dx
c! dy/dx
x = c1 dx dy
´ 1
x dx =
log x =
1 c1
´
1 c1 y
dy + c2
+ c2
y = c1 log x + c2 (x
− 1)y 1)y − y
p( p(x) = (x
dy dx
dp dx
d2 y dx2
=
1) p − p = 0 − 1) p
(x
x 1 x 1 p
− x−1 1 p = 0
− −
− 1)
− x−1 1 p = 0
p
dp dx
− x−1 1 p = 0
dp 1 dx = x 1 p 1 1 p dp = x 1 dx
− −
´ 1
p dp =
´
1 x 1 dx
−
+ c1
log( p log( p)) = log(x log(x
− 1) + log(c log(c1 ) log( p log( p)) = log[c log[c1 (x − 1)] p = c1 (x − 1) p =
dy dx
dy dx
− 1) dy = c1 (x − 1)dx 1)dx ´
= c1 (x
´
dy = c1 (x
y = c1 12 x2
y +y
− 1)dx 1)dx + c2
− x + c2
− 2y = 0
m2 + m
−2= 0 (m + 2)(m 2)(m − 1) = 0 m1 = −2 m2 = 1
y = emx
y1 = e−2x y2 = ex y(x) = c1 e−2x + c2 ex y
(m
− 1)2 = 0
m1,2 = 1
y = emx y1 = ex y2 = y1
´ e´ p(y)dy
y2 = ex
´ e2x
y12
dx
e2x dx
y2 = ex x y(x) = c1 ex + c2 xex 4y
− 8y + 5y 5y = 0
− 2y + y = 0 m2 − 2m + 1 = 0
4m2
− 8m√ + 5 = 0
m1,2 = 8± m1,2 = 1
64 80 8 1 2i
−
± 1
1
y = c1 ex ei 2 x + c2 ex e−i 2 x 1
1
y = ex (c1 ei 2 x + c2 e−i 2 x ) y = ex (c1 cos 12 x + c2 sen 12 x) 3y
− 2y − 8y = 0
3m2
− 2y − 8 = 0 (3m (3m + 4)(m 4)(m − 2)
m1 = 2 m2 =
− 43
y = emx
y1 = e2x y2 =
−e−
4 3x
4
y(x) = c1 e2x + c2 e 3 x yv
− 10 10yy + 9y 9y = 0
m5
10m m3 + 9m 9m = 0 − 10 m(m4 − 10 10m m2 + 9) = 0 m1 = 0 (m2 − 9)(m 9)(m2 − 1) m2,3 = ±3 m4,5 = ±1 y1 = e0 = 1 y2 = e3x y3 = e−3x y4 = ex y5 = e−x y(x) = c1 + c2 e3x + c3 e−3x + c4 ex + c5 ex y + 4y 4y + 3y 3y = 0 y (0) = 2 y (0) =
m2 + 4m 4m + 3 = 0
−3
√
m1,2 = −4±2 −36 m1,2 =
− 2 ± 3i
y(x) = e−2x (c1 cos3x cos3x + c2 sin3x sin3x) y (x) = e−2x ( 3c1 sin3x sin3x + 3c 3c2 cos3x cos3x)
cos3x + c2 sin3x sin3x) − 2e−2x(c1 cos3x y (0) = 2 y (0) = −3
−
y (0) = 2 2 = e0 (c1 cos cos 0 + c2 sin sin 0) 2 = c1 y (0) =
−3
−3 = e0(−3c1 sin sin 0 + 3c 3c2 cos0) − 2e0 (c1 cos cos 0 + c2 sin sin 0) −3 = 3c2 − 2c1 −3 = 3c2 − 2(2) 3 c2 −3 + 4 = 3c
c2 =
1 3
(2cos3x + y(x) = e−2x (2cos3x d4 y dx4
m4
1 3
sin3x sin3x)
4
d y 18yy = 0 − 7 dx − 18 2
− 7m2 − 18 = 0
y + 3y 3y + 2y 2y = 6
yh = y + 3y 3y + 2y 2y = 0
m2 + 3m 3m + 2 = 0 (m
1)(m − 2) − 1)(m
m1 = 1 m2 = 2
yh = c1 ex + c2 e2x
A y p = A y p p = 0
y p p = 0 0 + 3(0) + 2A 2A = 6 A=3 y (x) = yh + y p y(x) = c1 ex + c2 e2x + 3 y + y = sin x
y +y = 0
m2 + 1 = 0
−1 m1,2 = ±√−1 m1,2 = α ± βi m1,2 = ±i m2 =
α=0
β=1
yh = c1 eαx cos βx + c2 eαx sin βx yh = c1 cos x + c2 sin x
sin x A sin x + B cos x y +y = 0
xn
y p = Ax sin x + Bx cos x y p p = A sin x + Ax cos x + B cos x
− Bx sin x y p p = A cos x + A cos x − Ax sin x − B sin x − Bx cos x − B sin x = 2A cos x − 2B sin x − Ax sin x − Bx cos x 2A cos x
− 2B sin x − Ax sin x − Bx cos x + Ax sin x + Bx cos x = sin x 2A cos x − 2B sin x = sin x 2A = 0
−2B = 1 y p =
− 12 x cos x
A=0
B=
− 12
y(x) = yh + y y(x) = c1 cos x + c2 sin x y m2
− 12 x cos x
10yy + 25y 25y = 30 30x x+3 − 10
10m m + 25 = 0 − 10
m1,2 = 5
yh = c1 e5x + c2 xe5x 30 30x x+3
Ax + B
y p = Ax + B y p p = A
y p p = 0
10(A) + 25(Ax 25(Ax + B ) = 30x 30x + 3 −10(A 25 25A A = 30
A=
6 5
25 25B B
− 10 10A A =3 25 25B B − 10( 65 ) = 3 25 25B B = 3 + 12 B= y p =
3 5 6 5x
+
3 5
y(x) = yh + y p y(x) = c1 e5x + c2 xe5x + 65 x + 1 4y
3 5
+ y + y = x2 − 2x
1 4y + y + y = 0 1 2 4m + m + 1 = 0
m1,2 =
−2
yh = c1 e−2x + c2 xe−2x f ( f (x) = x2
− 2x
y p = Ax2 + Bx + C y p = 2Ax 2 Ax + B y p = 2A 1 (2A) + 2Ax 2 Ax + B + Ax2 + Bx + C = 4 (2A 1 2 2Ax + Bx + C = x2 2 A + B + Ax + 2Ax
x2
− 2x
− 2x
A=1 2A + B = 2 B =2 1 2A + 1 2A +
−2 = 0
B + C = 0 C = 0
− 12 A = − 12 y p = x2 − 12
C =
y(x) = yh + y p
y(x) = c1 e−2x + c2 xe−2x + x2 y + 3y 3y =
y
−48 48x x2 e3x
− 12
m2 + 3 = 0
√−3 m = √3i 1,2 √ √ = c cos 3x + c sen 3x
m1,2 = yh
1
2
48x x2 e3x −48
y p = e3x (Ax2 + Bx + C )
3x 2 3x y p (2Ax + B ) p = 3e (Ax + Bx + C ) + e (2Ax
3x 2 3x y p (2Ax + B ) + 3e3x (2Ax (2Ax + B ) + p = 9e (Ax + Bx + C ) + 3e (2Ax 3x 3x 2 3x 3x e (2A (2A) = 9e (Ax + Bx + C ) + 3e 3 e (4Ax (4Ax + 2B 2B ) + e (2A (2A)
9e3x (Ax2 + Bx + C ) + 3e3x (4Ax (4Ax + 2B ) + e3x (2A (2A) + 9e3x (Ax2 + Bx + C ) + 3e 3 e3x (2Ax (2Ax + B ) = 48 48x x2 e3x
−
9e3x Ax2 + 9e3x Bx + 9e3x C + C + 12 12ee3x Ax + 6e3x B + 2e3x A + 9e3x Ax2 + 9e3x Bx + 9e 9e3x C + C + 6e 6e3x Ax + 3e 3e3x B = 48 48x x2 e3x 9A + 9A 9A = 18 18A A= A=
−48
−48
− 83
B =0
C = 0 y
− y = −3 y m2 − m = 0 m(m − 1) = 0
m1 = 0 m2 = 1
−
yh = c1 e0x + c2 ex = c1 + c2 ex c1
−3
y p = Ax
y p = Ax y p p = A
y p p = 0 0
− A = −3
A=3
y p = 3x 3x
y(x) = yh + y p y(x) = c1 + c2 ex + 3x 3x y
− 6y = 3 − cosx
yh = y
m3
− 6m2 = 0 m2 (m − 6) = 0
− 6y = 0
m1,2 = 0 m3 = 6 yh = c1 + c2 x + c3 e6x 3 Bcosx + Csenx
− cosx
y p1 = A y p2 =
y p1
y p1 = Ax2 y p = Ax2 + Bcosx + Csenx y p p = 2Ax
− Bsenx + Ccosx y p 2 A − Bcosx − Csenx p = 2A y p p = Bsenx − Ccosx Bsenx
12A A + 6Bcosx 6Bcosx + 6Csenx 6Csenx = 3 − Cosx − Ccosx − 12 12A A = 3 A = − 14 −12 6B − C = 1 6C + B = 0
B= C = y p =
6 37 1 37 1 3 2x
y(x) =
6 1 37 cosx + 37 senx c1 + c2 x + c3 e6x 14 x2
+
−
+
6 37 cosx
+
1 37 senx
y + 2y 2y + y = senx + 3cos 3cos22x
yh = y + 2y 2y + y = 0
m2 + 2m 2m + 1 = 0 (m + 1)2 = 0 m1,2 =
−1
yh = c1 ex + c2 xex y p = Acosx + Bsenx + Ccos2 Ccos2x + Dsen2 Dsen2x y p =
Csen2x + 2Dcos 2Dcos22x −Asenx + Bcosx − 2Csen2
y = −Acosx − Bsenx − 4Ccos2 Ccos2x − 4Dsen2 Dsen2x p
Ccos2x−4Dsen2 Dsen2x−2Asenx+2 Asenx+2Bcosx Bcosx−4Csen2 Csen2x+ −Acosx−Bsenx−4Ccos2 4Dcos2 Dcos2x + Acosx + Bsenx + Ccos2 Ccos2x + Dsen2 Dsen2x = senx + 3cos2 cos2x
−3Ccos2 Ccos2x − 3Dsen2 Dsen2x − 2Asenx + 2Bcosx − 4Csen2 Csen2x + 4Dcos2 Dcos2x = senx + 3Cos 3Cos22x
C + 4D 4D = 3 −3C + −3D − 4C = 0
C =
D=
9 25 12 25
−2A = 1
A=
2B = 0 B = 0
− 12
y(x) = c1 ex + c2 xex
− 12 cosx + 259 cos2 cos2x + 12 sen2x 25 sen2
y + y = sec x
yh = y + y = 0
m2 + 1 = 0 m2 = m1,2 = m1,2 = α
√−1
± βi
−1 m1,2 =
±i
α=0β=1
yh = c1 cosx + c2 senx y1 = cosx
y2 = senx
y1 = cosx y2 = senx y1 =
W =
y1 y1
W 1 =
y2 = y2
−senx y2 = cosx
cosx senx = [(cosx [(cosx)( )(cosx cosx)] )] senx senx cosx cosx cos2 x + sen2 x = 1
−
0 y2 0 senx = = [(0)(cosx [(0)(cosx)] )] [(senx [(senx)( )(secx secx)] )] = f ( f (x) y2 secx secx cosx cosx senxsecx = senx cosx = tanx
−
−
W 2 =
u1 =
W 1 W
− [(senx [(senx)( )(−senx)] senx)] =
y1 y1
0 = f ( f (x)
= −tanx = 1
−
−
cosx 0 = [(cosx [( cosx)( )(secx secx)) senx senx secx secx cosxsecx = cosx cosx = 1
−
−tanx u2 =
u1 =
W 2 W
=
1 1
senx)] = − (0)(−senx)]
ln(cosx)] cosx)] = ln( ln(cosx) cosx) − ´ tanxdx = −[−ln( = 1 u2 =
´
dx = x
y p = u1 y1 + u2 y2 y p = ln( ln(cosx) cosx)cosx + xsenx y(x) = yh + y p y (x) = c1 cosx + c2 senxi + cosxln( cosxln(cosx) cosx ) + xsenx y + y = senx
yh = y + y = 0
m2 + 1 = 0 m2 = m1,2 =
±√−1
α=0
−1 m1,2 =
±i
β =1
yh = eαx (c1 cosβx + c2 senβx) senβx) yh = e0x (c1 cosβx + c2 senβx) senβx)
yh = c1 cosx + c2 senx y1 y2 y1 = cosx y1 =
−senx
y2 = senx y2 = cosx
W =
cosx senx = cos2 x + sen2 x = 1 senx senx cosx cosx
−
W 1 =
0 senx = senx senx cosx cosx
−sen2x
cosx 0 = senxcosx senx senx senx senx
W 2 =
−
u1 u2 2
− sen1 x = −sen2x ´ u1 = − sen2 xdx = x2 − 14 sen2 sen2x u1 =
u2 = u2 =
´
senxcosx 1
= senxcosx
senxcosxdx = 12 sen2 x
− 14 sen2 sen2x)cosx + 12 sen2 x(senx) senx) y p = 12 xcosx − 14 cosxsen2 cosxsen2x + 12 sen3 x
y p = u1 y1 + u2 y2 = ( x2
y(x) = y p + yh y (x) = c1 cosx + c2 senx + 12 xcosx
cosxsen2x + 12 sen3 x − 14 cosxsen2
y + y = cos2 x yh = y + y = 0 yh = c1 cosx + c2 senx y1 y2 y1 = cosx y1 =
−senx
y2 = senx y2 = cosx
cosx senx = cos2 x + sen2 x = 1 senx senx cosx cosx
W =
−
0 senx = 2 cos x cosx
W 1 =
cosx senx enx
W 2 =
−
−senxcos2x
0 = cos3 x cos2 x
u1 u2
−senxcos2x = −senxcos2x
u1 = u1 =
−
´
1
senxcos2 xdx =
u2 = u2 = y p = u1 y1 + u2 y2 =
´
− −
cos3 x cos3 x = 3 3
cos3 x = cos3 x 1
cos3 xdx = senx
3
− sen3 x
cos3 x (cosx) cosx) + senx 3
y p =
cos4 x + sen2 x 3
−
4
− sen3 x
cos4 x y(x) = c1 cosx + c2 senx + + sen2 x 3 y
− y = cosh x y − y = 0 m2 − 1 = 0 √ m2 = 1 m1,2 = ± 1 = ±1 yh = c1 ex + c2 e−x y1 y2 y1 = ex y1 = ex y2 = e−x y2 =
sen3 x 3
−e−x
−
sen4 x 3
(senx) senx)
W =
ex ex
W 1 =
e−x = e−x
−
0 coshx
e−x = e−x
−
W 2 = u1
−e−x(ex) − ex(e−x) = −1 − 1 = −2
ex ex
coshx) = −e−x coshx −e−x(coshx)
0 = ex coshx coshx
u2 x u1 = −e −coshx = 12 e−x coshx 2 −
u1 =
1 2
´ −x e coshxdx = 18 e−2x (2e (2e2x x − 1) u2 =
ex coshx = 2
−
− 12 excoshx 2x
u2 = y p =
− 12 ´ excoshxdx = − 12 [ x2 + e4
ex [ 18 e 2x (2e (2e2x x
−
2x
− 1)] + (−e−x)(− x − e ) 4
y p = 18 e−x (2e (2e2x x
−x
− 1) + xe4
y (x) = c1 ex + c2 e−x + 18 e−x (2e (2e2x x y + 3y 3y + 2y 2y =
+
1 1 + ex
(m + 2)(m 2)(m + 1) = 0
−2 m2 = −1
yh = c1 e−2x + c2 e−x y1 y2
y2 = e−x
−x
− 1) + xe4
m2 + 3m 3m + 2 = 0
y1 = e−2x y1 =
8
ex 8
yh = y + 3y 3y + 2y 2y = 0
m1 =
]
−2e−2x y2 = −e−x
+
ex 8
W =
e−2x 2e−2x
−
e−x = (e ( e−2x )( e−x ) (e−x )( 2e−2x ) = e−x e−3x
−
−
W 1 = W 2 =
−
0 1 1+ex
e−x = e−x
−
e−2x 2e−2x
−
0 1 1+ex
−
−
−e−3x + 2e 2e−3x =
e−x 1 + ex
e−2x = 1 + ex
u1 ,u2
u1 =
−
e−x 1 + ex = e 3x −
u1 =
1 e−x = −2x = − x x 3 (e )(1 + e ) e (1 + ex )
− e−2x 1+ e−x
− ´ e−2x 1+ e−xdx = −ex + ln( ln(ex + 1) − 1
e−2x 1 e−2x ex = u2 = 1 + = e−3x (e−3x )(1 + ex ) e−x + 1 u2 =
´
1 dx = x + ln( ln(e−x + 1) − x e +1
y p = (e−2x )[ ex + ln( ln(ex + 1)
−
− 1] + [x[x + ln( ln(e−x + 1)](e 1)](e−x )
−e−x + e−2xln( ln(ex + 1) − e−2x + xe−x + e−x ln( ln(e−x + 1) y (x) = c1 e−2x + c2 e−x − e−x + e−2x ln( ln(ex + 1) − e−2x + xe−x + e−x ln( ln(e−x + 1) 3y − 6y + 6y 6y = ex secx yh = 3y − 6y + 6y 6y = 0 3m2 − 6m + 6 = 0 a = 3 b = −6 c = 6 y p =
y1 y2
√36 − 72 √−36 (−6) ± (−6)2 − 4(3)(6) − 6 m1,2 = = ± =1± = 1±i
2(3)
6
6
α=1 β=1 yh = ex (c1 cosx + c2 senx) senx) y1 y2
6
y1 = ex cosx y1 = ex cosx
− exsenx
y2 = ex senx y2 = ex senx + ex cosx
ex cosx ex senx = (ex cosx)( cosx)(eex senx + ex cosx) cosx) ex cosx ex senx ex senx + ex cosx (ex senx)( senx)(eex cosx ex senx) senx) = ex (cosxsenx + cos2 x cosxsenx + sen2 x)
W =
−
−
−
−
W = ex (cos2 x + sen2 x) = ex W 1 =
0 x e secx
ex senx = (ex senx)( senx)(eex secx) secx) = ex senx + ex cosx ex tanx
−
−
W 2 =
ex cosx ex cosx ex senx
−ex( senx )= cosx
cosx 0 = (ex cosx)( cosx)(eex secx) secx) = ex ( ) = ex e secx cosx x
−
u1 u2 x
= −tanx − e tanx ex ´ u1 = − tanxdx = −(−lncosx) lncosx) = lncosx u1 =
ex u2 = x = 1 e
u2 =
´
dx = x
y p = lncosx( lncosx(ex cosx) cosx) + x(ex senx) senx) y (x) = ex (c1 cosx + c2 senx) senx) + ex cosxlncosx + xex senx
x2 y
− 2y = 0
y = xm
y = xm y = mxm−1 y = (m
[(m x2 [(m
1)mxm−2 − 1)mx
1)mxm−2 ] − 2(x 2(xm ) = 0 − 1)mx
x2 [(m [(m
− 1)mx 1)mxm x−2 ] − 2(x 2(xm ) = 0 (m − 1)mx 1)mxm − 2xm = 0 xm [(m [(m − 1)m 1)m − 2] = 0 xm (m2 − m − 2) = 0 m2
−m−2 = 0 (m + 1)(m 1)(m − 2) = 0 m1 = −1 m2 = 2 y = c1 x−1 + c2 x2 x2 y + y = 0 y = xm y = xm y = mxm−1 y = (m
x2 [(m [(m (m
− 1)mx 1)mxm−2
− 1)mx 1)mxm−2 ] + xm = 0
− 1)mx 1)mx2 xm x−2 + xm = 0 (m2 − m)xm + xm = 0 xm (m2 − m + 1) = 0 m2
α=
1 2
β=
1 2
√3
−m+1=0 √ m1,2 = 12 ± 12 3i 1
1
y = c1 x 2 + 2
√ 3i
1
1
+ c2 x 2 − 2
√ 3i
xiβ = (e ( elnx )iβ = eiβlnx
xiβ = cos( cos(βlnx) βlnx) + isen( isen(βlnx) βlnx) x−iβ = cos( cos(βlnx) βlnx)
− isen( isen(βlnx) βlnx)
xiβ + x−iβ = cos( cos(βlnx) βlnx) + isen( isen(βlnx) βlnx) + cos( cos(βlnx) βlnx) xiβ
− isen( isen(βlnx) βlnx) = 2cos( cos(βlnx) βlnx)
− x−iβ = cos( cos(βlnx) βlnx) + isen( isen(βlnx) βlnx) − cos( cos(βlnx) βlnx) + isen( isen(βlnx) βlnx) = 2isen 2 isen((βlnx) βlnx) y = C 1 xα+iβ + C 2 xα−iβ y1 = xα (xiβ + x−iβ ) = 2x 2 xα cos( cos(βlnx) βlnx) y2 = xα (xiβ
− x−iβ ) = 2xαisen( isen(βlnx) βlnx)
y1 = xα cos( cos(βlnx) βlnx)
= xα sen( sen(βlnx) βlnx )
y = xα [c1 cos( cos(βlnx) βlnx) + c2 sen( sen(βlnx)] βlnx)] 1
√
√
y = x 2 [c1 cos( cos( 12 3lnx) lnx) + c2 sen( sen( 12 3lnx)] lnx)] x2 y + xy + 4y 4y = 0
y = xm y = mxm−1 y = (m
x2 [(m [(m
− 1)mx 1)mxm−2
− 1)mx 1)mxm−2 ] + x(mxm−1 ) + 4(x 4(xm ) = 0 xm (m2 − m + m + 4) = 0 xm (m2 + 4) = 0 m2 =
−4
±√−4 m1,2 = ±2i
m1,2 =
α=0β=2 y = x0 (c1 cos2 cos2lnx + c2 sen2 sen2lnx) lnx) y = c1 cos2 cos2lnx + c2 sen2 sen2lnx x2 y
− 3xy − 2y = 0 y = xm y = mxm−1
− 1)mx 1)mxm−2
y = (m
x2 [(m [(m
1)mxm−2 ] − 3x(mxm−1 ) − 2(x 2(xm ) = 0 − 1)mx xm [(m [(m2 − m) − 3m − 2] = 0 xm (m2 − 4m − 2) = 0 √ m1,2 = 2 ± 6
√ 6
y = c2 x2+
√ 6
+ c1 x2−
25 25x x2 y + 25xy 25xy + y = 0
y = xm y = mxm−1 y = (m
25 25x x2 [(m [(m
− 1)mx 1)mxm−2
− 1)mx 1)mxm−2 ] + 25x 25x(mxm−1 ) + xm = 0
xm [25m [25m2
25m m + 25m 25m + 1] = 0 − 25
25 25m m2 + 1 = 0
m1,2 =
± − 251 = ± 15 i
α = 0, 0, β =
1 5
1 1 y = x0 (c1 cos lnx + c2 sen lnx) lnx) 5 5 1 1 y = c1 cos lnx + c2 sen lnx 5 5 x2 y + 5xy 5xy + y = 0
y = xm y = mxm−1 y = (m
− 1)mx 1)mxm−2
[(m 1)mx 1)mxm−2 ] + 5x 5 x(mxm−1 ) + xm = 0 x2 [(m xm (m2 m + 5m 5m + 1) = 0 2 m + 4m 4m + 1 = 0 m1,2 = 2 √ 3 √ y = c1 x2+ 3 + c2 x2− 3
− − ±√
xy
− 4y = x4 y = xm
y = mxm−1 y = (m
x2 y
1)mxm−2 − 1)mx
− 4xy = x5 yh = x2 y − 4xy = 0 x2 [(m [(m − 1)mx 1)mxm−2 ] − 4x(mxm−1 ) = 0
xm (m2 m 4m) = 0 m(m 5) = 0 m1 = 0 m2 = 5 yh = c1 x0 + c2 x5 yh = c1 + c2 x5
−
− −
P ( P (x)y + Q(x)y = f ( f (x) y
x
− 4 xy = x3
f ( f (x) = x3 y1 y2 y1 = 1 y1 = 0 y2 = x5 y2 = 5x 5 x4 1 x5 W = = 5x4 0 = 5x4 0 5x4 0 x5 W 1 = 3 = 0 x8 = x8 x 5x4 1 0 = x3 W 2 = 0 x3 u1 u2 − x8 u1 = 5x4 ´ = 15 x4 1 5 u1 = 15 x4 dx = 25 x 3 x 1 u2 = 5x´ 4 = 5x u2 = 15 x1 dx = 15 lnx 1 5 y p = 25 x (1) + 15 lnx( lnx(x5 ) 5 1 5 y p = 25 x + x5 lnx y (x) = yh + y p 5 1 5 y (x) = c + c2 x5 25 x + x5 lnx
− −
−
−
−
−
− −
−
x2 y
− xy + y = 2x y = xm
y = mxm−1 y = (m yh = x2 y
1)mxm−2 − 1)mx
− xy + y = 0 x2 [(m [(m − 1)mx 1)mxm−2 ] − x(mxm−1 ) + xm = 0 m2 − m − m + 1 = 0 m2 − 2m + 1 = 0
(m 1)2 m1,2 = 1 yh = c1 x + c2 xlnx
−
y
− x1 y + x1 y = x2 2
f ( f (x) = x2 y1 = x y2 = xlnx
y1 = 1
y2 = lnx + 1
x lnx = (x)(lnx )(lnx + 1) (lnx)(1) lnx)(1) = xlnx + x 1 lnx + 1 lnx + x = xln xx + x = xln(1) xln(1) + x = x 0 lnx W 1 = 2 = (lnx ( lnx)( )( x2 ) = x2 lnx lnx + 1 x x 0 W 2 = = x2 x 0 = 2 1 x2 u1 u2 2 x lnx u1 = x = 2xlnx 2 ´ lnx+1 u1 = 2 lnx = x2 x u2 = x2 ´ u2 = 2 x1 = 2lnx y p = y1 u1 + y2 u2 = x( lnxx+1 ) + xlnx(2 xlnx(2lnx lnx)) = lnx + 1+ W =
−
−
−
−
−
x2 y
2y = x4 ex − 2xy + 2y y = xm y = mxm−1
y = (m x2 [(m [(m
1)mxm−2 − 1)mx
1)mxm−2 ] − 2x(mxm−1 ) + 2x 2 xm = x4 ex − 1)mx x2 y − 2xy + 2y 2y = 0 2 m x (m − m − 2m + 2) = 0 m2 − 3m + 2 = 0 (m − 2)(m 2)(m − 1) = 0 m1 = 2 m2 = 1 yh = c1 x2 + c2 x y
− x2 y + x2 y = x2ex 2
y1 y2 f ( f (x) = x2 ex y1 = x2 y1 = 2x 2x y2 = x y2 = 1
− lnx = xlnx −
x2 x = x2 2x2 = x2 2x 1 0 x W 1 = 2 x = 0 x3 ex = x3 ex x e 1 x2 0 W 2 = = x4 ex 2x x2 ex u1 u2 − x3 ex u1 = −x2 = xex ´ u1 = xex dx = ex (x 1) 4 x u2 = x−xe2 = x2 ex ´ 2 x u2 = x e dx = ex (x2 2x + 2) y p = u1 y1 + u2 y2 = [ex (x 1)]x 1)]x2 + [e [ex (x2 2 x x 2 y p = x e (x 1) + xe (x 2x + 2) y (x) = y p + yh y (x) = c1 x2 + c2 x + x2 ex (x 1) + xex (x2 W =
− −
−
−
−
−
−
− − − −
−
y
− 2x + 2)]x 2)]x − 2x + 2)
xy = 0
− − − − − − − − − ∞ c xn n=0 n
y=
y =
∞ (n−1)nc 1)ncn xn−2 n=2
∞ (n 1)nc n 1)ncn xn−2 x ( ∞ n=2 n=0 cn x ) = 0 ∞ (n 1)nc ∞ c xn+1 = 0 1)ncn xn−2 n=2 n=0 n ∞ n(n n=3
2(1)c 2(1)c2 x0 2c2
∞ n(n n=3
k=n 2 n = k+2 n = k
−
1)c 1)cn xn−2
∞ c xn+1 = 0 n=0 n
∞ c xn+1 = 0 n=0 n
1)c 1)cn xn−2
k = n+1
−1
∞ n(n − 1)c 1)cn xn−2 − n=3
∞ c xn+1 = 0 n=0 n k 2c 2 ∞ 2)(k + 1)c 1)ck+2 xk − ∞ k=1 (k + 2)(k k=1 ck−1 x = 0 2c2 ∞ [(k + 2)(k 2)(k + 1)c 1)ck+2 − ck−1 ]xk = 0 k=1 [(k
2c2
(k + 2)(k 2)(k + 1)c 1)ck+2 ck+2 =
− ck−1 = 0
ck−1 (k + 2)(k 2)(k + 1)
k 2c2 = 0 c2 = 0 c0 3(2)
k = 1 c3 = k = 2 c4 =
c1 = 4(3)
c2 = 5(4)
k = 3 c5 =
= 16 c0
1 20 c2
1 12 c1
=0
← c2 = 0
k = 4 c6 =
c3 = 6(5)
1 1 30 ( 6 )c0
=
1 180 c0
k = 5 c7 =
c4 = 7(6)
1 1 42 ( 12 )c1
=
1 504 c1
k = 6 c8 = k = 7 c9 =
c5 =0 8(7)
c6 = 9(8)
← c5 = 0
1 1 72 ( 180 )c0
k = 8 c10 =
c7 = 10(9)
k = 9 c11 =
c8 =0 11(10)
=
1 12960 c0
1 10(9)(504) c1
← c8 = 0
y= c0 + c1 x + c2 x2 + c3 x3 + c4 x4 + c5 x5 + c6 x6 + c7 x7 + c8 x8 + c9 x9 + c10 x10 + c11 x11 + ..., y= 1 1 1 1 1 c0 +c1 x+0+ 16 c0 x3 + 12 c1 x4 +0+ 180 c0 x6 + 504 c1 x7 +0+ 12960 c0 x9 + 90(504) c1 x10 +0 y = c0 (1 + 16 x3 +
1 6 180 x
1 9 12960 x ) + c1 (x
+
+
1 4 12 x
+
1 7 504 x
+
1 10 90(504) x )
y + x2 y + xy = 0
n y= ∞ n=0 cn x ∞ y = n=1 cn nxn−1 y = ∞ 1)nc 1)ncn xn−2 n=2 (n
− ∞ (n n=2
−
1)nc 1)ncn xn−2 + x2
∞ c nxn−1 + x [ n=1 n
cn xn ] = 0
∞ (n − 1)nc n+1 n+1 1)ncn xn−2 + ∞ + ∞ =0 n=2 n=1 cn nx n=0 cn x ∞ ∞ n−2 n+1 n+1 0 2c2 x + 6c3 x n=4 (n − 1)nc 1)ncn x + n=1 cn nx + c0 x1 ∞ =0 n=1 cn x
−
k=n 2
k = n+1
2c2 x0 + 6c3 x ∞ 1)(k + 2)c 2)ck+2 xk+2−2 + ∞ 1)x 1)xk−1+1 + k =2 (k + 2 1)(k k =2 ck−1 (k k−1+1 c0 x 1 ∞ =0 k=2 ck−1 x ∞ 2c2 + 6c 6c3 x + c0 x k=2 (k + 1)(k 1)(k + 2)c 2)ck+2 xk + ck−1 (k 1)x 1)xk + ck−1 xk = 0 ∞ 2c2 + 6c 6c3 x + c0 x k=2 [(k [(k + 1)(k 1)(k + 2)c 2)ck+2 + ck−1 (k 1) + ck−1 ]xk = 0 (k + 1)(k 1)(k + 2)c 2)ck+2 + ck−1 (k 1) + ck−1
−
−
−
−
−
2c 2 = 0 c 2 = 0 6c3 + c0 = 0 c3 = 16 c0
−
kck−1 (k + 1)(k 1)(k + 2) k = 2, 3, 4,... 2c1 1 c4 = 3(4) = 6 c1 3c2 c5 = 4(5) =0 c2 = 0 4c3 2 1 c6 = 5(6) = 15 ( 16 c0 ) = 45 c0 5c4 5 1 5 c7 = 6(7) = 42 ( 6 c1 ) = 136 c1 6c5 6 c8 = 7(8) = 56 (0) = 0 7c6 7 1 7 c9 = 8(9) = 72 ( 45 )c0 = 72(45) c0 8c7 4 5 5 c10 = 9(10) = 45 ( 136 c1 ) = 45(34) c1 9c8 9 c11 = 10(11) = 110 (0) = 0 10c9 5 7 7 c12 = 11(12) = 66 ( 72(45) c0 ) = 66(72)(9) c0 ck+2 =
[(k 1)+1] ck 1 (k +1)(k +2)
−
−
=
← −
−
−
−
−
−
y = c0 + c1 x + c2 x2 + c3 x3 + c4 x4 + c5 x5 + c6 x6 + c7 x7 + c8 x8 + c9 x9 + ... 5 5 1 6 7 7 y = c1 [ 16 x4 + 136 x7 + 9(34) x10 ] c0 [ 45 x + 72(45) x9 + 66(72)(9) x12 ]
− y − 2xy + y = 0
n y= ∞ n=0 cn x ∞ y = n=1 cn nxn−1 y = ∞ 1)nc 1)ncn xn−2 n=2 (n
− − −− −−
∞ (n 1)nc ∞ c nxn−1 + ∞ c xn = 0 1)ncn xn−2 − 2x n n n=2 ∞ (n 1)nc ∞ n=1 ∞ c nx=0 n−2 n n − 1) nc x 2 c nx + = 0 n n=2 n=1 n n=0 n ∞ ∞ ∞ n−2 n 2c2 n=3 (n 1)nc 1)ncn x − 2 n=1 cnnx + c0 n=1 cnxn = 0
−
k=n 2 k=n ∞ c xk = 0 k +2−2 k 2c 2 ∞ ( k + 2 1)(k 1)( k + 2)c 2) c x 2 ∞ k+2 k k=1 k =1 ck kx + c0 ∞ c kxk + ∞ c xkk=1 k 2c2 + c0 ∞ ( k + 1)(k 1)( k + 2)c 2) c x + = 0 k +2 k =1 k =1 k k=1 k k k k 2c2 + c0 ∞ ( k + 1)(k 1)( k + 2)c 2) c x 2 c kx + c x = 0 k k k +2 k =1 ∞ k k k 2c2 + c0 k=1 (k + 1)(k 1)(k + 2)c 2)ck+2 x 2ck kx + ck x = 0
− −
2c2 + c0 = 0 c2 = 12 c0 (k + 1)(k 1)(k + 2)c 2)ck+2 xk 2ck kxk + ck xk = 0 [(k [(k + 1)(k 1)(k + 2)c 2)ck+2 2ck k + ck ]xk = 0 (k + 1)(k 1)(k + 2)c 2)ck+2 2ck k + ck (2k (2k + 1)c 1)ck ck+2 = (k + 1)(k 1)(k + 2) k = 1, 2, 3, 4,...
−
− −
−
3c1 2(3)
c3 = 5c2 3(4)
c4 =
c6 =
9c4 5(6)
c7 =
11c5 6(7)
c0
=
11 7 42 ( 40 c1 )
=
c9 =
15c7 8(9)
=
15 11 72 ( 6(40) c1 )
+
5 4 24 x
+
=
11 6(40) c1
18c9 10(11)
=
161 72(240) c1
17(13) − 9(10)(56)(16) c0
=
1 161 55 ( 8(240) )c1
11 7 240 x
1 6 16 x
+
161 161 + 72(240) x9 + 55(8)(240) x11 17(13) 13 8 10 56(16) x + 90(56)(16) x
(x2 + 2)y 2)y + 3xy 3xy
y =
−
−y = 0
∞ c xn n=0 n ∞ c nxn−1
y=
n=1 n
∞ (n − 1)nc 1)ncn xn−2 n=2 n−1 − ∞n=0 cnxn = 0 (x2 + 2) ∞ 1)ncn xn−2 + 3x 3x ∞ n=2 (n − 1)nc n=1 cn nx ∞ (n − 1)nc ∞ c xn = n 1)ncn xn−2 +2 ∞ 1)ncn xn−2 + ∞ n=2 n=2 (n − 1)nc n=1 3cn nx − n=0 n y =
x2
=
13 − 161 c0) = − 56(16) c0
17c8 9(10)
+
7 40 c1
− 245 c0) = − 161 c0
13 56 (
7 5 40 x
=
9 30 (
=
1 3 2x
7 1 20 ( 2 c1 )
=
13c6 7(8)
c11 = y = c1
− 12 c0) = − 245 c0
c8 =
c10 =
5 12 (
=
7c3 4(5)
c5 =
= 12 c1
0
∞ (n − 1)nc ∞ c xn = 0 n 1)ncn xn + ∞ 2(n − 1)nc 1)ncn xn−2 + ∞ n=2 n=2 2(n n=1 3cn nx − n=0 n ∞ (n − 1)nc n 1)ncn xn + ∞ 2(n − 1)nc 1)ncn xn−2 + 3c 3c1 x ∞ n=2 n=2 2(n n=2 3cn nx − c0 + ∞ c x c xn = 0
− − − − − − − − − − 1
n=2 n
3c1 x + c0 + c1 x ∞ 1)nc 1)ncn xn + 2(2 1)2c 1)2c2 x2−2 + 2(3 n=2 (n ∞ c xn = 0 n 1)3c 1)3c3 x3−2 ∞ 2(n 1)nc 1)ncn xn−2 + ∞ n=4 2(n n=2 3cn nx n=2 n 3c1 x + c0 + c1 x + 4c 4c2 + 12c 12c3 x ∞ =2 (n ∞ 3c nnx n n n=2 k=n
1)nc 1)ncn xn + ∞ 2(n 2(n ∞ c xn = 0n=4 n=2 n
2
1)ncn xn−2 + − 1)nc
k=n
3c1 x + c0 + c1 x + 4c 4c2 + 12c 12c3 x 2)c 2)ck+2 xk+2−2 + 4c1 x + c0 + 4c2 + 12 12cc3 x
−
∞ (k 1)kc 1)kck xk + ∞ 2(k 2(k + 2 − 1)(k 1)(k + k=2 ∞ 3c kxk ∞ c kx=2 k = 0 k k=2 k=2 k
∞ [(k 1)kc 1)kck + 2(k 2(k +1)(k +1)(k + 2)c 2)ck+2 + 3ck k − ck ]xk = 0 k=2 [(k
4c1 + 12c 12c3 = 0 c3 = c31 c0 + 4c 4c2 = 0 c2 = c40 (k 1)kc 1)kck + 2(k 2(k + 1)(k 1)(k + 2)c 2)ck+2 + 3c 3ck k ck 3kck + ck (k 1)kc 1)kck [ 3k + 1 k 2 k ]ck [ 4 k + 1 k 2 ]c k ck+2 = = = 2(k 2(k + 1)(k 1)(k + 2) 2(k 2(k + 1)(k 1)(k + 2) 2(k 2(k + 1)(k 1)(k + 2) k = 2, 2 , 3, 4, 5,... c2 = c40 c3 = c31 −4−2)c2 = 11 ( 1 c ) = 11 c c4 = (−6+1 2(3)(4) 24 4 0 96 0
−
− −
−
− −
− −
−
−
− −
− − − −
−
− − − − − − −
9)c3 1 1 1 c5 = ( 12+1 = 20 2(4)(5) 40 c3 = 2 ( 3 c1 ) = 6 c1 16)c4 31(11) 31 11 c6 = ( 16+1 = 31 2(5)(6) 60 c4 = 60 ( 96 c0 ) = (60)(96) c0 25)c5 1 11 c7 = ( 20+1 = 8444 c5 = 11 2(6)(7) 21 ( 6 c1 ) = 126 c1 36)c6 11(31) 59 11(31) c8 = ( 24+1 = 112 ( 60(96) c0 ) = 112(60)(96) c0 2(7)(8) 31(11) 6 11(31) 1 3 4 8 y = c0 [ 14 x2 + 11 90 x + 60(96) x + 112(60)(96) x ] + c1 [ 3 x
− − − −
−
−
−
−
−
≤t
View more...
Comments