Ejercicios METODO GRAFICO
December 10, 2022 | Author: Anonymous | Category: N/A
Short Description
Download Ejercicios METODO GRAFICO...
Description
LGDKFGP DK DK@NPNÐJ
KHKR@N@NGP LKTGDG CROIN@G
Khkr`n`ng ?8 [j iobrn`ojtk dk dgs prgdu`tgs O y B, dnspgjk dk 9 ujndodks dk lotkrnof y 2= mgros poro su kjsolbfk. Kf lgdkfg O rkqunkrk 2 ujndodks dk lotkrnof y 3 mgros poro su kjsolbfk, kf lgdkfg tnpg B rkqunkrk ujo ujndod dk lotkrnof y = mgros poro su kjsolbfk. Fgs prk`ngs dk fgs prgdu`tgs sgj $?25 y $=5 rkspk`tnvolkjtk. @uojtgs prgdu`tgs dk `odo lgdkfg dkbk iobrn`or fo klprkso poro loxnlnzor fgs njcrksgs. Uosgs8 ?. Fko dktoffodolkjtk kf khkr`n`ng.
2. Yukfvo o fkkr. 0. Pn jg kjtkjdnð vukfvo o fkkrfg.
2
Grdkjor fo njigrlo`nðj8 URGD[@TGP
LOTKRNOFKP
MGROP
URK@NGP $ $
O
2
3
?25
B
?
=
=5
TGTOFKP
9
2=
Yornobfks Yorn obfks dk dk`nsnðj8
< @ojtndod dk prgdu`tg O quk sk dkbk iobrn`or. < @ojtndod dk prgdu`tg B quk sk dkbk iobrn`or.
Iuj`nðj Gbhktnvg8 Xlox < ?25 + =5 Rkstrn``ngjks8
P/O 2 + 9 + = 2= 0
, 5
Khkr`n`ng 28 [jo `ggpkrotnvo ocrì`gfo dk cojodg vo`ujg y cojor, tnkjkj ;5 kstobfgs poro vo`os y 255 poro gvkhos, odklïs tnkjkj 32 o`rks dk postg. [j o`rk ks jk`ksorng poro ofnlkjtor ujo vo`o, lnkjtros quk ujo gvkho jk`ksnto 5.2 o`rks. Uoro kf `undodg dk fgs ojnlofks fo `ggpkrotnvo pukdk prgpgr`ngjor ?5,555 mgros dk trobohg pgr oÿg. [jo vo`o rkqunkrk ?;5 mgros ojuofks y ujo gvkho 2; mgros. Fo cojoj`no ojuof quk sk gbtnkjk ks dk $2;5 pgr vo`o y $4; pgr gvkho. Fo `ggpkrotnvo qunkrk dktkrlnjor kf jølkrg dk vo`os y gvkhos quk loxnlnzo fo cojoj`no. 4
Grdkjor fo njigrlo`nðj8 OJNLOFKP
OFNLKJTO@NGJ OFNLKJT O@NGJ
M. @[NDGP
KPTOBFGP KPT OBFGP
URK@NGP $
Yo`ujg
?
?;5
;5
2;5
Gvkho
5.2
2;
255
4;
TGTOFKP
32
?5,555
Yornobfks Yor nobfks dk dk`nsnðj8
< @ojtndod dk vo`os o tkjkr kj fo `ggpkrotnvo. < @ojtndod dk gvkhos o tkjkr kj fo `ggpkrotnvo.
Iuj`nðj Gbhktnvg8
Xlox < 2;5 + 4;
Rkstrn``ngjks8
P/O
+ 5.2 32
+ 5 255 ;
5
Khkr`n`ng 08 @gjsndîrksk ujo `glpoÿìo quk iobrn`o 2 `fosks dk fnbrkrgs, uj lgdkfg kstïjdor y uj lgdkfg dk fuhg1 sk prg`ksoj kstgs fnbrkrgs kj 0 toffkrks dnikrkjtks o, b y `. Mo`kr uj kstïjdor tglo 2, ?.2 y 2.4 dìos kj fgs toffkrks rkspk`tnvolkjtk, mo`kr ujg dk fuhg tglo 2, 2.4 y 5.= rkspk`tnvolkjtk. Kf bkjkin`ng quk fo `glpoÿìo gbtnkjk ks dk $2,455 pgr `odo fnbrkrg kstïjdor y dk $4,=55 pgr `odo fnbrkrg dk fuhg. Kf prgbfklo ks dktkrlnjor `uojtgs fnbrkrgs dk `odo `fosk dkbkj dk iobrn`orsk, poro loxnlnzor fo utnfndod tgtof dk prgdu``nðj durojtk uj pkrìgdg dk 95 dìos. 9
Grdkjor fo njigrlo`nðj8 FNBRKRGP
TOFFKR O
TOFFKR B
TOFFKR @
Kstïjdor
2
?.2
2 .4
Fuhg
2
2.4
5 .=
TGTOFKP
95
95
95
Yornobfks Yor nobfks dk dk`nsnðj8 < iobrn`or.. @ojtndod dk fnbrkrgs kstïjdor o iobrn`or < @ojtndod dk fnbrkrgs dk fuhg o iobrn`or iobrn`or..
Iuj`nðj Gbhktnvg8 Xlox < 2455 + 4=55
Rkstrn``ngjks8
P/O
+ 2 95
+ 5 3
5
Khkr`n`ng 48 Dnspgjklgs dk $2?5,555 poro njvkrtnr kj fo bgfso dk vofgrks, jgs rk`glnkjdoj dgs tnpgs dk o``ngjks, fos dk tnpg O quk rnjdkj kf ?5% dk utnfndod y fos dk tnpg B quk rnjdkj kf =% dk utnfndod. Dk`ndnlgs njvkrtnr uj lïxnlg dk $?05,555 kj fos dk tnpg O y `glg lìjnlg $95,555 kj fos dk tnpg B. Odklïs qukrklgs quk fo njvkrsnðj kj fos dk tnpg O sko lkjgr quk kf dgbfk dk fo njvkrsnðj kj fos dkf tnpg B, ·`uïjtg tnkjk quk skr fo dnstrnbu`nðj dk fo njvkrsnðj poro gbtkjkr kf lïxnlg njtkrîs ojuof7 =
Yornobfks Yor nobfks dk dk`nsnðj8
< O``ngjks dk tnpg O quk sk dkbkj njvkrtnr kj fo bgfso. < O``ngjks dk tnpg B quk sk dkbkj njvkrtnr kj fo bgfso.
Iuj`nðj Gbhktnvg8 Xlox < 5.?5 + 5.=
Rkstrn``ngjks8
P/O
+ 2?5,555 5,555
5
>
Khkr`n`ng ;8 Pk dnspgjk dk ?25 rkirks`gs dk `gfo `gj `oikìjo y dk ?=5 rkirks`gs dk `gfo snj `oikìjo. Fgs rkirks`gs sk vkjdkj kj poquktks dk dgs tnpgs. Fgs poquktks dk tnpg O `gjtnkjkj trks rkirks`gs `gj `oikìjo y trks snj `oikìjo, y fgs dk tnpg B `gjtnkjkj dgs `gj `oikìjo y `uotrg snj `oikìjo. Kf vkjdkdgr cojo 9 dðforks pgr `odo poquktk quk vkjdo dk tnpg O y ; dðforks pgr `odo ujg quk vkjdk dk tnpg B. @of`ufor dk igrlo rozgjodo `uïjtgs poquktks dk `odo tnpg dkbk vkjdkr poro loxnlnzor fgs bkjkin`ngs y `of`ufor îstk. ?5
Grdkjor fo njigrlo`nðj8 URGD[@TGP
TNUG O
Rkirks`gs `gj `oikìjo Rkirks`gs snj `oikìjo
0 0
TNUG B DNPUGJNBNFNDOD
2 4
?25 ?=5
URK@NG
9 ;
Yornobfks Yor nobfks dk dk`nsnðj8 vkjdkr.. < @ojtndod dk poquktks ‖O“ o vkjdkr < @ojtndod dk poquktks ‖B“ o vkjdkr.
Iuj`nðj Gbhktnvg8 Xlox < 9 + ;
Rkstrn``ngjks8
P/O
+ 2 (`gj `oikìjo)
+
5
?=5 (snj `oikìjo) ??
Khkr`n`ng 38 Kj ujo postkfkrìo sk mo`kj dgs tnpgs dk tgrtos8 Ynkjkso y Rkof. @odo tgrto Ynkjkso jk`ksnto uj `uortg dk rkffkjg y uj Anfgcrolg dk bnz`g`mg y prgdu`k uj bkjkin`ng dk $2;5 , lnkjtros quk ujo tgrto Rkof jk`ksnto lkdng Anfgcrolg dk rkffkjg y uj Anfgcrolg dk bnz`g`mg y prgdu`k $455 dk bkjkin`ng. Kj fo postkfkrìo sk pukdkj mo`kr dnornolkjtk mosto ?;5 Anfgcrolgs dk bnz`g`mg y ;5 Anfgcrolgs dk rkffkjg, oujquk pgr prgbfklos dk loqunjorno jg pukdkj mo`kr los dk ?2; tgrtos dk `odo tnpg. ·@uïjtos tgrtos Ynkjksos y `uojtos Rkofks dkbkj vkjdkr of dìo poro quk sko lïxnlg kf bkjkin`ng7 ?2
Grdkjor fo njigrlo`nðj8 npg gs dk Uos osttkfk fkss Tnp
Rkffk fkj jgs
Bnz nz``g`mg
Lïxnl nloo Urg rgd du``nðj
Bkj Bk jkin in``ng $
5.2;
?
?2;
2;5
5.;5
?
?2;
455
Tgrtos Ynkjksos Tgrtos Rkofks
Yornobfks Yor ;5 nobfks ?;dk 5 dk`nsnðj8
Dnspgjnbnfndod
< @ojtndod dk tgrtos Ynkjksos o vkjdkr of dìo. < @ojtndod dk tgrtos Rkofks o vkjdkr of dìo.
Iuj`nðj Gbhktnvg8
Xlox < 2;5 + 455
Rkstrn``ngjks8
P/O
+ 5.;5
+
(rkffkjg) ?;5 (bnz`g`mg)
?2; (rkstrn``nðj (rkstrn``nðj `op).
?2; ?0
5
Khkr`n`ng =8 [jo klprkso quk iobrn`o dgs tnpgs dk ks`rntgrngs lor`o ‖]“ y lor`o ‖^“, qunkrkj prgdu`nr dnornolkjtk ujo `ojtndod dk ks`rntgrngs dk tof igrlo quk fos ujndodks gbtkjndos skoj loxnlnzodos. Kf klprksorng sk kj`ukjtro quk tojtg kf rk`ursg dnspgjnbfk `glg kf `gjsulg dk kstgs ks dnstnjtg y vo dk o`ukrdg of lgdkfg dkf ks`rntgrng1 fk sgfn`nto fo njigrlo`nðj of hkik dk pfojto y gbtuvg fo sncunkjtk njigrlo`nðj8 Uoro `odo ks`rntgrng lor`o ‖]“ gbtnkjk ujo utnfndod dk $255 y `gjsulk poro su `gjstru``nðj kj kf ïrko dk lïqunjos 9 mgros y kj ïrko dk pnjturo = mgros, poro `odo ks`rntgrng ‖^“ ujo utnfndod dk $245, uj tnklpg dk iobrn`o`nðj dk ?2 mgros kj lïqunjos y 4 mgros kj kf ïrko dk pnjturos, sobnkjdg quk fo `opo`ndod kj kf ïrko dk lïqunjos ks dk ?25 mgros y kj kf ïrko dk pnjturos ks dk 94 mgros. Dktkrlnjk fo `ojtndod dk ks`rntgrngs quk loxnln`k fos utnfndodks poro quk pukdo tglor ujo dk`nsnðj dk `uojtgs ks`rntgrngs dk `odo ?4
lor`o iobrn`or.
Grdkjor fo njigrlo`nðj8 Lor`os
Ïrko dk lïqunjo Ïrko dk pnjturo
[tnfndod
]
9
=
255
^ TGTOFKP
?2 ?25
4 94
245
Yornobfks Yor nobfks dk dk`nsnðj8 iobrn`or.. < @ojtndod dk ks`rntgrngs tnpg ‖]“ o iobrn`or < @ojtndod dk ks`rntgrngs tnpg ‖^“ o iobrn`or.
Iuj`nðj Gbhktnvg8 Xlox < 255 + 2455
Rkstrn``ngjks8
P/O
+ ?2 + 4 5 ?;
Khkr`n`ng >8 Kf dkportolkjtg dk pubfn`ndod oflo`kjks Gikrtgj, tnkjk quk pfojkor poro kf prðxnlg lks ujo kstrotkcno dk pubfn`ndod poro kf fojzolnkjtg dk ujo jukvo fìjko dk tkfkvnsgrks Plort, fo njigrlo`nðj `gj fo quk sk `ukjto ks fo sncunkjtk8 Fo pubfn`ndod pgr tkfkvnsnðj ffkco of 2% dk fos iolnfnos dk njcrksgs oftgs y of 0% dk fos iolnfnos dk njcrksgs lkdngs, pgr `odo `glkr`nof trojslntndg. Fo pubfn`ndod pgr pkrnðdn`g ffkco of 0% dk fos iolnfnos `gj njcrksgs oftgs y of 9% dk fos iolnfnos `gj njcrksgs lkdngs pgr `odo ojuj`ng pubfn`ntodg. Fo pubfn`ndod pgr pkrnðdn`g tnkjk uj `gstg dk $;55 pgr ojuj`ng y fo pubfn`ndod pgr TY tnkjk uj `gstg dk $2,555 pgr `glkr`nof. Fo lkto dkf oflo`îj ks gbtkjkr of lkjgs ujo prkskjto`nðj `glg lìjnlg of 09% dk fos iolnfnos dk njcrksgs oftgs y of 95% dk fos iolnfnos dk fgs njcrksgs lkdngs, lnjnlnzojdg fgs `gstgs dk pubfn`ndod ndkjtnin`or `uojtgs ojuj`ngs sk dkbkj rkofnzor kj `odo lkdng dk pubfn`ndod.?9
Grdkjor fo njigrlo`nðj8 Lor`os
Iol. Njcrksgs oftgs
Iol. Njcrksgs lkdngs
@gstg
Ojuj`ngs TY
2%
0%
2,555
Ojuj`ngs Ukrnðdn`g Gbhktnvg oflo`îj
0% 09%
9% 95%
;55
Yornobfks Yor nobfks dk dk`nsnðj8 < rkofnzor. @ojtndod dk ojuj`ngs dk TY o rkofnzor. < @ojtndod dk ojuj`ngs dk d k pkrnðdn`gs o rkofnzor.
Iuj`nðj Gbhktnvg8 Xlnj. < 2555 + ;55
Rkstrn``ngjks8
P/O
+ 5.09
+ 5
5 ?3
View more...
Comments