Ejercicios Resueltos de DERIVADAS (1)
Short Description
rRr...
Description
DERIVADA DE UNA FUNCIÓN REAL 2013 Ejercicios resueltos Halle la derivada de una función simple 1. f(x) = 4 Solución f'(x f'(x) (4)' 0 2
2. f(x) x
Solución f'(x f'(x) 2x
3x 3. f(x) 3x
5
21
2x
3
5x 15x
Solución 5
4
3
2
f'(x f'(x) (3x )' (5x )' (15x)' 15x 15x 15
f(x) 3x sen sen(x) 4. f(x)
Solución
f '(x) '(x) (3x sen sen(x))' x))' (3x)' (sen(x))' x))' 3x' cos(x) s(x) 3 cos(x)
5. f '( '(x) x
cos(x) 4
Solución
f'( f'(x) ( x)' x)' [cos(x)]' (4)' (x
3
6. f(x) 3 x
2
1/2
)' sen(x)
1 2 x
sen(x)
4 x 5
Solución n
n1
Use la siguiente derivada: [x ]' nx Luego,
f '( '(x) 3(x
2/3
)' 4(x
1/2
)' (5)' 2x
1/3
2x
1/2
2
3
x
MATEMÁTICA 1 | 1 | Andrés Castillo/Percy Angulo/ Juan Ponte / Karol Malasquez …
2 x 1
DERIVADA DE UNA FUNCIÓN REAL 2013
7.
f(x)
2x
3
12
5
3x
20 4x
7
120
Solución Derive cada término y se tiene 2
f '(x)
8.
x
2
19
2
15x
2x
3
2
f(x) 5( 5(x 3 x 2) 2) Solución Aplique la derivada sólo a cada término del paréntesis
f'(x) f'(x) 5(2x
1 3
3 x 9.
3
2
)
2
f(x) x (x 5x ) 3 x Solución Antes de derivar se debe aplicar la propiedad distributiva y luego aplique las reglas de derivación. Es decir:
f '(x) (x
7/2
5x
5/2
1/3
x
7 5/2 25 3/2 1 2/3 )' x x x 2 2 3 f '(x)
3
10. f(x)
3
2
x 5x x
7 2
5
x
25 2
1
3
x
3
3 x
2
5
x
Solución Antes de derivar divida cada factor e ntre x y luego aplique la derivada a cada término 3
f '(x) (
11. f(x) (2x
3
2
3
x 5x x x
5 2
)' (x 5x x
2 /3
)' 2x 5
2 33 x
2
5x )3 x
Solución Aplique la propiedad distributiva y luego las reglas de las derivadas
MATEMÁTICA 1 | 1 | Andrés Castillo/Percy Angulo/ Juan Ponte / Karol Malasquez …
2
DERIVADA DE UNA FUNCIÓN REAL 2013 3
33
f '(x) (2x 20
12
8
23
x 5x
10/3
7/3
x)' (2x
5x
)'
20 x
3
7
35 x
3
4
3
3
12. f(x) = (x + 6x – 12)(x – 5x + 2x) Solución Use la derivada del producto
f'(x) 20x
f '(x) x
20
12
19
11
72x
'
x – 5x
6x – 12
8
2x x 3
x – 5x 2x x
8
3
20
20
12
8
3
12
7
2
6x – 12 8x – 15x
'
2
6x – 12 x – 5x 2x
Efectue las multiplicaciones y simplifique
f '(x) 28x 13
27
115x22 42x20 120x19 450x14 156x12 96x7 180x2 24
14
7
13. f(x) = (x – 12)(x – 5x + 2) Solución Use la derivada del producto
f '(x) x
13
– 12
12
f '(x) 13x
x
'
14
x
14
7
13
– 5x 2 x 7
– 5x 2 x
26
f '(x) 27x
13
14
13
– 35x
– 12 x
– 12 14x 19
7
– 5x 2
13
6
'
12
6
100x 168x 26x 420x
8
14. f(x) = (sen(x) + tg(x))(x – 2x) Solución Use la derivada del producto
' ' 8 8 f '(x) *sen(x) tg(x)+ x –2x *sen(x) tg(x)+ x –2x
2
8
7
f '(x) *cos(x) sec (x)+ x –2x *sen(x) tg(x)+ 8x –2
15. f(x) = xln(x) –x Solución Use la derivada del producto
1 f(x) x ln x +x ln x x ln x +x 1 ln(x) 1 1 ln(x) x MATEMÁTICA 1 | Andrés Castillo/Percy Angulo/ Juan Ponte / Karol Malasquez …
3
DERIVADA DE UNA FUNCIÓN REAL 2013 16. f(x)
x x 1
Solución Use la derivada del cociente
f(x)
x x 1 x x 1 2 x 1
1 2
(x 1)
2
17. f(x)
x 4 3
x 4
Solución Use la derivada del cociente
x f(x)
2
18. f(x)
4
x
3
2
3
4 x 4 x 4
x
3
4
2
2x
4
4
2
8x 3x 12x
x
3
4
2
x(x
3
12x 8) 3
2
(x 4)
sen(x) cos(x) 2
3x 4x 2
Solución Use la derivada del cociente
f(x)
f(x)
senx cosx 3x2 4x 2 senx cosx 3x2 4x 2
2
3x 4x 2
2
cos(x) sen(x) 3x2 4x 2 senx cosx (6x 4)
2
3x 4x 2
2
2
f'(x)
19. f(x)
2
(3x 10x 2)cosx (3x 2x 6)senx 2
2
(3x 4x 2)
csc(x) sec(x)
Solución Use identidades trigonométricas
MATEMÁTICA 1 | Andrés Castillo/Percy Angulo/ Juan Ponte / Karol Malasquez …
4
DERIVADA DE UNA FUNCIÓN REAL 2013 1 f(x)
sen(x) cos(x) 1 sen(x) cos(x)
Aplique la derivada del cociente
f(x)
cos(x) sen(x) cos(x) sen(x) 2
sen (x) x
20. f(x)
2 1 x
1
2
csc (x)
2
sen (x)
x
–
3 1 x
Solución Use la derivada de un cociente y la derivada de la función exponencial
2x 3x f(x) x
' 2 3 x
x
x 2
x
x
2
x
3
x 2 xln(2) 3 xln(3) 2 x
x
x
x
x
x
3
2
ln(2) 1 x 1 ln(3) 2 3 2 x x x x
f '(x) 2 x
21. f(x)
e 1 x
Solución Use la derivada de un cociente y la derivada de la función exponencial
e f(x)
x
x 1 x e 1 x
x
2
x
x
xe e 1 x
2
x
e (x 1) 1 2
x
2 2x 3, si x 2 22. Calcula f (2) f (2) de la función: f(x) 8x 11, si x 2
'
'
Solución '
a) f (2) lim
h0
'
b) f (2) lim
h0
f(2 h) f(2) h f(2 h) f(2) h
lim
h
h0
h0
lim 8h 8 h0
2
lim
2
8(2 h) 11 2(2) 3
2
h
lim 8h h
2(2 h) 3 2(2) 3 h
2
h0
MATEMÁTICA 1 | Andrés Castillo/Percy Angulo/ Juan Ponte / Karol Malasquez …
h
8
5
DERIVADA DE UNA FUNCIÓN REAL 2013 '
'
Por lo tanto, f(x) es derivable en x 2 pues f (x0 ) f (x 0 ) 8 . Es decir f'(2) 8 23. Halle las derivadas laterales en el x 0 , si f(x) senx Solución '
a) f (0) lim
f(0 h) f(0)
h0
'
b) f (0) lim
f(0 h) f(0)
senh
h0
h
h
h0
lim
h
lim h0
1
senh
h
1 '
'
Por lo tanto, f(x) no es derivable en x 0 pues f (x 0 ) f (x 0 )
Halle la derivada de las siguientes funciones compuestas 1.
f(x)=sen(2x) Solución Use la derivada de una función compuesta. [f(g(x))]' f'(g(x))g'(x)
f(x)=[sen(2x)]'=[sen(2x)]'(2x)'=[cos(2x)](2)= 2cos(2x) 2.
f(x)=cos(4x) Solución Use la derivada de una función compuesta.
f'(x)=[cos(4x)]'=[cos(4x)]'(4x)'= -4sen(4x) 3.
f(x) tg( x) Solución Use la derivada de una función compuesta. 1/2
f '(x) [ tg(x
4.
f(x) sen(
x
3
3
1/2
)]'(x
1
)' x 2
1/2
2
1/2
sec (x
2
)
sec ( x) 2 x
2
x )
Solución Use la derivada de una función compuesta.
MATEMÁTICA 1 | Andrés Castillo/Percy Angulo/ Juan Ponte / Karol Malasquez …
6
DERIVADA DE UNA FUNCIÓN REAL 2013 '
x3 x3 x3 2 2 2 2 x x (x 2x)cos x f '(x) cos 3 3 3
5.
x10 2 x f(x) cos 5 Solución Use la derivada de una función compuesta '
x10 x10 x10 9 1 2 x 2 x 2x f'(x) sen sen 2 x 5 5 5 x 6.
2
f(x) tg(2x 2x) Solución Use la derivada de una función compuesta. 2
2
2
2
2
f(x) sec (2x 2x)(2x 2x)' 4x 2 sec (2x 2x) 7.
3
2
f(x) sen (x ) Solución Use la derivada de una función compuesta dos veces. 2
2
2
2
2
2
2
2
2
2
f'(x) 3sen (x )[sen(x )]' 3sen (x )cos(x )[x ]' 6xsen (x )cos(x ) 10
x 8. f(x) sen(x)cos( ) 5 Solución Use la derivada del producto y la de rivada de una función compuesta '
x10 x10 sen(x) cos f'(x) [sen(x)]'cos 5 5
'
x10 x10 x10 sen(x)sen f'(x) cos(x)cos 5 5 5 x10 x10 9 2x sen(x)sen f'(x) cos(x)cos 5 5 9. f(x)=
1 2
sen(2x 2x)
MATEMÁTICA 1 | Andrés Castillo/Percy Angulo/ Juan Ponte / Karol Malasquez …
7
DERIVADA DE UNA FUNCIÓN REAL 2013
Solución '
u'(x) 1 Use la propiedad: 2 u (x) u(x) 2 2 2 2 sen(2x 2x) ' cos(2x 2x)(2x 2x)' (4x 2)cos(2x 2x) f(x) 2 2 2 2 2 2 sen (2x 2x) sen (2x 2x) sen(2x 2x) 20
8
10. f(x) = (x cos(2x) – 12)(x – sen(x)) Solución Use la derivada del producto y de una función compuesta.
20
f '(x) x cos 2x – 12
'
x
19
8
20
8
– sen x x cos 2x – 12 x – sen x
20
8
20
'
7
f '(x) *20x cos 2x – 2x sen(2x)+*x – sen(x)+ *x cos(2x) 12+*8x – cos(x)+ 2
–4
11. f(x) = (x +3) Solución
n1
n
Use la derivada de una función compuesta [u (x)]' nu
3
12. f(x) x – 3x
2
3
4 1
2
f(x) 4 x 3
2
x 3
(x)[u(x)]'
2
8x x 3
–5
5
Solución n1
n
Use la derivada de una función compuesta [u (x)]' nu
3
2
f '(x) 5 x – 3x 3
51
3
2
'
2
(x)[u(x)]' 3
2
x – 3x 3 5 3x 6x x – 3x 3
4
2
13. f(x) = ln(x+1) – ln(x –1) Solución
Use la derivada de una función compuesta [ln(u(x))]' '
f '(x)
x 1 x 1
2
2
x 1
u(x)
'
x 1
[u(x)]'
1 x 1
2x (x 1)(x 1)
x 1 2x (x 1)(x 1)
1 x1
MATEMÁTICA 1 | Andrés Castillo/Percy Angulo/ Juan Ponte / Karol Malasquez …
8
DERIVADA DE UNA FUNCIÓN REAL 2013
–2
2
14. f(x) = ln(8x ) + ln(x +x) Solución
Use la derivada de una función compuesta [ln(u(x))]'
f'(x)
8x
2 '
8x
2
2
x x 2
'
16x
x x
8x
3
2x 1
2
2
x x
2 x
[u(x)]' u(x)
2x 1
2
x x
2(x 1) 2x 1 1 2 x(x 1) x x
2
15. f(x) = x ln(2x+1) Solución Use la derivada del producto y de una función compuesta '
2
2x
ln 2x 1 x [ln 2x 1]' 2xln 2x 1 2x 1
f '(x) x
2
2
x
2 (x 3x)
4x
16. f(x) e
e
e3
Solución u(x)
Use la derivada [e 2 (x 3x)
f '(x) e
u(x)
]' u'(x)e
2
x ( ) 3
4x
(x 3x)'– e (4x)' e
x
'
2 1 ( 3) x (x +3x) 4x (2x 3)e – 4e e 3 3
7 cos(2x)
17. f(x) e
ex e
5x
Solución u(x)
Use la derivada [e
u(x)
]' u'(x)e 7
cos(2x)
f'(x) e
2
7
'
7 7 cos(2x) ' e x e5x (5x)' 2sen(2x)ecos(2x) 2 e x 5e 5x x x
18. f(x) = (x – 3x)e
( 3x2)
Solución Use la derivada del producto y de una función compuesta.
2
'
2 ( 3x )
f '(x) x – 3x e
'
2 ( 3x2) ( 3x2) 2 ( 3x ) 2 (2x 3)e x – 3x x – 3x e e 3x
2
3
2
f'(x) (6x 18x 2x 3)e
3x
2
MATEMÁTICA 1 | Andrés Castillo/Percy Angulo/ Juan Ponte / Karol Malasquez …
'
9
DERIVADA DE UNA FUNCIÓN REAL 2013 19. f(x)
4
3
x 4
2
Solución
k
Use regla de la cadena: [
]'
n
u (x) 3
f'(x)
4 2(x 4)'
3
x 4
3
nk[u(x)]' n1
u 2
2
8(3x )
3
x 4
(x)
3
24x
3
x 4
3
2
20. f(x)
sen(x ) x
3
Solución Use la regla del cociente y luego la regla de la cadena '
sen(x ) x f'(x) 2
3
2
x
6
'
2x cos(x ) 3x sen(x ) 2cos(x ) 3sen(x )
sen(x ) x
3
4
2
2
x
2
2
6
2
2
x
x
4
3
2x 1 21. f(x) 2 x x Solución
Use la regla de la cadena y luego la regla del cociente ' ' 2 2 2x 1 x x 2x 1 x x 2x 1 2x 1 2x 1 f '(x) 3 2 2 3 2 2 2 x x x x x x x x 2 2 2 x2 x 2x 1 (2x 1) 2 2 2x 1 2x 1 2x 2x 4x 1 f '(x) 3 2 3 2 2 2 2 2 x x x x x x x x 31
'
2
2
f'(x)
2
3(2x 1) (2x 2x 1) 4
4
x (x 1)
MATEMÁTICA 1 | Andrés Castillo/Percy Angulo/ Juan Ponte / Karol Malasquez …
10
DERIVADA DE UNA FUNCIÓN REAL 2013 4x 6
22. f(x)
2
x 3x 4 Solución Use la regla del cociente y luego la regla de la cadena
Recuerde: [ u(x)]'
f'(x)
4x 6
'
u'(x) 2 u(x)
2
x 3x 4 4x 6
2
x 3x 4
'
2
x 3x 4
(x2 3x 4)' 2x 3 2 4 x 3x 4 4x 6 4 x 3x 4 4x 6 2 2 2 x 3x 4 2 x 3x 4 f'(x) 2 2 x 3x 4 x 3x 4 2
2
2
4 x 3x 4 f'(x)
23. f(x)
(2x 3) 2
x 3x 4 2
x 3x 4
2
2
2
4( x 3x 4) (2x 3) 2
7
2
2
(x 3x 4) x 3x 4
3
(x 3x 4)
cos 3x 4 sen 4x 3
Solución Use regla del cociente y regla de la cadena
f'(x) f'(x) f'(x)
[cos 3x 4 ]'sen 4x 3 cos 3x 4 [sen 4x 3 ]' 2
sen 4x 3
sen(3x 4)[3x 4]'sen 4x 3 cos 3x 4 cos(4x 3)[4x 3]' 2
sen 4x 3
3sen(3x 4)sen 4x 3 4cos 3x 4 cos(4x 3) 2
sen 4x 3
3sen(3x 4)
f'(x)
sen(4x 3)
4cos(3x 4)cos(4x 3) 2
sen (4x 3)
x2 24. f(x) ln cos 2
MATEMÁTICA 1 | Andrés Castillo/Percy Angulo/ Juan Ponte / Karol Malasquez …
11
DERIVADA DE UNA FUNCIÓN REAL 2013 Solución Aplique la derivada de un logaritmo y la re gla de la cadena. '
x2 2 x x sen( ). [cos( )]' xsen( ) 2 2 2 x 2 2 x tan( ) f '(x) 2 2 2 x
2
cos(
x
2
)
2
cos(
x
2
)
cos(
x
2
2
)
ex 2 25. f(x) ln ex 2 Solución Aplique propiedades de logaritmos x
x
f(x) ln(e 2) ln(e 2) Use la derivada del logaritmo natural x
f'(x)
(e 2)' x
e 2
26. f(x) ln
x
(e 2)' x
e 2
x
e x
e 2
x
x
e x
e 2
x
x
x
e (e 2) e (e 2) x
x
(e 2)(e 2)
4ex
2x
e
4
1 cos(x) 1 cos(x)
Solución Aplique propiedades trigonométricas en el radicando
1 cosx
f(x) ln
1 cosx
ln
(1 cos(x))(1 cos(x)) 2
(1 cos(x))
2
ln
1 cos (x) 2
(1 cos(x))
2
ln
sen (x) (1 cos(x))
2
senx 1 cosx
f(x) ln
Aplique propiedades de los logaritmos
f(x) ln
1 cos(x) 1 cos(x)
ln(
sen(x) 1 cos(x)
) ln(sen(x)) ln(1 cos(x))
Ahora, aplique las propiedades de las derivadas y también las identidades trigonométricas
f'(x)
(sen(x))' sen(x)
(1 cos(x))' 1 cos(x)
cos(x) sen(x)
sen(x) 1 cos(x)
2
2
cos(x) cos (x) sen (x) sen(x)(1 cos(x))
MATEMÁTICA 1 | Andrés Castillo/Percy Angulo/ Juan Ponte / Karol Malasquez …
12
DERIVADA DE UNA FUNCIÓN REAL 2013 2
f '(x)
2
cos(x) [cos (x) sen (x)]
sen(x)(1 cos(x))
x
27. f(x)
cos(x) 1
sen(x)(1 cos(x))
1 sen(x)
csc(x)
3 2 3
(1 x )
Solución Aplique la derivada de un cociente 3
f'(x)
2 3
3
2
2 3 2
f'(x)
2
2 3
(1 x ) 3x
4
2
2
1x
2 3
(1 x )
3x
28. f(x)
2
2
2
2
1 x (1 x )'
2
1 x (1 x x ) 2 3
(1 x ) f'(x)
4x
3x
2 2 3 (1 x )
[ (1 x ) ] 3x
3
(1 x )
3x
2 3
(x )' (1 x ) x [ (1 x ) ]'
2 3
3x
2
1x
2
2 3
(1 x )
2
2 3
(1 x )
Solución Aplique la derivada de la raíz cuadrada '
f'(x)
4 x2 (4 x2 )'(1 x2 )3 (4 x2 )[(1 x2 )3 ]' ' 2 3 2 2 6 4x (1 x ) (1 x ) 2 3 2 2 (1 x ) 4x 4 x 2
2 3
2 3
f'(x)
2
(1 x ) 2 2
2x(1 x ) 6x(4 x )(1 x ) 4x
2 6
2(1 x )
2(1 x )
2
2 3
2(1 x )
2 3
2x 2x 24x 6x 2 3
2
4x 1 x
2
2
3
2
2x(1 x ) 6x(4 x )
(1 x )
3
f'(x)
2 3
(1 x )
4 x
2
2
1x
3
26x 4x 2 3
2(1 x )
2
4 x 1x
2
MATEMÁTICA 1 | Andrés Castillo/Percy Angulo/ Juan Ponte / Karol Malasquez …
13
DERIVADA DE UNA FUNCIÓN REAL 2013 1 x 1x
29. f(x)
1 x 1 x
Solución Racionalice el denominador f(x) f(x)
( 1 x 1 x)( 1 x 1 x ) ( 1 x 1 x )
2
1 x 1 x 1 x 2 1 x 1 x 1 x
2x 2 2 1 x 1 x
x 1 1 x 2
Ahora aplique la derivada del cociente y de la raíz cuadrada x ' 2 2 2 1 1 x x x ' 1 1 x x 1 1 x x 1 x2 f '(x) 2 2 2 1 1 x 2 1 1 x 2 1 1 x '
Finalmente simplifique y se obtiene 1 x 2 (1 x 2 ) x 2 1 x2
f '(x)
30. f(x)
1 1 x 2
2
1 x 2 1
1 x2
1 1 x 2
2
1 1 x 2 1 1 x 2
x 2
a
2
a x
2
Solución Aplique la regla del cociente y la regla de la raíz cuadrada
f'(x)
2 a
' 2 2 a2 x2 x' a x x 1 x 2 2 2 2 a a2 x2 a x '
2 2 2 2 (a x )' a x x 2 2 1 2 a x f'(x) 2 2 2 a a x
2x 2 2 a x x 2 2 2 a x 1 2 2 a2 a x
MATEMÁTICA 1 | Andrés Castillo/Percy Angulo/ Juan Ponte / Karol Malasquez …
14
DERIVADA DE UNA FUNCIÓN REAL 2013
1 f'(x) 2 a 1
2 2 2 2 2 a x x x 2 2 a x 2 2 2 2 a x 1 a x 2 2 2 2 a2 a x a x
2 1 a 2 f'(x) 2 a (a2 x2 ) a2 x2 a (a2 x2 ) a2 x2 2
2
2 2 2 2 x a x 1 2 2 2 2 2 a (a x ) a x
1 (a2 x2 ) a2 x2
2
a x x
Racionalizando se tiene 2
f'(x)
31. f(x)
a x 2
2
2 2
(a x )
1 x 1 x
Solución Primer método Escribe la función como exponente fraccionario 1
f(x)
1 x 2 1 x 1 x 1 x
Aplique la regla de la cadena:
1 1 x
1/2
f(x) 2 1 x
11 x
f'(x) 2 1 x
1/2 1 x 1 1 x 1 x 1 x 1 x 1 x 2 2 1 x 1 x 1 x
1 2
1 1 2 x 1 x 1 x 2 x 2 1 x
1 1 1 x 2 1 x 1 x 2 2 1 x 2 x 1 x
MATEMÁTICA 1 | Andrés Castillo/Percy Angulo/ Juan Ponte / Karol Malasquez …
15
DERIVADA DE UNA FUNCIÓN REAL 2013 1 f'(x) 2 1/2 1/2 2 1 x 2 x(1 x) (1 x) (1 x)(1 x) 1 1 f'(x) 1/2 1/2 1/2 2 x(1 x) (1 x) (1 x) 2 x(1 x) (1 x) 2 x (1 x)(1 x)
11 x
1 2
1 x 1 x 1
Segundo método Racionalice el radicando:
1 x
f(x)
1 x
(1 x)(1 x) 2
(1 x)
1x 2
(1 x)
1 x 1 x
Aplique la regla del cociente
(1 x) x x 1 x 1x ' ' 1 x (1 x) 1 x 1 x 2 1x 2 x 2 x 1 2x f'(x) 2 2 1 x 1 x 1 x ( x 1) 1 2 x 1x f'(x) 2 2 x (1 x)( x 1) 1 x Comentario A veces es mejor reducir la expresión dada usando propiedades algebraicas y luego aplicar las propiedades de las derivadas.
32. f(x)
x 2
2
2
x a
2
a
2
2
2
ln(x x a )
Solución Aplique la regla del producto en el primer término y en el segundo la derivada del logaritmo natural. '
'
x f '(x) 2
2 2 2 x x a ' x a 2 2 2 2 x a x a 2 x x2 a2 2
Ahora aplique la derivada de la raíz cuadrada
MATEMÁTICA 1 | Andrés Castillo/Percy Angulo/ Juan Ponte / Karol Malasquez …
16
DERIVADA DE UNA FUNCIÓN REAL 2013 ' x2 a2 2 a 1 ' 2 2 2 x a x2 a2 x 1 2 2 f '(x) x a 2 2 2 2 2 4 x a 2 x x a
x 1 2 2 2 2 1 2 x a 2 x a f '(x) x a 2 2 2 2 x x2 a2 2 x a
Sacando mínimo común múltiplo se tiene 2
2
2
2
2
1 x a x a f '(x) ( ) 2 2 2 2 x a
2
x a x 2
2
x a
x
2
2
x a
Simplificando se tiene 2
2
2
2x a
f'(x)
2
2
2
2 x a
2
a
2
2
2x 2a 2
2 x a
2
2
x a
2
2 x a
2
2
2
2
x a
Finalmente racionalice y se tiene
f'(x) x a 3
4
5
3
33. f(x) x cos (x )sen(x ) Solución Aplique regla del producto dos veces y t ambién regla de la cadena '
f'(x) x cos (x ) sen(x ) x cos (x ) sen(x ) 3
4
5
3
3
4
5
3
'
' ' ' 3 4 5 3 4 5 3 3 4 5 3 3 f '(x) x cos (x ) x cos (x ) sen x x cos (x )cos(x ) x ' 2 4 5 3 3 5 5 5 3 5 4 5 3 f'(x) 3x cos (x ) 4x cos (x )(sen(x )) x sen x 2x cos (x )cos(x )
2
4
5
7
5
3
5
3
5
4
5
3
f'(x) 3x cos (x ) 20x sen(x )cos (x ) sen x 3x cos (x )cos(x ) Finalmente aplique la propiedad distributiva 2
4
5
3
7
5
3
5
3
5
4
5
3
f'(x) 3x cos (x )sen(x ) 20x sen(x )cos (x )sen(x ) 3x cos (x )cos(x )
MATEMÁTICA 1 | Andrés Castillo/Percy Angulo/ Juan Ponte / Karol Malasquez …
17
DERIVADA DE UNA FUNCIÓN REAL 2013 34. f(x) arct g
2
4x 1
Solución
f'(x)
1
2
4x 1
2 sen(x )
35. f(x) e
2
8x
'
4x 1
2
2
2 4x 1 2
1
1 4x 1 x 4x2 1
x lnx
arctan
Solución Aplique la regla del producto 2 sen(x )
f'(x) e
2
x sen(x2 ) x e ' arctan lnx lnx
sen(x ) 'arctan
Ahora, factorice y aplique la derivada de la función seno y arcotangente.
x ' x ln(x) 2 2 2xcos(x )arctan sen(x ) 2 ln(x) f'(x) e x 1 ln(x) ln(x) 1 2 2 x sen(x ) 2 2ln x 2 f'(x) e 2xcos(x )arctan ln(x) ln (x) x 2 ln (x) Simplificando 2 sen(x )
f'(x) e
x ln(x) 1 2 2xcos(x )arctan ln(x) 2 2 ln (x) x
MATEMÁTICA 1 | Andrés Castillo/Percy Angulo/ Juan Ponte / Karol Malasquez …
18
DERIVADA DE UNA FUNCIÓN REAL 2013
2
8
2
36. f(x) arcsen cos (x ) Ln
x
sec (2x) 10 2
Solución Aplique la derivada de la función arcoseno y sec(-x)=sec(x)
f'(x)
'
2 8 2 2 cos x ln sec 2x 10 x
2
2 8 2 1 cos x ln sec 2x 10 x
Aplique regla de la cadena en el primer y segundo miembro del numerador 2 ' sec 2x 10 ' 8 8 8 2cos x sen x x ln sec2 2x 10 2 x x x sec 2x 10 f'(x)
2
2 8 2 1 cos x ln sec 2x 10 x
2 x2 8 16 4sec (2x)tg(2x) 2 2 sen 2x ln sec 2x 10 2 x x sec 2x 10 f'(x)
2
2 8 2 1 cos x ln sec 2x 10 x
x2 8 16 4tg(2x) 2 ln sec 2x 10 2 sen 2x 2 x 1 10cos (2x) x f'(x)
2
8 2 2 1 cos x ln sec 2x 10 x
Problemas sobre recta tangente y recta normal 1.
Calcule los puntos en que la recta tangente a la curva f(x) x
3
2
3x 9x 5 es paralela al
eje OX. Halle también la ecuación de la recta tangente y la recta normal en esos puntos. Solución Para que la recta tangente sea paralela al eje OX, su pendiente de ser cero. Es decir 2
m f'(x) 3x 6x 9 0 MATEMÁTICA 1 | Andrés Castillo/Percy Angulo/ Juan Ponte / Karol Malasquez …
19
DERIVADA DE UNA FUNCIÓN REAL 2013
Al resolver esta ecuación se tiene x 1; x 3 . Por lo tanto, los puntos en donde la recta tangente es paralela al eje OX son ( –1; 10), (3; -22)
2.
Ecuación de la recta tangente:
y 10; y 22
Ecuación de la recta normal:
x 1; x 3 3
Se ha trazado una recta tangente a la curva f(x) x , cuya pendiente es 3 y pasa por el punto (0; −2). Halle los puntos de tangencia y las ecuaciones de la recta tangente y normal en cada punto. Solución La pendiente de la recta tangente es: 2
f'(x) 3x 3 x 1 Entonces los puntos de tangencia son:
(1; 1), (1;1)
Ecuación de la recta tangente:
LT1 : y (1) 3(x (1)) y 3x 2 0 (Se descarta pues esta recta no pasa por (0; –2) ) L T2 : y 1 3(x 1) y 3x 2 0
Ecuación de la recta normal:
3.
1
1
1 LN1 : y 1 (x 1) 3y x 2 0 f '(x) 3 3 Halle la ecuación de la recta tangente y de la normal a la curva f(x) ln(tg(2x)) en el mLN
punto de abscisa x
8
.
Solución Cálculo de la pendiente de la recta tangente y normal
f'(x)
tg(2x)' tg(2x)
2
2sec (2x) tg(2x)
2 cos(2x)sen(2x)
4 sen(4x)
4csc(4x)
MATEMÁTICA 1 | Andrés Castillo/Percy Angulo/ Juan Ponte / Karol Malasquez …
20
DERIVADA DE UNA FUNCIÓN REAL 2013 Entonces
mLT f '( ) 4csc( ) 4 y mLN 8 2
1
f'( ) 8
1 4
Para calcular el punto de tangencia se debe de reemplazar la abscisa en la función dada. Es decir:
2 f( ) ln(tg( )) ln(tg( )) ln(1) 0 8 8 4 Entonces el punto de tangencia es:
( ; 0) 8 Por lo tanto, las ecuaciones de la recta tangente y la normal son:
L T : y 4x
4.
2
; LN : y
x 4
32 2
Demuestre que la recta normal a cualquier punto de lacircunferencia x
2
2
y r pasa por el
origen. Demostración Despejando la variable y setiene: 2
2
2
2
2
x y r y r x 2
2
Sea (a, r a ) los puntos de tangencia a la circunferencia. Entonces la pendiente de la recta nornal es:
mLN
1 y'(a)
2
1 a
2
2
r a a
2
r a Por tanto, la ecuación de la recta normal es: 2
2
y ( r a )
2
2
r a a
2
(x a) y
r a
2
y
2
2
r a
2
a
x
2
2
r a
2
r a a
x
Esta recta demuestra que para cualquier punto de tangencia a la circunferencia, la recta normal en ese punto pasa por e l origen. 5.
2
Dos circunferencias de radio 4 son tangentes a la gráfica y
4x , en el punto (1; 2).
Encontrar las ecuaciones de esas dos circunferencias.
MATEMÁTICA 1 | Andrés Castillo/Percy Angulo/ Juan Ponte / Karol Malasquez …
21
DERIVADA DE UNA FUNCIÓN REAL 2013 Solución Si las circunferencias son tangentes a la parábola en el punto (1; 2) significa que tienen la misma recta tangente. Por otro lado, el centro de cualquier circunferencia está sobre la recta normal en cualquier punto. Entonces se debe encontrar la pendiente de la recta tangente a la parábola en el punto (1; 2) y luego la ecuación de la recta normal en ese punto. Es decir:
y 2 x y'(x)
1 x
Pendiente de la recta tangente:
mLT y'(1) 1 Pendiente de la recta normal:
mLN
1 y'(1)
1
Le cuación de la recta normal es:
y 2 (x 1) y x 3 Los centros están ubicados sobre esta recta normal, esto quiere decir que el centro satisface dicha ecuación. Es decir:
(h; k)
k h 3 Usando la distancia entre dos puntos calculemos el radio de la circunferencia. Es decir: 2
2
2
2
2
2
(h 1) (h 3 2) 4 (h 1) (h 1) 16 2(h 1) 16 h 2 2 1 Entonces los centros son
(2 2 1; 2 2 2), (2 2 1; 2 2 2) Finalmente las ecuaciones de las circunferencias tangentes a la parábola son: 2
2
2
C1 : (x 2 2 1) (y 2 2 2) 4 2
C2 : (x 2 2 1) (y 2 2 2) 4
C1
2
LT : y=x+1
C2
LN : y= –x+3
MATEMÁTICA 1 | Andrés Castillo/Percy Angulo/ Juan Ponte / Karol Malasquez …
22
DERIVADA DE UNA FUNCIÓN REAL 2013 6.
Dada la función f(x) tg(x) , halle el ángulo que forma la recta tangente a la gráfica de la función f(x) en el origen, con el eje de abscisas. Solución Cálculo de la pendiente de la recta tangente en el origen, es decir en el punto (0; 0) 2
mLT f '(0) sec (0) 1 Por otro lado, la pendiente de una recta es la tangente del ángulo de inclinación. Es decir:
tg() m ; donde el ángulo de inclinación es Entonces, en ángulo que forma la recta tangente a la la función dada en el origen con el eje de abscisas es el ángulo de inclinación de dicha re cta. Es decir:
tg() 1 45 7.
Halle los coeficientes de la ecuación f(x) ax
2
bx c , sabiendo que su gráfica pasa por (0;
3) y por (2; 1), y en este último punto su recta tangente tiene pendiente 3. Solución Si la función pasa por los puntos (0; 3) , (2; 1) entonces se cumple: 2
3 a(0) b(0) c c 3
(1)
2
1 a(2) b(2) 3 2a b 1
(2)
Por dato también se tiene que la pendiente de la recta tangente en (2; 1) es 3. Es decir:
f '(x) 2ax b f '(2) 4a b 3
(3)
De la ecuación (2) y (3) se tiene:
a 2 ; b 5 Por lo tanto, los coeficientes son:
a 2 ; b 5; c 3 8.
Determine los valores a, b y c de modo que f(x) x
2
2 ax b y g(x) x cx tengan la
misma recta tangente en el punto (2; 2). Solución f tiene la misma recta tangente que g entonces sus pendientes son iguales. Es decir,
mf mg 2x a 2x c a c (2; 2) es el punto de tangencia para ambas funciones entonces se tiene:
MATEMÁTICA 1 | Andrés Castillo/Percy Angulo/ Juan Ponte / Karol Malasquez …
23
DERIVADA DE UNA FUNCIÓN REAL 2013 c 1 g : 2 4 2c c 1 b 0 f : 2 4 2a b 2 2c b a 1 9.
2
Determine la ecuación de la recta normal a la gráfica de f(x) = x + x+ 1, sabiendo que dicha recta pasa por (37; 0) Solución Cálculo de la pendiente 2
Sea el punto de tangencia (x; y) (x; x
x 1) entonces
Use la derivada para calcular la pendiente de la recta tangente:
m1 f '(x) 2x 1
(1)
Calcule la pendiente usando los dos puntos por donde pasa la recta normal: (x;x
2
x 1)
y (37; 0) 2
2
(x x 1) x x 1 m2 37 x x 37
(2)
Como la recta normal y la recta tangente son perpendiculares se cumple:
x2 x 1 m1m2 1 (2x 1) 1 x 37 2
(2x 1)(x x 1) 37 x Efectuando se tiene 3
2
2x 3x 4x 36 0 Use el método de Ruffini y se tiene 2
(x 2)(2x 7x 18) 0 El término cuadrático es siempre positivo puesto que el discriminante es –95. Entonces x 2 y el punto de tangencia es (2; 7). Por otro lado, la pendiente de la recta normal es: m2
1 m1
1 5
Por lo tanto, usando la ecuación punto pendiente se tiene la ecuación de la recta normal:
1 y 0 (x 37) 5y (x 37) 5y x 37 0 5 10. Encuentre todos los puntos de la curva f(x) x
3
x 1 tales que la tangente a la curva en dichos puntos sea perpendicular a la recta x 2y 12 0 y obtener las ecuaciones de las rectas tangentes:
MATEMÁTICA 1 | Andrés Castillo/Percy Angulo/ Juan Ponte / Karol Malasquez …
24
DERIVADA DE UNA FUNCIÓN REAL 2013 Solución Como la recta tangente (LT) es perpendicular a la recta L 1 : x 2y 12 0 , se cumple que:
1 mTm1 1 m1 mT 2 2 Pero 2
f'(x) mT 3x 1 2 x 1 Entonces P0(1,1) y P1(-1,1) Por lo tanto, las ecuaciones de las rectas tangentes son:
L T1 : y 1 2(x 1) y 2x 1 0
LT2 : y 1 2(x 1) y 2x 3 0 Aplicaciones 1. Balística. Los expertos en Balística pueden identificar el arma que disparó cierta bala estudiando las marcas en el proyectil. Las pruebas se realizan disparando en un bulto de papel. Si la distancia S, en centímetros, que la bala recorre en el papel está dada por 3
s(t) 27 (3 10t) para 0 t 0,3 segundos, encuentre la velocidad de la bala en un décimo de segundo después de que golpea e l papel. Solución Derive la función s(t) 3
2
2
s(t) 27 (3 10t) s'(t) 3(3 10t) (10) 30(3 10t) Analice la derivada en el décimo se gundo
1 1 2 s'( ) 30(3 10 ) 120 10 10 La velocidad es de 120 cm/s 2. En el instante t 0 , un saltador se lanza desde un trampolín que está a 16 metros sobre el nivel del agua de la piscina. La posición del saltador viene dada por s(t) 8t
2
8t 16 ; con
s en metros y t en segundos. a) b)
¿Cuándo entra el saltador en el agua? ¿Cuál es su velocidad en ese momento?
Solución a) Saltador entra al agua significa que s(t)=0. Es decir: 2
2
s(t) 8t 8t 16 0 8(t t 2) 8(t 2)(t 1) t=2 segundos MATEMÁTICA 1 | Andrés Castillo/Percy Angulo/ Juan Ponte / Karol Malasquez …
25
DERIVADA DE UNA FUNCIÓN REAL 2013 b)
La velocidad es la derivada de la posición. Es decir:
s'(t) 16t 8 s '(2) 16(2) 8 24 El saltador entra al agua con una ve locidad de 24 m/s 3. Velocidad promedio. Si se lanza un objeto hacia arriba a 64 pies / seg desde una altura de 20 2 pies, su altura S después de x segundos se determina por S(x) = 20 + 64x – 16x . ¿Cuál es la velocidad promedio de los a) primeros 2 segundos después de que se lanzó? b) Siguientes 2 segundos? Solución La velocidad es la derivada de la función altura S . Es decir:
S'(x) 64 32x La velocidad promedio en los dos primeros segundos es:
S'(2) S'(0) 20
0 64 20
32
La velocidad promedio en los dos segundos siguientes es:
S '(4) S '(2) 4 2
64 0 32 4 2 2
4. Si la función del costo total de un fabricante está dado por C
6q
q2
6000 encuentre la
función del costo marginal. Solución El costo marginal es la derivada del costo entonces aplicar la drivada de un cociente para el primer término y la derivada de una constante para el segundo término.
CM
5. Si p
q 12 q 5
dC dq
2
12q(q 2) 6q 2
(q 2)
2
2
12q 24q 6q 2
(q 2)
2
6q 24q 2
(q 2)
6q(q 4) 2
(q 2)
es una ecuación de demanda, encuentre la razón de cambio del precio p con
respecto a la cantidad q. Solución Se sabe que el ingreso I es el precio p por la cantidad q, entonces el ingreso marginal se calcula:
MATEMÁTICA 1 | Andrés Castillo/Percy Angulo/ Juan Ponte / Karol Malasquez …
26
DERIVADA DE UNA FUNCIÓN REAL 2013
IM
dI dq
2 d q 12q
dq q 5
2
(2q 12)(q 5) (q 12q) 2
(q 5)
2
q 10q 60 2
(q 5)
6. Un empresario que emplea m trabajdores encuentran que producen
3
q 2m (2m 1)
unidades de productos diariamente. El ingreso total r (en dólares) está dado por
r
50q 1000 3q
Determine el producto del ingreso marginal cuando hay 12 trabajadores Solución La derivada del ingreso con respecto del número de empleados se le llama producto del ingreso marginal.
Entonces en nuestro problema nos piden calcular
dr dm m12
.
Apliquemos regla de la cadena y se tiene:
dr dm
dr
dq
dq dm
50q
d(
1000 3q
)
dq
3
dr dm
dr dm
dm
2 1000 3q 2 (2m 1)3 2m(3 2m 1) 2 3
50 1000 3q 50q
1000 3q
50 1000 3q
d(2m (2m 1) )
75q 1000 3q
(1000 3q)
3
2 (2m 1) 6m 2m 1
3
Si m= 12, entonces q 2(12) (2(12) 1)
24 253 24(53 ) 3000
Luego, reemplazando los valores de m y q en la última ecuación se tiene:
dr dm
50 1000 3(3000)
dm
1000 3(3000)
(1000 3(3000) 50 10000
dr
25q
10000
3
2 (2(12) 1) 6(12) 2(12) 1
75q 10000
3
2 (25) 72 25
11 40
610
671 4
167,75
Esto significa que si se emplea a un trece avo trabajador, el ingreso aumentará en aproximadamente 167,75 dólares.
MATEMÁTICA 1 | Andrés Castillo/Percy Angulo/ Juan Ponte / Karol Malasquez …
27
View more...
Comments