ejercicios de aseguramiento de la calidad.xlsx
Short Description
Download ejercicios de aseguramiento de la calidad.xlsx...
Description
= desviació est = muestra = = LCS LCI
= =
14 OZ 0.1 36 0.01666667 14 + 14 -
3 3
A)
n
= = desviació est = Z =
B)
5 50 1.7 3
LCS LCI
= =
5.30! 47.6"
Z
=
LCS LCI
= =
51.53! 4!.46
L#s $%mites de c#ntr#$ s#n m&s estrictas' (er# e$ nive$ de c#n)an*a se a reduci
,at#s
= ,4 ,3 L#s $%mites de c#ntr#$ s#n
0.41" 1."4 0.076
A) LCS LCI
/r&)ca = =
57.75 + 57.75 -
0.41" 0.41"
B) LCS LCI
/r&)ca 2 = =
1."4 0.076
1.7! = 1.7! =
= Z = ,esviación e = n = A) LCI =
40 4 5 5 -
Z Z
LCS
=
+
B) LCI
=
-
3
LCS
=
+
3
= ,4 ,3 L#s $%mites de c#ntr#$ s#n
0.41" 1."4 0.076
A) LCS LCI
/r&)ca = =
57.75 + 57.75 -
0.41" 0.41"
B) LCS LCI
/r&)ca 2 = =
1."4 0.076
1.7! = 1.7! =
= Z = ,esviación e = n = A) LCI =
40 4 5 5 -
Z Z
LCS
=
+
B) LCI
=
-
3
LCS
=
+
3
2. (r#me
= = ,at#s de $a ta$a = ,4 = ,3 = A)
B)
X LCS LCI
= =
R LCS LCI
= =
6 705 0.30! 1.777 0.3
+ -
,4 ,3
= =
#ra 1 3 4 5 6 7 ! " 10 11 1 13 14 15 16 17 1! 1" 0 1 3 4
edia
#ra 1 3 4 5 6 7 ! " 10 11 1 13 14 15 16
edia
2
3.5 3.1 3. 3.3" 3.07 .!6 3.05 .65 3.0 .!5 .!3 ."7 3.11 .!3 3.1 .!4 .!6 .74 3.41 .!" .65 3.! ."4 .64 ."!0!333
0.71 1.1! 1.43 1.6 1.17 0.3 0.53 1.13 0.71 1.33 1.17 0.4 0.!5 1.31 1.06 0.5 1.43 1." 1.61 1.0" 1.0! 0.46 1.5! 0."7 1.0375
. de $as meLCS 3.5 ."!0!333 3.1 ."!0!333 3. ."!0!333 3.3" ."!0!333 3.07 ."!0!333 .!6 ."!0!333 3.05 ."!0!333 .65 ."!0!333 3.0 ."!0!333 .!5 ."!0!333 .!3 ."!0!333 ."7 ."!0!333 3.11 ."!0!333 .!3 ."!0!333 3.1 ."!0!333 .!4 ."!0!333
2 n a$a ,4 ,3
= = = = =
X LCS LCI R LCS LCI
= = = =
La media de $a muestra m de c#ntr#$. ,e$ mism# m# 1.61' tami Las muestras 3 : 5 est&n @uera de $#s $%mites de medias. Las causas asi;na$es deen determinarse : e$iminarse. a$ ve* a: un nuev# a:udante de (anader# 8ue carece de uen Auici# s#re e$ (es# de $#s (anes. edias LCS LCI 2an;# LCS LCI
6.56 5.!4 1.141 0
Muestra
Pieza1
1 3 4 5
6.3 6 6.3 6. 6. 6.5
= =
#.
14.050 OZ 13."50 OZ
1.7! = 1.7! =
5!.4"6 57.004
3.45 0.135
=
440
=
440
=
405
=
435
706.!4! 703.15
10.66 1.33!
."! 1.04 4 0.7" .! 0
+ ,4 ,3
3.7! .36 .336 0
s (e8ue9a es '64' $a ma:#r 3'41. m#s s#n ien dentr# de $#s $%mites #' e$ ran;# de $a muestra m&s ;rande es de $#s $%mites de c#ntr#$. #dem#s c#nc$uir 8ue e$ (r#ces# se r#$. Sin emar;#' $#s (rimer#s cinc# va$#res (ara $a media est&n (#r da> est# (uede ser e$ indici# de un (r#$ema en $as (rimeras eta(as
/r&)c# 4 3.5 3 6edia .5 1.5 1 0.5
6. de $as medi as LCS LCI
0
0
5
10
15
0
5
30
/r&)c# de 2an;#s .5 1.5 1 0.5 0
0
5
10 2a n;#
15 6.de ra n;#
0 LCS
5 LCI
30
mm mm
,B
r#medi#$D 1 16.3 15." 3 15.! 4 15.5 5 16.3 6 16. 7 16 ! 16.1 " 15." 10 16. 11 15." 1 15." 13 16.3 14 15." 15 16.3 16 16. 17 16.1 1! 15." 1" 16. 0 15." 1 15." 16 3 15.5 4 15.! 16
A)
Z n
= = = =
16 0.1 " 0.0!
16 + 16 B)
C#n
LCS LCI
= =
0.0! = 0.0! Z
= 16.1 15.!!
Pieza 2
Pieza 3
6 6 4.! 6 6.6
Pieza 4
5." 6.3 5.6 6. 6.5
Media
5." 5." 5. 5." 6."
Rango
6.05 6.05 5.475 6.075 6.65
0.4 0.4 1.5 0.3 0.4
16.0! LCS 15." LCI 3
aD ECu&$ es $a desviación est&ndar F de$ (r#ces#G EHu< va$#r ene G D Si * = 3' Ecu&$es s#n $#s $%mites de c#ntr#$ (ara $a ;r&)ca de $a mediaG cD ECu&$es s#n $#s $%mites de c#ntr#$ (ara $a ;r&)ca de ran;#sG dD E?st& e$ (r#ces# aA# c#ntr#$G
J ?,I 2K/O 2an;# Z
1 10 " 10 " 1 50 10 3 3.3 3
2 " " 11 11 10 50 10
3 13 " 10 10 " 51 10. 4
4 10 10 11 10 10 51 10. 1
5 1 10 " 11 10 5 10.4 3
10 10 ! 1 " 4" ".! 4
aD ECu&$ es $a desviación est&ndar F de$ (r#ces#G EHu< va$#r ene G F = 0.61 .3606! D Si * = 3' Ecu&$es s#n $#s $%mites de c#ntr#$ (ara $a ;r&)ca de $a media CL 10 3 0.61 11.!3 LCS 11.!46315 LCI !.17536!53 SK,O = 0'577 LCS 11."041 LCI !.0"5" cD ECu&$es s#n $#s $%mites de c#ntr#$ (ara $a ;r&)ca de ran;#sG 2K/O S?2O2 .115 2K/O IKM?2IO2 0 LCS2 6."7"5 LCI2 0
! 10 11 10 ! " 4! ".6 3
" 13 10 ! 10 ! 4" ".! 5
# ! ! 1 1 " 4" ".! 4
dD E?st& e$ (r#ces# aA# c#ntr#$G S%' tant# $a media : $#s ;r&)c#s de distriución indican (r#ces# es en c#ntr#$
1$ 10 1 " ! 1 51 10. 4
,etermine $#s $%mites de c#ntr#$ su(eri#r e in@eri#r : $as medias ;$#a$es (ara $as ;r&)cas de : 2. ,iuAe $a ;r&)ca re(resentand# $#s va$#res de $as medias : de $#s ran;#s muestra$es. EL#s dat#s indican 8ue e$ (r#ces# est& aA# c#ntr#$G E#r 8u< s% # (#r 8u< n#G ?S2
?,I ? 2K/O 1 10.00 0.011 10.00 0.014 3 ".""1 0.007 4 10.006 0.0 5 ".""7 0.013 6 ".""" 0.01 7 10.001 0.00! ! 10.005 0.013 " ".""5 0.004 10 10.001 0.011 11 10.001 0.014 1 10.006 0.00" sumat#ria 10.006 0.13! edia 10.0005 0.0115 ?S2
?,I ? edia de LCS LCI 1 10.00 10.0005 10.0071 ".""3!65 10.00 10.0005 10.0071 ".""3!65 3 ".""1 10.0005 10.0071 ".""3!65 4 10.006 10.0005 10.0071 ".""3!65 5 ".""7 10.0005 10.0071 ".""3!65 6 ".""" 10.0005 10.0071 ".""3!65 7 10.001 10.0005 10.0071 ".""3!65 ! 10.005 10.0005 10.0071 ".""3!65 " ".""5 10.0005 10.0071 ".""3!65 10 10.001 10.0005 10.0071 ".""3!65 11 10.001 10.0005 10.0071 ".""3!65
aD = ,4= ,3= edia 2an;# LCSmedia LCImedia 2 LCS2 LCL2
0.577 .115 0 10.0005 0.0115 10.0071 ".""3!65 0.0435 0
10.01 10.005 10 ".""5 "."" "."!5 "."!
1
1 ?S2
10.006
10.0005
10.0071
2K/O edia de 2 LCS LCI 1 0.011 0.0115 0.0435 0.014 0.0115 0.0435 3 0.007 0.0115 0.0435 4 0.0 0.0115 0.0435 5 0.013 0.0115 0.0435 6 0.01 0.0115 0.0435 7 0.00! 0.0115 0.0435 ! 0.013 0.0115 0.0435 " 0.004 0.0115 0.0435 10 0.011 0.0115 0.0435 11 0.014 0.0115 0.0435 1 0.00" 0.0115 0.0435
".""3!65
0 0 0 0 0 0 0 0 0 0 0 0
#d#s $#s (unt#s de dat#s de$ ;r&)c# estan dentr# de sus $%mites de c#ntr#$.
0.03 0.05 0.0 0.015 0.01 0.005 0
1
Z= 1 F = 0.!!67513 3.4641016
/2-MICO ,? 6?,I-S
3
4
?,I ?
5
6
7
edi a de e
!
" LCS
10
11 LCI
1
/2-MIC- ,? 2-K/OS
3
4 2K/O
5
6
7
edi a de 2
!
" LCS
10 LCI
11
1
,OS 2an;# Z n ,4 ,3
3.5 3 ! 1.!64 0.136
LCS2 LCI2
6.05! 0.44
aD n Z
100 3 0.0115
N SOKI?K,O H? LII? n 50 * 3
0.0115
LCS
LCS
0.05145
LCI
LCI
-0.0145
LCI
LCI
0
CD K= 100 Z=
?$ LCI (uede $$e;ar tan aA# c#m# cer#' ( es sicamente (#si$e tener men#s de 0
LCS
0.03"3
LCI
-0.00"3
LCI
0
S 50 2IZ=
0.01745
0.06735
-0.03735 0
er# n# (uede ser ne;ava (#r8ue n# de@ectu#s#.
n=100 ?,I 1-mediaD 2IZ LCS LCI 0.0 0."! 0.014 0.06 -0.0 0.04 0."6 0.01"5"5" 0.0"!7!775 -0.01!7!7! 0.06 0."4 0.0374!6! 0.1314605 -0.011461 0.0! 0." 0.071"3 0.1613!7"6 -0.0013!! 0.1 0." 0.03 0.1" 0.01
0 0 0 0 0.01
,I ,?M?COS ,?M?COS ,IS ?S2S K
1 7
6
3 6
4 "
5 5
6 6
57 10 100 1000 0.057
0.03 LCS LCI LCI
0.166 -0.016 0
?$ (r#ces# est& @uera de c#ntr#$ en e$ te (róim#s 3 d%asD.
7 0
rcer d%a de $a
! !
" "
10 1
57
0.005435""
LCS LCI LCI
0.031307"7 -0.00130! 0
0.00!1!!! LCS LCI
0.05"65664 0.01034336
?n e$ de(artament# de (r#cesamient# de dat#s de$ Nanc# de /e#r;ia traaAan cinc# #(erad#res (ara e@ectuar $a entrada de dat#s. ,iariamente' durante 30 d%as' e$ nQmer# de re;istr#s de@ectu#s#s en una muestra de 50 re;istr#s intr#ducid#s (#r est#s #(erad#res se a an#tad# de $a si;uiente manera % muestra 1 2 3 4 5 ! " # 1$ 11 12 13 14 15 1 1! 1" 1# 2$ 21 22 23 24 25 2 2! 2" 2# 3$
30 50=
% de de&e'tos 7 5 1" 10 11 ! 1 " 6 13 1! 5 16 4 11 ! 1 4 6 16 17 1 6 7 13 10 14 6 1 3 300
?sta$e*ca $#s $%mites de c#ntr#$ su(eri#r e in@eri#r c#n 3F
7500
0.040
√(( (1−)) /)
0.013"0
C
0.07717
C
0.00!3
?$ LCL n# (uede ser ne;av# deid# a 8ue e$ (#centaAe de de@ect#s nunca (uede ser men#r 8ue 0. $#s estandares de $a indusra n# s#n tran estrist#s c#m# $as de ;e#r;ina de$ anc#. ;e#r;ina esta$ece su $imite de c#ntr#$ su(eri#r a$ 0'077 = 7'7P de@ectu#s#' mientras 8ue $a industria (ermit
a$can*ar e$ 10P antes de rec$amar 8ue $a muestra esta @uera de c#ntr#$
?$ #s(ita$ Centra$ de ,etr#it usca meA#rar su ima;en (r#(#rci#nand# una e(eriencia (#si (acientes : sus @ami$iares. arte de$ (r#;rama de ima;enT inc$u:e c#midas sar#sas 8ue invit (acientes a c#mer a$iment#s 8ue tami
View more...
Comments